Ubuntu20.04 安装HPC_SDK加速库

1. NVIDIA HPC SDK 简介

NVIDIA HPC SDK(NVIDIA High Performance Compute Software Development Kit)是一个适用于高性能计算的全面的编译器,库和工具套件。NVIDIA HPC SDK包括经过验证的编译器,库和软件工具,这些工具对于最大化开发人员的工作效率以及HPC应用程序的性能和可移植性至关重要。

NVIDIA HPC SDK 包括有以下的一些编译器和内容,C,C ++和Fortran编译器通过标准C ++和Fortran,OpenACC指令和CUDA支持GPU加速HPC建模和仿真应用程序。 GPU加速的数学库最大程度地提高了通用HPC算法的性能,优化的通信库可实现基于标准的多GPU和可扩展的系统编程。 性能分析和调试工具简化了HPC应用程序的移植和优化,而容器化工具可以在本地或云中轻松部署。 通过支持NVIDIA GPU和运行Linux的Arm,OpenPOWER或x86-64 CPU,HPC SDK提供了构建NVIDIA GPU加速的HPC应用程序所需的工具。

2. 安装

按照官网上的说明,可以直接下载它的tar包进行安装或者是rpm、deb包进行安装。笔者这里的操作系统是Ubuntu20.04,已经安装成功CUDA-10.1库,所以笔者下载了deb包进行安装,包含有两个版本的。

wget https://developer.download.nvidia.com/hpc-sdk/20.9/nvhpc-20-9_20.9_amd64.deb \
https://developer.download.nvidia.com/hpc-sdk/20.9/nvhpc-2020_20.9_amd64.deb \
https://developer.download.nvidia.com/hpc-sdk/20.9/nvhpc-20-9-cuda-multi_20.9_amd64.deb
sudo apt-get install ./nvhpc-20-9_20.9_amd64.deb ./nvhpc-2020_20.9_amd64.deb ./nvhpc-20-9-cuda-multi_20.9_amd64.deb

安装的工具包安装到了/opt/nvidia/hpc_sdk文件夹中,编辑文件~/.bashrc

nano ~/.bashrc

然后进行环境变量设置

export NVARCH=`uname -s`_`uname -m`; 
export NVCOMPILERS=/opt/nvidia/hpc_sdk;
export PATH=$NVCOMPILERS/$NVARCH/20.9/comm_libs/mpi/bin:$PATH
export MANPATH=$MANPATH:$NVCOMPILERS/$NVARCH/20.9/comm_libs/mpi/man

使得环境变量生效

source ~/.bashrc

这样就安装成功了HPCSDK加速工具包。

3. OpenACC程序测试

现在我们编写一个非常简单的程序来测试HPC SDK是否能使用。我们这里使用到了OpenACC加速库。下面是一个C语言写成的一个程序,文件名为test.c

 #include <stdio.h>
 
### 在 Ubuntu 20.04安装 hdl_graph_slam 的完整步骤及依赖项 尽管目标环境为 Ubuntu 20.04,但需要注意的是 `hdl_graph_slam` 主要支持基于 ROS Noetic 的生态系统。因此,在此环境中安装需满足特定条件并完成一系列配置。 #### 1. 系统准备 Ubuntu 20.04 需预先安装 ROS Noetic 版本作为基础框架。ROS Noetic 是针对 Ubuntu 20.04 LTS 提供的支持版本[^3]。如果尚未安装 ROS Noetic,则需要按照官方文档执行安装操作。 ```bash sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list' sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654 sudo apt update sudo apt install ros-noetic-desktop-full source /opt/ros/noetic/setup.bash ``` 上述命令用于初始化 ROS Noetic 并设置必要的源列表和密钥管理工具[^3]。 --- #### 2. 安装依赖包 在安装 `hdl_graph_slam` 前,需要确保系统已具备其运行所需的全部依赖库。这些依赖通常包括但不限于: - **Eigen**: 数学计算核心库。 - **PCL (Point Cloud Library)**: 点云处理的核心组件。 - **Boost**: 多功能 C++ 库集合。 - **Catkin Tools**: 构建 ROS 工作空间的增强型工具集。 通过以下命令可以一次性解决大部分依赖关系: ```bash sudo apt-get install python-catkin-tools libeigen3-dev libpcl-dev libboost-all-dev ``` 此外,还需要确认 Python 和其他开发工具链已经就绪。例如,Python 3.x 及 pip 包管理器应被正确配置于系统中。 --- #### 3. 下载与编译 hdl_graph_slam 源码 `hdl_graph_slam` 的源代码托管于 GitHub 开发平台。可以通过克隆仓库获取最新版源文件,并利用 Catkin 编译工具构建项目。 ```bash cd ~/catkin_ws/src git clone https://github.com/koide3/hdl_graph_slam.git cd .. catkin_make source devel/setup.bash ``` 以上脚本实现了工作区切换、Git 存储库拉取以及最终的工作流生成过程。注意,`catkin_make` 将会尝试解析所有未定义或缺失的依赖项;若有额外需求提示,请按指示手动补充相应软件包。 --- #### 4. 测试安装成果 为了验证安装成功与否,可启动一个简单的测试场景来观察节点行为是否正常运作。假设已有合适的激光雷达数据输入可用,那么可以直接调用如下指令触发 SLAM 进程: ```bash roslaunch hdl_graph_slam hdl_graph_slam.launch ``` 此时应当能够看到地图逐步建立的过程,同时伴随终端日志输出显示各模块状态更新情况。 --- ### 注意事项 由于原始说明提到的目标操作系统限定为较旧版本(如引用所指),而当前实际选用的新一代发行版可能引发兼容性隐患。建议密切关注社区反馈动态或者查阅具体插件维护者的发布记录以获得更精准指导信息[^2]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值