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Human and mouse proteomics reveals the
shared pathways in Alzheimer’s disease and
delayed protein turnover in the amyloidome

Jay M. Yarbro1,2,11, Xian Han1,2,11, Abhijit Dasgupta 1,2,10,11, Ka Yang 1,2,11,
Danting Liu1,2, Him K. Shrestha1,2, Masihuz Zaman1,2, ZhenWang1,2, Kaiwen Yu 3,
Dong Geun Lee1,2, David Vanderwall1,2, Mingming Niu1,2, Huan Sun1,2, Boer Xie3,
Ping-Chung Chen 1,2, Yun Jiao1,2, Xue Zhang1,2, Zhiping Wu1,2,
Surendhar R. Chepyala1,2, Yingxue Fu 3, Yuxin Li3, Zuo-Fei Yuan 3,
Xusheng Wang4, Suresh Poudel3, Barbora Vagnerova5, Qianying He5,
Andrew Tang5, Patrick T. Ronaldson5, Rui Chang 5, Gang Yu 6,
Yansheng Liu 7,8,9 & Junmin Peng 1,2,3

Murine models of Alzheimer’s disease (AD) are crucial for elucidating disease
mechanisms but have limitations in fully representing AD molecular com-
plexities. Here we present the comprehensive, age-dependent brain proteome
and phosphoproteome across multiple mouse models of amyloidosis. We
identified shared pathways by integrating with human metadata and prior-
itized components by multi-omics analysis. Collectively, two commonly used
models (5xFAD and APP-KI) replicate 30% of the human protein alterations;
additional genetic incorporation of tau and splicing pathologies increases this
similarity to 42%. We dissected the proteome-transcriptome inconsistency in
AD and 5xFADmouse brains, revealing that inconsistent proteins are enriched
within amyloid plaque microenvironment (amyloidome). Our analysis of the
5xFAD proteome turnover demonstrates that amyloid formation delays the
degradation of amyloidome components, including Aβ-binding proteins and
autophagy/lysosomal proteins. Our proteomic strategy defines shared AD
pathways, identifies potential targets, and underscores that protein turnover
contributes to proteome-transcriptome discrepancies during AD progression.

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is
the most common cause of dementia, affecting more than 6 million
Americans1. AD pathology initiates decades before the onset of gross
behavioral symptoms and is primarily defined by the aggregation of β-

amyloid peptide (Aβ) in extracellular plaques and of hyperpho-
sphorylated tau proteins as intracellular neurofibrillary tangles2–4. In
addition to Aβ and tau, other coexisting molecular changes4,5, such as
α-synuclein6,7, TDP-435,8, and U1 snRNP9,10, may play important roles in
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disease progression. Genetic analyses of AD and control cases have
elucidated three causative genes (APP, PSEN1, and PSEN2), high-risk
genes (APOE4 and TREM2) and about 100 low-risk genes and loci11–20.
However, the molecular mechanisms of these proteins/genes in AD
development arenot fully understood, often due to the lack of suitable
cellular or animal models.

More than 100 genetic AD mouse models have been
developed21–24, predominantly by mimicking genetic mutations linked
to familial AD, such as the lines of 5xFAD25,26, 3xTG27, and APP-KI
including APPNLF (NLF) and APPNLGF (NLGF)28. However, none of these
models capture the full spectrum of AD molecular events and
pathologies as they exhibit less severe neurodegeneration compared
to human patients. Ideally, researchers should fully understand the
advantages and limitations of mouse models to select the most
appropriate one for addressing specific hypotheses; however, no
comprehensive resources are currently available.

Rapid developments in omics technologies provide an opportu-
nity of thoroughly evaluating disease models on a global scale and
exploring their relevance by comparisons with human data29–31. Tran-
scriptomic analyses of the amyloidosis mouse models revealed chan-
ges in expression of genes linked to immune response, synaptic
function, and neuronal signaling32–34. However, RNA levels do not
always align with protein levels due to posttranscriptional processes,
such as translation and protein turnover35. Indeed, notable incon-
sistencies between transcript and protein levels in AD and 5xFADmice
were observed36,37. Complementary proteomic studies in AD mice38–41

not only corroborated transcriptomic findings, but also identified
RNA-independent protein alterations36,39,42 and changes in protein
turnover43,44. These early proteomic studies in the ADmice uncovered
some molecular changes but they were often limited by inadequate
proteomic depth, restricted analysis of individual mouse models, and/
or insufficient comparison with human AD datasets.

Here we present a deep, age-dependent analysis of 10,369 pro-
teins (10,331 genes) and 12,096 phosphopeptides (10,532 phospho-
sites) across commonly used AD models: 5xFAD25, NLF28, and NLGF28.
We also profiled two additional AD models (3xTG27 and BiG45), per-
formed human-mouse comparisons, and analyzed transcriptome-
proteome inconsistency in both mouse and human. To explore the
contribution of protein degradation to the transcriptome-proteome
inconsistency, we measured the turnover rates of 8492 brain proteins
and found that amyloid formation delays the degradation of amyloi-
dome components. Thus, our comprehensive proteomic analysis
identifies shared AD pathways and demonstrates altered protein
turnover in amyloid plaques in AD mice. All data are freely available
and searchable through an interactive website.

Results
Proteome profiling of multiple AD amyloidosis models reveals
shared pathways
We compared proteomic readout of three mouse models of amyloi-
dosis at different ages, with early and late symptoms (Fig. 1a, Supple-
mentary Data 1): (i) 5xFAD (3-, 6-, 12-month-old), overexpressing
human APP and PSEN1 genes carrying a total of five human disease
mutations under the Thy1 promoter, which promotes rapid onset of
amyloid pathology25; (ii) NLF (3-, 12-month-old, with weak pathology)
and NLGF (3-, 6-, 12-, 18-month-old, with strong pathology), both being
next-generation knock-in models with humanized Aβ without gene
overexpression28. We also analyzed age-matched wild type (WT) con-
trol mice for each mouse line.

Using our optimized tandem mass tag (TMT) method, coupled
with extensive two-dimensional liquid chromatography (LC/LC) and
high-resolution tandem mass spectrometry (MS/MS, Supplementary
Fig. 1a)46–49, we profiled a total of 66 mouse brains (cortex) in multiple
TMT batches with deep proteome coverage (Supplementary Data 2),
identified more than 900,000 peptide-spectrum matches (PSMs),

~330,000 peptides, and 10,369 unique proteins (10,331 genes) that
were shared in all animals, with a protein false discovery rate (FDR)
below 0.01 (Fig. 1b, Supplementary Data 3). After protein quantifica-
tion based on TMT reporter ions, sample loading biaswas corrected as
shown in a box plot (Supplementary Fig. 1b), and the batch effect was
normalized and confirmed by PCA analysis (Supplementary Fig. 1c). As
expected, the Aβ tryptic peptide (R.HDSGYEVHHQK.L) shows age-
dependent increases in all AD mice, with higher levels in 5xFAD and
NLGF thanNLF, consistent with the reported pathologies in thesemice
(Fig. 1c, Supplementary Data 4).

