自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

iCloudEnd的博客

Swift及SwiftUI开发 openswiftui.com

  • 博客(6447)
  • 资源 (59)
  • 问答 (2)
  • 收藏
  • 关注

原创 SwiftUI macOS全球开发资源汇总

你说flash好用,苹果给封杀了。你说h5很灵活,苹果悄悄清洗h5。你说kotlin好用,苹果给你造了Swift。你说flutter好用,苹果就自己造了SwiftUI。苹果的原则很简单,我的世界必须都是我的。作为在苹果世界里面种地的码农,俺们还是要遵守人家都规则,能够native就尽量不要高跨平台,能用苹果制造就不要用google生产。大牛肯定要给你布道跨平台的优势,但是人家在做现象级别的app,可以和苹果讨价还价,而俺们这类普通程序员还是老老实实的用苹果造吧。WWDC2020更新汇总本次次.

2020-08-07 22:41:45 2470 5

原创 Meta 的 LLaMA 4 系列(1000 万上下文长度)现已推出:推动开源 AI 的发展

LLaMA 4 系列是AI 开源生态系统的一次巨大飞跃。Meta 专注于效率、规模和可访问性,为新一波 AI 开发者、初创公司和研究人员赋能。虽然许可问题仍然存在,但 Scout 和 Maverick 的技术卓越性是不可否认的。在我们期待 LLaMA 4 Behemoth 和 4 月 29 日的 LLaMACon 之际,很明显 2025 年将成为超级开放模型的一年——而 Meta 正在引领这一潮流。

2025-04-06 17:05:04 319

原创 使用 Agentic AI 增强 Pandas ETL 管道

提取-转换-加载 (ETL) 管道是数据工程的支柱,通常使用 Python 和 Pandas 构建,因为它们简单且功能强大。然而,传统的 ETL 脚本可能比较死板 — — 它们遵循预定的步骤,并且可能无法捕获数据问题或效率低下的情况,直到为时已晚。进入 agentic AI:一种新方法,其中 AI 代理(如具有函数调用功能的 GPT-4)主动协助或自动化管道的部分内容。在本文中,我们探讨如何将GPT-4 代理应用于基于 Pandas 的 ETL 管道以执行两个关键任务:异常检测和性能调整。

2025-04-06 16:50:47 109

原创 在您睡觉时工作的 WhatsApp MCP 代理

嗨,大家好,最近我们讨论了很多有关各种 MCP 服务器的问题。昨天,我偶然看到了一个讨论 WhatsApp MCP 服务器的资料,这引起了我的注意。因此我深入研究了这个主题并撰写了一篇文章来概述如何实现它以及一些你可以尝试的想法。我们走吧!!好吧,想象一下明天早上醒来。你的手机嗡嗡作响。这不是闹钟,而是你的 AI 团队上班了。“早上好!您的网站流量一夜之间增加了 15%。已回复 3 个客户咨询。您飞往新德里的航班已确认,我已在您的会议地点附近找到 5 个潜在的 Airbnb 住宿。

2025-04-06 16:44:48 222

原创 AI 内存不是 RAG,如果您正在构建人工智能搜索,也许 RAG 是一种不错的方法,但如果您正在构建代理或对话代理或与用户交互的更复杂的东西,RAG 是不够的

每周,我们都会看到有关检索增强生成 (RAG) 的新论文和新方法。RAG 架构随处可见:图 RAG、GraphRAG、HybridRAG、HippoRAG 以及无数其他变体。AI 社区已将 RAG 视为解决大型语言模型 (LLM) 诸多局限性的潜在解决方案。然而,随着我们构建更复杂的 AI 系统,尤其是以复杂方式与用户交互的对话代理,我们发现仅靠 RAG 是不够的。

2025-04-06 16:37:23 13

原创 模型上下文协议 ( MCP):一个端到端教程,包含 Python 动手项目 什么是 MCP?如何创建从网站获取新闻的 MPC 服务器?

在计算机世界中,协议是一组决定两个系统如何相互通信的规则。协议规范计算机网络、互联网通信和软件系统之间的数据传输。例如:HTTP(超文本传输​​协议):允许网站与浏览器通信。TCP/IP(传输控制协议/互联网协议):定义互联网上的数据包如何路由。JSON-RPC(远程过程调用):一种允许以 JSON 格式进行数据交换的协议。现在我们可以讨论 MCP 及其功能。模型上下文协议 (MCP) 是一种开放协议,可让大型语言模型 (LLM) 以标准化方式与外部数据源和工具集成。

2025-04-06 09:09:24 9

原创 在 Pygame 中创建 AI 驱动的 NPC:分步指南,将人工智能集成到您的 Pygame NPC 中,实现逼真的对话和行为

人工智能已经进入我们生活的很多领域。如果你和我一样喜欢玩游戏,你一定遇到过不断重复同样事情的 NPC。这实际上是一种远离现实的情况。但当你仔细想想,由于他们无法为每个 NPC 编写单独的对话,所以这是必要的。基于这种情况,我思考了一下如果我们尝试用人工智能来实现这一点会是什么样子。我先声明一下,我没有游戏开发经验。我的目标只是简单地集成人工智能,与 NPC 对话,让它执行某项任务。

