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Medical multimodal multitask foundation
model for lung cancer screening
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Pingkun Yan 1, Mannudeep K. Kalra 3 , Christopher T. Whitlow 2 &
Ge Wang 1

Lung cancer screening (LCS) reduces mortality and involves vast multimodal
data such as text, tables, and images. Fully mining such big data requires
multitasking; otherwise, occult but important features may be overlooked,
adversely affecting clinical management and healthcare quality. Here we
propose a medical multimodal-multitask foundation model (M3FM) for three-
dimensional low-dose computed tomography (CT) LCS. After curating a
multimodal multitask dataset of 49 clinical data types, 163,725 chest CT series,
and 17 tasks involved in LCS, we develop a scalable multimodal question-
answering model architecture for synergistic multimodal multitasking. M3FM
consistently outperforms the state-of-the-art models, improving lung cancer
risk and cardiovascular diseasemortality risk prediction by up to 20% and 10%
respectively. M3FM processes multiscale high-dimensional images, handles
various combinations of multimodal data, identifies informative data ele-
ments, and adapts to out-of-distribution tasks with minimal data. In this work,
we show that M3FM advances various LCS tasks through large-scale multi-
modal and multitask learning.

Lung cancer remains the leading cause of cancer-related deaths1. Lung
cancer screening (LCS) with low-dose computed tomography (LDCT)
reduces lung cancer mortality by 20% in comparison with two-
dimensional (2D) chest radiography in the National Lung Screening
Trial (NLST)2 and by 24% in comparison with no screening in the
NELSON trial3. However, LCS faces challenges, such as the low
screening rate (<10%)4, high false-positive rate5, sub-optimal workflows
due to inadequate patient management6–9, under-utilization of multi-
modal data10,11, and particularly, a global shortage of radiologists for
providing LCS. Hence, there is an important and immediate need for
multidisciplinary efforts to broadly, equitably, and optimally imple-
ment LCS for minimized lung cancer mortality12.

Artificial intelligence (AI) promises to improve the quality and
efficiency of LCS significantly. In particular, there is a vast amount of
multimodal data accumulated over the past years, including low-dose

computed tomography (LDCT) images, patient demographics, smok-
ing history, disease history, family cancer history, pathological results,
follow-up data, etc.2 LCS involvesmultiple clinical tasks, including lung
nodule detection and characterization, Lung-RADS-based patient
follow-up management, lung cancer risk estimation, and significant
incidental findings such as diagnosis of various pulmonary, cardio-
vascular, and chest abnormalities. Deep learning methods achieved
promising results for LCS-related tasks. For example, a deep learning
method was proposed for lung cancer detection and risk estimation
with LDCT in an end-to-end manner13. Recently, the Sybil model14 was
developed for lung cancer risk prediction using a single LDCT scan. In
several studies15,16, deep learning models were developed for cardio-
vascular diseases (CVD) risk prediction with LDCT from LCS. Although
promising, these LCS-related AImodels were developedwith relatively
small single-modality datasets for individual tasks, limiting their
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performance and utility in the multitask LCS workflow. Additionally,
the training schemes of current lung cancer risk models13,14 require
costly bounding box annotations, which makes building large-scale
training datasets infeasible.

In the fast-evolving AI field, foundationmodels (FMs) have shown
previously unseen abilities to understand diverse data types and exe-
cute many tasks in a unified fashion17. Large FMs have updated the
state-of-the-art (SoTA) performance across a wide range of tasks, such
as natural language processing18–20, computer vision21,22, and multi-
modal understanding23–25. Inspired by these breakthroughs, increasing
efforts have been made to develop medical foundation models, such
as biomedical language models26–31, medical vision-language
models32–34, and generalist medical AI models35–37. However, none of
the existing FMs can effectively perform a variety of LCS tasks by
interpreting the multimodal clinical data associated with LCS, parti-
cularly three-dimensional (3D) LDCT scans. This limitation is primarily
due to challenges in data curation and model architecture. First, there
is a high bar to systematically curate large-scale multimodal multitask
datasets obtained in the real-world LCS workflow. Extensive domain-
specific expertise and efforts are required to query, preprocess, and
align 3D medical images and diverse structured/unstructured text-
based clinical data with LCS-related tasks. Second, there is no scalable
and adaptable foundation model dedicated to effectively interpreting
multimodal LCS data, especially 3D CT images at different scales, and
effectively performing diverse LCS-related tasks. Due to the high
dimensionality of volumetric CT images, existing efforts only used
small 2D/3D convolutional neural networks38 and small vision
Transformer models39 at affordable computational costs.

In this work, we present an integrated and scalable data curation
approach to align high-dimensional medical images with other clinical
datasets for LCS-related tasks, including 17 LCS workflow-related tasks
and 49 data elements. Then, we develop a Medical Multimodal Multi-
task Foundation Model (M3FM) that perceives multimodal data
including 3D CT volumes and various other clinical data, and performs
multiple tasks involved in the LCS workflow. Figure 1 illustrates the
M3FM architecture, along with its training and inference processes.
Extensive experiments show that our M3FMoutperforms the previous
SoTA models through large-scale multimodal and multitask learning,
with the ability to identify informative data elements and adapt to the
out-of-distribution task with a small dataset.

Results
Multimodal multitask datasets
Figure 2a shows the general data curation pipeline, including medical
tasks definition, task-specific multimodal data collection, multimodal
data processing and alignment, and multimodal question-answering
(MQA) dataset construction. We target 17 (sub-)tasks in the LCS pro-
cess, including 5 tasks for lung nodule detection and characterization,
1 task for cardiovascular disease (CVD) diagnosis, 1 task for CVD
mortality risk prediction, 1 task for lung cancer risk prediction over
multiple years, 7 tasks for other chest abnormality exams, 1 task for
COVID-19 detection, aswell as 1 task for AmericanCollege of Radiology
(ACR) guidelines for Lung CT Screening Reporting and Data System
(Lung-RADS) categorization. COVID-19 detection from CT is included
since it remains a global threat40 andwas reported in the LCS radiology
reports collected from Massachusetts General Hospital (MGH) and
Wake Forest University School of Medicine (WFUSM). The ground-
truth labels come from different information sources, including radi-
ology reports, disease history, pathology test results, follow-up data,
death reports, and laboratory test results as described in Fig. 3a.

