
SIMformer: Single-Layer Vanilla Transformer Can Learn
Free-Space Trajectory Similarity

Chuang Yang
The University of Tokyo

chuang.yang@csis.u-tokyo.ac.jp

Renhe Jiang∗
The University of Tokyo

jiangrh@csis.u-tokyo.ac.jp

Xiaohang Xu
The University of Tokyo
xhxu@g.ecc.u-tokyo.ac.jp

Chuan Xiao
Osaka University

chuanx@ist.osaka-u.ac.jp

Kaoru Sezaki
The University of Tokyo
sezaki@iis.u-tokyo.ac.jp

ABSTRACT
Free-space trajectory similarity calculation, e.g., DTW, Hausdorff,
and Fréchet, often incur quadratic time complexity, thus learning-
based methods have been proposed to accelerate the computation.
The core idea is to train an encoder to transform trajectories into
representation vectors and then compute vector similarity to ap-
proximate the ground truth. However, existing methods face dual
challenges of effectiveness and efficiency: 1) they all utilize Eu-
clidean distance to compute representation similarity, which leads
to the severe curse of dimensionality issue – reducing the distin-
guishability among representations and significantly affecting the
accuracy of subsequent similarity search tasks; 2) most of them are
trained in triplets manner and often necessitate additional informa-
tion which downgrades the efficiency; 3) previous studies, while
emphasizing the scalability in terms of efficiency, overlooked the
deterioration of effectiveness when the dataset size grows. To cope
with these issues, we propose a simple, yet accurate, fast, scalable
model that only uses a single-layer vanilla transformer encoder
as the feature extractor and employs tailored representation sim-
ilarity functions to approximate various ground truth similarity
measures. Extensive experiments demonstrate our model signifi-
cantly mitigates the curse of dimensionality issue and outperforms
the state-of-the-arts in effectiveness, efficiency, and scalability.

PVLDBReference Format:
Chuang Yang, Renhe Jiang, Xiaohang Xu, Chuan Xiao, and Kaoru Sezaki.
SIMformer: Single-Layer Vanilla Transformer Can Learn Free-Space
Trajectory Similarity. PVLDB, 18(2): 390 - 398, 2024.
doi:10.14778/3705829.3705853

PVLDBArtifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/SUSTC-ChuangYANG/SIMformer/.

1 INTRODUCTION
With the rapid development of positioning and sensing technolo-
gies, large-scale trajectory data is being collected from various

∗Corresponding Author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705853

sources like smartphone apps and navigation systems. This data
holds immense value and plays crucial roles in fields such as intel-
ligent transportation [12, 31], urban planning [44], and epidemic
simulation [38]. In particular, computing the trajectory similarity
is always a fundamental operation for various trajectory analysis
tasks, such as clustering [1, 32], similarity search [20, 26, 37], and
anomaly detection [5, 24]. To meet the requirements in different
scenarios, many distance functions have been used to calculate the
trajectory similarity in free space, such as Dynamic Time Warp-
ing (DTW) [26], Hausdorff distance [4], and Fréchet distance [28].
However, the time complexity of these distance measurements is
typically𝑂 (𝑚𝑛) (where𝑚 and 𝑛 are the lengths of two trajectories),
which limits their application in large-scale datasets [10, 15]. To this
end, a series of approximate approaches to accelerate computation
has been proposed, which can be divided into two categories:
• Non-learning-based methods [2, 8, 11, 25] focus on designing

more efficient handcrafted approximate algorithms to speed up
distance computation. Nevertheless, these methods are often
designed for specific one or two distance functions and cannot
be easily extended to other trajectory similarity measures.

• Learning-based methods [13, 14, 39–42, 46] concentrate on learn-
ing a neural network encoder to transform the original trajectory
into a 𝑑-dimensional representation vector, and then calculate
the Euclidean distance between vectors to approximate the target
distance measures such as DTW or Hausdorff. This reduces the
complexity of trajectory similarity computation to 𝑂 (𝑑), achiev-
ing a shift from quadratic to linear complexity.
Compared to non-learning-based methods, learning-based meth-

ods can efficiently perform large-scale similarity calculations on the
learned representations. It has been demonstrated that an LSTM-
based model can bring a speedup of 50x-1000x over brute-force
methods and 3x-500x over non-learning-basedmethods across three
distance measures with better top-𝑘 hit and recall rates [41]. Be-
sides, learning-based methods can easily approximate different dis-
tance measures by simply changing the objective function, showing
stronger expandability over non-learning-based ones. Though re-
markable progress has been made, similarity learning models under
the free-space setting [39–42, 46] still exhibit the following issues.
(i) Curse of dimensionality and limited effectiveness of

learned representations. Existing studies [39–42, 46] have em-
ployed Euclidean distance-based representation similarity function
to approximate the target measures. In fact, this will lead to se-
vere “curse of dimensionality” [3] issue, a phenomenon in high-
dimensional space such that pairs of objects are not easy to be

390

https://doi.org/10.14778/3705829.3705853
https://github.com/SUSTC-ChuangYANG/SIMformer/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3705829.3705853
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Anchor Trajectory

Positive Trajectory

Negative Trajectory
Trajectory
Encoder

Trajectory
Encoder

Trajectory
Encoder

Share

Share

vp

va

vn

||va – vp ||2

Tp

Ta

Tn
||va – vn ||2

Triplet
Loss

Training Phase

gsim(Ta,Tp)

gsim(Ta,Tn)

Large-scale Trajectory
Representations Corpus

……

Large-scale Raw
Trajectories Corpus

Inference and Application Phases

Top-k Similarity Search
in Embedding Space

Query Trajectory
Top-5 Sim Trajectories

Trajectory
Encoder

Ground Truth

Ground Truth

Approximation

Approximation

Figure 1: Pipeline of existing learning-based solutions.

distinguished, rendering distances, particularly Euclidean distance,
to be less effective. Such indistinguishability of the latent repre-
sentations essentially results in poor performance in subsequent
tasks, such as the 𝑘-nearest neighbor (𝑘NN) search. Besides, ex-
isting works only evaluated the model effectiveness by checking
the top-𝑘 hit&recall rate for similarity search. However, ranking
quality is also a critical aspect. Overlooking it may lead to high hit
ratios but poorly disordered rankings, which inevitably requires
re-ranking [23]. (ii) Over-complicatedmodels and limited effi-
ciency. Following [41], researchers have adopted the triplet loss
that constructs positive&negative sample pairs for similarity learn-
ing as a common technique [39, 40, 42, 46], as illustrated in Figure 1.
However, this choice greatly increases the training cost. Mean-
while, researchers have suggested employing auxiliary information
to improve the performance, like mapping trajectory points onto
grids for additional structural insights [40–42] or pre-computing
sub-trajectory distances as auxiliary supervision [39, 46]. All these
make the state-of-the-art (SOTA) models over-complicated and
less efficient. Simplifying the existing framework in a minimalism
fashion while making it more efficient and effective becomes the ul-
timate goal of this study. (iii) Scalability of effectiveness. Though
scalability is often associated with efficiency, we note significant
drops in the effectiveness of current methods as the number of tra-
jectories grows. This is because these methods are typically trained
and tested – also with ground truth labeled – on a limited portion
of the dataset, rendering them less effective against challenging sce-
narios, such as noise, which predominantly arise in larger datasets.
However, this issue has been largely overlooked in prior research.

To cope with these limitations, we propose SIMformer, a single-
layer vanilla transformer encoder under a simple pair-wise mean
squared error (MSE) loss framework, without using the typical triplet
loss framework or any auxiliary information. In particular, we find
that using tailored representation similarity functions (e.g., Cheby-
shev distance for Fréchet and cosine for DTW) instead of relying
solely on Euclidean distance can greatly alleviate the impact of the
curse of dimensionality. This small adjustment allows a solution
– only with a 1-layer vanilla transformer and a Siamese network

Table 1: Comparison ofmodel architectures and features.

Model Core
Architecture

Repr. Sim.
Func.

Loss
Func.

