自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI数据工厂

Python应用、cv数据处理、论文笔记、深度学习、目标检测、语义分割相关知识点分享

  • 博客(192)
  • 资源 (8)
  • 收藏
  • 关注

原创 Ollama: 大模型本地部署&远程调用&Python接口

Ollama 是一个开源的大型语言模型(LLM)服务工具,旨在简化在本地机器上部署和运行大型语言模型的过程。本地部署:Ollama 允许用户在本地机器上部署和运行大型语言模型,无需依赖外部服务器或云服务。这使得用户可以在私有环境中使用强大的语言模型功能,保护数据隐私和安全性.简化部署过程:通过提供一键安装和配置的脚本,Ollama 大幅简化了在 Docker 容器中部署大型语言模型的过程。用户只需运行简单的命令,即可快速搭建起模型运行环境,无需手动配置复杂的依赖和参数.多模型支持。

2025-02-18 13:33:11 969

原创 音频入门(二):音频数据增强

本文介绍了一些常见的音频数据增强方法,并给出了代码实现。

2025-01-21 15:18:27 1340

原创 音频入门(一):音频基础知识与分类的基本流程

音频信号是声音波形的电学表示,它可以捕捉声音的频率、幅度和时间特性。模拟音频信号模拟音频信号是连续变化的电信号,它模拟了原始声音波形的物理特性。它可以通过麦克风捕获,并通过扬声器、耳机或放大器进行播放。模拟信号可以被录制在磁带、黑胶唱片等介质上。数字音频信号数字音频信号是通过将模拟信号转换为一系列数字值来表示的,这个过程称为模数转换(ADC)。数字音频信号通常以文件形式存储,如MP3、WAV、AAC等格式。数字音频可以方便地进行编辑、处理和传输,且不受模拟信号的退化问题影响。采样率。

2025-01-21 15:17:27 1633

原创 终端复用神器——tmux的安装及基本用法

tmux的安装及基本用法。

2024-12-24 09:08:25 1333

原创 【PyQT5】F11按键设置/退出全屏模式

全屏模式允许应用程序开发者创建自定义的布局和界面元素,以更好地适应屏幕大小和分辨率。这有助于提供一致的用户体验,无论用户使用的是哪种设备或屏幕尺寸。

2024-11-26 10:18:47 1135

原创 【kohya_ss】从0开始,训练一个LoRA模型

本文提供了从环境配置到LoRA训练再到最后的效果测试的整个流程,供想要玩玩LoRA的同学参考。

2024-10-21 08:50:53 2450

原创 基于socket实现客户端与服务器之间TCP通信

我们在算法部署时,通常需要进行算法端与其他服务端的通信,要么接受指令、要么是需要上传算法结果;除了我们常用的gRPC、HTTP、MQ等方式,还可以利用TCP来实现可靠通信;本次我们利用socket来展示如何进行两端的TCP通信。

2024-10-14 08:30:00 1119

原创 Python Opencv: 基于颜色提取的印章分割

利用Python实现了一个图像处理功能,即批量提取图像中的印章区域;使用了颜色聚类的方法来提取颜色。

2024-09-09 15:45:20 2261

原创 mmsegmentation: 安装并使用自定义数据集进行训练

本文从实际的案例出发,介绍了如何在mmsegmentation使用自定义数据集和添加自定义模块,并介绍了安装过程的一些坑;供大家学习交流。

2024-08-13 14:44:20 2989 13

原创 C++: 如何把源码编译成SDK提供第三方使用

在我们开发过程中,经常会遇到提供SDK的情况,对于C++语言,是可以方便地将源码封装成静态库或者动态库然后打包提供给第三方使用的。这样,一方面可以保护源码,另一方面也简化了对方的使用过程。

2024-08-05 08:35:46 2072

原创 PyQT: 开发一款ROI绘制小程序

基于Python和PyQt5框架开发了一款桌面应用程序,允许用户加载图片或视频流,并在这些媒体上绘制感兴趣的区域

2024-07-04 13:45:36 1442 1

原创 Python tkinter: 开发一个目标检测GUI小程序

程序提供了一个用户友好的界面,允许用户选择图片或文件夹,使用行人检测模型进行处理,并在GUI中显示检测结果。用户可以通过点击画布上的检测结果来获取更多信息,并使用键盘快捷键来浏览不同的图片。