2025-04-06 09:05:20 9

原创 使用 Gemini 和 Google Colab 进行数据分析和可视化

好吧,忘记我过去所说的关于使用人工智能创建数据可视化的一切。​​这可能会让其他一切都变得多余。只需打开 Google Colab 笔记本,上传您的数据并让其数据科学代理为您完成所有工作。Google 的数据科学代理基于其 LLM 产品 Gemini。它被整合到 Colab 中,可以通过自动创建完整的 Jupyter 笔记本来简化数据分析。它有两种模式:在单元级别,它允许您提示 Gemini 在单元中生成代码,但它也可以从数据文件和用户提示中生成整个笔记本。

2025-04-06 08:59:22 11

原创 如何免费创建自定义 MCP 服务器? 使用 FastMCP 和 Python 自定义 MCP 服务器

就这样!只需五分钟,您就能将自定义工具添加到 Claude AI,现在 Claude AI 就可以使用它们了。

2025-04-06 08:29:23 7

原创 使用 Ollama 、 DeepSeek和QWEN的模型上下文协议 (MCP) ,使用本地 LLM 教程的 MCP 服务器

模型上下文协议:MCP 服务器据称是 AI 领域的下一个重大改变者,它将使 AI 代理变得比我们想象的更加先进。MCP 或模型上下文协议由 Anthropic 去年发布,它可以帮助 LLM 连接软件并对其进行控制。但有一个问题大多数 MCP 服务器都与 Claude AI 兼容,尤其是 Claude AI 桌面应用程序,但它们有自己的限制。有没有办法我们可以使用本地 LLM 运行 MCP 服务器?

2025-04-06 08:24:18 6

原创 您应该了解的最佳 MCP 服务器 Blender-MCP、GitHub-MCP、File-MCP、Docker-MCP、WhatsApp-MCP、Puppeteer-MCP、SQL-MCP、Figma

需要注意的一点是,您不仅可以使用 Claude AI,还可以将 MCP 服务器与本地 LLM 一起使用。怎么做?使用 Ollama。不仅如此,您甚至可以创建自己的自定义 MCP 服务器。是的,您没听错。您不必只使用可用的服务器。您甚至可以为任何想要的服务创建自定义服务器。怎么做?查看下面的教程。至此,就到此结束了。希望您查看这些教程并开始使用 MCP 服务器。这就是未来!

2025-04-06 08:12:35 6

原创 如何在 NVIDIA Jetson 设备上部署 YOLOv12?使用Ultralytics和 Flask在 NVIDIA Jetson 设备上部署任何 YOLO 模型

在上一篇文章中,我们深入探讨了最新YOLOv12的特性和功能。在后续文章中,我们将更进一步,在流行的 NVIDIA Jetson 设备上部署此模型。我们的目标是解决一个关键问题:YOLOv12 是否真的是现实世界场景中最先进的模型?🤔我们将探索在 NVIDIA Jetson 等紧凑但功能强大的平台上设置 YOLOv12 的复杂性,分析其性能,并将其与其前身 YOLO11 进行比较。

2025-04-05 07:49:42 52

原创 解锁高级 Excel 功能:7 个基本 Copilot 提示

提示: “创建一个公式来计算过去一年的平均月销售增长率。背景:计算增长率涉及多个步骤,包括确定连续月份之间的差异,然后计算这些值的平均值。手动制定此类公式很容易出错且耗时。Copilot 如何提供帮助: Copilot 解释请求并生成适当的公式来计算每月平均销售增长率,同时考虑数据范围和必要的计算。好处:简化复杂的计算,确保准确性并节省时间。提示: “提供销售数据的关键见解摘要,重点介绍表现最好的产品和地区。背景:从原始数据中提取有意义的见解需要分析技能和时间,通常涉及数据处理和可视化的多个步骤。

2025-04-05 07:29:58 23

原创 Orpheus 3B — 像人类一样说话的 TTS — 本地安装和运行 使用 Orpheus 3B 生成 AI 语音!了解如何在本地安装、运行和生成逼真的声音 - 无需付费 API

Orpheus 3B是一种基于 Transformer 的文本转语音模型,经过微调,可生成富有表现力且保真度高的语音。与需要付费 API 的商业 TTS 模型不同,Orpheus 3B 是完全开源的,非常适合希望尝试最先进语音合成的研究人员、开发者和业余爱好者。主要特点:30 亿个参数:用于自然语音合成的大规模模型。针对表现力进行微调:更自然的语调和发音。开源:可在Hugging Face和GitHub上获取。本地运行:无需基于云的 API 或互联网访问。

2025-03-27 10:27:23 421

原创 DeepSeek V3–0324 与 DeepSeek-V3 对比 DeepSeek v3–0324 有多好?