We examined the effect of aging using onlyWTmice (3-, 6-, 12-, 18-
month-old) to avoid the confounding impact of Aβ insult in different
genotypes. When comparing 3-month-old mice to any other aged
mice, differential expression (DE) analysis identified 183 age-
dependent proteins [FDR<0.05, |log2Fold Change (FC)| > two stan-
dard deviations (SD)], with 129 proteins upregulated and 54 proteins
downregulated with age (Supplementary Fig. 2a). These age-
dependent proteins are predominantly associated with processes
such as extracellular matrix remodeling, lysosomal activity, and
synaptic signaling (Supplementary Data 5). The upregulated proteins
are enriched in the GeneOntology (GO)50 terms of collagen-containing
extracellular matrix, perineuronal net, lysosome, glutathione meta-
bolic process, etc. (Supplementary Fig. 2b). Conversely, the down-
regulated proteins are enriched in cell periphery, cell junction, and
neuronal components, including synapse, axon, dendritic spine, etc.
(Supplementary Fig. 2c, Supplementary Data 6).

We then performed DE analysis at different ages for each geno-
type using WT controls (FDR <0.05, |log2FC | > 2 SD, Supplementary
Data 7), excluding human Aβ peptide as it is not present in the WT
mice. NLFexhibits a fewDEproteins (DEPs), in agreementwith itsweak
pathology51 (Fig. 1d). In contrast, the 5xFAD and NLGF models
demonstrate significant protein alterations, which increased with age
for bothmodels (Fig. 1d). For instance, a volcanocurve shows605DEPs
in 12-month-old NLGFmice compared to theWT (Fig. 1e), reflecting its
strong amyloid phenotype25,28. When summing the DEPs at different
ages, there are 1382 DEPs in 5xFAD, only 7 in NLF and 1142 in NLGF.
Moreover, we found that the numbers of DEPs are highly correlated
with the Aβ accumulation across all tested models (R =0.86, Supple-
mentary Data 8).

In spite of the genetic difference between 5xFAD and NLGF
models21,28, we observed comparable proteomic signatures in the two
models. Among 1914 total DEPs in 5xFAD and NLGF, 610 (32%) overlap,
of which 98% (597/610) exhibit consistent directional changes (either
upregulated or downregulated). The remaining DEPs, 772 (40%) in
5xFAD and 532 (28%) inNLGF, are genotype-specific, but showa similar
age-dependent trend in both AD models (Fig. 1f). Differences appear
primarilydrivenby statistical thresholding rather thandistinctbiology.
Overall, the proteomic profiles of 5xFAD and NLGF exhibit broadly
similar patterns.

We performed Gene Ontology analysis on the 597 overlapping
DEPs and found enrichment in extracellular matrix, lysosome/endocy-
tosis, immune response, synaptic signaling, and binding to Aβ, integrin,
lipid, calcium ion, etc. (Fig. 1g, Supplementary Data 9). The overlapping
DEPs were mapped to protein-protein interaction (PPI) networks,
revealing significant interacting modules of immune response, com-
plement, lipid metabolism, proteolysis/autophagy, and an amyloid-
binding extracellular matrix protein network (amyloid matrisome)37

(Fig. 1h). These findings suggest that proteins and pathways shared
between 5xFAD and NLGF are critical for amyloidosis pathogenesis and
immune response, consistent with previous reports in human AD36,37,52.

Phosphoproteome profiling of ADmodels highlights alterations
independent of protein levels
Since protein phosphorylation is known to contribute to AD
pathogenesis53,54, we profiled the phosphoproteome in the same set of
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NLGF (3-, 6-, 12-, 18-month-old) mice and 5xFAD (12-month-old) and
their age-matchedWT controls.We used 5xFADmice at a single age as
a validationmodel following comprehensive discovery profiling of the
age-dependent phosphoproteome in NLGF mice. The profiling was
also performed using the TMT-LC/LC-MS/MS method46–49, with an
additional step of phosphopeptide enrichment to improve the phos-
phoproteome coverage55 (Supplementary Fig. 3a-c). When combining

phosphoproteome data from all TMT batches, we quantified 129,906
unique phosphopeptides (82,261 phosphosites on 10,502 proteins,
peptide FDR <0.01, Supplementary Data 10). Because of the incom-
plete coverage of phosphoproteome in individual TMT batches, the
overlap between different TMT batches is often low56. When we
extracted the phosphopeptides shared in all 36 mice, the number
dropped to 12,096 phosphopeptides (10,532 phosphosites on 2814

e f

a 5xFAD

NLGF
NLF n = 66 Whole proteome

Phosphoproteome TMT-MS Differential expression
Pathway/network analysis
Mouse-human comparison

Whole proteome

b
AD models and WT

3 - 18 months

Proteome profiling

10,369 proteins

Pathway enrichment (597 proteins)
g

h

800

400

D
E 

Pr
ot

ei
ns

d

3 6 12 12 633 12 18
5xFAD NLF NLGF

Months

c

R
el

at
iv

e 
Aβ

 le
ve

ls
(%

) (Aβ: HDSGYEVHHQK)

50

100

150

200

0 3 6 12 12 633 12 18
5xFAD NLF NLGF

Months

366

770 798

0 7
62

422

605
703

7

-1 0 2
0

14

Blood microparticle 

Extracellular matrix 

Lysosome 

Immune response

Endocytosis 

Aβ binding 

Integrin binding 

Lipid binding 

Calcium ion binding 

Synaptic signaling 

0 4522

5xFAD NLF NLGF

6 12 3 12 3 6 12 18 Months
NLF NLGF

5xFAD-enriched
DEPs (n = 772)

 NLGF-enriched
DEPs (n = 532)

 5xFAD- and NLGF-
enriched DEPs

(n = 597)

-2 0

1

2

30+ human
datasets

Amyloid matrisome Proteolysis/autophagy

Complement Lipid
MPEG1

LY86

IFIT3

CD48

FCER1G

TRIL

CD14

GBP6

TAPBP

B2M

SDC4

APOE

GBP2

HTRA1

IFI35

SPARC

AIF1 MDK

TAP2

PLA2G7

SULF2

APOD

CLU

LPL

VTN

APOE

SPON1

CTSZ
ICAM1

LAMP2

APP

LAMP1

C1QA

LGMN

C4B

CTSC

CFH

CST3

ITGB2

VAMP8

TREM2 VAMP7

CD74

CTSH

ISG15

CTSL

IFIT1

CTSS

Immune response

NLGF vs WT

Log2(NLGF/WT)

-lo
g 10

FD
R

-log10FDR

3
5xFAD

 Z score

Article https://doi.org/10.1038/s41467-025-56853-3

Nature Communications |         (2025) 16:1533 3

www.nature.com/naturecommunications


proteins, Fig. 2a, Supplementary Data 11). These shared phosphopep-
tides contain 8665 pS (82.3%), 1625 pT (15.4%), and 242 pY (2.3%) sites
(Fig. 2b), similar to the site distribution in other large phosphopro-
teome analyses36,57.