Need Auxiliary Info.
Sub-traj. Gridification

NeuTraj [41] Augmented LSTM Euclidean Triplet No Yes
Traj2simvec [46] Vanilla LSTM Euclidean Triplet Yes No

T3S [40] LSTM&Attention Euclidean Triplet No Yes
TMN [39] LSTM&Attention Euclidean Triplet Yes No
SIMformer Vanilla Transformer Tailored MSE No No

– to outperform SOTA in terms of accuracy, speed, and scalability.
On four widely-used benchmarks, Porto [16], T-Drive [45], Geo-
life [48], and AIS [22], SIMformer achieves an average improvement
of 27.59% top-𝑘 hit ratio on DTW, 34.42% on Hausdorff, and 12.80%
on Fréchet over the best-performing baseline, and improves ranking
quality by reducing 20.08% inversions. Meanwhile, SIMformer is
30% faster in inference and saves 10% memory usage. A scalability
test on Porto and its augmented version with random noise shows
that SIMformer still retains good accuracy when baselines start to
report poor results. Comprehensive theoretical and experimental
analysis were conducted to reveal how our method alleviates the
curse of dimensionality. Furthermore, SIMformer’s applicability in
different data and measurement scenarios was also explored.

Our contributions are summarized as follows: 1) We developed a
single-layer vanilla transformer with a simple Siamese architecture
to achieve the SOTA performance in both effectiveness and effi-
ciency. 2) To the best of our knowledge, we are the first to study the
curse of dimensionality in trajectory similarity learning and pro-
pose the idea of tailoring representation similarity functions to signif-
icantly alleviate this issue. 3) We conducted extensive experiments
on four widely-used trajectory benchmarks with three distance
measures. We also evaluated the ranking quality and scalability to
further demonstrate the superiority of the proposed solution.

2 RELATEDWORK
Existing trajectory similarity learning methods can be divided into
two categories based on whether the measure considers the topo-
logical structure, which can be built from the proximity relationship
between trajectory points [14] or the underlying road network [13].
GTS [14] is a graph-based approach proposed for approximate TP
distance (an extension of Hausdorff distance on spatial networks).
ST2Vec [13] is built for spatial-temporal trajectory similarity learn-
ing in road networks, supporting network-based distance measures
like LCRS [43] and NetERP [18]. In comparison, free-space trajec-
tory similarity learning, which is not constrained by topological
structure, has broader applications and attracts more research at-
tention: NeuTraj [41] is an attention-augmented LSTM model that
incorporates spatial context by mapping trajectories into grids and
introduces a weighted ranking loss (a triplet loss variant) to im-
prove the performance; Traj2simvec [46] uses a sampling strategy
with a k-d tree and 𝑘NN to accelerate training and sub-trajectory
distances for auxiliary supervision; T3S [40] employs self-attention
mechanism with LSTM and further utilizes grid information by
incorporating the grid sequence of trajectories as supplementary
structural data; TMN [39] uses LSTM and cross-attention for explic-
itly modeling matching information among trajectories to improve
accuracy. We outline the model structures and characteristics of
these methods in Table 1, along with our model. It is evident that
SIMformer is more concise in design, as it does not require any
auxiliary information or the construction of triplets for training.

391

3 PRELIMINARIES
Definition 1. (Trajectory): A trajectory 𝑇 is defined as a time-
ordered sequence of locations {𝑙1, 𝑙2, . . . , 𝑙𝑛}, where 𝑛 is the number
of points in the trajectory, and 𝑙𝑖 = (𝑥𝑖 , 𝑦𝑖) denotes the 𝑖-th point
in the trajectory. Following existing studies [39–41, 46], we focus
on the shape of trajectories without considering time.
Definition 2. (Free-space Trajectory DistanceMeasure): Given
two trajectories𝑇𝑖 and𝑇𝑗 , and a free-space trajectory distance mea-
sure 𝑀 , 𝑑𝑀 (𝑇𝑖 ,𝑇𝑗) quantifies the distance between trajectories 𝑇𝑖
and 𝑇𝑗 without considering the physical constraints in the environ-
ment such as the road network [15].
Definition3. (GroundTruthTrajectorySimilarity): Given two tra-
jectories𝑇𝑖 and𝑇𝑗 , the ground truth trajectory similarity𝑔𝑠𝑖𝑚 (𝑇𝑖 ,𝑇𝑗)
is the result of applying negative exponential normalization to tra-
jectory distance 𝑑𝑀 (𝑇𝑖 ,𝑇𝑗):

𝑔𝑠𝑖𝑚 (𝑇𝑖 ,𝑇𝑗) = exp(−𝛼 ∗ 𝑑𝑀 (𝑇𝑖 ,𝑇𝑗)) ∈ [0, 1], (1)

where 𝛼 is an adjustable parameter, controlling the distribution of
similarity values. This transformation was first introduced in [41]
and has been widely adopted in later studies It can be treated as
a smoothing operation that maps an indefinite range of distance
distributions to the range [0, 1], making it easier for models to learn.
Definition 4. (Approximate Similarity Function): Given two tra-
jectories𝑇𝑖 and𝑇𝑗 , the approximate similarity function 𝑓 (𝑇𝑖 ,𝑇𝑗) ap-
proximates the true trajectory similarity 𝑔𝑠𝑖𝑚 (𝑇𝑖 ,𝑇𝑗). It comprises a
trainable neural network encoder 𝑓𝑒𝑛𝑐 that maps an input trajectory
𝑇 to a 𝑑-dimensional vector 𝑣 , called the trajectory representation:

𝑓𝑒𝑛𝑐 : 𝑇 ↦→ 𝑣 ∈ R𝑑 , (2)

and a representation similarity function 𝑓𝑠𝑖𝑚 (·, ·) that calculates the
similarity between two trajectory representations with a time com-
plexity of (𝑑). Formally, the approximate similarity function is

𝑓 (𝑇𝑖 ,𝑇𝑗) = 𝑓𝑠𝑖𝑚 (𝑓𝑒𝑛𝑐 (𝑇𝑖), 𝑓𝑒𝑛𝑐 (𝑇𝑗)),
= 𝑓𝑠𝑖𝑚 (𝑣𝑖 , 𝑣 𝑗).

(3)

Definition 5. (Free-space Trajectory Similarity Learning): Given
a free-space trajectory distance measure𝑀 , and a training dataset
𝒯, the objective is to learn a trajectory encoder 𝑓𝑒𝑛𝑐 such that the
discrepancy between the ground truth similarity 𝑔𝑠𝑖𝑚 (𝑇𝑖 ,𝑇𝑗) and
the approximated similarity 𝑓 (𝑇𝑖 ,𝑇𝑗) for trajectory pairs (𝑇𝑖 ,𝑇𝑗)
over the training set is minimized, denoted as:

min
𝜃

∑︁
(𝑇𝑖 ,𝑇𝑗) ∈𝒯

��𝑔𝑠𝑖𝑚 (𝑇𝑖 ,𝑇𝑗) − 𝑓 (𝑇𝑖 ,𝑇𝑗 ;𝜃)
�� , (4)

where𝜃 is the parameters of the encoder 𝑓𝑒𝑛𝑐 . In this study, we select
three representative free-space distance measures for ground truth
similarity: DTW distance, Hausdorff distance, and Fréchet distance.
For Fréchet, the discrete version of it is utilized to accommodate the
discrete nature of trajectories, inline with previous studies [39–41].

4 METHODOLOGY
Figure 2 shows the overall framework of the proposed solution,
which utilizes a Siamese network architecture. Given a pair of tra-
jectories 𝑇𝑖 ,𝑇𝑗 , the shared trajectory encoder transforms them into
𝑑-dimensional representations, and then computes their similarity
with the similarity function 𝑓𝑠𝑖𝑚 (𝑣𝑖 , 𝑣 𝑗) to approximate the ground
truth 𝑔𝑠𝑖𝑚 (𝑣𝑖 , 𝑣 𝑗). The Mean Squared Error (MSE) is employed as

R
eL

U

Mean
Pooling

Pooling &
Activation

Multi-Head
Attention

Add &
Norm

Feed
Forward

Add &
Norm

1-Layer Vanilla Transformer

Point
Embedding

Positional
Encoding

Trajectory
Encoder

Trajectory
Encoder

Share

vi

vjTj

Ti

gsim(Ti ,Tj) fsim(vi ,vj) MSE Loss

fsim(vi ,vj)

gsim(Ti ,Tj)
Ground Truth Similarity

Representation Similarity

Figure 2: The overall framework of SIMformer.

the training loss. We utilize a single-layer vanilla transformer to
extract the features, following a pooling & activation layer to sum-
marize the sequence output, making it length-independent. As for
the similarity function, we adopt a tailored approach – customizing
the most appropriate one for different target measures. Because of
its simplicity and the use of the transformer encoder for similarity
learning, our model is named SIMformer.