DeepSeek V3-0324 是一项重大升级,在推理、编码和结构化问题解决方面表现出色,甚至在关键领域超越了 Claude 3.7。如果您需要效率和低成本的自动化,原始的 DeepSeek V3 仍然是一个不错的选择。一位用户刚刚给出了一些基准测试数据,比较了 DeepSeek V3–0324 和 Claude 3.7 Sonnet,结果发现该模型很容易就胜过了 Claude 3.7。对于大多数用户来说,DeepSeek V3–0324 是更好的选择,特别是在需要编码或数字推理的情况下。

2025-03-26 17:10:02 43

原创 使用 Qwen-2 和 Qwen-2-VL 的多模式 AI

Q2-VL 体现了多模态 AI 的变革潜力。通过弥合文本、视觉和视频数据之间的差距,它为可访问性和效率树立了新的标杆。无论您是开发人员、教育工作者还是医疗保健专业人士,Q2-VL 等工具都可以让您以以前无法想象的方式与数据交互。随着多模态 AI 的不断发展,Q2-VL 等模型将塑造我们分析和解释信息的未来。准备好探索各种可能性了吗?开始尝试 Q2-VL,解锁 AI 创新的下一个前沿。

2025-03-26 15:50:04 27

原创 OpenAI Deep Research 的开源本地部署解决方案:Ollama Deep Research

Ollama Deep Research 是一款本地网络研究和报告撰写助手,可自动搜索、总结和提炼信息。它使用本地托管的大型语言模型 (LLM)来:✅ 根据您的主题生成搜索查询✅ 从网络上检索相关来源✅ 将信息汇总为结构化的 markdown 报告✅ 通过迭代研究周期识别知识差距Ollama 非常适合研究人员、学生和专业人士,它通过将所有数据保存在本地来确保隐私,同时提供高质量的研究摘要。

2025-03-26 15:31:10 391

原创 为什么模型上下文协议 (MCP) 应该成为你的下一个 明星项目:一次有趣且面向未来的冒险

正在寻找一个既令人兴奋、实用又面向未来的业余项目?向模型上下文协议 (MCP)问好吧——这是 Anthropic 团队打造的一款开源瑰宝,它正在寻求一些 Rust 驱动的热爱。如果您是一名对人工智能、系统集成感兴趣的开发人员,或者只是想用 Rust 的惊人速度和安全性构建一些很酷的东西,那么 MCP 可能就是您的下一个痴迷对象。让我们深入了解 MCP 是什么、它为什么很棒,以及为什么用 Rust 破解它可能是您自第一次发现 Cargo Run 以来最有趣的事情。

2025-03-26 15:16:45 21

原创 LLM 与 LCM:你未曾料到的人工智能革命

LLM 和 LCM 之间的较量并不在于谁的写作水平更高,而在于我们是否希望 AI 做得更多或更少。LLM 在 AI 革命中发挥了至关重要的作用,而 LCM 则是下一个进步。它们能够更好地理解语言,因为它们会考虑上下文。对于需要准确性、简单性和透彻分析的公司来说,转向 LCM 并不是升级,而是一次翻天覆地的变化。人工智能的未来不是写作,而是产生深思熟虑、简洁有效的想法。大家系好安全带,因为人工智能创意创造将持续存在,并正在改变我们的沟通方式。

2025-03-26 15:14:38 15

原创 利用 AI 在几分钟内创建强大研究报告的 4 步框架 使用 AI 快速创建高级研究和数据可视化的分步工作流程和提示

在你进行深入研究之后,Perplexity 需要一段时间来收集所有报告并创建摘要。很酷的是,它会告诉你它所采取的所有步骤和它的“思考”过程。收到报告后,请执行两个步骤:首先,将答案导出为PDF。其次,转到“来源”选项卡,浏览列表并下载最相关的 PDF 格式。具体来说,请查看出版日期和执行摘要。例如,麦肯锡研究是在 2017 年进行的。这还不错,但我建议使用更新的研究。

2025-03-26 15:09:38 15

原创 使用 Blender MCP 实现 3D 创作转型:我将 Blender 连接到 Claude Desktop 的体验

从本质上讲,Blender MCP 在 Blender 和 Claude Desktop 之间架起了一座桥梁,让您可以使用自然语言来控制 Blender。您无需浏览复杂的菜单并记住键盘快捷键,只需描述要创建或修改的内容即可。该系统由一个 Blender 插件组成,该插件可在 Blender 中创建一个套接字服务器,以及一个实现模型上下文协议的 Python 服务器。双向通信是这款软件最强大的功能。

2025-03-24 20:21:01 214

原创 探索强大的 AI 工具:OLLAMA 和 LM Studio 的替代品 虽然 OLLAMA 和 LM Studio 是流行的 AI 工具,但还有几种功能强大的替代方案,可为开发人员提供独特的功能