We then carried out pairwise DE analysis using age-matched WT
controls for both 5xFAD and NLGF mice, identifying 122 consistent DE
phosphopeptides (80 DE phosphoproteins) in the two mouse models
(FDR <0.05, |log2FC | > 2 SD, Supplementary Data 12). For example, in
both mice, the phosphorylation levels of PTPRC/CD45 S964 and GFAP
T299 are significantly increased, indicating the activation of microglia
and astrocytes, respectively (Fig. 2c, d). The 80 DE phosphoproteins
are enriched in several pathways and PPI networks of cytoskeleton,
plasma membrane, synapse, and vesicle (Fig. 2e, 2f, Supplementary
Data 13). These pathways are consistent with those revealed in phos-
phoproteomic studies of human AD54,58.

Notably, only 30 (37.5%) of the 80 DE phosphoproteins showed
significant changes at the proteome level (Fig. 2g), suggesting that the
differences in phosphorylation are primarily due to altered kinase/
phosphatase activity in the brain, independent of the protein levels. To
quantify the change in kinase activities based on these DE phospho-
peptides, we derived alterations in kinase families by the computer
algorithm of kinase-substrate enrichment analysis (KSEA)59. For
instance, theMAPK activity could be inferred from its DE substrates of
TOM1L2, EML4, GJA1, and TLE3 (Fig. 2h). The analysis identified the
upregulation of two kinase families: casein kinase (CSNK, p =0.031)
and mitogen-activated protein kinase (MAPK, including p38 kinase,
p = 3.65 × 10−11) (Fig. 2i). Consistently, MAPK pathway deregulation was
previously highlighted in several cohort studies of human AD36,37,54.
Thus, our KSEA analysis suggests the deregulation of numerous kina-
ses that are relevant to amyloid pathology.

Fig. 1 | Brain MS analysis reveals proteomic changes that are shared in AD
mouse models. a Schematic plan of this study. Mouse cortical tissues from AD
models of amyloidosis (5xFAD, NLF, NLGF, and matched WT, total n = 66 for 16
conditions, averaged n = ~4 per condition) were analyzed by TMT-LC/LC-MS/MS
and compared with human metadata. b Proteins quantified at different ages (3-
18 months). c Aβ levels quantified by MS using the peptide HDSGYEVHHQK
(Average value ± SD, n = 2, 5, 6, 2, 2, 2, 3, 2, 3, for each group, left to right). The
values were averaged for each age and model, then normalized to 12-month-old
5xFAD (100%). d DEPs between AD mice and WT controls at increasing ages,
defined by moderated t-test with statistical cutoffs (FDR <0.05, |log2FC | > 2 SD).

e Representative volcano plot for NLGF-WT comparison (moderated t-test). Indi-
vidual proteins correspond to data points and are color coded red or blue if up- or
down-regulated as defined by statistical cutoffs, respectively (FDR <0.05, |
log2FC | > 2 SD, dashed lines). fHeatmapof DEPs identified inADmice at any age or
genotype, including the proteins enriched in 5xFAD or NLGF and those shared by
bothmice. g Pathway analysis of shared DEPs in 5xFAD and NLGF. FDR was derived
from p values (Fisher’s exact test) by the Benjamini-Hochberg procedure.
h, Enriched PPI modules from biological processes using the shared DEPs. Brain
images created in BioRender. Yarbro, J. (2025) https://BioRender.com/a05v379.
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Human-mouse comparison identifies shared AD pathways
To investigate the relevance of the mouse models, we compared the
DEPs in 5xFAD and NLGF with humanmetadata36,37,52,60. We focused on
866 human DEPs that consistently exhibited significant changes in
deep AD proteomics studies (Fig. 3a, Supplementary Data 14), for
which 654 homologous proteins were detected by MS in mice. The

sum of 5xFAD and NLGF DEPs corresponds to 30% (196/654) of the AD
DEPs and demonstrates age-dependency (Fig. 3b). The three datasets
share a core set of 108 DEPs (Fig. 3c). Further analysis reveals that
5xFAD and NLGF DEPs align more closely with late-stage AD (R =0.32
and 0.23, respectively) than with mild cognitive impairment (MCI)
(R =0.00 and −0.09, respectively), although both correlations are
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pathways (moderated t-test, FDR <0.05). f Workflow for deriving pathway activ-
ities. The FC of proteins in each pathway are integrated to calculate the pathway
activity. g Heatmap of pathway activities in AD and mouse models.
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weak. This implies that these mouse models may be more repre-
sentative of the amyloidosis in the advancedAD stages rather than that
in the early, asymptomatic phase (Fig. 3d). Among the consistent core
DEPs, approximately half exhibit cell-type specificity, with 42% specific
tomicroglia, 29% to neurons, 25% to astrocytes, 2% to endothelial cells,
and 2% to oligodendrocytes. These findings underscore the contribu-
tions of various cell types to disease development and highlight the
prominent role of microglia.

We then examined the 108DEPs consistent in bothmousemodels
and human AD (Fig. 3e), and derived their pathway activities by inte-
grating individual components with a mathematical formula61,62

(Fig. 3f). Several pathway activities are upregulated, including amyloid
matrisome, cell migration, complement and coagulation, cytoskele-
ton, immune response, integrin pathway, lipid regulation, metabolism
and protein folding/proteolysis; two pathways—neurogenesis and
synaptic regulation—are downregulated (Fig. 3g, Supplementary
Data 14 and 15).