To curate the multimodal datasets, multiple data sources were
aligned, including volumetric CT scans, demographics, smoking history,
disease history, cancer history, family cancer history, and other task-
specific clinical data. Race and ethnicity of NLST data are self-reported
by participants using standardized questionnaires provided during the

NLST enrollment process. In total, 49 different clinical data types were
integrated into the multimodal datasets for LCS, as described in Fig. 3b.
For each task, one training, one validation, and one or more testing
datasets were constructed. Our multimodal multitask dataset is sum-
marized in Fig. 2b. The data were collected from different data centers
and institutes, including NLST, MIDRC, WFUSM, and MGH. In total, we
curated 17 training, 17 validation, and 34 testing datasets for the 17 tasks,
with detailed information in Fig. 2c–e. We also collected an out-of-
distribution multimodal dataset from WFUSM for transfer learning. To
inspect the modeling ability for textural clinical data, we simulated a
dataset for clinical information retrieval, as illustrated in Fig. 1e. Sincewe
unifymultimodalmultitask learning in anMQA framework, each dataset
consists of task-specificmultimodal inputs, questions, and answers. The
details for all tasks are summarised in Fig. 3a.

As the first data source, we were granted access to all recorded
data in NLST, which is a randomized trial for evaluating LCS with 3D
LDCT versus 2D chest radiography, demonstrating that screening with
LDCT lowered lung cancer mortality by 20%. The NLST data were
collected from 33 medical institutions, which were randomly indexed
without revealing their identifications publicly. The 26,722participants
in the LDCT screening arm were enrolled from August 2002 through
April 2004. The participants underwent three screenings at 1-year
intervals from August 2002 through September 2007. The follow-up
data were collected until December 31, 2009. During the whole pro-
cess, diverse data were recorded, including demographics, smoking
history, disease history, multiple CT series with different reconstruc-
tion algorithms and associated imaging parameters, key abnormalities
in fully structured reports, pathology test results for lung cancer,
follow-up data, and vital status. Being consistent with the NLST clinical
practice, we constructed 15multimodal datasets for 15 tasks, including
5 datasets for predicting the presence of lung nodules and estimating
the location, size, margin, and attenuation properties of lung nodules;
7 datasets for identifying chest abnormalities, including atelectasis,
pleural thickening/effusion, non-calcified hilar/mediastinal adeno-
pathy/mass, chest wall abnormality (bone destruction, metastasis,
etc.), consolidation, emphysema, reticular/reticulonodular opacities/
honeycombing/fibrosis/scar; 1 dataset for CVD diagnosis; 1 dataset for
CVDmortality risk prediction following16, where the intervals between
screening CT and CVD mortality are in the range from 11 days to
2619 days (within 8 years); and 1 dataset for lung cancer risk prediction
within from 1 to 6 years as in14. For the CVD mortality risk prediction
task, we further stratified the binary risk into 1-6 cut-off year risks
following14. Each dataset was randomly split into training, validation,
and test datasets. The patient information in the test dataset was not
leaked to the training and validation datasets across all tasks. From
NLST, we included 125,090 effective volumetric chest CT scans of the
received 26,254 patient cases.

The seconddata source is theMedical Imaging andData Resource
Center (MIDRC)41, a collaboration of leading medical imaging organi-
zations launched in August 2020 as part of NIBIB’s response to the
COVID-19 pandemic. We were granted to access all CT series with the
associated clinical data. The ground-truth labels for COVID-19 were
determined by either the Reverse Transcription Polymerase Chain
Reaction (RT-PCR) or the Rapid Antigen Test (RAT). From MIDRC, we
retrieved 35,730 volumetric chest CT series of 7609 patients scanned
from 2011 to 2021. The patient data were randomly split into the
training, validation, and test datasets.

All CT scans from NLST and MIDRC excluding those in any test
datasets were combined as a CT pretraining dataset, comprised of
128,693 CT scans in total. To inspect if the clinical data are effectively
encoded, we constructed a clinical question-answering dataset to
retrieve key information from the textual clinical data. The integration
of all the above-curated datasets is called OpenM3Chest.

To test the generalizability of M3FM, we independently collected
two multimodal multitask datasets from the third and fourth data
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sources, i.e., WFUSM and MGH, respectively. These multimodal LCS
datasets include CT scans, radiology reports, demographics, smoking
history, disease history, personal cancer history, family lung cancer
history, and pathology test results for lung cancer. Race and ethnicity
data of MGH and WFUSM datasets were collected from the MGH and
WFUSM electronic health record systems and self-reported by parti-
cipants. The radiology reports from WFUSM and MGH are in the
structured reporting template with sub-headers, but the free text is
used under each sub-header. We also collected a full-dose CT dataset
with the associated radiology reports from WFUSM to evaluate the
generalizability on full-dose CT scans. The MGH and WFUSM review
boards approved the analysis of all these multimodal data and tasks.
Based on the radiology reports and the pathology test results, we
constructed 7 datasets from WFUSM and 6 datasets from MGH for
independent evaluation, with the detailed information shown in

Fig. 2b, c, e, f. Specifically, we collected 8053 patient data from 2015 to
2023, all with radiology reports, and 1800 of them (from September 7,
2021 toDecember 30, 2022)with LDCT andmultimodal information at
WFUSM. We collected 1000 patient data with full-dose CT scans and
the associated radiology reports from September 22, 2022, to
December 31, 2022, at WFUSM. We collected 904 patient data with
multimodal data at MGH from 2016 to 2021. The Lung-RADS dataset
from WFUSM was randomly split into training, validation, and test
datasets to classify the text descriptions into the Lung-RADS category.
All other datasets of WFUSM and MGH were used for testing.