2024-07-01 13:46:14 1432

原创 Python Tkinter:开发一款文件加密解密小工具

介绍了一款自行研发的文件加解密的小工具,可以从源码/可执行程序运行。

2024-07-01 13:45:00 1722

原创 SQLite:一个极简使用教程

SQLite是一个轻量级的、文件系统基础的数据库,它被设计为配置简单、易于部署。SQLite数据库存储在一个单一的磁盘文件中,这意味着数据库的创建和维护都非常简单。

2024-06-25 08:51:31 5713

原创 SCNet: 全1*1卷积的轻量图像超分辨率

深度学习模型尤其是大卷积核(3*3或更大)在单图超分辨率(single image superresolution,SISR)上取得显著进展。然而,庞大的计算量阻碍其在实时、资源受限环境中的应用。相反,1*1卷积在计算效率上能力可观,但却在局部空间表示聚合方面能力不足,而这恰恰却是SISR模型所需要的基本能力。

2024-06-05 09:34:44 1443

原创 PeLK: 大卷积核强势回归,高达101 × 101,提出了外围卷积

PeLK:超大卷积核,高达101*101!

2024-04-27 14:45:42 2238

原创 RKNN:yolov8模型转换与板端推理流程

记录了“yolov8的torch模型转onnx再转rknn,并在瑞芯微RK3588上进行推理验证”的过程。

2024-04-27 14:35:54 7158 33

原创 ShuffleMixer:一个高效的图像超分辨率卷积网络

介绍了一篇关于轻量SR的论文——ShuffleMixer

2024-04-25 13:36:44 1247

原创 RepViT:当MobileNet遇到ViT

近期,在资源受限的的移动设备上,轻量ViTs表现出了比CNNs更好的性能和更低的延迟。研究人员发现了轻量级vit和轻量级cnn之间的许多结构联系。然而,尚未充分检查它们之间的块结构、宏观和微观设计的显着架构差异。在这项研究中,我们从 ViT 的角度重新审视轻量级 CNN 的有效设计,并强调它们对移动设备的前景。具体来说,我们通过集成轻量级 ViT 的有效架构设计,逐步增强标准轻量级 CNN(即 MobileNetV3)的移动友好性。这最终得到了一系列新的纯轻量级cnn,即RepViT。

2024-04-24 10:00:04 1604

原创 Python语法糖大全

Python语法糖大全,汇总了各种语法糖,可以作为一个查询手册。

2024-04-24 09:40:00 3812 2

原创 FSRCNN:加速超分辨率卷积神经网络,SRCNN的加速版

FSRCNN:改进版的SRCNN,速度更快、性能更高!

2024-04-23 09:17:03 1670 3

原创 SRCNN:深度学习单图超分开山之作【附代码】

介绍了单图SR开山之作——SRCNN,并给出了网络结构的实现代码。

2024-04-23 09:16:39 2632 4

原创 Minio: 文件类型数据存储

另一种方式是,将这些文件以对象的方式存储到云服务器上,这样既没有丢失风险,也不必担心本地磁盘被撑爆,同时也方便给他人分享数据。我们这里提供了一种客户端实现,可以将文件或者对象上传到指定的服务器路径上,并根据指定的“bucket”进行查询与自动创建。在这里,我们利用了一个叫做Minio的对象存储方式,它可以提供安全、可靠、边界的存储及分享方式。:param bucket_names: 桶名称,用于存放数据的根目录。支持两种上传方式:文件形式、对象形式。:param secret_key: 密码。

2024-04-07 11:39:32 1682

原创 MQTT:通过消息队列进行消息传递

简要介绍了一个利用消息队列进行算法结果上传的方法,并给出了Python代码实现。

2024-04-07 11:38:37 1325

原创 NWPU-MOC:密集多类别目标计数,方法和benchmark

目标计数是CV领域的一个热门任务,其目的在于估计给定图像中的目标个数。然而,当前大多数方法都是针对单类别的,这对于需要同时对多种类别进行计数的场景来说就不适用了,尤其在航拍图中。为了解决这个问题,本文引入了一个多类别目标计数(MOC)任务,来估计在一个航拍图中不同类别目标(如车、建筑、船等)的个数。考虑到缺乏相关数据集,同时也构造了一个包含了3416个场景、1024*1024分辨率、14个精细标注类别的大型数据集——NWPU-MOC。