4.1 1-Layer Transformer Trajectory Encoder
Point Embedding. Each point in the trajectory, denoted as 𝑙𝑖 , is
mapped toR𝑑 with a linear layer first. The transformation is defined
as: 𝑧𝑖 =𝑊𝑙𝑖 + 𝑏, where𝑊 ∈ R𝑑×2 is the weight matrix, 𝑏 ∈ R𝑑 is
the bias vector, and 𝑧𝑖 ∈ R𝑑 is the transformed point embedding.
Positional Encoding. Before feeding the input into the trans-
former encoder, a common practice is to add positional encoding.
This ensures the order information of points is integrated, as the
transformer encoder processes all input elements in parallel and
cannot distinguish their order. Here, we adopt a learnable positional
encoding 𝑒𝑖 ∈ R𝑑 for each position 𝑖 , expressed as: ℎ𝑖 = 𝑧𝑖 + 𝑒𝑖 .
Transformer Encoder. Now, we obtained a preliminary trajectory
representation: 𝐻 = [ℎ1, ℎ2, . . . , ℎ𝑛]⊤ ∈ R𝑛×𝑑 . To learn the com-
plex patterns and dependencies within it, 𝐻 is further fed into a
1-layer vanilla transformer encoder [29], where the multi-head self-
attention extracts and fuses the features of key points, producing a
sequence of 𝑑-dimensional vectors:

𝐻 ′ = Transformer Encoder(𝐻),

= [ℎ′1, ℎ
′
2, . . . , ℎ

′
𝑛]⊤ ∈ R𝑛×𝑑 .

(5)

Pooling andActivation. Lastly, we utilizemean pooling to summa-
rize the informationwithin the embedding sequence𝐻 ′, resulting in
a 𝑑-dimensional representation ℎ′𝑎𝑣𝑔 : ℎ′𝑎𝑣𝑔 = 1

𝑛

∑𝑛
𝑖=1 ℎ

′
𝑖
. Finally, an

ReLU activation function is applied toℎ′𝑎𝑣𝑔 to confine the final repre-
sentation within the first quadrant, ensuring that the cosine similar-
ity of the output vectors ranges from 0 to 1: 𝑣 = ReLU(ℎ′𝑎𝑣𝑔) ∈ R𝑑 .

4.2 Tailored Representation Similarity Function
Given two trajectory representation vectors 𝑣𝑖 , 𝑣 𝑗 ∈ R𝑑 , existing
learning-based methods [39–41, 46] use the conventional method to
compute the representation similarity based on Euclidean distance:

𝑓𝑠𝑖𝑚 (𝑣𝑖 , 𝑣 𝑗) = exp(−𝑑Euc (𝑣𝑖 , 𝑣 𝑗)) = exp
(
−

√√√
𝑑∑︁

𝑘=1
(𝑣𝑖,𝑘 − 𝑣 𝑗,𝑘)2

)
.

(6)

392

Previous studies [3, 19] have indicated that Euclidean distance-
based measure may lead to the severe curse of dimensionality issues.
It is essential to explore alternative similarity functions that are
less sensitive to high-dimensional spaces. Here, we consider the
alternatives from the perspective of feasible solution spaces:
Assuming 𝑣𝑖 is the representation vector of anchor trajectory,

and 𝑣 𝑗 is the representation vector of the query trajectory, their
ground truth distance is 𝑟 . When adopting Euclidean distance for
approximation, the deep learning model will force 𝑣 𝑗 to lie on the
surface of a 𝑑-dimensional hyperball 𝐵𝑑 with radius 𝑟 centered
at 𝑣𝑖 . In other words, given 𝑣𝑖 , the feasible solution space for 𝑣 𝑗
under Euclidean setting is the surface of 𝐵𝑑 . However, if we replace
Euclidean distance with Chebyshev distance:

𝑑Cheby (𝑣𝑖 , 𝑣 𝑗) = max
𝑘

|𝑣𝑖,𝑘 − 𝑣 𝑗,𝑘 |, (7)

the feasible solution space becomes the surface of a 𝑑-dimensional
hypercube 𝐶𝑑 centered at 𝑣𝑖 with side length 2𝑟 , where 𝐵𝑑 is
inscribed within 𝐶𝑑 . Similarly, when using cosine:

𝑑cosine (𝑣𝑖 , 𝑣 𝑗) =
𝑣𝑖 · 𝑣 𝑗

∥𝑣𝑖 ∥2 ∗ ∥𝑣 𝑗 ∥2
, (8)

the feasible solution space is the surface of a 𝑑-dimensional hy-
percone 𝐾𝑑 with apex at 𝑣𝑖 and a fixed opening angle. Figure 3
illustrates the shape of the feasible solution spaces for different
similarity functions when 𝑑 = 3. The red marker represents the
anchor point. For Euclidean, all feasible solutions reside on a ball;
for Chebyshev, they lie on a cube’s surface with a side length of
2𝑟 ; under cosine similarity, all solutions reside on a conical surface
where all points maintain a constant angle to the anchor point.

An interesting and counterintuitive fact is that as 𝑑 increases,
the relative surface area of the hyperball compared to that of the
hypercone or hypercube approaches zero. This is quite intuitive
for hypercone, because its surface expands infinitely, and so have
𝐴hypercone,𝑑 (𝜙) = ∞. For the hyperball and hypercube, the proof is
as follows: the surface area of the hyperball [21] with radius 𝑟 in
dimension 𝑑 is given by:

𝐴hyperball,𝑑 (𝑟) =
2𝜋𝑑/2

Γ(𝑑/2) 𝑟
𝑑−1, (9)

where Γ is the gamma function [33], and the surface area of the
hypercube [34] with side length 2𝑟 is:

𝐴hypercube,𝑑 (2𝑟) = 2𝑑 · (2𝑟) (𝑑−1) = 𝑑 · 2𝑑 · 𝑟𝑑−1 . (10)

Then, the ratio 𝑅 of the surface area of the hyperball to that of the
hypercube is:

𝑅 =
𝐴hyperball,𝑑 (𝑟)
𝐴hypercube,𝑑 (2𝑟)

=

2𝜋𝑑/2

Γ (𝑑/2) 𝑟
𝑑−1

𝑑 · 2𝑑 · 𝑟𝑑−1
=

2𝜋𝑑/2

Γ(𝑑/2) · 𝑑 · 2𝑑
. (11)

Using Stirling’s approximation for the Gamma function:

𝑅 ≈ 2𝜋𝑑/2√︃
2𝜋 𝑑

2

(
𝑑/2
𝑒

)𝑑/2
· 𝑑 · 2𝑑

=

(
2

√
𝜋𝑑 · 𝑑

) (𝜋𝑒
2𝑑

)𝑑/2
. (12)

As lim𝑑→∞
(
𝜋𝑒
2𝑑

)𝑑/2
= 0, and lim𝑑→∞

2√
𝜋𝑑 ·𝑑

= 0. Thus, 𝑅 → 0
when 𝑑 → ∞. Therefore, we conclude that replacing Euclidean
distance with cosine similarity or Chebyshev distance results in a

2r

r

Φ

(a) Euclidean (b) Chebyshev (c) Cosine

Figure 3: The feasible solution spaces for different similarity
functions in three-dimensional space.

larger potential solution space as dimension increases. Relatively,
the solution space for Euclidean contracts into a small area, which
is the key source of the curse of dimensionality [30]. Experimental
validation of this theoretical assertion is presented in Section 5.5.