Additional pathologies beyond amyloidosis in mice increase
similarity to AD
The 5xFAD and NLGFmouse models of amyloidosis fail to capture the
entire spectrum of AD-related proteomic changes. This discrepancy
may be attributed to the absence of other pathologies found in human
AD, such as tauopathies53 and splicing dysfunctions9. We further pro-
filed two other AD mouse models with additional pathologies (Fig. 4a,
Supplementary Fig. 4a-e, Supplementary Data 1): (i) 3xTG, displaying
both amyloid plaque and tau tangle pathologies27, and (ii) BiGenic
(BiG) mice, generated by crossing 5xFAD with N40K transgenic mice
recapitulating both amyloid pathology and the newly discovered U1
snRNP splicing dysfunction in AD45. We profiled both models and age-
matched controls (~6-month-old, totaling 37 mouse brains), quantify-
ing 9780 and 10,255 proteins (protein FDR <0.01). We identified 1230
and 1564 DEPs in 3xTG and BiG, respectively (FDR <0.05 and
| log2FC | > 2 SD, Fig. 4b and c, Supplementary Data 16, 17), including a
substantial number of DEPs that are not observed in the pure amy-
loidosis models, 5xFAD and NLGF. While the overlap of DE proteins
between 3xTG and the two amyloidosis models is relatively low, 3xTG
exhibits similar trends in pathway activity changes to those in the
amyloidosis models (Supplementary Fig. 5). Additionally, 3xTG shows
model-specific DEPs (Fig. 4d) related to tau pathways and its down-
stream effects on RNA processing63. Similarly, the BiG mice, while
sharing changes with 5xFAD, also display defective U1 snRNP splicing
components similar to N40K9, and uniquely present lipid and synaptic
dysregulation thatmaybe due to the synergy of amyloid andU1 snRNP
pathways64 (Fig. 4e, Supplementary Fig. 6).

To evaluate shared molecular changes between mouse models
and human AD, we generated an upset plot highlighting overlaps in DE
proteins (Supplementary Fig. 7). By summing all DEPs across the four
mouse models, the overlap with human DEPs increases to 42% (275/
654, Fig. 4f, Supplementary Data 14), suggesting that additional
pathologies beyond amyloid plaques contribute to alterations in the
mouse proteome, moving it closer to the AD spectrum. The remaining
58% of human AD DEPs show enrichment in the pathways of mito-
chondrial function, cell morphogenesis, lipid regulation, potentially
due to reduced neuronal cell death in the mouse models and differ-
ences in response to pathological insults between mice and humans
(Supplementary Data 18).

Among the 275 DEPs conserved between mouse models and
human (Fig. 4f), we found that 86% are not well studied in the context
of AD, with <20 AD-related publications (Supplementary Fig. 4f). We
thus prioritized these proteins employing a method of order
statistics36 by integrating available 12 omics datasets from bothmouse
and human, which include GWAS (n = 1), transcriptome (n = 2), pro-
teome (n = 6), phosphoproteome (n = 2), and interactome (n = 1)
(Fig. 4g, Supplementary Data 19). As expected, well-known proteins

such as APP, APOE, GFAP, TREM2, MAPT (tau), and CLU rank highly,
while other proteins in the top 20 list, such as MDK, NTN1, SFRP1,
OLFML3, PTPRC/CD45, SMOC1, CD180, and PTN, remain understudied
(Fig. 4h). These proteins require further investigation to understand
their roles in the development of AD.

Transcriptome-proteome inconsistency occurs in AD and the
5xFAD model
A transcriptome-proteome inconsistency has been reported in AD36,37.
To explore that issue, we compared the quantitative transcriptome
and proteome datasets from both human AD (n = 10,781) and 5xFAD
mice (n = 8840) relative to their control samples, after Z-score trans-
formation (Fig. 5a, Supplementary Data 20). We focused on 12-month-
old 5xFAD mice for this comparative study, as age-matched data were
available from the same breeding conditions. The transcriptome-
proteome correlations were modest, with R values of 0.40 in human
and 0.46 in mice (Fig. 5b, c). We identified the RNA-independent
protein changes in the following steps: (i) identifying Z-score changed
proteins in human AD (n = 1121) and in 5xFAD mice (n = 1152), com-
pared to their controls; (ii) categorizing those changed proteins into
four groups based on protein up-/down-regulation and RNA depen-
dency/independency (Fig. 5d, Supplementary Data 20). Remarkably, in
both species, approximately one-third of the altered proteins exhibit
RNA independence (35% in humans and 36% in mice). We asked whe-
ther these RNA-independent protein changes are shared between AD
and mouse models. From the 262 RNA-independent, upregulated
proteins in human and 295 in mouse, there was an overlap of 31 pro-
teins. In contrast, from the 133 RNA-independent, downregulated
proteins in humans and 120 in mouse, only one overlaps (Fig. 5e).
These findings suggest a partial conservation of transcriptome-
proteome inconsistency of upregulated proteins in the AD
mouse model.

We recognized that many of the 31 shared, upregulated proteins
are present in amyloid plaques65–69, prompting us to fully characterize
the amyloidome (i.e., all the components in the amyloid plaque
microenvironment) in the 5xFAD mice. We employed laser-capture
microdissection (LCM) to isolate amyloid plaques and non-plaque
areas from brain tissue (n = 4 mice) and profiled the proteome using
our modified TMT-LC/LC-MS/MS pipeline, optimized for sub-
microgram protein samples70. This approach resulted in the quantifi-
cation of 5364 proteins (Fig. 5f-g, Supplementary Fig. 8, Supplemen-
tary Data 21). Quantitative comparison between the plaques and non-
plaque areas identified 438 proteins enriched in plaques and 191 in
non-plaque areas (FDR <0.05 and |log2FC | > 2 SD). Strikingly, of the 31
RNA-independent, upregulated proteins in both human AD and 5xFAD
mice, 23 were detected in the amyloidome profiling, in which 17 (74%)
were found among the 438 plaque-enriched proteins, while none were
detected in the 191 non-plaque-enriched proteins. The results
demonstrate that the formation of amyloid plaques contributes to
RNA-independent protein accumulation.

Delayed protein degradation in amyloidome contributes to
transcriptome-proteome inconsistency
We hypothesized that proteome-transcriptome discrepancy in AD
could be due to reduced protein turnover within the amyloidome. To
test this hypothesis, we employed pulsed SILAC labeling (pSILAC)71–73

coupled with TMT to measure protein turnover rates at high
throughput (Fig. 6a, Supplementary Fig. 9). The 5xFAD mice and WT
littermateswere fedwith heavy lysine SILAC food in a time course (0, 4,
8, 16 and 32 days, with 3 replicates, totaling 30mice), followedby brain
tissue collection and TMT-LC/LC-MS/MS profiling. The kinetics of
heavy lysine labeling enabled the determination of protein degrada-
tion rates, indicated by protein half-life (T50). Apparent T50 values were
calculated directly from fitting a degradation curve; to account for the
recycling of heavy lysine in the mice (Supplementary Fig. 10), we
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derived corrected T50 values using an ordinary differential equation
model in the JUMPt software73.