2024-03-22 10:06:53 2164 2

原创 FcaNet:频率通道注意力,进阶版SE

注意力机制,尤其是通道注意力,在CV领域取得了巨大成功。大部分研究都集中在如何设计更高效的通道注意力机制,却忽略了一个基本问题,也即:他们都是使用全局平均池化(GAP)来作为预处理方法。尽管GAP十分简单高效,但他的捕获的信息也确实不足。对注意力进行重新思考,并从数学上证明了GAP就是频域特征分解的一个特例。基于此,作者将通道注意力机制的预处理泛化到了频域,并基于。2)DCT可以看做输入的加权和,上述DCT公式中的cos部分可以当做权重。在CNN中常用通道注意力来对不同通道的特征进行加权。

2024-03-22 10:05:07 4407 1

原创 YOLO-World初体验:Ultralytics版本,可直接上手,离线运行

YOLOv8官方新增了对YOLO-World的支持,本文利用其提供的模型及接口进行了体验。

2024-02-20 10:17:11 18229 43

原创 YOLO-World:实时开放词汇目标检测

本文通读了YOLO-World的论文,翻译了其关键内容。

2024-02-20 10:17:01 4066

原创 Objects365数据集下载与信息统计

介绍了Objects365数据集,并提供了百度网盘下载链接;同时,给出了数据集的统计信息。

2024-01-30 08:28:47 4927 9

原创 RTMO: 超越YOLO-pose的高性能、单阶段、多人姿态估计

提出的RTMO框架如下图所示:网络框架描述如下:输入图像经过backbone(CSPDarknet)后,最后三层feature map经过Hybrid Encoder得到16、32倍下采样的空间feature mapP4、P5,送入Heads;每个Head生成一个得分feature、一个坐标姿态feature,其中坐标姿态feature用于预测bbox、关键点坐标、关键点可见性。****强行插入一段*****:关于坐标分类,没做过的小伙伴可能有点懵,我们可以从SimCC这篇文章中的方法一窥其貌。

2023-12-14 17:14:20 4330

原创 Triton算法服务部署:初识与试用【Hello world】

介绍了Triton,并结合官方文档给出了一个Hello World级别的使用示例。

2023-12-13 09:47:45 1596

原创 Flask基本用法:一个HelloWorld,搭建服务、发起请求

Flask是一个轻量的web服务框架,我们可以利用它快速搭建一个服务,对外提供接口,其他人可以轻松调用我们的服务。这对算法工程师来说比较关键,我们通常不擅长搞开发,这种框架十分适合将算法封装成服务的形式提供给其他人使用。更多介绍可从搜索引擎找到,这里不过多介绍。我们直接给出一个使用示例,相信大家看了后能快速掌握Flask的基本用法。

2023-12-13 09:47:20 1903

原创 gRPC基本用法:以人脸识别为例,搭建一个简单的gRPC服务

内含一个完整的人脸识别gRPC服务的github代码;文章以人脸识别为例,提供了一个gRPC的基本用法

2023-12-11 08:38:54 1626

原创 【媒体开发】利用FFMPEG进行推拉流

给出了一种利用FFMPEG进行推拉流的方法与使用步骤

2023-12-11 08:38:31 2801 6

原创 T-Rex:检测一切 | 基于视觉提示的开集检测器,检测并计数

T-Rex,一种开集检测一切、计数一切、实例分割一切的模型,主页可以试玩。

2023-11-29 11:38:03 5879

原创 基于点之间距离的多目标跟踪

目标跟踪是计算机视觉领域一种常用的算法,用于将前后帧中的同一个目标关联起来,从而可以针对某一个特定目标进行分析,如对状态进行投票平滑获取更为稳健的结果。然而,目前流行的跟踪算法大多是基于检测的bbox之间的IOU来匹配的,这对于某些小目标或者点的检测,IOU通常不是一个好的选择,因为目标太小,很容易使得相邻两帧之间的IOU为0。为了解决这个问题,本文提出了一种基于点之间距离的跟踪方法:将目标建模为一个点,通过计算前后帧点之间的距离,利用匈牙利匹配来进行跟踪。