Despite these advantages, we find that there is no one-fits-all
solution. It is crucial to carefully choose the appropriate similarity
function for each distance measure. Specifically, all existing free-
space distance measures require finding the optimal matching point
for each point [15, 39]. However, the way these matching points
are utilized differs significantly: DTW accumulates the distances of
all matching point pairs along the optimal warping path, whereas
Hausdorff and Fréchet distances emphasize the maximum distance
among all matching pairs. Therefore, the similarity function for
DTW should accentuate global features, while for Hausdorff and
Fréchet, it should emphasize critical local differences. Based on this
observation, we propose a heuristic approach for further selecting
representation similarity functions: when the distance measure con-
siders accumulated global differences (as in DTW), cosine similarity
is more suitable because it accounts for global variations, while
for measures focused on the best matching pair, such as Hausdorff
and Fréchet, using Chebyshev that natively considered only the
maximum component difference becomes a more elegant solution.
Such observation is confirmed in our experiments (Table 3).

As such, we propose to use the “tailored representation similarity
function”, whose core idea of is to identify an appropriate similarity
based on the specific target measure, rather than rigidly adhering
to Euclidean distance. Equation 13 summarizes the cases for the
three distance measures discussed in this paper.

𝑓𝑠𝑖𝑚 (𝑣𝑖 , 𝑣 𝑗) =
{
𝑑cosine (𝑣𝑖 , 𝑣 𝑗) if 𝑑𝑀 = DTW,
exp(−𝑑Cheby (𝑣𝑖 , 𝑣 𝑗)) if 𝑑𝑀 = Haus./Fréc.

(13)

Finally, we employ the MSE loss L as the optimization objective:

L =
1

𝑁 · 𝑆

𝑁∑︁
𝑖=1

𝑆∑︁
𝑗=1

(
𝑓𝑠𝑖𝑚 (𝑣𝑖 , 𝑣 𝑗) − 𝑔𝑠𝑖𝑚 (𝑇𝑖 ,𝑇𝑗)

)2
, (14)

where 𝑁 is the number of trajectories in the training set, and 𝑆 is
the number of trajectories randomly sampled to form input pairs
for each 𝑇𝑖 .

5 EXPERIMENT
5.1 Experimental Setup
Datasets.Weutilized four trajectory benchmarks, namely Porto [16],
T-Drive [45], Geolife [48], and AIS [22], which encompass taxi tra-
jectories in Porto and Beijing, and individuals’ movement trajecto-
ries in Beijing, and vessel trajectories in U.S. waters, respectively.
They have been used in previous studies [15, 39–41, 46]. For Porto
andGeolife, we conducted the same data preprocessing as in [39, 41]:

393

trajectories that are too long (> 200 points), too short (< 10 points),
or located too far from the central city area are removed. For T-
Drive and AIS, which primarily consist of long-term, continuously
tracked trajectories that have not been segmented into trips, we first
segmented them according to stay points [47], Then, the segmented
trajectories were processed following the same procedures as Ge-
olife and Porto. Moreover, the spatial span of the AIS data nearly
covers all U.S. waters. Hence, for this study, we only filtered out data
for 2021 in Pacific Islands. Considering the high cost of calculating
ground truth distance as reported in [40], we randomly sampled
10,000 trajectories from each dataset for experimentation (except
for the scalability test), consistent with previous studies [39–41].
For scalability, we also considered an augmented version of Porto
with 1M trajectories by duplication and inclusion of random noise
(Section 5.4). Table 2 summarizes the dataset statistics.
Baselines.Weused the followingmethods as baselines:NeuTraj [41]
incorporates a spatial attention memory-enhanced LSTM as en-
coder and distance-weighted triplet loss; Traj2simvec [46] uses the
vanilla LSTM as encoder and sub-trajectory distances as extra su-
pervision information; T3S [40] combines self-attention and LSTM
in an encoder to extract both structured and spatial information;
TMN [39] employs LSTM and cross-attention to copewith intra-and
inter-trajectory information. Since its output representation is pair-
specific and cannot be reused for large-scale computation [9], we
used the non-matching version suggested by the authors, named
TMN-NM. NeuTraj and TMN’s source codes were available. Other
baselines were implemented by ourselves. Additionally, we im-
plemented three ablation variants of SIMformer using different
similarity functions: Euclidean, cosine, and Chebyshev.
Parameter Settings. For each dataset, we divided it into training,
validation, and test sets with a ratio of 2:1:7. The hidden dimension
𝑑 of our model was set to 128, with a learning rate of 0.0005. We
used a 1-layer transformer encoder with 16 heads for multi-head
self-attention. The batch size for training was set to 20. Follow-
ing the same sampling number used in most baselines (NeuTraj,
T3S, and TMN), each trajectory was randomly paired with 20 other
trajectories to construct the training samples, and the traj-dist li-
brary [6] was used to compute the ground truth. For 𝛼 , we assigned
a value of 16 for DTW, and 8 for both Hausdorff and Fréchet dis-
tances, consistent with previous studies [39–41]. Each experiment
was run 3 times, and the average results were reported.
Environment. Experiments were conducted on Intel Xeon Silver
4210R CPU @ 2.40GHz and 4 NVidia GeForce RTX 3090 GPUs.
EvaluationMetrics. Following existing works [39–41, 46], we uti-
lize the top-𝑘 hit ratio (HR@𝑘) and top-𝑘 recall for top-𝑡 ground truth
(Recall-𝑡@𝑘) as the evaluation metrics. Both are used to evaluate
the effectiveness of models in top-𝑘 similarity search: HR@𝑘 mea-
sures the overlap between the top-𝑘 trajectories retrieved using the
approximate similarity and those retrieved using the ground truth
similarity. Recall-𝑡@𝑘 evaluates the model’s ability to recall the top-
𝑡 ground truth items within the retrieved top-𝑘 results. Moreover,
there are several methods for assessing the ranking quality, such as
Spearman’s/Kendall rank correlation coefficient [36] and the num-
ber of inversions [35]. We opted the latter one, as it directly reflects
the re-ranking cost within the retrieved top-𝑘 list. We compared
the order of approximate similarity with the order of ground truth
similarity to calculate the inversions. Smaller values are preferred.

Table 2: Statistical information of the datasets.

Dataset Porto T-Drive Geolife AIS
Data source Taxi Taxi Human Vessel

#Moving objects 442 10,357 182 82,030
Length range [10, 200] [10, 200] [10, 200] [10, 200]

Longitude range [-9.0, -7.9] [115.9, 117.0] [115.9, 117.0] [-158.51, -157.41]
Latitude range [40.7, 41.8] [39.6, 40.7] [39.6, 40.7] [20.62, 21.72]

#Trajs. 599,632 15,314 11,169 10,700
#Average length 49.86 69.99 76.73 80.45

5.2 Effectiveness Evaluation
Top-𝑘 Similarity Search Performance. The performance of dif-
ferent models on the top-𝑘 similarity search task is displayed in
Table 3. The best and second-best results are highlighted in bold
and grey , respectively. SIMformer with tailored simlarity func-
tion significantly outperforms other models across both datasets
and all three distance measures. Particularly, on the Porto dataset
with DTW as the approximation target, its HR@1 surpasses SOTA
by 41.68%. Additionally, on Porto, It achieves 94.90%, 98.11%, and
98.21% R10@50 across the three distance measures, demonstrating
its potential for practical applications. Furthermore, SIMformer w/
Euc. achieves the second-best results for the Hausdorff across all
datasets and on parts of the Fréchet. This underscores the superior-
ity of transformers in capturing global key features compared to
LSTM, which is used by all baseline models. Nevertheless, compar-
ing the variants of SIMformer reveals that the primary performance
enhancement still comes from selecting the most suitable similarity
function, as it notably reduces the concentration effect (elaborated
in Section 5.5), making the learned representations more discrimi-
native in high-dimensional space. Another point worth noting is,
all models, including SIMformer, exhibit decreased performance on
T-Drive, Geolife and AIS compared to Porto. This is because that
the average lengths in these datasets are much longer, while longer
trajectories often correspond to more intricate shapes, making them
more challenging to model. However, for Geolife and AIS, which
are both collected in open-space environments - despite AIS having
a longer average length, the model performs better on AIS. We
attribute this to that Geolife encompasses multiple transportation
modes (walking, cycling, driving, etc.), leading to higher complexity
in spatiotemporal features [15], making it more difficult to learn.
Ranking Quality. Table 4 shows the ranking quality on Porto
dataset. SIMformer achieves best performance across all settings.
Notably, as 𝑘 increases, the advantage of our model becomes more
pronounced, reaching up to 28.26% (Porto, Fréchet, 𝑘 = 100). This
displays the high order consistency between the similarity pre-
dicted by SIMformer and the ground truth. Additionally, in most
cases, all variants of SIMformer demonstrate better ranking quality
than baselines. This is because, unlike baseline models that con-
struct triplets (positive & negative samples) for training, SIMformer
randomly samples trajectory pairs and treats them equally with
the MSE loss. This strategy allows our models to focus more on
learning the general law of the similarity distribution rather than
just the extremes, leading to better ranking performance. Moreover,
by comparing the three variants of SIMformer, we can find that the
tailored similarity function is another key factor in improving rank-
ing performance. It alleviates the curse of dimensionality, thereby
reducing the concentration effect, enabling the model to better cap-
ture the real patterns in the data. We validated these conclusions

