本文主要参考YOLO-FaceV2这个文章,该文章为了解决人脸检测中小目标、遮挡等问题,在YOLOv5算法的基础提出了几点改进,且取得了比较不错的效果。
YOLO-FaceV2: A Scale and Occlusion Aware Face Detector
1 YOLO_Face2算法
1.1 网络结构
YOLOv5是一款优秀的通用物体探测器。我们将YOLOv5引入人脸检测领域,试图解决小人脸和人脸遮挡等问题。
我们的YOLO-FaceV2探测器的架构如图1所示。它由三部分组成:脊椎结构、颈部和头部。我们以CSPDarket53为骨干,在P5层用RFE模块取代瓶颈,融合多尺度特征。在颈部,我们保持了SPP[47]和PAN[48]的结构。此外,为了提高目标位置感知能力,我们还将P2层集成到PAN中。头部用于对类别进行分类并回归目标的位置。我们还在头部中添加了一个特殊的分支,以增强模型的遮挡检测能力。在图1(a)中,左侧的红色部分是探测器的主干,由CSP块和CBS块组成。它主要用于提取输入图像的特征。并增加了RFE模块,扩展了P5层的有效感受野,增强了多尺度融