如果您正在寻找类似于Ollama和LM Studio 的工具来在本地运行大型语言模型 (LLM),那么有几种替代方案,它们的重点、界面和复杂性各不相同。下面,我列出了符合本地 LLM 执行、模型管理或开发人员友好集成目标的工具。每种工具都有自己的优势,具体取决于您优先考虑 GUI、CLI、API 支持还是自定义。

2025-03-16 10:52:15 175

原创 量化对训练成本的重大影响:DeepSeek R1 案例研究

量化是一种降低模型参数、激活和梯度中使用的数值精度的技术。例如,我们可以使用 16 位浮点 (FP16) 或 8 位整数 (INT8),而不是以 32 位浮点格式 (FP32) 表示权重。这种减少会缩小内存占用和计算要求,直接影响训练和运行 LLM 的成本。这对于像 DeepSeek R1 这样具有 6710 亿个参数的模型来说尤其重要,因为内存和计算成本会随着模型大小而增长。

2025-03-16 10:47:37 53

原创 构建类似 DeepSeek-R1 的推理模型,通过结合 UnslothAI 的高效微调、Llama 3.1–8B 的基础、GSM8K 的推理数据和 GRPO 的奖励驱动优化,我们构建了一个可与 Dee

为了引导模型更好地推理,我们设计了一个奖励函数,对三个方面进行评分:正确性(最终答案是否匹配?)、清晰度(步骤是否合乎逻辑?)和完整性(是否有多个步骤?奖励范围从 0 到 1,从最高 3 分开始标准化。\d+\.?

2025-03-16 10:33:52 36

原创 DeepSeek 基本概念,了解 FP8 和混合精度训练

FP8 或 8 位浮点表示是一种紧凑的数字格式,旨在平衡深度学习工作负载中的精度和范围。与更常见的 FP32(32 位浮点)或 FP16(16 位浮点)不同,FP8 仅使用 8 位来表示数字,因此内存效率极高。但是,这种位数的减少是有代价的:与高位浮点相比,FP8 的精度较低,范围较窄。为了解决这个问题,FP8 有两种版本,每种版本都针对不同的需求量身定制E4M3:结构:1个符号位,4个指数位,3个尾数位。范围:可以存储从 -448 到 +448 的值,加上 NaN(非数字)。

2025-03-15 22:23:28 198

原创 使用 LoRA 对 DeepSeek 进行微调以进行数学校正, 为什么要对 DeepSeek 进行微调?

由于大型语言模型 (LLM) 的大小和计算要求,对其进行微调可能具有挑战性。但是,借助 LoRA(低秩自适应)和 4 位量化等技术,我们可以有效地调整 DeepSeek-Math-7B 等模型以完成特定任务,例如纠正数学模因。本教程将介绍使用 Hugging Face 的transformers、peft和datasets库对 DeepSeek 进行微调的过程。

2025-03-15 22:18:29 406

原创 掌握 CUDA 内核开发:综合指南

开发高性能 CUDA 内核需要深入了解 GPU 架构、高效内存管理以及仔细的代码调优,以充分利用硬件。本指南提供了编写正确且高性能的 CUDA 内核的分步方法。

2025-03-14 08:25:53 44

原创 Gemma 3:27B 多模 LLM 比真正的大模型更好,旨在在手机和工作站等设备上高效运行

Gemma 3 是 Google 最新的开源 AI 模型,于 2025 年 3 月 12 日发布,旨在在手机和工作站等设备上高效运行。它的参数大小从 10 亿到 270 亿(准确地说:1B、4B、12B、27B),其中 27B 版本尤其可以与更大的模型竞争,例如 LLama 和 DeepSeek 的 400B 或 600B 参数。

2025-03-13 16:59:41 279

原创 AI 基础概念之2025年新词, Agentic RAR是什么?这是人工智能思维的未来吗?RAR利用DeepSeek构成了系统的核心推理能力

人工智能的世界在不断发展,就在你以为自己已经理解了检索增强生成 (RAG) 时,一种突破性的新方法出现了。由著名的牛津大学的研究人员开发的代理推理对代理推理 (RAR)有望重新定义人工智能系统如何解决复杂问题。忘记基本的信息检索吧——RAR 是关于深度、代理驱动的推理,它可以开启人工智能能力的新时代。从本质上讲,RAR 是传统 RAG 系统的升级版。

2025-03-10 08:36:23 56

原创 Manus的技术基础:如何为 AI 构建 MCP 服务器

MCP 就像是 AI 的通用插头。想象一下在 USB-C 出现之前,充电器不兼容的烦恼。MCP 为 AI 解决了类似的问题,为 AI 客户端(如 Claude、Cursor 等)创建了一种标准方式来连接各种工具和数据源。可以将其视为一个标准化端口,让您的 AI 可以轻松访问实时股票价格、电子邮件收件箱甚至复杂的 API 等内容,而无需复杂的一次性设置。想象一下,给你的人工智能一把瑞士军刀。