394

Table 3: Effectiveness in top-𝑘 similarity search performance (↑)

Dataset Model Top-𝑘 Similarity Search@DTW Top-𝑘 Similarity Search@Hausdorff Top-𝑘 Similarity Search@Fréchet
HR@1 HR@10 HR@50 R10@50 HR@1 HR@10 HR@50 R10@50 HR@1 HR@10 HR@50 R10@50

Porto

NeuTraj [41] 0.2601 0.4330 0.5540 0.7843 0.2629 0.4043 0.5434 0.7667 0.4056 0.5663 0.6756 0.9324
Traj2simvec [46] 0.2599 0.4540 0.5826 0.8244 0.3324 0.4706 0.5893 0.8093 0.4392 0.5999 0.6906 0.9402

T3S [40] 0.2439 0.4305 0.5630 0.7964 0.3493 0.5386 0.6668 0.9226 0.4623 0.6140 0.7094 0.9597
TMN-NM [39] 0.2542 0.4440 0.5748 0.8106 0.3905 0.5714 0.6861 0.9427 0.4594 0.6146 0.7088 0.9614

SIMformerw/ Euc. 0.2580 0.4503 0.5809 0.8205 0.4394 0.6137 0.7009 0.9595 0.4587 0.6101 0.7017 0.9590
SIMformerw/ Cos. 0.3685 0.5939 0.7337 0.9490 0.4174 0.6051 0.7020 0.9560 0.4410 0.6164 0.7065 0.9565

SIMformerw/ Cheby. 0.2736 0.4696 0.6001 0.8272 0.4990 0.6971 0.7984 0.9811 0.5378 0.7174 0.8170 0.9821
Improvement 41.68% 30.81% 25.94% 15.11% 27.78% 22.00% 16.37% 4.07% 16.33% 16.73% 15.17% 2.15%

T-Drive

NeuTraj [41] 0.1018 0.2271 0.3564 0.4931 0.1334 0.3104 0.4857 0.6857 0.2630 0.4494 0.5710 0.8340
Traj2simvec [46] 0.1188 0.2659 0.4117 0.5801 0.1459 0.3205 0.4888 0.6767 0.2494 0.4300 0.5530 0.8054

T3S [40] 0.0919 0.2258 0.3691 0.5026 0.1935 0.4110 0.5701 0.8214 0.3174 0.4980 0.6132 0.8884
TMN-NM [39] 0.0983 0.2334 0.3757 0.5248 0.2192 0.4442 0.6041 0.8623 0.3243 0.5085 0.6214 0.8988

SIMformerw/ Euc. 0.1105 0.2436 0.3833 0.5289 0.3697 0.5708 0.6831 0.9543 0.3452 0.5250 0.6335 0.9126
SIMformerw/ Cos. 0.1988 0.3600 0.5256 0.7394 0.3440 0.5346 0.6415 0.9284 0.2847 0.4519 0.5547 0.8468

SIMformerw/ Cheby. 0.1450 0.2916 0.4372 0.5880 0.4366 0.6679 0.7885 0.9804 0.4104 0.6135 0.7322 0.9441
Improvement 67.33% 35.38% 27.66% 27.46% 18.08% 17.01% 15.44% 2.73% 18.87% 16.85% 15.59% 3.46%

Geolife

NeuTraj [41] 0.1865 0.3165 0.4319 0.6107 0.2093 0.3558 0.5109 0.6843 0.3201 0.5163 0.6685 0.8587
Traj2simvec [46] 0.1898 0.3394 0.4733 0.6649 0.2319 0.3890 0.5361 0.7065 0.3320 0.5308 0.6775 0.8664

T3S [40] 0.1550 0.2876 0.4167 0.5954 0.1834 0.3587 0.5362 0.7130 0.2827 0.4976 0.6680 0.8559
TMN-NM [39] 0.1792 0.3058 0.4233 0.6043 0.2781 0.4838 0.6461 0.8427 0.3351 0.5393 0.6906 0.8871

SIMformerw/ Euc. 0.2001 0.3286 0.4368 0.6271 0.3502 0.5678 0.7047 0.9047 0.3519 0.5646 0.7058 0.9062
SIMformerw/ Cos. 0.2331 0.3859 0.5203 0.7005 0.2991 0.4961 0.6349 0.8385 0.3059 0.4892 0.6293 0.8400

SIMformerw/ Cheby. 0.1873 0.3125 0.4240 0.6329 0.3870 0.6137 0.7628 0.9241 0.3654 0.5823 0.7473 0.9155
Improvement 16.49% 13.70% 9.93% 5.35% 10.51% 8.08% 8.24% 2.14% 3.84% 3.13% 5.88% 1.03%

AIS

NeuTraj [41] 0.1618 0.3377 0.4926 0.6912 0.1514 0.3229 0.4999 0.6614 0.2901 0.5126 0.6581 0.8557
Traj2simvec [46] 0.1813 0.3604 0.5046 0.7184 0.2225 0.4038 0.5726 0.7240 0.3643 0.5916 0.7150 0.9126

T3S [40] 0.1487 0.3298 0.5005 0.6901 0.1149 0.3012 0.5154 0.6710 0.3292 0.5664 0.7103 0.8959
TMN-NM [39] 0.1541 0.3326 0.4951 0.6861 0.2465 0.4799 0.6648 0.8496 0.3758 0.6013 0.7274 0.9272

SIMformerw/ Euc. 0.1589 0.3308 0.4883 0.6808 0.3166 0.5611 0.7232 0.9172 0.3730 0.5969 0.7251 0.9249
SIMformerw/ Cos. 0.2173 0.4215 0.6005 0.7816 0.2403 0.4531 0.6313 0.8211 0.2773 0.4870 0.6417 0.8521

SIMformerw/ Cheby. 0.1766 0.3558 0.5126 0.7048 0.3558 0.5968 0.7588 0.9276 0.3952 0.6283 0.7675 0.9326
Improvement 19.83% 16.95% 19.02% 8.80% 12.36% 6.36% 4.93% 1.13% 5.15% 4.49% 5.51% 0.58%

Table 4: Effectiveness in ranking error (↓) on Porto dataset.

Model DTW Hausdorff Fréchet
k=10 k=50 k=100 k=10 k=50 k=100 k=10 k=50 k=100

NeuTraj [41] 15.75 399.92 1543.90 16.12 423.98 1643.34 15.23 364.74 1357.41
Traj2simvec [46] 16.29 400.09 1528.22 14.89 391.55 1526.35 14.35 343.87 1297.75

T3S [40] 16.26 406.03 1552.41 15.49 376.12 1394.67 14.39 338.65 1257.39
TMN-NM [39] 16.26 401.92 1532.77 15.03 362.67 1342.57 14.57 345.03 1279.75

SIMformerw/ Euc. 16.07 398.30 1518.62 14.18 343.84 1289.51 14.27 344.53 1284.90
SIMformerw/ Cos. 14.30 326.53 1185.95 14.14 342.07 1283.07 14.11 336.33 1263.00

SIMformerw/ Cheby. 15.67 384.22 1457.39 12.70 278.79 984.27 12.15 261.61 902.05
Improvement 8.73% 15.01% 18.62% 10.17% 18.50% 23.29% 13.88% 22.22% 28.26%

across all datasets; results for other datasets are available in our
code repository due to space limitations.