We quantified 12 tryptic peptides from human APP (hAPP) and
mouse APP (mAPP) proteins, both present in 5xFAD (Fig. 6b, Supple-
mentary Data 22). Two peptides were human-specific: peptide 2 in the
non-Aβ region (used to quantify full-length hAPP), and peptide 10 in
the Aβ region (used to quantify human Aβ (hAβ) as previously
reported)36. The peptide spectral match (PSM) counts, a semi-
quantitative index74, for peptide 10 were significantly higher than

those for peptide 2, consistent with the accumulation of Aβ in 5xFAD
(Fig. 6c). Indeed, hAβ displayed a much longer half-life than hAPP
(Fig. 6d–g), when analyzing apparent T50 (132.0d for hAβ vs 40.1 d for
hAPP) or corrected T50 (18.2 d for hAβ vs <0.5 d for hAPP). The results
clearly indicate a significantly delayed turnover rate of hAβ relative to
hAPP in the 5xFAD mice.

We then analyzed the proteome turnover for the 5xFAD and WT
mice, calculating corrected T50 values for 8492 proteins (Fig. 7a,
Supplementary Data 23). The global T50 distributions between 5xFAD

Fig. 4 |Mousemodelswithadditionalpathologies beyondamyloidosis increase
the similarity to AD. a Proteomic profiling of two more mouse models that express
additional AD pathologies: WT (n=8) and 3xTG (Aβ and tau pathologies, n= 19), as
well as WT (n=4) and BiG (Aβ and U1 splicing pathologies, n=4). All mice were
~6 months old. The proteomic data were subjected to DE analysis and comparison
with human AD data. b, c Volcano plots of log2FC and FDR in 3xTG and BiG mice,
compared to WT, with DEPs highlighted in colors and cutoffs indicated by dashed
lines. d, e Selected protein-protein interactions of significantly altered DEPs found
exclusively in individual mice, such as MAPT interactome in 3xTG, and splicing/
synaptic interactome in BiG. f Numbers of DEPs in AD mouse models that were
consistently altered in AD. The percentage was calculated using a denominator of 654

ADDEPs thatweredetectable byMS inmice.g Strategy for ranking individual proteins
by multi-omics using order statistics. (i) All age-dependent proteomic data from
5xFAD and NLGF were initially consolidated into two datasets for the amyloidosis
proteome and phosphoproteome. (ii) These datasets were then integrated with 10
additional datasets, which include the mouse transcriptome (5xFAD), 3xTG/BiG pro-
teomes, human genetic data from GWAS, human transcriptomes, proteomes (MCI
and two independentAD studies,n= 3), phosphoproteome, and interactomedatasets.
h Protein integrative rankings defined by combining 12 datasets. The entire datasets
were ranked based on all identified genes/proteins. Subsequently, we extracted the
rankings for the AD-mouse shared proteins (n=275). The top 20 proteins are dis-
played, with missing values represented by white boxes.
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and WT were similar with average values around 4–5 d (Fig. 7b). A
statistical analysis identified 84 proteins with significant changes in
half-life between the two genotypes (Fig. 7c). 25% of those proteins,
including DPP10 and AAK1, exhibited shorter T50 in 5xFAD than in WT
(Fig. 7d), whereas the remaining 75%displayed longerT50 in 5xFAD. For
example, APOE and VTN showed ΔT50 of 4.2 and 3.5 days, respec-
tively (Fig. 7e).

By integrating transcriptome, proteome, amyloidome, and pro-
tein half-live data from 5xFAD, we found that 32 RNA-independent,
upregulated proteins found in the amyloidome showed prolonged
half-lives (Fig. 7f, Supplementary Data 24). The 32 proteins were enri-
ched in the pathways of amyloidmatrisome, autophagy/lysosome, and
neurogenesis. These findings suggest that the AD transcriptome-
proteome discrepancy can be attributed, at least partially, to reduced
protein turnover in the amyloidome (Supplementary Fig. 11).

Discussion
A comprehensive multi-layered proteomics resource for AD
mouse models
In this extensive proteomic resource, we have generated the most
comprehensiveADmousebrainproteomes todate, analyzing a totalof
133 mouse samples across 5 AD models (5xFAD25,26, NLF28, NLGF28,
3xTG27, and BiG45, as well as wild type controls; Supplementary Data 2).
This resource also includes phosphoproteome profiling from 36 mice
(Supplementary Data 11), an in-depth amyloidome analysis from 8
mouse samples (Supplementary Data 21), and proteome turnover data
from 30 mice (Supplementary Data 23). The proteome coverage is
high,withmost datasets surpassing 10,000proteins, largely due toour
development and implementation of a fully optimized TMT-LC/LC-
MS/MS pipeline55,70,75,76, extensive fractionation (e.g., at least 40 LC
fractions per TMT batch)46, and substantial instrument time

investment (e.g., ~4 days per TMT batch). This high-quality proteomics
data serves as a critical resource for comparing different mouse
models, aligning mouse findings with human AD data, integrating
multi-omics datasets, and identifying potential disease-related
proteins.

The next-generation knock-in mouse models for amyloidosis are
often considered to have higher physiological relevance and reduced
overexpression artifacts compared to 5xFAD21,23,28,77,78. Nevertheless,
our proteomic comparison highlights similarities between these
models, in terms of DEPs (1382 in 5xFAD, 1142 in NLGF, Supplementary
Data 7). A substantial portion (610 proteins) of DEPs overlaps between
the two models, and the non-overlapping ones show similar trends in
protein alterations. Furthermore, both models have a comparable
number of shared DEPs with human consensus data36,37,52,60 (159 in
5xFAD, 145 in NLGF, Supplementary Data 14). The proteomic correla-
tion with human is also similar between the two models (R =0.32 in
5xFAD, R = 0.23 in NLGF). Notably, NLGF mice carry the APP Arctic
mutation (E693G), which produces amutatedAβ sequence (E22G) that
leads to a slightly different Aβ filament structure compared to the WT
Aβ filament in 5xFAD79,80. This structural difference may contribute to
variations in downstream molecular events. The similar proteomic
patterns between the twomodels suggest they can be effectively used
to cross-validate molecular mechanisms related to amyloidosis.

To examine the relevance of the mouse data to humans, we
integrated the mouse proteomics data with publicly available human
AD datasets. These human datasets were selected based on their
proteomic coverage, sample diversity, and consistent reporting of key
pathological markers such as amyloid and tau. Specifically, we prior-
itized datasets that provided high-quality differential expression data
from AD brain tissues. Consistent with the understanding that mouse
models cannot fully recapitulate the complexity of human AD
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events21,23,78, our proteomic profiling of fivemousemodels reveals that
each model shares <25% consensus DEPs of human AD data (Supple-
mentary Data 14). Collectively, these mouse models cover ~42% of
human DEPs, indicating that each model has unique characteristics
andmimics different subsets of ADmolecular events. For instance, tau-
related pathways are observed only in 3xTG27, whereas some splicing
and synaptic defects are unique to the BiG model45. This proteomics
resource serves as a valuable reference for investigating specific
pathways using the most appropriate models.