2025-03-10 08:26:20 340

原创 从桌面到云再到桌面——Project DIGITS 如何转变 AI 工作流程 人工智能正在经历一个完整的循环——从桌面到云端,现在又回到了强大的本地处理。

人工智能 (AI) 工作流程的发展遵循了一条迷人的轨迹。最初,由于硬件限制,AI 处理仅限于桌面计算。然后,云计算的兴起为 AI 开发人员提供了大量计算资源,使复杂模型的训练和部署速度更快。然而,对云基础设施的依赖带来了延迟、安全问题和高运营成本等挑战。现在,在NVIDIA 的 Project DIGITS的支持下,AI 重新专注于本地化处理,从而实现了完整的循环。这种转变不仅仅是技术上的进步,它代表了我们在处理人工智能效率、可访问性和可持续性方面所采取的根本性变化。

2025-03-09 19:40:25 52

原创 在 Ubuntu 22.04 上为 Nvidia GPU 安装 CUDA 12.4

在本指南中,我们将系统地介绍在配备 Nvidia GPU 的 Ubuntu 22.04 系统上安装 CUDA 12.4 的过程。CUDA 或计算统一设备架构是 Nvidia 开发的强大的并行计算平台,用于提高计算密集型应用程序的性能。本文还将介绍 Nvidia 驱动程序、CUDA 工具包、用于深度学习的 cuDNN 和用于构建神经网络的 PyTorch 等基本软件组件的安装。通过遵循本指南,读者将获得为 GPU 加速计算设置强大环境的实践经验。

2025-03-09 11:50:13 516

原创 Nvidia GPU——H100 和 A100

A100 和 H100 都是张量核心 GPU。这些是有助于高效执行矩阵乘法的处理单元。在深度学习中,张量是指存储多维数据的数据类型。与执行逻辑和算术运算的微处理器不同,深度学习需要矩阵乘法。因此,张量核心比普通 CPU 甚至 CUDA 核心更受欢迎。两个 4×4 矩阵相乘需要进行 64 次乘法和 48 次加法。卷积和乘法是新核心的亮点所在。随着矩阵(张量)的大小和维度的增加,计算复杂性也会成倍增加。机器学习、深度学习和光线追踪都是涉及大量乘法的任务,因此这些 GPU 值得花钱购买。

2025-03-09 11:42:29 39

原创 利用 NLP 的强大功能为 RAG 和 GraphRAG 应用程序构建混合图

什么是 GraphRAG?从您的角度来看,GraphRAG 意味着什么?如果您可以仅使用查询开关将标准 RAG 和 GraphRAG 作为一个组合包,会怎么样?事实上,对于 GraphRAG 是什么,目前还没有一个具体的、普遍接受的定义——至少目前还没有。根据我的经验、文献监测和与许多人的交谈,我估计(向 Steven D. Levitt 致歉,我知道这不是呈现统计数据的正确方式):90%的人将 GraphRAG 与微软构建图表(或其变体)并在其上进行搜索的方法联系起来。

2025-03-09 11:34:19 32

原创 什么是 MCP 服务器?为大家讲解新的 AI 趋势

MCP代表模型上下文协议,这是最近推出的用于连接 AI 模型和外界的开放标准。MCP 的核心是定义了 AI 系统(如大型语言模型)与外部数据源和服务连接和通信的方式。MCP 服务器是该连接的一端,本质上是一种服务或连接器,以标准化方式为 AI 模型提供对某些资源、工具或数据的访问权限。另一端是MCP 主机,通常是使用这些服务器的 AI 应用程序或助手(例如,Anthropic 的 Claude 桌面应用程序)。

2025-03-09 11:17:57 77

原创 AI MCP教程之 什么是 MCP?利用本地 LLM 、MCP、DeepSeek 集成构建您自己的 AI 驱动工具

模型上下文协议 (MCP) 是一个框架,使 LLM 能够与外部工具、数据源或系统进行交互。启用 MCP 的 LLM 不仅可以响应文本提示,还可以检索实时数据、触发脚本,甚至动态控制应用程序。通过将 MCP 与本地运行的 LLM 集成,您可以解锁一个强大的 AI 工具,它不仅可以生成内容,还可以对其采取行动,从而使自动化和上下文感知辅助更加无缝。

2025-03-09 11:15:54 238

原创 使用 Crew AI 构建多智能体 RAG 管道

Crew AI是一个框架,可将多个专业代理和任务编排到统一的工作流程中。Crew AI 并不依赖单一的整体系统,而是将职责划分给代理——每个代理都设计有特定的角色(例如,路由、检索、评分)。这种模块化方法具有以下几个优点:灵活性:无需重新设计整个系统即可轻松更换或更新单个代理。专业化:每个代理可以专注于特定的任务,例如评估检索相关性或过滤幻觉反应。透明度:详细的日志记录和基于任务的架构使您能够追踪管道中的每个决策。