5.3 Efficiency Evaluation
We evaluated the training and inference efficiency of different mod-
els. Here, “inference” refers to the process of converting trajectories
into representations. We used Porto with 2,000 trajectories to as-
sess training efficiency and 10,000 trajectories to assess inference
efficiency. During the training phase, we adhered to the batch size
recommendations specified in the original papers of the baseline
models. For the inference phase, we set the batch size to 1 for all
models to ensure a fair comparison. Each experiment was conducted
10 times, and the average values were reported.

The efficiency is displayed in Table 5, including the comparison
of model size. SIMformer has the fastest speed and the lowest GPU
memory usage among all models during inference. This can be
attributed to two factors: 1) the simplicity of our model – a single-
layer transformer encoder; and 2) the inherent parallelism of the

Table 5: Training and inference efficiency on Porto.

Model # Params Training Inference
𝑡𝑒𝑝𝑜𝑐ℎ 𝑡𝑡𝑜𝑡𝑎𝑙 GPU Usage 𝑡𝑖𝑛𝑓 𝑒𝑟

NeuTraj [41] 0.12M 96.39s 9542.24s 2197 MiB 58.370 ms
Traj2simvec [46] 0.25M 5.60s 1233.01s 1149 MiB 4.759 ms

T3S [40] 155.15M 25.96s 7841.42s 3395 MiB 7.533 ms
TMN-NM [39] 0.18M 23.97s 7455.89s 1660 MiB 8.913 ms
SIMformer 0.16M 7.53s 3236.66s 1025MiB 3.419ms

self-attention mechanism [29], allowing it to be more efficient than
LSTM models that require sequential processing of data [17]. Ad-
ditionally, our model ranks second in training efficiency, boasting
fewer parameters and a shorter training time. Traj2simvec distin-
guishes itself with the shortest training time, attributed to its unique
and efficient sampling strategy, which only necessitated one pair of
positive and negative instances per anchor trajectory. Despite incor-
porating many advanced techniques, NeuTraj does not significantly
increase the parameter count of the LSTM itself, resulting in the
least number of parameters. In contrast, T3S uses a large trainable
look-up table, leading to the highest number of parameters.

5.4 Scalability Evaluation
Efficiency Scalability. Following [41], we evaluated the efficiency
scalability. We sampled five subsets from Porto, ranging from 1k
to 500k. The average query processing time (including inference
time) for a top-50 similarity search is reported in Table 6. We only
compared SIMformer with brute-force and non-learning methods,
as learning-based methods merely differ in inference time. The

395

Table 6: Scalability evaluation on Porto.

Measures Methods Average Query Processing Time (top-50)
1k 5k 10k 200k 500k

DTW
BruteForce 0.285s 1.423s 2.857s 56.359s 142.990s

Non-learning [25] 0.152s 0.716s 1.418s 28.244s 69.314s
SIMformer 0.0181s 0.0188s 0.0195s 0.0221s 0.0226s

Hausdorff
BruteForce 0.148s 0.739s 1.479s 28.921s 75.495s

Non-learning [27] 0.056s 0.184s 0.360s 7.053s 17.404s
SIMformer 0.0122s 0.0122s 0.0124s 0.0127s 0.0127s

Fréchet
BruteForce 0.248s 1.244s 2.493s 50.149s 125.722s

Non-learning [8] 0.173s 0.808s 1.534s 31.511s 78.644s
SIMformer 0.0166s 0.0168s 0.0168s 0.0195s 0.0195s

Measures Methods R10@100
10k 100k 200k 500k 1M (aug.)

DTW
Traj2simvec 0.8650 0.6386 0.5625 0.4766 0.4079
TMN-NM 0.8747 0.6543 0.5756 0.4882 0.4215
SIMformer 0.9645 0.8105 0.7412 0.6563 0.5789

Hausdorff
Traj2simvec 0.8156 0.6483 0.6191 0.5806 0.5679
TMN-NM 0.8719 0.6902 0.649 0.5979 0.5908
SIMformer 0.9895 0.9209 0.8878 0.8313 0.7990

Fréchet
Traj2simvec 0.9247 0.8218 0.7729 0.7079 0.6855
TMN-NM 0.9399 0.8429 0.7994 0.7392 0.7234
SIMformer 0.9594 0.8788 0.8377 0.7787 0.7560

specialized non-learning algorithms for each measure were imple-
mented, including a DTW approximation algorithm [25] that offers
optimal or near-optimal alignments with time and memory com-
plexity of 𝑂 (𝑛); a linear-time greedy algorithm to approximate the
discrete Fréchet [8]; and a near-linear complexity algorithm for
computing the Hausdorff distance [27]. The results indicate that
all methods exhibit linear growth w.r.t. dataset size; but SIMformer
demonstrates a significantly more moderate growth rate, achieving
over 1000x speedup than non-learning methods on the 500k dataset.
Effectiveness Scalability. The scalability of SIMformer was also
assessed concerning similarity search accuracy. Five subsets, from
Porto, ranging from 10k to 500k, were randomly sampled (excluding
the 2k data used for training). The dataset was further augmented to
1M by duplicating it and adding Gaussian noise (𝜇 = 0, 𝜎 = 1, equiv-
alent to 100 meters) to the duplicated trajectory points. R10@100
performance was assessed using 1,000 queries. We compared SIM-
former with Traj2simvec and TMN-NM, the best-performing base-
lines for DTW and Hausdorff/Fréchet in terms of hit ratio and recall
(Table 3). From the scalability results in Table 6, the general trend
is that all competitors exhibit decreasing effectiveness when the
dataset size grows. Nonetheless, SIMformer maintains a hit rate of
over 50% for DTW and over 75% for the other two distances, even on
the 1M dataset augmented with noise. In contrast, the performances
of Traj2simvec and TMN-NM deteriorate sharply, with the recalls
on DTW drop below 50% at 500k. For Hausdorff, SIMformer’s recall
on the 500k dataset was even higher than Traj2simvec’s on the 10k
dataset. Moreover, it is evident that the gaps between SIMformer
and the baselines are more remarkable on 100k+ datasets across
all three distance measures and even exceed 20% for Hausdorff,
showcasing the superior scalability of SIMformer.

5.5 Interpretability Study
According to the theoretical analysis in Section 4.2, Euclidean-based
similarity functions are anticipated to have a significantly smaller
feasible solution space compared to tailored ones. This assertion
is validated here. For SIMformer with and without utilizing the

1 16 32 64 12848 11280 96

0.5

0.0

1.0
1.5

0.5

0.0

1.0
1.5

Mean Std

Dimension

Learned w/ Euclidean (Porto × DTW)

Learned w/ Tailored (Porto × DTW)

Figure 4: Distributions of learned representations.

Table 7: Average STD of learned representations.

Measures Repr.
Sim. Func.

Dataset
Porto T-Drive Geolife AIS

DTW Euclidean 0.0315 0.0324 0.0336 0.0674
Tailored 0.3114 0.2559 0.2714 0.2628

Hausdorff Euclidean 0.0248 0.0802 0.0478 0.0834
Tailored 0.0647 0.1517 0.1034 0.1481

Fréchet Euclidean 0.0303 0.0903 0.0487 0.0985
Tailored 0.0817 0.2306 0.1502 0.2145

tailored similarity function, we respectively calculated the mean
and the standard deviation (STD) of learned representations across
all 128 dimensions. Figure 4 shows the mean and STD for each
dimension when the dataset is Porto and target measure is DTW. It
indicates that minimal variation exists within each dimension when
employing the Euclidean-based similarity function, suggesting that
the solutions are confined to a small area. Conversely, utilizing
the tailored function allows for more flexibility across dimensions,
aligning with our theoretical judgement. This phenomenon is called
concentration effect [49] in previous literature, leading to poor
performance in downstream tasks. Notably, this effect is observed
consistently across all four datasets × three distance measures.
For other datasets and measures, we also computed the STD of
the representations for each dimension. The averaged values is
reported (Table 7), confirming that our previous conclusion again.