To evaluate the adaptability of our M3FM, we collected an out-of-
distribution multimodal dataset for non-small cell lung cancer
(NSCLC) immunotherapy prognosis from WFUSM. This dataset con-
sists of 90 patient data, including the target label indicating if the
patient was diagnosed with immune checkpoint-inhibitor-induced

Fig. 1 | Overview of medical multimodal multitask foundation model (M3FM).
aM3FM architecture consists of four components: Computed Tomography Vision
Transformer (CTViT), Text Transformer, Task Encoder, and Predictors.
b Pretraining CTViT onmultiscale CT volumes with voxel size-awaremasked image
modeling. Scale 1, Scale 2,⋯, and Scale S denote S different sizes of images.
c Pretraining Text Transformerwithmasked imagemodels, where T1, T2,⋯, and T5
denote a sequence of text tokens, T1, T2, and T4 are inputs, T3 and T5 are targets,
andMASK is a special tokenmeaning that the input token ismasked. d Training the
shared M3FM jointly with flexible multimodal and synergistic multitask learning
using our distributed task-parallel strategy. Each device focuses on a single task
with task-specific inputs, targets, and loss functions. D, N, and R denote the num-
bers of different devices, tasks, and image regions, respectively. Different tasksmay
have the same multimodal inputs on devices 1 and 2 and various multimodal or

single-modality inputs on devices 2, 3, 4, and 5. eM3FM inference flexibly handles
multi-scale CT volumes (indicated by the rectangle boxes in different sizes and
colors), clinical data, and multiple tasks. The colors of the CT bounding boxes
match those of the questions and the predicted answers. For example, to answer
Question 16, M3FM takes the orange region in the CT volume automatically loca-
lized using an organ localization model, the corresponding voxel size, and clinical
text data as inputs. Questions 17 and 18 are two examples of auxiliary information
retrieval tasks for clinical data modeling, which only take the clinical text as input.
Question 19 predicts the Lung CT Screening Reporting and Data System (Lung-
RADS) from lung nodule descriptions in a radiology report. reticular/... /scar reti-
cular/reticulonodular opacities/honeycombing/fibrosis/scar, where / means or,
COVID-19 Coronavirus Disease 2019.
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pneumonitis after immunotherapy, the CT scans before immu-
notherapy, and the clinical variables including the total cycles of
Immuno-Oncology (IO), smoking information of pack years, Body
Mass Index (BMI) at diagnosis, age, and if thepatient received radiation
prior to immunotherapy. Among the 90 patients, 49 patients devel-
oped immune checkpoint-inhibitor-induced pneumonitis, and the
other patients were used as the control group.

Further details on the multimodal data processing and alignment
and the MQA dataset construction are described in the Methods
section.

M3FM performance
Figure 4a summarizes the key results of M3FM against the previous
SOTA models14,16,34,42–45 and the most powerful generalist AI model
GPT-4o46 on the OpenM3Chest dataset. The competing models are
summarized in Supplementary Table 1. We used the Area Under the
receiver operating characteristic Curve (AUC) and the 95% two-sided
Confidence Intervals (CI) of AUC as the evaluation metrics47.

With the detailed comparative results summarized in Supple-
mentary Table 2, M3FM outperformed the previous SOTA models
across all tasks, demonstrating significant improvements in most of

them. Specifically, for a fair comparison, we retrained the Sybil
model14, denoted as Sybil*, for lung cancer risk prediction without
using costly bounding box annotations but predicting lung cancer
risks by merging the separate results of left and right lungs. It is
observed that Sybil* achieved inferior results for 1 ~ 2-year risk pre-
diction but superior results for 3 ~ 6-year risk prediction in comparison
with the results obtained using the original Sybil model. Without using
any bounding box, our M3FM achieved an AUC of 0.9400 (95% Con-
fidence Intervals = 0.9119–0.9698), 0.8881 (95% Confidence Intervals =
0.8567–0.9195), 0.8599 (95% Confidence Intervals = 0.8288–0.8910),
0.8604 (95% Confidence Intervals = 0.8310–0.8898), 0.8392 (95%
Confidence Intervals = 0.8098–0.8685), 0.8232 (95% Confidence
Intervals = 0.7936–0.8529) for lung cancer risk prediction over six
years, outperforming both Sybil* and original Sybil models by the
margins of 5% to 9% and 2% to 11%, respectively. For CVDdiagnosis and
CVD mortality prediction, we compared the results on both the ori-
ginal dataset16 and our OpenM3Chest dataset. M3FM achieved an AUC
of 0.9284 (95% Confidence Intervals = 0.9136–0.9433) for CVD diag-
nosis and an AUC of 0.8904 (95% Confidence Intervals =
0.8427–0.9381) for CVD mortality prediction on the OpenChest data-
set, outperforming the previous model (Tri2D-Net16) by 5% and 9%

