关于stable diffusion的出图与训练的一些问题和解决办法(gpu)

首先,说一下众所周知的

这个软件想要玩起来全部功能,你至少需要一张8g的显卡,如果是台式机或者行内那肯定远超预期,这篇主要应对新人,或者想玩一玩,感受一下效果,那这个投入或者说门槛有一点点高,现在通用笔记本差不多6-8g显存居多,而且还有说炼丹炉报废的,那么降低一点风险,有人选择去谷歌云盘白嫖环境炼丹,我们这里也是主要说一下这个问题。

首先,什么是云盘炼丹,我们简述一下概念

谷歌云盘不并不是像百度云盘那样,仅提供下载和存储功能,类似阿里,他给我们提供了一个虚拟环境,对于cpu使用不做限制,深度学习所使用的的算力单元赠送5-6个小时,我们如果在云盘运行这类ai,他会提供稳定于7-14.9g的cpu,存储量不需要我们担心,50g完全够用,b站或者GitHub都有教程,我们只需要打开一步一步完成即可。

优势与劣势

首先,优势相当的大,炼丹的限制一下子被冲碎了,我们来对比一下:
最开始:

劣势:
1,8g的显存,少于8g有些大图(手机,电脑壁纸一类)高清修复最后会报错。
2,风险,显卡转速大家都能听出来,那训练一天或者好几天,对只玩一玩训练的人来说,属于低概率的中大风险事件。
3,大图运行几乎无法使用其他利用显卡的软件,效率不是很高(不适合摸鱼)
优势:
1,数据不会泄漏,你不需要向别的设备传输资源,不需要反复布置环境
2,可控性高,毕竟基本就停留在出图界面了,偶尔看一看可以做一些调整,学习率会不会太高太低,步数够不够都可以看得见。

云端

这里聊优势,然后劣势和一些网上目前没有的解决办法

优势:
1,无比明显的第一点,释放电脑,你只需要一个梯子全局代理,挂着个网页,就能操控sdd出图,上传你的模组,就能享受这个高配置环境出图,用完记得下载回本地,然后删除就好
2,你甚至可以多线程操作这个流程,也就是薅羊毛,不具备不正当流程,没什么好担心的
3,这个环境清除了你几乎所有学习门槛,既不需要你换电脑,也不需要你担心显卡。

劣势:

首先正如前文所说,你可以用赠送的5-6个小时出图炼丹,但是问题就在5-6个小时上,用完这个号就没有了,你之后需要购买月费,这个价格跑两个月还不如买张新的显卡,网上解决办法千奇百怪,甚至有砖家说,这是暂时封禁,24小时后就好了,我来提供一下正解。

第一,关于封禁

这其实不是封禁,这就和你新注册一个游戏账号,给了一个可用10次游戏复活卡,你GAMEOVER了,就复活,复活了10次,复活卡用光了,难道你认为这是给你药包封了吗,显然并不是,这是赠送的福利你用完了罢了,所以这个类似薅羊毛的办法没有任何对你账号不利的情况,你只是使用新用户该有的权益。

第二,也是最重要的一点,第二次怎么薅

想必大家搜到或者被推到这篇文章也是为了这个而来,复活卡没了,但是还想用怎么办?很简单,换个账号就可以了啊。现在市价不会高过5块钱,因为谷歌账号风险很大,没有实名,而且地区分布广泛,一般打游戏或者订阅长期使用都不会考虑这个问题,但对于我们这个使用5小时直接扔的操作就完全不一样了,因为你挂着网页而言,分个屏幕偶尔过一下人机验证,你甚至都不需要改密码。
而且这个机制类似塔科夫的删档机制(想到了就提一嘴啦。)你确实每次都用的新环境,一上来东西就都没有了,但是无所谓不是吗?这里的玩家就是你的模型,一次次的训练让ai对游戏地图(你需要的图片风格或者类型)更加熟悉,这批羊毛没达到需求水准,下一批会更好,成本低廉,你可能只需要几个批次就可以拿下一个训练优质的模型,下载之后,这也是你的私人财产。当然这里对你的梯子要求稳定,且支持全局代理,用小猫就行的,一批次大约不会超过150mb流量损耗。

第三,其实这个更像建议了

你不能一次性用完5-6小时,其实一般也无法实现这一操作,你可以晚上来炼丹,一次大约3小时左右即可,过长的时间也会导致其环境出现不可预估的问题,比如跑图中断,虚假练习,ui乱套,不过能看到这里,不到5块体验上万环境的服务这些都显得微不足道啦。。

最后

应该会持续更新,偶尔闲下来玩一玩会写点心得之类的,有感兴趣的可以聊聊。评论区私聊都可

### 租用GPU训练Stable Diffusion模型 为了有效运行并加速Stable Diffusion模型,特别是当本地硬件资源不足时,租用云端GPU成为一种高效的选择。考虑到特定需求,即NVIDIA GPU、至少8GB显存以及适当的操作环境配置[^1],多个云服务平台提供了适合此类任务的服务。 #### 选择合适的云计算服务提供商 一些知名的云计算服务商提供按需付费的GPU实例选项,这些平台通常具备灵活的资源配置能力,允许用户根据项目具体要求定制计算资源: - **Amazon Web Services (AWS)** 提供多种类型的EC2实例,其中P系列G系列特别适用于机器学习工作负载。 - **Google Cloud Platform (GCP)** 的虚拟机支持附加高性能GPU,并且拥有预构建的Deep Learning VM镜像简化设置过程。 - **Microsoft Azure** 同样供应专门针对AI应用优化过的NDv2/NCasT4_v3等系列VM规格。 上述各平台上均能找到满足最低硬件标准(如NVIDIA Tesla V100或更高级别产品线)及相应软件栈安装指南的信息。 #### 配置启动GPU实例 一旦选定目标供应商及其提供的合适方案,则应按照官方文档指示完成如下操作: 1. 注册账号并通过验证流程; 2. 创建新项目或进入已有工程空间内; 3. 浏览市场列表挑选含有所需框架版本(PyTorch/TensorFlow)的基础映像作为模板; 4. 定义网络参数、安全组规则确保外部访问权限可控; 5. 发起实例创建请求直至成功部署完毕; 此时即可通过SSH连接至远程服务器执行后续命令行指令来传输数据集、克隆仓库代码库并调整超参设定等内容[^2]。 ```bash # 假设已建立好无密码登录机制的情况下复制整个目录结构 cp -r /gemini/data-1/models /gemini/code/stable-diffusion-webui/ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值