2023-11-22 11:15:42 778

原创 MODNet:基于目标分解的实时trimap-free肖像抠图

本文提出了一种轻量级、trimap-free的目标分解网络(MODNet),关键思想是通过显式约束同时优化一系列子目标。此外,还提出了一个高效的 空洞空间金字塔池 (e-ASPP) 模块来融合多尺度特征以进行语义估计,一种自监督子目标一致性(SOC)策略,使MODNet适应真实世界的数据,以解决无trimap方法常见的域转移问题

2023-11-08 13:42:08 1494

原创 Python中 lambda 的妙用

Python中使用lambda高效处理一些问题的案例

2023-11-08 13:41:17 257

原创 Deep Image Matting:深度学习Matting开山之作

在此之前的Matting方法要么是用传统方法,要么是传统+深度学习的组合,他们都难以达到理想效果。因此,本文提出了一个利用trimap来作为辅助输入,并完全使用深度学习方法来进行Matting的方法,这开创了trimap-based Deep Learning Matting的先河。

2023-11-03 14:19:38 506

原创 PP-Matting:trimap free的高精度自然图像抠图

介绍了PP-Matting,一种trimap-free的高精度自然图像抠图方法,通过SCB和HRDB分支分别获取语义上下文和细节特征,从而获取高精度的Matting结果。

2023-11-03 10:57:42 1766

15K自行收集的抽烟打电话的数据集,YOLO格式可直接使用,支持售后

1. 这是一个抽烟打电话的数据集,图片为抠出来的人体图,里面标注了手机、烟头两类目标; 2. 可用于在检测人体之后,进一步检测人体中是否有手机、烟头,辅以其他逻辑,即可判断是否有玩手机、抽烟等行为; 3. 数据一共包含14998张图片及其对应的label标注,标注是YOLO格式,行如:1 0.125 0.8 0.25 0.4,分别表示:类别、 x1、y1、x2、y2; 4. 附带了一个可视化代码——visual_yolo.py,可以将目标的bbox可视化出来,以供参考; 5. 数据集中包含一部分负样本,约占比18.6%,这部分图片中没有出现手机或烟头,能够提高模型泛化性,避免过拟合;

2024-10-10

3K自行收集的垃圾桶检测数据集

1. 这是一个垃圾桶检测的数据集,里面标注了垃圾桶的边界框; 2. 数据一共包含2998张图片及其对应的label标注,标注是YOLO格式,行如:1 0.125 0.8 0.25 0.4,分别表示:类别、 x1、y1、x2、y2; 3. 附带了一个可视化代码——visual_yolo.py,可以将目标的bbox可视化出来,以供参考;

2024-10-10

Traffic Camera Object Detection数据集

关于数据集: 该数据集是来自伊利诺伊州芝加哥交通摄像头的增强随机截图的集合。在数据中,所有车辆都被标记在一个名为‘car’的类别中。标签由边界框组成,以YOLOv5 PyTorch格式存储。 这些数据是基于Corey Snyder和Minh N.Do在STREETS项目中使用的数据的衍生作品。 源数据是公开的。源数据于2021年9月2日获得。

2024-10-10

DAWN(Detection in Adverse Weather Nature)数据集

DAWN(Detection in Adverse Weather Nature)数据集由在各种恶劣天气条件下收集的真实世界图像组成。该数据集强调多样化的交通环境(城市、高速公路和高速公路)以及丰富多样的交通流量。DAWN 数据集包含来自真实交通环境的 1000 张图像的集合,这些图像分为四组天气条件:雾、雪、雨和沙尘暴。该数据集使用用于自动驾驶和视频监控场景的对象边界框进行注释。该数据有助于解释恶劣天气条件对车辆检测系统性能的影响。 Cite this dataset KENK, Mourad (2020), “DAWN”, Mendeley Data, V3, doi: 10.17632/766ygrbt8y.3