5.6 Hyperparameter Study
We tested three hyperparameters of SIMformer’s encoder: the num-
ber of heads in multi-head self-attention, hidden dimensions of
representation, and the number of transformer encoder layers. Fig-
ure 5 presents the results on Porto, from which we can see that
by increasing the scale of SIMformer, the model performance can
be further improved. For example, increasing the number of lay-
ers from 1 to 4 led to 3% performance boost across the hit ratios
on DTW. However, these improvements are accompanied by an
increase in model complexity. Considering the model efficiency
and simplicity, we opted for moderate parameters: 16 heads, 128
dimensions, and 1 layer for the encoder.

6 DISCUSSION
Applicability vs. Feature Distribution. The tailored similarity
functions proposed in this paper are designed to mitigate the curse
of dimensionality. However, if the curse of dimensionality is not severe
in the data, the improvement from our method may also be limited.
Theoretically, it has been proved that singly distributed data often

396

Figure 5: Encoder’s hyperparameter analysis on Porto.

suffer more from the curse of dimensionality than multiply dis-
tributed data because the different distributions inherently provide
some separability [7, 49]. To illustrate this, we plotted the ground
truth similarity distributions for various datasets (Figure 6(a)). It is
evident that the similarity distributions vary significantly across
different datasets and distance measures. Overall, the similarity
distribution for T-Drive is simple, followed by Porto, with Geolife
and AIS becoming increasingly complex. Specifically, Geolife and
AIS can be considered multiply distributed data: Geolife includes
multiple transportation modes, while AIS data are highly unevenly
distributed along fixed shipping routes [15]. We then calculated
the relative performance improvement (on top-𝑘 query accuracy)
achieved by replacing Euclidean distance with tailored ones and
displayed these results in bar charts (Figure 6(b)). We can find that
as the data distribution becomes more complex, the performance im-
provement diminishes. Consequently, we can hypothesize that, in
real-world scenarios, if the spatial distribution of trajectory data is
highly uneven (e.g., containing many separated clusters), the bene-
fits of using tailored similarity functions may be less pronounced.
Applicability vs. DistanceMeasures. The proposed framework
only addresses two specific cases (Equation 13), leaving another
important category of distance measures: edit distance-based mea-
sures like EDR and ERP, unaddressed. A key characteristic of these
measurements is that their output consists of two heterogeneous
components: thematched part and the unmatched part. In con-
trast, DTW sums all matches, whereas Fréchet and Hausdorff only
consider the best one match. We have conducted some exploratory
experiments and found that Euclidean, cosine, and Chebyshev all
perform poorly on these heterogeneous measurements. Cosine only
considers directional similarity, making it hard to precisely account
for both components simultaneously. Chebyshev focuses solely on
optimal local information and fails to handle the overall matching

Fr
eq

ue
nc

y
(×

10
6)

Fr
eq

ue
nc

y
(×

10
6)

Fr
eq

ue
nc

y
(×

10
6)

D
T
W

H
ausdorff

Fréchet

T-Drive Porto Geolife AIS

R
el

at
iv

e
Pe

rf
or

m
an

ce
 Im

pr
ov

em
en

t (
%

)

T-Drive Porto Geolife AIS

D
T
W

H
ausdorff

Fréchet

(a)

(b)

Figure 6: (a) Ground truth similarity distribution across dif-
ferent datasets and distance measures. (b) Relative perfor-
mance improvements in top-𝑘 query accuracy by replacing
Euclidean-based similarity function with the tailored ones.

situation. While Euclidean distance has an advantage in precision
and can capture global information, it still suffers from the curse
of dimensionality issue. Therefore, there is a need to tailor another
kinds of similarity functions that can mitigate the curse of dimension-
ality while precisely measuring the heterogeneous components.

7 CONCLUSION
In this study, we proposed a simple yet powerful method for free-
space trajectory similarity learning. Extensive experiments demon-
strated the effectiveness, efficiency, and scalability of our method.
We will further investigate tailored similarity functions for a wider
range of distance measures, aiming to revealing the overarching
design principles in the future.

ACKNOWLEDGMENTS
This work is supported by JST SPRING JPMJSP2108, JSPS KAKENHI
Grant Number JP24K02996, JP23K17456, JP23K25157, JP23K28096,
and JST CREST Grant Number JPMJCR21M2, JPMJCR22M2.

397

REFERENCES
[1] Pankaj K Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei

Pan, and Erin Taylor. 2018. Subtrajectory clustering: Models and algorithms. In
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. 75–87.

[2] Pankaj K. Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. 2016. Approximating
Dynamic TimeWarping and Edit Distance for a Pair of Point Sequences. In 32nd
International Symposium on Computational Geometry (SoCG 2016), Vol. 51. 6:1–
6:16.

[3] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. 2001. On the
surprising behavior of distance metrics in high dimensional space. InDatabase
Theory—ICDT 2001: 8th International Conference London, UK, January 4–6, 2001
Proceedings 8. Springer, 420–434.

[4] Stefan Atev, Grant Miller, and Nikolaos P Papanikolopoulos. 2010. Clustering of
vehicle trajectories. IEEE transactions on intelligent transportation systems 11, 3
(2010), 647–657.

[5] Asma Belhadi, Youcef Djenouri, Jerry Chun-Wei Lin, and Alberto Cano. 2020.
Trajectory outlier detection: Algorithms, taxonomies, evaluation, and open chal-
lenges. ACMTransactions onManagement Information Systems (TMIS) 11, 3 (2020),
1–29.

[6] Philippe C Besse, Brendan Guillouet, Jean-Michel Loubes, and François Royer.
2016. Review and perspective for distance-based clustering of vehicle trajectories.
IEEE Transactions on Intelligent Transportation Systems 17, 11 (2016), 3306–3317.

[7] KevinBeyer, JonathanGoldstein, RaghuRamakrishnan, andUri Shaft. 1999. When
is “nearest neighbor” meaningful?. InDatabase Theory—ICDT’99: 7th International
Conference Jerusalem, Israel, January 10–12, 1999 Proceedings 7. Springer, 217–235.

[8] Karl Bringmann and Wolfgang Mulzer. 2016. Approximability of the discrete
Fréchet distance. Journal of Computational Geometry 7, 2 (2016), 46–76.

[9] Yanchuan Chang, Egemen Tanin, Gao Cong, Christian S Jensen, and Jianzhong Qi.
2024. Trajectory similarity measurement: An efficiency perspective. Proceedings
of the VLDB Endowment 17, 9 (2024), 2293–2306.

[10] Wei Chen, Yuxuan Liang, Yuanshao Zhu, Yanchuan Chang, Kang Luo, Haomin
Wen, Lei Li, Yanwei Yu, QingsongWen, Chao Chen, et al. 2024. Deep learning for
trajectory data management and mining: A survey and beyond. arXiv preprint
arXiv:2403.14151 (2024).

[11] Connor Colombe and Kyle Fox. 2021. Approximating the (Continuous) Fréchet
Distance. In 37th International Symposium on Computational Geometry (SoCG
2021), Vol. 189. 26:1–26:14.

[12] Zipei Fan, Quanjun Chen, Renhe Jiang, Ryosuke Shibasaki, Xuan Song, and Kota
Tsubouchi. 2019. Deep multiple instance learning for human trajectory identifi-
cation. In Proceedings of the 27th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. 512–515.

[13] Ziquan Fang, Yuntao Du, Xinjun Zhu, Danlei Hu, Lu Chen, Yunjun Gao, and
Christian S Jensen. 2022. Spatio-temporal trajectory similarity learning in road
networks. In Proceedings of the 28th ACM SIGKDD conference on knowledge discov-
ery and data mining. 347–356.

[14] Peng Han, JinWang, Di Yao, Shuo Shang, and Xiangliang Zhang. 2021. A graph-
based approach for trajectory similarity computation in spatial networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 556–564.