The limitations of mouse models in replicating human AD
pathology may stem from at least two factors: insufficient patholo-
gies in mouse models and inherent species differences81, which are
not necessarily mutually exclusive. The pathogenic mechanisms
demonstrated in the mice (e.g., amyloidosis) can drive only part of
the AD pathologies. In human, additional pathogenic pathways
induce mixed pathologies that are not observed in the mice under
standard breeding conditions. For example, while the 5xFAD and
NLGF models effectively mimic amyloidosis, they fail to capture
broader neurodegenerative processes, such as tau pathology and
mitochondrial dysfunction. Notably, these models align poorly with
human MCI, instead reflecting the heavy amyloid burden

characteristic of late-stage AD. While most mouse models fail to
exhibit significant neuronal loss as in human, recent advancements,
such as the use of human neuron xenografts in AD mice82, promote
abnormal tau phosphorylation and neuron death through
necroptosis83. Other human-mouse chimeric models employ human
microglia to better replicate AD-related responses84. Beyond mouse
models, alternative AD models are being developed, including
transgenic rats85, human iPSCs and organoids86–88, and primate
models89, each of which offers specific advantages. These non-mouse
models may present avenues for investigating AD molecular
mechanisms that are not represented in current mouse models.

Molecular insights from multi-omics integration in AD
mouse models
Multi-omics integration offers a robust method to evaluate biological
systems and reveal molecular insights90, given the generally weak
RNA–protein correlation, particularly in the brain which consists
mainly of postmitotic, non-dividing cells35. In our study, both human
and 5xFAD mouse brains exhibit modest RNA–protein correlations,
with R values under 0.5, and approximately one-third of protein
changes occur independently of RNA levels. Considering protein
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homeostasis is regulated by events such asmodifications, localization,
and turnover, we expanded our analysis to include phosphoproteome,
subproteome (amyloidome with plaque localization), and protein
turnover. While protein phosphorylation did not significantly account
for the RNA-protein discrepancies, our multi-layered proteomic data
(amyloidome and turnover) supports the hypothesis that amyloid
plaque formation creates a microenvironment where as many as 32
proteins show delayed turnover, promoting their RNA-independent
accumulation in the brain (Supplementary Data 24).

Amyloidplaques aredynamic and cangrow to 50–100 µminsize91.
Recent spatial omics have revealed that the Aβ core is enveloped by
disease-associated microglia, activated astrocytes, and dysfunctional
oligodendrocytes, positioned sequentially, implicating an active
microenvironment induced by amyloid plaques (Supplementary
Fig. 11)92. Structural analyses have shown diverse Aβ filament archi-
tectures in humans and mice79,80, suggesting that their pathological
roles are influenced by Aβ-associated proteins within the
matrisome93,94.

ApoE is a prominent protein in the amyloidome with delayed
turnover. It has a well-established role in the “ApoE cascade

hypothesis” supported by extensive genetic and biochemical
evidence95. Primarily produced by astrocytes and also bymicroglia and
neurons96, ApoE RNA is upregulated (log2FC-Z of 3.26), but its protein
change is more dramatic (log2FC-Z of 25.38). ApoE shows rapid turn-
over in WT mice, with a half-life of <0.5 d, but this rate slows sig-
nificantly to 8.85 d in 5xFAD (Supplementary Data 23). These findings
indicate that the abundant accumulation of ApoE is driven by both
RNA upregulation and delayed protein turnover, possibly due to its
direct interaction with Aβ in the plaque microenvironment95.

The 32-protein list also includes several understudied proteins,
such as Spock1 and Spock2, members of the Sparc proteoglycan
family potentially involved in synaptic plasticity97; SFRP1, which may
promote plaque pathology by inhibiting ADAM10 α-secretase
activity in the non-amyloidogenic pathway98; and HTRA1, a pro-
tease potentially regulating the aggregation and clearance of amy-
loid proteins99. Genetic variations in HTRA1 gene are linked to age-
related macular degeneration100,101. These proteins are also found on
the upregulated consensus protein list in AD brains (Supplementary
Data 23), implicating a possible role in the formation of amyloid
plaque microenvironment.
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Interestingly, we found a number of proteins enriched in the
autophagy/lysosome pathway with delayed turnover rates (Supple-
mentary Data 24), such as Tmem106b, which has been identified as an
aggregated filament protein in several neurodegenerative disorders
including AD102–104, and genetically linked to frontotemporal lobar
degeneration105. Tmem106b accumulates in lysosomes, playing a role
in lysosomaldysfunction106. The slow turnover of lysosomalproteins in
AD mice might indicate defective autophagic degradation, possibly
because lysosomes are damaged by intracellular Aβ species107,108. This
disruption could impair cellular homeostasis, and further inhibition of
lysosomal function exacerbates AD-related phenotypes, underscoring
the pivotal role of lysosomal pathways in disease progression.

In summary, our study presents a comprehensive multi-layered
proteomics resource, profiling five AD mouse models and providing
insights into proteomic responses to AD pathologies. Through whole
proteome analysis, along with phosphoproteome, amyloidome, and
turnover data, the resource supports the hypothesis that amyloid
plaques create a microenvironment that promotes protein accumula-
tion. Compared with human proteomics data, this resource enables
researchers to select relevant disease pathways for study in appro-
priatemousemodels, with the potential to developotherADmodels in
the future. All data from this resource is freely accessible on a website
(https://penglab.shinyapps.io/mouse_ad_profile/).

Methods
Mouse models in proteome analysis
The 5xFAD transgenic mice25,26 and 3xTG mice27 were purchased from
The Jackson Laboratory (stock #034848 and #034830, respectively),
while the NLF and NLGF KImice28 were provided by Dr. Takaomi Saido
at the RIKENCenter for Brain Science. The BiGmicewere generated by
crossing 5xFAD with N40K transgenic mice as described previously45.
Thesemice were maintained in the Animal Resource Center at St. Jude
Children’s Research Hospital or the University of Arizona according to
the Guidelines for the Care and Use of Laboratory Animals. All animal
procedures were approved by the Institutional Animal Care and Use
Committee (IACUC), Protocol 542-100503. Mice were housed under a
12-h light/12-hdark cycle at 20–25 °C and 30–70%humidity. Euthanasia
was performed using CO₂ inhalation at a displacement rate of 30% of
the chamber volume per min, followed by confirmation of death. The
brain tissueswere collected at various ages, rapidly dissected, and then
immediately frozen on dry ice before being stored at −80 °C. A mix of
male and female mice was used (Supplementary Data 2).

