优化改进YOLOv5算法之添加Res2Net模块(超详细)

目录

1 Res2Net

2 YOLOv5中添加Res2Net block

2.1 common.py配置

2.2 yolo.py配置

2.3.3 创建添加Res2Net block模块的YOLOv5的yaml配置文件 


1 Res2Net

关于代表性计算机视觉任务的进一步消融研究和实验结果,即目标检测,类激活 mapping和显著目标检测,进一步验证了Res2Net相对于现有技术的基线方法的优越性。

面向视觉任务的多尺度表示对于目标检测、语义分割和显著目标检测任务具有重大意义。通过CNN新模块Res2Net,能够实现与比以往优秀的基于CNN backbone 的模型(如ResNet,ResNeXt和DLA)更好的性能表现。

Res2Net:计算负载不增加,特征提取能力更强大

在多个尺度上表示特征对于许多视觉任务非常重要。卷积神经网络(CNN) backbone 的最新进展不断展示出更强的多尺度表示能力,从而在广泛的应用中实现一致的性能提升。然而,大多数现有方法以分层方式(layer-wise)表示多尺度特征。

在本文中,研究人员在一个单个残差块内构造分层的残差类连接,为CNN提出了一种新的构建模块,即Res2Net——以更细粒度(granular level)表示多尺度特征,并增加每个网络层的

YOLOv4 中添加 ECA 模块需要进行以下步骤: 1. 首先,在 yolov4 的实现代码中,找到 Darknet 的 backbone 部分(例如 CSPDarknet53),这是 YOLOv4 的核心部分。 2. 在 backbone 中的每个卷积层后添加 ECA 模块。ECA 模块的实现可以参考以下代码: ``` class ECALayer(nn.Module): def __init__(self, channel, gamma=2, b=1): super(ECALayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=channel, stride=1, padding=0, bias=False) self.sigmoid = nn.Sigmoid() self.gamma = gamma self.b = b def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.view(b, c, -1)) y = self.sigmoid(self.gamma * y + self.b).view(b, c, 1, 1) return x * y.expand_as(x) ``` 3. 在 backbone 中的每个卷积层后添加 ECA 模块。例如,如果要在 CSPDarknet53 中添加 ECA 模块,则需要在 `CSPBlock` 模块添加以下代码: ``` class CSPBlock(nn.Module): def __init__(self, in_channels, out_channels, num_blocks, num_filters): super(CSPBlock, self).__init__() self.downsample_conv = conv_bn_leaky(in_channels, out_channels, kernel_size=3, stride=2) self.split_conv0 = conv_bn_leaky(out_channels, num_filters, kernel_size=1, stride=1) self.split_conv1 = conv_bn_leaky(out_channels, num_filters, kernel_size=1, stride=1) self.blocks_conv = nn.Sequential(*[ResBlock(num_filters, num_filters, shortcut=False) for _ in range(num_blocks)]) self.concat_conv = conv_bn_leaky(num_filters * 2, out_channels, kernel_size=1, stride=1) self.ecalayer = ECALayer(out_channels) def forward(self, x): x = self.downsample_conv(x) x0 = self.split_conv0(x) x1 = self.split_conv1(x) x1 = self.blocks_conv(x1) x = torch.cat([x0, x1], dim=1) x = self.concat_conv(x) x = self.ecalayer(x) return x ``` 4. 在 YOLOv4 中的其他部分中也可以添加 ECA 模块,例如在 neck 和 head 中添加。 以上就是在 YOLOv4 中添加 ECA 模块的步骤。需要注意的是,添加 ECA 模块可能会增加模型的计算量和内存消耗,因此需要对模型进行相应的调整和优化
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI追随者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值