2025-03-09 11:08:45 264

原创 五大 MCP 服务器,通过提示自动执行日常任务和工作流程

自从 Anthropic 将模型上下文协议 (MCP)引入Claude 以来,它彻底改变了我们自动执行重复任务的方式。从文件管理到社交媒体工作流程,MCP 服务器可让您将Claude连接到GitHub、Slack和Google Maps等强大的工具。这些集成可帮助您节省时间、简化工作流程并专注于最重要的事情。在本文中,我将通过实用提示和示例分享可用于提高生产力的5 大 MCP 服务器。无论您是想管理文件、实现团队沟通自动化,还是简化基于位置的任务,这里都能满足每个人的需求。

2025-03-09 10:55:10 169

原创 使用 SmolAgents 库构建文本到 SQL 代理

设置很简单。我将使用一个假的 SQLite 数据库,提供一些员工数据,然后创建一个在数据库上运行 SQL 查询以回复用户查询的 AI 代理。import os"""))",employees我要创建的 AI 代理将是一个工具调用代理。我需要定义一个自定义工具来对数据库执行 SQL 查询。我的自定义工具应该继承自 smolagents 库的 Tool 类。SQL 执行器工具实际采取的操作非常简单:连接到数据库,执行 SQL 查询,检索结果,获取异常(如果有),最后关闭与数据库的连接。"""

2025-03-08 21:18:02 71

原创 QwQ 32B 与 Deepseek R1 671B — 选择最佳

Qwen是阿里云发布和维护的一系列 LLM。QwQ是 Qwen 系列中具有推理能力的模型。前段时间,团队发布了该模型的预览版,现在,他们已经完整发布了 QwQ-32B 模型。它在 Huggingface 和 Ollama 模型存储库中可用。

2025-03-08 21:11:56 245

iOS游戏开发之使用 Spritekit 框架和 Swift 的 iOS 2D 太空射击游戏源码

iOS游戏开发之使用 Spritekit 框架和 Swift 的 iOS 2D 太空射击游戏源码

2023-01-25

使用 Python 自动创建 Excel 仪表板

创建了一个简单的函数,该函数在执行时会自动生成一个 excel 仪表板。您可以随时运行此功能以定期生成报告,例如每个月以在仪表板中生成 KPI。

2023-01-16

全流水线边缘检测器算法使用 VHDL源码

核心包括 Roberts、Prewitt、Scharr 和 Sobel 边缘检测算法。该设计完全流水线化。延迟为 5。在 5 个时钟之后,它在每个时钟产生输出。设计也是通用的。您可以在顶部模块中使用边缘检测器。仅生成您选择的边缘检测器算法的硬件。

2023-01-15

使用Stable Diffusion改进图像分割模型

Stable Diffusion是 Stability AI 在今年早些时候发布的一种非常强大的文本到图像模型。在这篇博文中,我们将探索一种使用稳定扩散来增强训练数据的技术,以提高图像分割任务的性能。这种方法在数据有限或需要繁琐的人工标记的应用程序中特别强大。 在计算机视觉模型的上下文中,图像分割是指根据图像的内容将图像分成两个或多个部分。与“图像分类”相比,分割的目标不仅是识别图像包含什么,而且图像的哪些 部分对应于每个类。 Stable Diffusion是 Stability AI 在今年早些时候发布的一种非常强大的文本到图像模型。在这篇博文中,我们将探索一种使用稳定扩散来增强训练数据的技术,以提高图像分割任务的性能。这种方法在数据有限或需要繁琐的人工标记的应用程序中特别强大。 配套文章:https://blog.csdn.net/iCloudEnd/article/details/128684200

2023-01-14

matlab 微积分和微分方程使用 ezplot、fplot、fimplicit3 和 ezpolar 绘制函数教程

matlab 微积分和微分方程使用 ezplot、fplot、fimplicit3 和 ezpolar 绘制函数教程含源码。 配套文章:https://blog.csdn.net/iCloudEnd/article/details/128680186

2023-01-14

Matlab数学基础操作之derivatives(导数)、integration(积分子)、nonlinear equatio

Matlab数学基础操作之derivatives(导数)、integration(积分子)、nonlinear equations system(非线性方程组)、odes bvp(常微分方程)

2023-01-12

SwiftUI可重用的下拉选择器项目含源码

SwiftUI可重用的下拉选择器项目含源码。实现了自定义组件化,可以方便复用到自己的项目中。配套文章和组件运行效果:https://swiftui.blog.csdn.net/article/details/128640947

2023-01-11

SwiftUI 自定义下拉菜单组件支持自定义颜色Dropdown list menu

下拉菜单是app开发中最常用的内容选择组件,避免用户录入的同时保证了数据准确性。具有优势:1、菜单应该易于打开、关闭和交互;2、菜单内容应适合用户需求;3、菜单项应该易于浏览。下拉菜单可以显示选项列表,由图标、按钮或操作触发。它们的位置因打开它们的元素而异。下拉菜单可以显示选项列表,由图标、按钮或操作触发。它们的位置因打开它们的元素而异。该资源就是SwiftUI 下拉菜单组件的经典源码。配套文章和组件运行效果:https://blog.csdn.net/iCloudEnd/article/details/128639428