Mouse SILAC labeling for protein turnover analysis
The mice were labeled using Mouse Express® L-Lysine (13C6, 99%)
Mouse Feed (5 g per day, Cambridge Isotopes Laboratories). The mice
were conditioned by providing the light SILAC food for 3 d before
labeling, and then fed with the heavy SILAC food in a time course.
Cortical brain tissue samples were harvested for turnover analysis. The
fully labeledmice were generated as previously reported109. The heavy
mouse chow was used to feed wild-type mice from the parental gen-
eration through to the F2 generation. Through two generations, the
mouse proteins were fully labeled109. Only male mice were used in
turnover analysis to ensure observed differences were due exclusively
to differences in genotype.

Collection of amyloid plaques by LCM
LCM was performed essentially according to a previously reported
method65. Mouse brain was embedded in OCT Compound (Jed Pella
Inc., Redding, CA), sectioned at 12 μm in a cryostat and mounted on
Arcturus Pen membrane glass slides (LCM0522, ThermoFisher). The
sections were thawed, fixed with 75% ethanol for 1min, stained with 1%
thioflavin-S (MilliporeSigma) or X-34 (MilliporeSigma) for 1min,
washed in 75% ethanol for 1min, dehydrated, cleared in xylene and air-
dried. LCM was performed using an Arcturus XT Laser Capture

Microdissection System (Arcturus, ThermoFisher) with the following
settings: 495 nm excitation wavelength, 60–80mW laser power and
1ms duration. Although both diffuse and dense-core plaques were
present in the mice, we selected X-34 stained dense-core plaques with
a diameter of at least 30 µm for this study. About 500 amyloid plaques
were procured from each section, while non-plaque areas were cap-
tured as a control. The captured samples were stored at −80 °C.

Protein profiling by TMT-LC/LC-MS/MS analysis
The experiments were performed according to our previously opti-
mized protocol110,111. Briefly, the mouse brain samples were weighed
and homogenized in lysis buffer (8M urea, 50mM HEPES, pH 8.5, and
0.5% sodium deoxycholate,100 µL buffer, and ~20 µL beads per 10mg
tissue) with 1 x PhosSTOP phosphatase inhibitor cocktail (Roche).
~50 µgprotein fromeach samplewas then digested in two steps byLys-
C and trypsin, with DTT reduction and iodoacetamide alkylation, fol-
lowed by desalting with a C18 Ultra-Micro SpinColumn (Harvard
apparatus). The desalted peptides were resuspended in 50mMHEPES
(pH 8.5) to a concentration of ~1 µg/µL, and fully labeled with TMT or
TMTpro reagents. The reaction was quenched, equally pooled, and
desalted for the subsequent prefractionation.

The pooled TMT samples were fractionated by offline basic
reverse phase (RP) LC with an XBridge C18 column (3.5μm particle
size, 4.6mm× 25 cm, Waters; buffer A: 10mM ammonium formate in
H2O, pH 8.0; buffer B: 10mM ammonium formate in 90% acetonitrile,
pH 8.0). Fractions were collected in a gradient of 15–42% buffer B, and
then concatenated into at least 40 samples tomaintain high-resolution
power. The concatenated samples were dried by SpeedVac, resus-
pended in 5% formic acid (FA), and analyzed byQ-Exactive HFOrbitrap
MS (Thermo Fisher Scientific) in a 95min nano-LC gradient of 15–48%
buffer B (buffer A: 0.2% FA, 5% DMSO; buffer B: buffer A plus 65%
acetonitrile).MS1 scan settings were 60,000 resolution, 410–1600m/z
scan range, 1 × 106 AGC, and 50ms maximal ion time. MS2 settings
were 20 data-dependentMS2 scans, 60,000 resolutions, starting from
120m/z, 1 × 105 AGC, 120maximal ion time, 1.0 m/z isolation window
with 0.2m/z offset, HCD, 32% specified normalized collision energy,
and 15 s dynamic exclusion70.

Phosphopeptide enrichment
The basic pH RPLC-fractionated, TMT-labeled peptides were con-
catenated to 10 fractions (∼0.3mg per fraction), dried, and resus-
pended in binding buffer (65%acetonitrile, 2%TFA, and 1mMKH2PO4).
TiO2 beads (0.9mg per sample, GL sciences) were incubated with the
peptide fraction at 21 °C for 20min. The TiO2 beads were then washed
twice with washing buffer (65% acetonitrile, 0.1% TFA) and packed into
a C18 StageTip (Thermo Fisher), followed by phosphopeptide elution
with the basic pH buffer (15% NH4OH, and 40% acetonitrile). The elu-
ates were dried and dissolved in 5% formic acid for LC-MS/MS
analysis55.

Protein identification and quantitation in the TMT analysis
The protein identification and quantification were analyzed using the
JUMP software suite47. The MS data were searched against the protein
database merged from Swiss-Prot, TrEMBL (from Uniprot), and UCSC
databases (mouse: 59,423 entries). To evaluate the FDR, decoys were
generated by reversing the target protein sequence112. Search para-
meters included precursor ion and product ion mass tolerance (10
ppm), maximal modification sites (n = 3), full trypticity, maximal mis-
sed cleavage (n = 2), static modification of TMT tag (+304.20715),
methionine oxidation dynamic modification (+15.99491), and cysteine
carbamidomethyl static modification (+57.02146) if the residue was
alkylated with iodoacetamide. In the pSILAC-TMT analysis, the MS raw
files were searched twice with or without Lys labeling (+6.02013).
Peptide-spectrum matches (PSMs) were filtered by matching scores
andmass accuracy to keep protein FDR below 1%. The peptides shared
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bymultiple homologous proteins were assigned by the software to the
protein with the maximal PSM number, based on the rule of parsi-
mony. The protein quantitation was performed using the TMT repor-
ter ion based on a published method46. In the case of
phosphoproteome profiling, we applied the JUMPl program36 with the
phosphoRS algorithm113 to the analysis of phosphosite localization
scores (Lscore, 0–100%) for each PSM, and then determine the
appropriate phosphosites.

Differential expression analysis
Proteomic andphosphoproteomic analyseswereperformedonmouse
brain samples, with protein intensities normalized by applying log2
transformation to reduce skewness and median normalization to
account for variations in sample loading and global batch intensity
differences. PCA, implementedwith the R package prcomp114, was used
to evaluate the influence of covariates such as batch, sex, age, and
genotype, ensuring that biological signals were not confounded by
confounding variables. DE analysis was performed using a moderated
t-test from the MKmisc package115, which estimates the variance by
borrowing information across all proteins or phosphopeptides, pro-
viding increased statistical power compared to traditional t-tests. To
control for false discoveries in multiple testing, the p values were
adjusted to FDR using the Benjamini-Hochberg procedure116. Proteins
or phosphopeptidesweredesignated asdifferentially expressed if they
met two criteria: an FDR value below 0.05 and a log2 fold-change
exceeding ±2 standard deviations of the dataset’s global variance. The
two-part threshold of FDR and fold-change is a highly stringent cutoff
commonly used in high-throughput proteomics studies to minimize
false discoveries. To validate this approach, a null analysis was per-
formed by comparing half of the WT samples against the other half,
applying the same threshold. No significant findings passed these cri-
teria, confirming the appropriateness of our chosen threshold.