Fig. 2 | Dataset constructionand summary. aGeneral data constructionworkflow
consists of four steps: medical task definition, task-specific multimodal data col-
lection, multimodal data processing and alignment, and multimodal question-
answering construction. b The data used in this study was collected from two data
centers, National Lung Screening Trial (NLST) and Medical Imaging and Data
Resource Center (MIDRC), and two medical institutes, Wake Forest University
School of Medicine (WFUSM) andMassachusetts General Hospital (MGH), with the
key characteristics summarized, based on which a large volumetric Computed
Tomography (CT) pretraining dataset and a simulated clinical dataset were con-
structed. The detailed configuration can be found in Supplementary Table 3. The

blue boxes indicate the OpenM3Chest dataset that is publicly available. c The
patient sex and age distributions of the collected data from the involved data
centers, where the age data represent mean age ± standard deviation. d Distribu-
tions of the training, validation, and test datasets over all tasks. e Distributions of
independent evaluation datasets from MGH. f Distributions of independent eva-
luation, full dose (FD) CT, and fine-tuning datasets from WFUSM. CVD Cardiovas-
cular Disease, Reticular/... /scar, reticular/reticulonodular opacities/
honeycombing/fibrosis/scar where / means or, COVID-19 Coronavirus Disease
2019, Lung-RADS Lung CT Screening Reporting and Data System, CAC Coronary
Artery Calcification. Source data are provided as a Source Data file.
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respectively, and achieved an AUC of 0.9304 (95% Confidence Inter-
vals = 0.9150–0.9458) for CVD diagnosis and 0.8606 (95% Confidence
Intervals = 0.8063–0.9150) for CVD mortality prediction on the data-
sets constructed in16, outperforming the previous model (Tri2D-Net)
by ~ 5% and ~ 10% respectively. On average, M3FM enhanced the 1-6
year CVD mortality risk prediction performance by 14.22% in AUC
compared to the previous best model (see Supplementary Table 2).
For several tasks including nodule detection, nodule localization,
nodule size prediction, and emphysema detection, M3FM improved
the results by various degrees up to 3% of AUC. For all the other tasks,
M3FM significantly improved the performance from ~ 5% to ~ 10%. To
study the scalability of M3FM, we trained three versions of M3FM,
consisting of 257M (M3FM-Base), 502M (M3FM-Large), and 865M
(M3FM-Huge) trainable parameters respectively. The results obtained
using these three models are summarized in Fig. 4b. Overall, with a
larger model size, the performance became better, especially from
M3FM-Base to M3FM-Large. This trend is consistent with the well-
known scaling law48 in the field of foundation models.

M3FM encoding multimodal data and synergizing multiple
clinical tasks
Table 1 compares the results of the single-modality single-task, multi-
modality single-task, and multi-modality multitask M3FM-Large mod-
els. First, the single-modality single-task models were trained and
evaluated on LDCT data only and denoted by M3FM-SM-ST, while the
multi-modality single-task models were trained and evaluated on
multimodal data and denoted by M3FM-MM-ST. Overall, the

multimodal information improved the prediction results for multiple
tasks. In particular, M3FM-SM-ST achieved an AUC of 0.8163 (95%
Confidence Intervals = 0.7585–0.8741) for CVD mortality prediction
while the M3FM-MM-ST model achieved an AUC of 0.8709 (95%
Confidence Intervals = 0.8200–0.9219), which represents a 5.46%
improvement. Similarly, for multi-year CVD mortality risk prediction,
themultimodal model outperformed the single-modality model by 5%
on average as shown in Supplementary Table 2. While M3FM-SM-ST
achieved an AUC of 0.8924 (95% Confidence Intervals =
0.8745–0.9104) for CVD diagnosis, the M3FM-MM-ST model achieved
an AUC of 0.9238 (95% Confidence Intervals = 0.9084–0.9392), i.e., a
3.14% improvement. Similarly,M3FM-SM-ST achieved anAUCof0.6515
(95% Confidence Intervals = 0.5939–0.7092) for consolidation detec-
tion, and the M3FM-MM-ST model achieved an AUC of 0.6895 (95%
Confidence Intervals = 0.6326–0.7464), a 3.80% improvement. Also,
M3FM-SM-ST achieved an AUC of 0.7676 (95% Confidence Intervals =
0.7573–0.7779) for reticular/reticulonodular opacities/honeycomb-
ing/fibrosis/scar detection, and the M3FM-MM-ST model achieved an
AUC of 0.7929 (95% Confidence Intervals = 0.7830–0.8027), a 2.53%
improvement. It is further observed that M3FM-MM-ST models pro-
duce slightly improved or comparable results in comparison with
M3FM-SM-ST for the other tasks. Then, we compared the multimodal
multitask model (M3FM-MM-MT) and multimodal single-task models
(M3FM-MM-ST). Impressively, training on multiple tasks, M3FM-MT-
MM outperformed the M3FM-ST-MM for 17 out of 22 (sub)-tasks. In
reference to the label distributions of the multiple tasks in Supple-
mentary Table 3, the five tasks that were not benefited frommultitask

Fig. 3 | Overview of the multimodal question-answering datasets. a Alignment
among text input, image input, example questions, and candidate answers. The
black bounding boxes on lungs and heart illustrate input region sizes, including 2.5-
dimensional left or right lung regions (2.5D L/R Lung), three-dimensional heart
regions, three-dimensional left and right lung regions (3D L&R Lungs), three-

dimensional heart regions, three-dimensional left or right lung regions (3D L/R
Lungs). b Multimodal data elements involved in this work including three-
dimensional (3D) computed tomography (CT). Patient information on race and
ethnicity is self-reported. COVID-19 Coronavirus Disease 2019, Lung-RADS Lung CT
Screening Reporting and Data System.

Article https://doi.org/10.1038/s41467-025-56822-w

Nature Communications |         (2025) 16:1523 5

www.nature.com/naturecommunications


learning have the largest balance ratios of the number ofminority class
samples over the number of majority class samples. In other words,
multitask learning is more beneficial for tasks with more imbalanced
datasets or a much smaller number of positive/minority class labels.