2023-01-11

SwiftUI 如何构建您自己的博客应用程序

SwiftUI 如何构建您自己的博客应用程序,后台采用contentful

2021-09-15

SwiftUI iOS商品展示完整App

SwiftUI iOS商品展示完整App。1、搜索功能。2、滚动工具。3、商品中级滚动。4、底部自定义工具栏

2021-03-24

macOS SwiftUI 教程之入门toolbar工具栏

macOS SwiftUI 教程之入门toolbar工具栏。1、侧边栏风格.listStyle(SidebarListStyle())。2、工具栏 .toolbar。3、工具栏项目 ToolbarItem。4、文本标签 Label(“Another”, systemImage:“pencil.tip.crop.circle”)

2020-12-22

macOS SwiftUI 获取本地文件的类型标识符UTType

macOS SwiftUI 获取本地文件的类型标识符UTType。URL类型具有与其所关注资源有关的值的集合。对于文件,这些值可以提供类型标识符,创建或修改日期(无论它是否是目录)等等。

2020-12-22

macOS SwiftUI教程之通过回车或点击让TextField失去焦点

macOS SwiftUI教程之通过回车或点击让TextField失去焦点。1、放弃焦点NSApp.keyWindow?.makeFirstResponder(nil)。2、异步调用DispatchQueue.main.async

2020-12-19

macOS SwiftUI 三栏App架构动态修改标题和设置工具栏

macOS SwiftUI 三栏App架构动态修改标题和设置工具栏。1、三栏架构。NavigationView,List,NavigationView。2、导航栏主标题.navigationTitle。 3、导航栏副标题.navigationSubtitle。4、双

2020-12-19

macOS SwiftUI 设置窗体透明背景和特效

macOS SwiftUI 设置窗体背景和特效 1、 .behindWindow。对于您自己创建的视觉效果视图,请使用属性指定要应用半透明性的方式和位置。2、.hudWindow。平视显示(HUD)窗口背景的材料。3、当强调某些材料时,它们会改变外观。

2020-12-19

macOS_SwiftUI_list.zip

macOS SwiftUI 教程之左右分栏ListStyle 折叠功能Section(教程含源码)1、 导航栏界面基础NavigationView。2、 侧边栏List。3、 列表效果.listStyle(SidebarListStyle())。4、 组块Section(header: Text("The Simpsons"))

2020-12-19

macOS SwiftUI LazyVGrid和LazyHGrid源码

macOS SwiftUI LazyVGrid和LazyHGrid源码。1、垂直网格容器LazyVGrid。2、网格容器GridItem。3、生产数组 var gridData: [Int] { data.count%2 == 1 ? data.dropLast() : data }

2020-12-19

SwiftUI LazyVGrid和LazyHGrid 自定义对齐源码

SwiftUI LazyVGrid和LazyHGrid 自定义对齐。1、垂直网格容器LazyVGrid。2、网格容器GridItem。3、生产数组 var gridData: [Int] { data.count%2 == 1 ? data.dropLast() : data }

2020-12-19

iOS Swift记忆益智游戏Memory Game完整源码

iOS Swift记忆益智游戏Memory Game完整源码。1、实现网格切换4x4 和 6x6,设置网格等宽等高。2、支持重置。3、游戏计时。4、点击翻转。

2020-12-19

macOS SwiftUI文本编辑器含代码

macOS SwiftUI文本编辑器。NSTextView是获得满足几乎所有在用户界面级别显示和管理文本的需求的文本对象的主要手段。虽然是该类的子类(它声明了文本系统最通用的Cocoa接口),但除了的功能之外,还添加了其他主要功能

2020-12-18

macOS SwiftUI教程之点击获取位置 ClickGestureRecognizer

macOS SwiftUI教程之点击获取位置 ClickGestureRecognizer。NSClickGestureRecognizer 离散手势识别器,可跟踪指定数量的鼠标单击。配置此手势识别器时,可以指定在调用action方法之前必须单击哪些鼠标按钮以及必须发生多少次单击。用户必须单击指定的鼠标按钮所需的次数,而无需拖动鼠标以识别手势。

2020-12-18

macOS SwiftUI tabView构建切换组件

macOS SwiftUI tabView构建切换组件。TabView,使用交互式用户界面元素在多个子视图之间切换的视图。选项卡视图仅支持Text,Image或Image后跟Text的选项卡项。 传递任何其他类型的视图都将导致可见但为空的标签项。

2020-12-18

SwiftUI TabView 构建滚动轮播图PagedTabViewStyle

SwiftUI TabView 构建滚动轮播图.1、在分页工具栏呈现半透明背景 PageIndexViewStyle(backgroundDisplayMode: .always)。2、创建页面滚动视图 tabViewStyle(PageTabViewStyle())

2020-12-18

macOS SwiftUI动画教程之淡入淡出组件

macOS SwiftUI动画教程之淡入淡出组件.1、动画淡入淡出 .animation(Animation.easeInOut(duration: 1).delay(0.5)); 2、隐藏.transition(.opacity)

