鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进:利用RIDNet图像去噪
简介
YOLOv8是目前最先进的目标检测算法之一,但其性能会受到图像噪声的影响。本文介绍一种利用单阶段盲真实图像去噪网络RIDNet辅助YOLOv8图像去噪的方案,以提升目标检测的准确性。
原理详解
RIDNet图像去噪
RIDNet(Real-time Image Denoising Network)是一种单阶段盲真实图像去噪网络,它可以有效地去除图像中的噪声,同时保留图像的细节和纹理。
辅助YOLOv8图像去噪
将RIDNet与YOLOv8结合,可以先利用RIDNet对输入图像进行去噪,然后再使用去噪后的图像进行目标检测,从而提高检测精度。
应用场景
该改进方案适用于各种存在噪声的目标检测任务,例如:
- 低光照条件下的目标检测: 在低光照条件下,图像噪声较多,会影响目标检测的性能。