Pathway enrichment and protein–protein interaction network
analysis
Pathway enrichment of DEPs was performed by GO enrichment
analysis50 and further analyzed by the PANTHER117 overrepresentation
test (Fisher’s Exact test). Pathway enrichment specifically emphasized
on GO categories relevant to neurodegenerative processes, informed
by prior knowledge of AD pathogenesis. Results were filtered by FDR
(below 0.01) to identify DEP-associated pathways with high con-
fidence. DEPs within the pathways were superimposed against a cus-
tom PPI database, which combined the InWeb_IM118, STRING119, and
BioPlex120 databases, as detailed previously36. Briefly, protein modules
within each cluster were determined in two steps121: (i) accepting PPI
edges where both nodes (i.e., the connected proteins) are within the
same cluster; (ii) computing a topologically overlapping matrix from
the PPI network andmodularizing the network into individualmodules
using the hybrid dynamic tree-cutting method. Modules were anno-
tated and visualized using Cytoscape122. The key network hubs and
interconnected modules involved in neurodegeneration were
highlighted.

Differentially altered kinase activity inference by KSEA
The analysis was performed using the KSEAapp R package (v0.99.0)
within RStudio (v4.1.2), with 122 DE phosphopeptides as input59. Both
PhosphoSitePlus123 and NetworKIN124 databases were utilized to find
kinase-substrate interactions and phosphosite information. Kinase
substrateswere extracted to derive the corresponding kinase activities
for each mouse sample along with their p values. The p values for the
same kinase activity across different samples were combined using
Fisher’s method. Kinase activities with a combined p value lower than
0.05 were considered significant. The log₂FC values, representing the
mean log₂FC of all the kinase’s substrates, were then used to generate
the heatmap.

Summarization of pathway activities from individual
components
We used a previously modified pathway activity inference strategy61,62

to derive the activity of a given pathway, termed a(P), in AD andmouse
model samples:

a Pð Þ=
Xk

i = 1

Ci× Fi=pk

Where k represents the number of proteins in each pathway, Fi is the
Log2FC for individual proteins, and Ci denotes the functional annota-
tion of the protein, assigned as either +1 for proteins with an activation
role or -1 for proteins with an inhibitory role.

Prioritization of proteins/genes based on multi-omics datasets
We implemented a gene/protein ranking method based on order sta-
tistics formulti-omics integration36. This approachcombinesNdistinct
protein/gene ranking sets into a single comprehensive ranking. In this
analysis, we utilized a total of 12 individual datasets: GWAS-identified
risk loci13–20,36, human transcriptome125, MCI proteome36, AD proteome
datasets36,37, AD aggregated proteome126, AD phosphoproteome36,
5xFAD transcriptome36, AD amyloidosis proteome integrated fromour
5xFAD andNLGFdata, 3xTG proteome, BiG proteome, AD amyloidosis
phosphoproteome, and interactome closeness to known AD genes by
PPI network distance36.

RNA–protein consistency analysis
To account for scale difference, proteomics and transcriptomics36 data
were converted to Z scores, generating log2FC-Z data. RNAs and pro-
teins with shared accessions were used for comparison. Proteins were
grouped as upregulated (Z > 2) or downregulated (Z < −2). Protein-RNA
consistency was determined by a ΔZ (the Z score difference between
protein and RNA) absolute value larger than 2.5. However, if both RNA
and protein had absolute Z-values larger than 4 and changed in the
same direction, the pair was still considered to be consistent, regard-
less of ΔZ.

Pulse SILAC-TMT hyperplexing data processing
Following protein identification and quantification using the JUMP
software suite47, the MS raw data, and JUMP output files were further
processed to remove TMT noise for accurate quantification, utiliz-
ing the JUMPsilactmt Python program (version 1.0.0). Briefly, noise
levels were identified in light PSMs (the fully labeled SILAC channel)
and heavy PSMs (the unlabeled channel) and subtracted from other
channels (see Supplementary Fig. 9 for details). However, the TMT
intensities from adjacent light/heavy PSM pairs could not be directly
compared because they were produced from distinct MS scans. To
address this, the JUMPsilactmt quantified the composite MS1 heavy
and light ion intensities as in the SILAC quantification method73, and
used their ratio to normalize the denoised MS2 TMT reporter ion
intensities in different MS scans. The normalized heavy and light
TMT intensities were converted into a fraction of light (L%). Finally,
quantification at the PSM level was summed to the peptide level and
subsequently to the protein level. L% values were averaged across
biological replicates for the JUMPt analysis.

Protein turnover rate analysis by JUMPt
Global protein half-lives were determined using JUMPt software73

(version 1.0.0). First, we calculated the apparent T50 for each protein
individually, using the averaged L% of the protein across time points,
without accounting for in vivo Lys recycling. Next, we analyzed the
corrected T50 under “Setting-2,” incorporating free Lys data and L% to
estimate all protein T50 values simultaneously using an ordinary dif-
ferential equation model. It should be noted that, for proteins with
very short T50 (<0.5 days) or very long T50 (>100 days), the calculation
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of corrected T50 analysis is less reliable, though only a small fraction of
proteins exhibit these extreme half-lives.

Analysis of mouse protein turnover changes
To identify statistically significant changes in T50 between different
genotypes, the L% of each protein over the time course was analyzed
by two-way ANOVA, with genotype (WT vs. 5xFAD) and labeling time
(4, 8, 16, and 32 d) as variables. The ANOVA p values for genotypes
were then adjusted to FDR by the Benjamini–Hochberg procedure116.
Moreover, the ΔT50 for each protein was calculated as the logarithm
(base 2) over the corrected T50 ratio between 5xFAD andWTmice. The
proteinswerefilteredbyFDR <0.05 and |log2FC | >2 SD togenerate the
final list with altered half-lives.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RAW data results have been deposited in the PRIDE database (https://
www.proteomexchange.org) and are publicly available via accession
numbers PXD018590, PXD007974, PXD023395, PXD031545,
PXD031732, PXD031734, PXD031735, PXD031769, PXD031830 and
PXD053314 (Supplementary Data 2).

Code availability
The program of JUMPsilactmt (version 1.0.0) is publicly available from
GitHub (https://github.com/abhijitju06/JUMPsilactmt-Version-0.0.1).
The programof JUMPt (version 1.0.0) is available fromGitHub (https://
github.com/abhijitju06/JUMPt-Version-1.0.0). The program details,
along with example input and output files, are provided on the
respective websites.
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