2024-10-10

lite.ai.toolkit与使用说明

# 使用说明 ## 1. lite.ai.toolkit包编译安装 从官网clone下来源码,并使用命令编译安装: `./sh` 之后,在build目录下,就会生成“install”文件夹,这是最终的安装结果,留着备用;建议将其另外存放一个安全的位置,防止在build文件夹被删除时一并丢失。 ## 2. 设置环境变量 上一步编译后的包,包含了所需要的所有基本库,需要设置一下环境变量: ``` export LD_LIBRARY_PATH=your_path/install/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=your_path/install/third_party/opencv/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=your_path/install/third_party/onnxruntime/lib:$LD_LIBRARY_PATH ``` 注意:上述命令中的your_path需要改为第1步得到的“install”所在的父目录! ## 3. 编写Demo示例

2024-10-10

双目相机标定程序,可根据拍摄的标定板图像,进行相机参数估计

1. 项目概述 本项目开发了一套双目立体视觉系统,用于精确测量和分析三维空间中的物体。该系统通过标定和校正两个相机的内参数和畸变系数,实现了高精度的立体视觉感知。 2. 技术背景 立体视觉系统通过两个相机从不同角度捕捉同一场景的图像,然后通过三角测量原理计算出物体的深度信息。为了获得准确的深度信息,必须对相机的内参数(焦距、光心)和畸变系数(径向和切向畸变)进行精确标定。 3. 项目目标 实现双目相机系统的自动标定。 计算相机的内参数和畸变系数。 应用畸变校正算法,提高图像质量和深度测量精度。 提供一套完整的立体视觉校正工具。 4. 系统组成 本系统主要由以下部分组成: 图像采集模块:负责从左右相机获取图像数据。 角点检测模块:使用OpenCV库中的cv2.findChessboardCorners和cv2.cornerSubPix函数,检测并精确定位标定板上的角点。 标定计算模块:利用检测到的角点,通过cv2.calibrateCamera函数计算相机的内参数和畸变系数。 畸变校正模块:使用cv2.undistort函数,根据计算出的内参数和畸变系数对图像进行畸变校正。 立体校

2024-10-10

Python相机标定程序,适用于单目相机

1. 项目概述 本项目旨在开发一套基于人工智能的视觉系统,用于精确识别和测量标定板上的角点,以实现相机的标定和畸变校正。该系统将广泛应用于机器视觉、自动化检测、机器人导航等领域。 2. 技术背景 在机器视觉系统中,相机标定是必不可少的一步。相机标定能够确定相机的内参数(焦距、光心)和外参数(旋转、平移),从而将三维世界坐标映射到二维图像坐标。由于相机镜头的光学畸变,图像可能会出现失真,如桶形畸变或枕形畸变。因此,畸变校正是提高图像质量和测量精度的关键步骤。 3. 项目目标 实现一个自动化的相机标定流程。 计算相机的内参数和畸变系数。 应用畸变校正算法,提高图像质量和测量精度。 提供一个用户友好的界面,用于显示标定结果和校正后的图像。 4. 系统组成 本系统主要由以下部分组成: 图像采集模块:负责从相机获取图像数据。 角点检测模块:使用OpenCV库中的cv2.findChessboardCorners和cv2.cornerSubPix函数,检测并精确定位标定板上的角点。 标定计算模块:利用检测到的角点,通过cv2.calibrateCamera函数计算相机的内参数和畸变系数。 畸

2024-10-10

百货商店商品管理系统-Python程序设计

欢迎使用百货商店商品管理系统 1. 添加商品 2. 删除商品 3. 更新商品信息 4. 列出所有商品 5. 搜索商品 6. 计算总收入 7. 退出系统 请选择操作(1-7):1 请输入商品名称:2 请输入商品价格:2 请输入商品数量:2 商品添加成功! 欢迎使用百货商店商品管理系统 1. 添加商品 2. 删除商品 3. 更新商品信息 4. 列出所有商品 5. 搜索商品 6. 计算总收入 7. 退出系统 请选择操作(1-7):4 名称:2, 价格:2.0, 数量:2 欢迎使用百货商店商品管理系统 1. 添加商品 2. 删除商品 3. 更新商品信息 4. 列出所有商品 5. 搜索商品 6. 计算总收入 7. 退出系统 请选择操作(1-7):