M3FM identifying clinically informational elements
Since M3FM accommodates any combination of multimodal datasets
in the training and inference stages, we investigated the application of
M3FM to analyze the synergy between multimodal data elements
and clinical tasks by observing the effects of different input combi-
nations on the model outcomes. Table 2 presents the ablation results
using different combinations of multimodal data for CVD diagnosis
andmortality prediction. M3FM using all multimodal inputs improved
the AUC by 3% ~ 4% relative to the results using LDCT only and by 12%
and 5% over that using clinical data only for CVD diagnosis and mor-
tality prediction respectively. Furthermore, the M3FM results show
that the disease histories of heart disease or heart attack, hyperten-
sion, stroke, and diabetes consistently boosted the AUC results by
gradually adding them into the input combination for CVD diagnosis
and mortality prediction. Supplementary Table 4 shows the lung
cancer risk prediction results using different inputs, showing that
demographic information slightly improved the AUC results.

Then, we evaluated if M3FMs could effectively encode the phy-
sical size information. The ablation results in Fig. 5a show that the
embedded physical size of LDCT improved the AUC results for multi-
ple tasks. The physical size information boosted the AUC of 1 ~ 6-year

lung cancer risk prediction by 5%, 4%, 4%, 7%, 8% and 12%, respectively.
The physical size information also improved AUC results of the nodule
size characterization, CVD diagnosis, and CVDmortality prediction, by
0.71%, 0.47%, and 1.11% respectively.

We quantitatively evaluated the relevance of different clinical
elements with model outputs by visualizing the attention maps of the
last task attention block in M3FM. Figure 5b visualizes the attention
heat maps on selected CT slices and text tokens of individual patients
with CVD or lung cancer risks. In CVD diagnosis, the coronary artery
calcification areas are highlighted in the LDCT attention heat maps,
and the patients’ disease histories of diabetes, heart disease or heart
attack, hypertension, and stroke are highly relevant among text
tokens, which is consistent with the quantitative results in Table 2.
Furthermore, the ablation inference in Supplementary Fig. 1 explicitly
shows how the information from multiple sources is composed to
affect themodel prediction. In a case of positive CVD diagnosis,M3FM
failed predictions when taking LDCT only or LDCT plus uninformative
clinical data as inputs. The same M3FM successfully diagnosed CVD
when using LDCTplus the relevant clinical data including the diabetes/
heart disease history. This is consistent with the ablation results
summarized in Table 2, where multimodal inputs are statistically
beneficial for theM3FM inferences. In predicting lung cancer risks, the
lung nodules in LDCT images are localized in the heat maps, and the
text tokens related to demographic and family lung cancer histories
aremore correlated to themodel outputs as shown in Fig. 5c. Although
the visualization of the attention maps provides a window to inspect

Fig. 4 | Overall and Scalable performance of the Medical Multimodal Multitask
FoundationModel (M3FM). a Comparison of the best M3FMswith previous state-
of-the-art (SoTA) models in including Generative Pre-trained Transformer 4 Omni
(GPT-4O) in terms of Area Under the Curve (AUC) relative improvement. The
compared models have been summarized in Supplementary Table 1. The AUC
values and 95% confidence intervals of all models can be found in Supplementary
Table 2. b AUC results with 95% confidence intervals for M3FM models of three

scales including Base, Large, and Huge. The AUC value and two-sided 95% con-
fidence interval for each task were calculated from its entire test dataset. Error bars
in b indicate the two-sided 95% confidence intervals. CVD Cardiovascular Disease,
Reticular/... /scar reticular/reticulonodular opacities/honeycombing/fibrosis/
scar, where / means or, COVID-19 Coronavirus Disease 2019, Lung-RADS Lung CT
Screening Reporting and Data System. Source data are provided as a Source
Data file.
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the behavior of the Transformer model, it is not always reliable to
reveal the correlation between model predictions and input tokens,
e.g., less relevant tokenswerehighlighted inFig. 5b,which is consistent
to the prior findings49,50.

M3FM improving generalizability
We evaluated the generalizability of M3FMs on the multimodal data-
sets independently collected from MGH and WFUSM, with the

comparative results shown in Fig. 6a, b, respectively. For the CVD
diagnosis task, we constructed two datasets, which regard (1) moder-
ate and severe CVD as positive and (2) severe CVD only as positive,
respectively. On the twoMGHCVD datasets, themultimodalmultitask
model (M3FM-MM-MT) improved the AUC by 10.60% and 6.57% rela-
tive to the previous model, improved the AUC by 4.85% and 2.36%
relative to the single-modality single-task model (M3FM-SM-ST), and
also achieved slight AUC improvements relative to the multi-modality

Table 1 | Comparison of M3FM Variants on the OpenM3Chest Dataset

Tasks M3FM-SM-ST M3FM-MM-ST M3FM-MM-MT
Nodule presence 0.9877 (0.9863–0.9892) 0.9876 (0.9862–0.9891) 0.9858 (0.9843–0.9874)

Nodule location (Average) 0.9884 0.9893 0.9877

Right Upper Lobe 0.9912 (0.9887–0.9937) 0.9915 (0.9891–0.9939) 0.9895 (0.9868–0.9922)

Right Middle Lobe 0.9811 (0.9760–0.9862) 0.9826 (0.9777–0.9875) 0.9793 (0.9739–0.9846)

Right Lower Lobe 0.9856 (0.9824–0.9887) 0.9865 (0.9835–0.9895) 0.9850 (0.9818–0.9882)

Left Upper Lobe 0.9918 (0.9892–0.9944) 0.9928 (0.9904–0.9952) 0.9922 (0.9896–0.9947)

Left Lower Lobe 0.9922 (0.9897–0.9946) 0.9932 (0.9909–0.9955) 0.9924 (0.9900–0.9948)

Nodule attenuation (Average) 0.7540 0.7525 0.7589

Solid 0.7817 (0.7728–0.7906) 0.7800 (0.7711–0.7889) 0.7888 (0.7802–0.7975)

Ground Glass 0.8410 (0.8285–0.8534) 0.8337 (0.8210–0.8463) 0.8533 (0.8413–0.8653)