[15] Danlei Hu, Lu Chen, Hanxi Fang, Ziquan Fang, Tianyi Li, and Yunjun Gao. 2024.
Spatio-temporal trajectory similarity measures: A comprehensive survey and
quantitative study. IEEE Transactions on Knowledge and Data Engineering 36, 5
(2024), 2191–2212.

[16] Kaggle. 2015. Porto Dataset – ECML/PKDD 15: Taxi Trajectory Prediction (I). Re-
trieved October 22, 2024 from https://www.kaggle.com/c/pkdd-15-predict-taxi-
service-trajectory-i/data

[17] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma,
Ziyan Jiang, Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto,
Xiaofei Wang, et al. 2019. A comparative study on transformer vs rnn in speech
applications. In2019 IEEEautomatic speech recognitionandunderstandingworkshop
(ASRU). IEEE, 449–456.

[18] Satoshi Koide, Chuan Xiao, and Yoshiharu Ishikawa. 2020. Fast subtrajectory
similarity search in road networks under weighted edit distance constraints.
Proceedings of the VLDB Endowment 13, 12 (2020), 2188–2201.

[19] Nikolaos Kouiroukidis and Georgios Evangelidis. 2011. The effects of dimension-
ality curse in high dimensional knn search. In 2011 15th Panhellenic Conference on
Informatics. IEEE, 41–45.

[20] Hai Lan, Jiong Xie, Zhifeng Bao, Feifei Li, Wei Tian, FangWang, ShengWang, and
Ailin Zhang. 2022. Vre: a versatile, robust, and economical trajectory data system.
Proceedings of the VLDB Endowment 15, 12 (2022), 3398–3410.

[21] Shengqiao Li. 2010. Concise formulas for the area and volume of a hyperspherical
cap. Asian Journal of Mathematics & Statistics 4, 1 (2010), 66–70.

[22] Marine Cadastre. 2021. AIS Data. Retrieved October 22, 2024 from https://
marinecadastre.gov/accessais/

[23] TaoMei, Yong Rui, Shipeng Li, and Qi Tian. 2014. Multimedia search reranking: A
literature survey. ACMComputing Surveys (CSUR) 46, 3 (2014), 1–38.

[24] FanrongMeng, Guan Yuan, Shaoqian Lv, ZhixiaoWang, and Shixiong Xia. 2019.
An overviewon trajectory outlier detection. Artificial Intelligence Review 52 (2019),
2437–2456.

[25] Stan Salvador and Philip Chan. 2007. Toward accurate dynamic time warping in
linear time and space. Intelligent Data Analysis 11, 5 (2007), 561–580.

[26] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: Distributed in-memory
trajectory analytics. In Proceedings of the 2018 International Conference on Man-
agement of Data (SIGMOD). 725–740.

[27] Abdel Aziz Taha and Allan Hanbury. 2015. An efficient algorithm for calculating
the exact Hausdorff distance. IEEE transactions on pattern analysis and machine
intelligence 37, 11 (2015), 2153–2163.

[28] Bo Tang, Man Lung Yiu, Kyriakos Mouratidis, and KaiWang. 2017. Efficient motif
discovery in spatial trajectories using discrete fréchet distance. In Proceedings
of the 20th International Conference on Extending Database Technology (EDBT).
378–389.

[29] AshishVaswani,NoamShazeer,NikiParmar, JakobUszkoreit, Llion Jones,AidanN
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In
Advances in Neural Information Processing Systems, Vol. 30.

[30] Michel Verleysen and Damien François. 2005. The curse of dimensionality in data
mining and time series prediction. In International work-conference on artificial
neural networks. Springer, 758–770.

[31] DongWang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. 2018. When will you
arrive? estimating travel time based on deep neural networks. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 32.

[32] ShengWang, Zhifeng Bao, J Shane Culpepper, Timos Sellis, and Xiaolin Qin. 2019.
Fast large-scale trajectory clustering. Proceedings of the VLDB Endowment 13, 1
(2019), 29–42.

[33] Wikipedia. 2024. Gamma Function. Retrieved October 22, 2024 from https:
//en.wikipedia.org/wiki/Gamma_function

[34] Wikipedia. 2024. Hypercube. RetrievedOctober 22, 2024 fromhttps://en.wikipedia.
org/wiki/Hypercube#Faces

[35] Wikipedia. 2024. Inversion (discrete mathematics). Retrieved October 22, 2024
from https://en.wikipedia.org/wiki/Inversion_(discrete_mathematics)

[36] Wikipedia. 2024. Rank correlation. Retrieved October 22, 2024 from https://en.
wikipedia.org/wiki/Rank_correlation

[37] Dong Xie, Feifei Li, and Jeff M Phillips. 2017. Distributed trajectory similarity
search. Proceedings of the VLDB Endowment 10, 11 (2017), 1478–1489.

[38] Chuang Yang, Zhiwen Zhang, Zipei Fan, Renhe Jiang, Quanjun Chen, Xuan Song,
and Ryosuke Shibasaki. 2022. EpiMob: Interactive visual analytics of citywide hu-
manmobility restrictions for epidemic control. IEEE Transactions on Visualization
and Computer Graphics 29, 8 (2022), 3586–3601.

[39] Peilun Yang, HanchenWang, Defu Lian, Ying Zhang, Lu Qin, andWenjie Zhang.
2022. TMN: trajectory matching networks for predicting similarity. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). IEEE, 1700–1713.

[40] Peilun Yang, HanchenWang, Ying Zhang, Lu Qin,Wenjie Zhang, and Xuemin Lin.
2021. T3s: Effective representation learning for trajectory similarity computation.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
2183–2188.

[41] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing trajectory
similarity in linear time: A generic seed-guided neural metric learning approach.
In 2019 IEEE 35th international conference on data engineering (ICDE). IEEE, 1358–
1369.

[42] Di Yao, Haonan Hu, Lun Du, Gao Cong, Shi Han, and Jingping Bi. 2022. Trajgat: A
graph-based long-term dependency modeling approach for trajectory similarity
computation. In Proceedings of the 28th ACM SIGKDD conference on knowledge
discovery and data mining. 2275–2285.

[43] Haitao Yuan and Guoliang Li. 2019. Distributed in-memory trajectory similarity
search and join on road network. In 2019 IEEE 35th international conference on
data engineering (ICDE). IEEE, 1262–1273.

[44] JingYuan,YuZheng, andXingXie. 2012. Discovering regionsof different functions
in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining. 186–194.

[45] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong
Sun, and Yan Huang. 2010. T-drive: driving directions based on taxi trajectories.
In Proceedings of the 18th SIGSPATIAL International conference on advances in
geographic information systems. 99–108.

[46] HanyuanZhang,XingyuZhang,Qize Jiang, BaihuaZheng,ZhenbangSun,Weiwei
Sun, and Changhu Wang. 2020. Trajectory similarity learning with auxiliary
supervisionandoptimalmatching. InProceedings of theTwenty-Ninth International
Joint Conference on Artificial Intelligence (IJCAI). 11–17.

[47] Yu Zheng. 2015. Trajectory data mining: an overview. ACM Transactions on
Intelligent Systems and Technology (TIST) 6, 3 (2015), 1–41.

[48] Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. GeoLife: A collaborative social
networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 2
(2010), 32–39.

[49] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. 2012. A survey on unsu-
pervised outlier detection in high-dimensional numerical data. Statistical Analysis
and Data Mining: The ASA Data Science Journal 5, 5 (2012), 363–387.

398

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
https://marinecadastre.gov/accessais/
https://marinecadastre.gov/accessais/
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Hypercube#Faces
https://en.wikipedia.org/wiki/Hypercube#Faces
https://en.wikipedia.org/wiki/Inversion_(discrete_mathematics)
https://en.wikipedia.org/wiki/Rank_correlation
https://en.wikipedia.org/wiki/Rank_correlation

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 1-Layer Transformer Trajectory Encoder
	4.2 Tailored Representation Similarity Function

	5 Experiment
	5.1 Experimental Setup
	5.2 Effectiveness Evaluation
	5.3 Efficiency Evaluation
	5.4 Scalability Evaluation
	5.5 Interpretability Study
	5.6 Hyperparameter Study

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