2024-10-10

PaddleOCR Demo程序,可以推理一张图片,得到识别结果

PaddleOCR Demo程序,可以推理一张图片,得到识别结果

2024-10-10

学生成绩管理系统-C++程序设计,可实现成绩的增删改查、过滤等操作

编译运行后,可得到如下界面,然后即可输入对应选项进行操作。程序上传了源码,可做二次开发。 -------- 学生成绩管理系统------- 1. 增加学生记录 2. 修改学生记录 3. 删除学生记录 4. 插入学生记录 5. 显示所有记录 6. 查询学生记录 7. 按平均成绩排序 8. 输出各科目不及格学生 9. 输出各科目最高分学生 0. 退出 请选择操作 (0-9):

2024-10-10

通讯录-C++程序设计,可实现基本的联系人增删改查等功能

使用时,使用C++相关工具编译后运行,可得到如下界面,然后就可输入对应选项进行操作了。 请选择操作: 1. 添加联系人 2. 删除联系人 3. 查找联系人 4. 修改联系人 5. 排序联系人 6. 显示所有联系人 7. 退出程序 请输入一个整数选项:

2024-10-10

多标签分类标注器-windows版

多标签分类标注器-windows版,可用于标注诸如人体属性(性别、年龄、颜色等)、车辆属性(车型、颜色、排量)等各种多标签或者单标签的分类任务。 软件简单易用,支持自定义标签,可适用于各种多标签分类标注。

2024-10-10

多标签分类标注器-linux版

多标签分类标注器-linux版,可用于标注诸如人体属性(性别、年龄、颜色等)、车辆属性(车型、颜色、排量)等各种多标签或者单标签的分类任务。 软件简单易用,支持自定义标签,可适用于各种多标签分类标注。

2024-10-10

ROI绘制小工具-win-x86-64

欢迎使用本应用程序,以下是基本的使用步骤: 加载配置项:通过菜单栏选择“文件”->“打开/更改配置”。 选择源:在配置中选择所需的图片或视频流。 绘制ROI:使用鼠标进行操作: 继续单击左键绘制。 单击鼠标右键闭合轮廓。 单击鼠标中键清空当前轮廓。 控制绘制行为:利用工具栏上的按钮来开始、结束或清空绘制。 如果需要更多帮助,请参阅用户手册或联系技术支持。

2024-10-10

ROI绘制小程序-linux版

ROI绘制小程序 作者:@AICVHub 主页:https://liwensong.blog.csdn.net 版本:V1.0.0 使用帮助 欢迎使用本应用程序,以下是基本的使用步骤: 加载配置项:通过菜单栏选择“文件”->“打开/更改配置”。 选择源:在配置中选择所需的图片或视频流。 绘制ROI:使用鼠标进行操作: 继续单击左键绘制。 单击鼠标右键闭合轮廓。 单击鼠标中键清空当前轮廓。 控制绘制行为:利用工具栏上的按钮来开始、结束或清空绘制。 如果需要更多帮助,请参阅用户手册或联系技术支持。

2024-10-10

Linux版文件加密解密小工具

在这个信息泄露风险日益增加的时代,使用文件加密工具对于保护个人隐私和企业机密至关重要。 这里介绍了一款基于Python Tkinter GUI实现的小工具——encryptDecrypt,它不仅提供了一个易于使用的图形界面,简化了加密和解密过程,还确保了数据的安全性,帮助用户遵守数据保护法规,同时尊重和保障了信息的隐私性。 该加密/解密工具的特性主要体现在以下几个方面: 数据保护: 随着网络攻击和数据泄露事件的日益增多,加密是保护数据不被未授权访问的有效手段。 遵守法规: 许多国家和地区都有严格的数据保护法规,如欧盟的通用数据保护条例(GDPR),加密工具帮助组织和个人遵守这些法规。 隐私尊重: 对于处理敏感信息的个人和企业来说,加密是尊重用户隐私和建立信任的重要方式。 便捷操作: 该工具提供了一个简单易用的图形界面,使得没有专业加密知识的用户也能轻松进行文件的加密和解密,降低了使用门槛。 灵活性: 用户可以根据自己的需求生成和加载密钥,对不同文件使用不同的加密策略,提供灵活的加密选项。 本地化处理: 加密和解密过程在用户本地计算机上完成,无需上传数据到第三方服务器;