Others 0.6393 (0.6195–0.6592) 0.6437 (0.6238–0.6636) 0.6345 (0.6146–0.6543)

Nodule margin (Average) 0.7637 0.7653 0.7742

Spiculated 0.7929 (0.7760–0.8097) 0.7893 (0.7724–0.8062) 0.8156 (0.7995–0.8317)

Smooth 0.7892 (0.7811–0.7974) 0.7805 (0.7722–0.7888) 0.7939 (0.7859–0.8020)

Poorly Defined 0.7750 (0.7628–0.7871) 0.7511 (0.7386–0.7636) 0.7652 (0.7529–0.7774)

Undetermined 0.6975 (0.6667–0.7284) 0.7404 (0.7105–0.7703) 0.7222 (0.6919–0.7524)

Nodule size (Average) 0.8230 0.8167 0.8195

≤4 mm 0.7732 (0.7624–0.7839) 0.7760 (0.7653–0.7867) 0.7794 (0.7688–0.7901)

4 6 mm 0.7006 (0.6908–0.7104) 0.6782 (0.6682–0.6882) 0.6976 (0.6878–0.7075)

6 8 mm 0.7542 (0.7410–0.7674) 0.7330 (0.7195–0.7465) 0.7278 (0.7142–0.7413)

8 15 mm 0.8681 (0.8556–0.8807) 0.8595 (0.8466–0.8723) 0.8660 (0.8535–0.8786)

15 30 mm 0.9102 (0.8921–0.9284) 0.9125 (0.8946–0.9305) 0.9159 (0.8982–0.9335)

> 30 mm 0.9316 (0.8914–0.9718) 0.9413 (0.9038–0.9789) 0.9302 (0.8897–0.9708)

CVD Abnormality 0.8924 (0.8745–0.9104) 0.9238 (0.9084–0.9392) 0.9284 (0.9136–0.9433)

CVD Mortality 0.8163 (0.7585–0.8741) 0.8709 (0.8200–0.9219) 0.8904 (0.8427–0.9381)

Atelectasis 0.8172 (0.7723–0.8622) 0.8108 (0.7654–0.8563) 0.8181 (0.7238–0.8200)

Pleural thickening/effusion 0.7373 (0.7178–0.7567) 0.7607 (0.7417–0.7797) 0.7657 (0.7468–0.7846)

Hilar/mediastinal adenopathy/mass 0.8299 (0.7985–0.8613) 0.8297 (0.7983–0.8611) 0.8328 (0.8017–0.8639)

Chest wall abnormality 0.8151 (0.6614–0.9689) 0.8239 (0.6859–0.9718) 0.8344 (0.6862–0.9826)

Consolidation 0.6515 (0.5939–0.7092) 0.6895 (0.6326–0.7464) 0.7241 (0.6683–0.7798)

Emphysema 0.9137 (0.9079–0.9194) 0.9240 (0.9186–0.9294) 0.9119 (0.9061–0.9177)

Reticular/reticulonodular opacities/
honeycombing/fibrosis/scar

0.7676 (0.7573–0.7779) 0.7929 (0.7830–0.8027) 0.7744 (0.7643–0.7846)

Lung Rads (Average) 0.8565 N/A 0.8706

1 0.8957 (0.8735–0.9179) N/A 0.9036 (0.8831–0.9240)

2 0.8753 (0.8559–0.8946) N/A 0.8733 (0.8539–0.8926)

3 0.8306 (0.7728–0.8884) N/A 0.8335 (0.7761–0.8909)

4 0.8245 (0.7644–0.8846) N/A 0.8720 (0.8186–0.9255)

1-Year Cancer Risk 0.9298 (0.8980–0.9615) 0.9362 (0.9058–0.9666) 0.9400 (0.9119–0.9698)

2-Year Cancer Risk 0.8697 (0.8358–0.9036) 0.8727 (0.8391–0.9063) 0.8881 (0.8567–0.9195)

3-Year Cancer Risk 0.8418 (0.8088–0.8748) 0.8479 (0.8154–0.8805) 0.8599 (0.8288–0.8910)

4-Year Cancer Risk 0.8338 (0.8020–0.8655) 0.8299 (0.7979–0.8619) 0.8604 (0.8310–0.8898)

5-Year Cancer Risk 0.8088 (0.7773–0.8402) 0.8131 (0.7819–0.8443) 0.8392 (0.8098–0.8685)

6-Year Cancer Risk 0.7922 (0.7606–0.8238) 0.8135 (0.7829–0.8440) 0.8232 (0.7936–0.8529)

COVID-19 0.7688 (0.7553-0.7823) 0.7679 (0.7544-0.7814) 0.7569 (0.7431-0.7706)

SM denotes single-modality, MM signifies multi-modality, ST represents single-task, and MT indicates multitask. Average denotes the mean AUC value of all sub-categories. AUC values with 95%
confidence intervals in parentheses are reported.M3FM-MM-SToutperformsM3FM-SM-STmodels in 14of 21 tasks.M3FM-MM-MToutperformsM3FM-MM-STmodels in 17 of 22 tasks.N/Ameansnot
available.
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single-task model (M3FM-MM-ST). Relative to M3FM-SM-ST, the
M3FM-MM-STmodel improved the AUCby4.39% and 1.75%on the two
CVD MGH datasets respectively. For the 1-year lung cancer risk pre-
diction on the MGH dataset, the M3FM-MM-MT model improved the
AUC by 20.80% against the previous model under the same experi-
mental settingwithout using any bounding box annotations, improved
the AUC by 4.85% over M3FM-SM-ST, and improved the AUC by 6.89%

overM3FM-MM-ST.On theMGHemphysema, atelectasis, and reticular
opacities/honeycombing/fibrosis/scar datasets, the M3FM improved
the AUC by 5.23%, 14.34%, and 12.91% relative to the previous model,
and also achieved AUC improvements by 0.24% ~ 4.96% over M3FM-
SM-ST and M3FM-MM-ST. For the CVD tasks on the MGH datasets,
M3FM-MM-MT improved the AUC by 12% and 6.29% against the pre-
vious model, improved the AUC by 6.46% and 3.77% relative to M3FM-

