目录
2.3.3 创建添加Res2Net block模块的YOLOv5的yaml配置文件
1 Res2Net
关于代表性计算机视觉任务的进一步消融研究和实验结果,即目标检测,类激活 mapping和显著目标检测,进一步验证了Res2Net相对于现有技术的基线方法的优越性。
面向视觉任务的多尺度表示对于目标检测、语义分割和显著目标检测任务具有重大意义。通过CNN新模块Res2Net,能够实现与比以往优秀的基于CNN backbone 的模型(如ResNet,ResNeXt和DLA)更好的性能表现。
Res2Net:计算负载不增加,特征提取能力更强大
在多个尺度上表示特征对于许多视觉任务非常重要。卷积神经网络(CNN) backbone 的最新进展不断展示出更强的多尺度表示能力,从而在广泛的应用中实现一致的性能提升。然而,大多数现有方法以分层方式(layer-wise)表示多尺度特征。
在本文中,研究人员在一个单个残差块内构造分层的残差类连接,为CNN提出了一种新的构建模块,即Res2Net——以更细粒度(granular level)表示多尺度特征,并增加每个网络层的