2020-12-14

macOS SwiftUI教程之绘制垂直虚线Dash

macOS SwiftUI教程之绘制垂直虚线Dash。1、 移动原点位置.move(to: CGPoint(x: 0, y: 0));2、绘制线段.addLine(to: CGPoint(x: rect.width, y: rect.height));3、设置边框类型.stroke(style: StrokeStyle(lineWidth: 1, dash: [2]));4、设置高度和宽度.frame(width: 1, height: 100)。

2020-12-13

macOS SwiftUI教程之绘制楔形体(Wedge)图WedgeChart

macOS SwiftUI教程之绘制楔形体(Wedge)图WedgeChart。1、分段设置 Wedge(-43, 43),Wedge(43,150),Wedge(150,-43);2、绘制弧度addArc;3、closeSubpath绘制封闭图形。

2020-12-13

macOS SwiftUI完整代码之绘制柱状图

macOS SwiftUI完整代码之绘制柱状图。1、取消间距VStack(spacing: 0)。2、矩状图Capsule();3、设置高度.frame(width: 10, height: CGFloat(value))。

2020-12-13

iOS Swift Core Location完整案例代码

iOS Swift Core Location完整案例代码。1、设置核心位置;2、位置权限;3、显示用户的位置;4、注册地理围栏;5、创建地区;6、通知用户地理围栏事件。

2020-12-12

SwiftUI watchOS成品代码之NBA Draft比赛App

SwiftUI watchOS成品代码之NBA Draft比赛App。 1、实现滚动显示赛事。2、实现图文混排。3、实现详细信息可显示选手位置、学校和经验。

2020-12-12

SwiftUI 成品代码之鞋类商品App源码

SwiftUI成品代码之鞋类商品App源码。1.实现左右分屏。2、实现左侧销售类产品目录。3、支持创建购物车。4、显示购物车内容。

2020-12-12

SwiftUI完成代码之Sport App运动新闻App

SwiftUI完成代码之Sport App运动新闻App。1、实现DashBoard完成页面。2、实现ROSTER页面;3、实现视频、图片和文字混排。

2020-12-12

SwiftUI完成代码之Financial App 卡管理Core Data数据库

SwiftUI完成代码之Financial App 卡管理Core Data 。本代码特色:1、完成CoreData代码;2、实现分层管理 Application,Model,Modifiers,Utilities、View Model,View 。

2020-12-12

macOS SwiftUI教程之从饼图中显示百分比

macOS SwiftUI教程之从饼图中显示百分比。1、实现突出显示部分;2、根据需求显示百分比。3、根据百分比多彩显示

2020-12-12

macOS SwiftUI教程之绘制百分比多彩饼图

macOS SwiftUI教程之绘制百分比多彩饼图。1、中心–圆心;2、radius –用于创建圆弧的圆的半径;3、startAngle –弧的起始角度;4、endAngle –圆弧的结束角度;5、顺时针–画弧的方向。

2020-12-12

macOS SwiftUI教程之绘制Path绘制饼图

macOS SwiftUI教程之绘制Path绘制饼图。1、中心–圆心;2、radius –用于创建圆弧的圆的半径;3、startAngle –弧的起始角度;4、endAngle –圆弧的结束角度;5、顺时针–画弧的方向。

2020-12-12

macOS SwiftUI教程之绘制曲线

macOS SwiftUI教程之绘制曲线。Path提供了几种内置的API,可帮助您绘制不同的形状。您不仅限于绘制直线。的addQuadCurve,addCurve和addArc允许你创建曲线和圆弧

2020-12-12

macOS SwiftUI教程之绘制矩形Path

macOS SwiftUI教程之绘制矩形Path。绘制矩形的标准流程。1、移动点(20,20);2、从(20,20)到(300,20)画一条线;3、从(300,20)到(300,200)画一条线;4、从(300,200)到(20,200)画一条线;5、用绿色填充整个区域。

2020-12-12

macOS SwiftUI教程服务共享 NSSharingServicePicker完整代码

macOS SwiftUI教程服务共享 NSSharingServicePicker完整代码。您将掌握的技能,1. 整合Appkit NSViewRepresentable;2.服务选择 NSSharingServicePicker;3. 异步调用 DispatchQueue.main.async

2020-12-12

SwiftUI CoreData增删改查完整代码

SwiftUI CoreData增删改查完成代码。1、创建一个批量插入请求。2、查询持久性存储的记录;3、控制UI响应新数据的方式和时间。

2020-12-09

macOS SwiftUI文件打开教程FileDialog项目含源码

macOS SwiftUI文件打开教程FileDialog项目含源码。在macOS 10.15及更高版本中,系统始终在单独的过程中绘制“打开”面板,而不管该应用程序是否被沙箱化。当用户选择要打开的文件时,macOS将该文件添加到应用的沙箱中。在macOS 10.15之前,系统仅在沙盒应用程序的单独过程中绘制面板。

2020-12-09

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除