Table 2 | Evaluation of clinical data elements in the CVD tasks

Train input Test input CVD diagnosis CVD mortality

LDCT LDCT 0.8924 (0.8745-0.9104) 0.8163 (0.7585–0.8741)

LDCT + All clinical data LDCT 0.8846 (0.8661–0.9030) 0.8344 (0.7786–0.8902)

LDCT + All clinical data LDCT + All clinical data 0.9238 (0.9084–0.9392) 0.8709 (0.8200–0.9219)

LDCT + All clinical data LDCT + All disease history 0.9237 (0.9083–0.9391) 0.8709 (0.8200–0.9218)

LDCT + All clinical data LDCT + Heart disease/attack 0.9001 (0.8828-0.9175) 0.8327 (0.7767-0.8887)

LDCT + All clinical data LDCT + Hypertension 0.9131 (0.8978-0.9294) 0.8641 (0.8122-0.9160)

LDCT + All clinical data LDCT + Diabetes 0.8929 (0.8749-0.9108) 0.8473 (0.7930-0.9015)

LDCT + All clinical data LDCT + Stroke 0.8897 (0.8715-0.9078) 0.8454 (0.7910-0.8999)

LDCT + All clinical data LDCT + Heart disease/attack, Hypertension 0.9221 (0.9065-0.9377) 0.8689 (0.8177-0.9201)

LDCT + All clinical data LDCT + Heart disease/attack, Hypertension, Stroke 0.9227 (0.9072-0.9382) 0.8684 (0.8171–0.9197)

LDCT + All clinical data LDCT + Heart disease/attack, Stroke, Hypertension, Diabetes 0.9246 (0.9093–0.9400) 0.8729 (0.8223-0.9235)

AUC values with 95% confidence intervals in parentheses are reported

Fig. 5 | Inspection of imaging and clinical data elements. a Evaluation of voxel
size embedding in computed tomography (CT) imaging. The Area Under the Curve
(AUC) values and 95% confidence intervals for Medical Multimodal Multitask
Foundation Model (M3FM) models are reported with and without embedding CT
voxel sizes across various tasks. The AUC value and two-sided 95% confidence
interval for each task were calculated from its entire test dataset. The error bars

indicate the two-sided 95% confidence intervals. Source data are provided as a
Source Data file. b The attention maps of the task encoder for two cardiovascular
disease (CVD) diagnosis examples, where the two cases were reported with sig-
nificant CVD abnormalities. c The attention maps of the task encoder for two lung
cancer risk prediction examples, where the pathology test results confirmed the
lung cancer within one year following their low-dose CT lung cancer screenings.
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SM-ST, and had the essentially same results as M3FM-MM-ST. For the
1-year lung cancer risk prediction on theMGH dataset, theM3FM-MM-
MTmodel improved the AUC by 18.54% relative to the previousmodel
under the same experimental setting without using any bounding box
annotations, improved the AUC by 5.91% over M3FM-SM-ST, and
improved the AUC by 2.57% over M3FM-MM-ST; and M3FM-MM-ST
improved the AUC by 3.24% over M3FM-SM-ST. On the WFUSM
emphysema, atelectasis, and reticular opacities/honeycombing/fibro-
sis/scar datasets, the M3FM-MM-MT model improved the AUC by
0.78%, 9.65%, and 14.24% against the previous model. We further
evaluated the generalizability of M3FM on the full-dose CT scans in
Fig. 6c. It is observed that M3FM (M3FM-SM-ST) models trained with
LDCT scans performed similarly on the diagnosis tasks of scar,
atelectasis, and emphysema abnormalities, but had an evident per-
formance drop for CVD diagnosis on full-dose CT scans. M3FMs still
outperformed the competing models by 1% ~ 10% on all the com-
pared tasks.

M3FM enhancing out-of-distribution multimodal analysis
We further evaluated if M3FM, as a foundation model, facilitates out-
of-distribution multimodal modeling as shown in Fig. 7. For this pur-
pose, we fine-tuned M3FM to predict immunotherapy-induced pneu-
monitis from volumetric CT prior and the selected clinical data related
to immunotherapy as described in the Results section. We used the
method developed in WFUSM as the reference method51 and com-
pareddifferentfine-tuned variants of theM3FM in termsof the average
AUC and its standard deviation in five-fold cross-validation. The
reference model used in WFUSM had 0.894 ± 0.075 AUC by merging
all radiomic and clinical features. Specifically, the referencemodel was

based on a nomogram to predict immunotherapy outcomes using
features extracted from radiomic algorithms, a pre-trained ViT-base
model, and clinical records. After feature selection, 20 radiomic fea-
tures, 20 deep features, and 17 clinical features were used for the
nomogram. The best result of our fine-tuned M3FMs was 0.941%
± 0.026 of AUC, which achieved a 4.7% improvement over the com-
peting model. The M3FM-CTmodel using CT data only had an AUC of
0.919 ± 0.026. The M3FM-Clinical model using clinical text only had a
0.911 ± 0.029 AUC. The M3FM-Scratch without pretraining achieved
0.925 ± 0.025 of AUC, in a favorable comparison with the compet-
ing model.

Discussion
The contributions of the proposed M3FM can be summarized in two
main aspects.