2024-06-26

【windows版】文件加密解密小工具

在这个信息泄露风险日益增加的时代,使用文件加密工具对于保护个人隐私和企业机密至关重要。 这里介绍了一款基于Python Tkinter GUI实现的小工具——encryptDecrypt,它不仅提供了一个易于使用的图形界面,简化了加密和解密过程,还确保了数据的安全性,帮助用户遵守数据保护法规,同时尊重和保障了信息的隐私性。 该加密/解密工具的特性主要体现在以下几个方面: 数据保护: 随着网络攻击和数据泄露事件的日益增多,加密是保护数据不被未授权访问的有效手段。 遵守法规: 许多国家和地区都有严格的数据保护法规,如欧盟的通用数据保护条例(GDPR),加密工具帮助组织和个人遵守这些法规。 隐私尊重: 对于处理敏感信息的个人和企业来说,加密是尊重用户隐私和建立信任的重要方式。 便捷操作: 该工具提供了一个简单易用的图形界面,使得没有专业加密知识的用户也能轻松进行文件的加密和解密,降低了使用门槛。 灵活性: 用户可以根据自己的需求生成和加载密钥,对不同文件使用不同的加密策略,提供灵活的加密选项。 本地化处理: 加密和解密过程在用户本地计算机上完成,无需上传数据到第三方服务器;

2024-06-26

抽烟打电话目标检测数据集

1559张标注好的yolo格式的目标检测数据集,可以直接用于YOLO系列模型的训练。 标注示例: 1 0.7974683544303798 0.5 0.16455696202531644 0.2777777777777778 说明:1代表类别,后面四个值为bbox的坐标(x1, y1, x2, y2)。

2024-06-26

cifar10_cifar100合集.zip

python版本的cifar10/cifar100合集,可下载后解压到自定义路径下使用。原下载地址:http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz,http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz

2020-08-14

【全国行政区划对应表】administrative_division_code.sql

身份证各个字段对应的省市区等行政划分: CREATE TABLE `administrative_division_code` ( `sno` int(11) NOT NULL, `province_id` int(2) NOT NULL COMMENT '省级代码(前两位)', `city_id` int(4) NOT NULL COMMENT '地市级代码(前4位)', `district_id` int(6) NOT NULL COMMENT '县区级代码(前6位)', `province_name` varchar(50) NOT NULL COMMENT '省级全称', `province_name_ab` varchar(10) NOT NULL COMMENT '省级简称', `city_name` varchar(50) NOT NULL COMMENT '地市级名称', `district_name` varchar(50) DEFAULT NULL COMMENT '区县级名称', `remark` varchar(1000) DEFAULT NULL COMMENT '备注', `flag` int(1) NOT NULL DEFAULT '1' COMMENT '大陆区划', PRIMARY KEY (`sno`), KEY `idx_adc_province_id` (`province_id`) USING BTREE, KEY `idx_adc_city_id` (`city_id`) USING BTREE, KEY `idx_adc_district_id` (`district_id`) USING BTREE )

2019-06-26

吴恩达《机器学习训练秘籍》中文版

此文档为吴恩达《机器学习训练秘籍》的中文版,旨在帮助大家快速构建自己的机器学习项目。不得不说:老吴出品,必属精品~

2018-11-22

opencv人脸/人眼/人体识别分类器

opencv已训练好的haarcascades分类器,共22个,包括了人脸、人眼、人体等各种分类器。

2018-09-07

拯救纠结症患者

利用Python编写小程序,并打包成exe文件,可在不同电脑上执行。 一个小功能:用户输入自己需要选择的项,系统智能判断,给出结果。

2018-08-27

Python包:baidumapAPI

此为Python包,利用百度地图API实现指定经纬度,返回相应的省市区等位置信息。

2018-08-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除