First, as the multimodal multitask foundation model for LCS,
M3FM effectively encodes multimodal medical data including arbi-
trary combinations of multi-scale 3D tomographic images and various
other clinical data, and flexibly performs multiple tasks via free-text
prompting. In particular, our CT Vision Transformer (CTViT) is a
unique component designed to perceive 3D CT images. CTViT can
flexibly process multiple image sizes through our multi-scale linear
tokenizer and disentangled physical size embedding mechanism. Our
proposed self-supervised learning training algorithm facilitates the
pre-training of themulti-scale CTViTon a large 3DCTdataset. Tomake
M3FM scalable across multiple tasks, our distributed task-parallel
training strategy assigns a single task to each device while allowing
different devices to process different inputs/outputs for multitask
parallel optimization.

Fig. 6 | Evaluation of the Medical Multimodal Multitask Foundation Model
(M3FM) and competing models on independent datasets. Evaluation results of
the M3FM variants including single-modality (SM), multimodality (MM), single
task (ST), andmultitask (MT), and competingmodels on the (a) MGH, (b) WFUSM
datasets, and (c) WFUSM full-dose CT datasets in terms of Area Under the Curve

(AUC) and 95% confidence intervals. The AUC value and two-sided 95% con-
fidence interval for each task were calculated from its entire test dataset. The
error bars indicate the two-sided 95% confidence intervals. CAC Coronary Artery
Calcification, which is a type of cardiovascular disease. Source data are provided
as a Source Data file.

Article https://doi.org/10.1038/s41467-025-56822-w

Nature Communications |         (2025) 16:1523 9

www.nature.com/naturecommunications


Second, the whole workflow for the M3FM development is built
for the clinically challenging scenario, from LCSmultitask definition to
multimodal data curation, from radiologists’ interpreting procedure to
the unified MQA framework, and from self-supervised pre-training to
synergistic multitasking with high-dimensional multimodal data. In
particular, our MQA framework is akin to how radiologists perform
multiple tasks while consideringmultimodal data, naturally facilitating
unified training and interactive inference. Importantly, the whole
pipeline is designed with scalability, allowing M3FM to be readily
scaled up by integrating more training datasets and undertaking a
broader range of clinical tasks.

The M3FMs significantly outperforms the previous models
developed on either single task and/or single modality, the CLIP-CT
foundation model, and the generalist AI model on our curated large-
scale OpenM3Chest datasets collected from multiple medical insti-
tutes. Our experimental results indicate that the larger M3FM pro-
duces better LCS outcomes in multimodal multitask settings. These
positive outcomes underscore the importance of systematically col-
lecting and curating large-scale, multimodal, multitask datasets for
superior performance in LCS-related tasks.

The M3FMs effectively encode various combinations of multi-
modal inputs. The results in Table 1 show that the multimodal data
are particularly helpful for improving CVD diagnosis and CVD mor-
tality risk prediction with M3FM. However, some other tasks, such as
lung nodule detection and characterization did not benefit from
additional clinical data types, suggesting that the imaging data is
enough for these tasks. On the other hand, the evaluation results in
Table 2 and Supplementary Tables 4 and 5 show that training M3FM
with additional clinical input data types would not degrade the per-
formance in comparison with the single-modality LDCT models on
the tasks that were not benefited from the clinical priors. In other
words, there are no constraining effects of multimodal learning on
the representations of the single-mortality models trained with LDCT
scans only. Therefore, incorporating multimodal data as inputs is
generally beneficial or at least does not harm model performance. In
this context, M3FM also provides a flexible framework to study the
correlation between the model performance and different combi-
nations of multimodal inputs on each specific task for optimized
selection of multimodal datasets.

TheM3FMs flexibly synergize different medical tasks. Theoretical
studies52,53 have indicated why learning multiple tasks jointly is bene-
ficial over learning each task in isolation through analysis of the upper
error bound conditioned on the number of multiple tasks and the
average number of data points per task. In the real-world LCS appli-
cations, our results have shown that multitask learning generally
achieved better generalizability on both the NLST test datasets and
independently collected evaluationdatasets, which are consistentwith
the theoretical findings. Interestingly, the empirical results further
suggest that the LCS tasks benefited from multitask learning have
more imbalanced labels. This seems heuristic, since when labels are
sparse for a specific task, more synergy should be leveraged by
learning from other related tasks. In other words, multitask learning
promises to alleviate the over-fitting and improve the generalizability
via a multi-task-based regularization effect especially when a task of
interest has a limited number of samples52,53. Given that many clinical
tasks involve highly imbalanced datasets with few labels of positive or
certain type disease, our results mean that multitask learning is
favorable in building foundation models in real-world scenarios.
Overall, the results in Table 1 demonstrate that M3FM optimized with
multitask learning outperformed the corresponding models that were
separately optimized for individual tasks. These results indicate that
for intrinsically-related tasks if theirmultimodal data and clinical labels
are simultaneously collected, such as in the NSLT trail for LCS, M3FM
can synergistically integrate multiple tasks that take various scales of
imaging data and different multimodal inputs for improved perfor-
mance using our proposed distributed task-parallel training approach.
However, when non-trivial efforts are required to collect additional
multitask datasets for a particular task at hand, there would be a trade-
off betweenperformance improvement (especially if the improvement
is marginal) and the associated cost of constructing additional data-
sets. In the latter case,M3FMprovides a useful framework to study this
trade-off by performing ablation studies as shown in Table 1 on rela-
tively small pilot datasets prior to collecting large-scale datasets.

Nevertheless, there are certain limitations to currentM3FM results.
The above evaluation was retrospective and offline rather than in a
prospective, real-world reporting and patient management environ-
ment.We did not test the clinical impact ofM3FMeither in radiology or
post-radiology care scenarios. Likewise, we did not evaluate the most

Fig. 7 | Transfer learning with the Medical Multimodal Multitask Foundation
Model (M3FM). a The sameM3FM architecture was fine-tuned to perform the out-
of-distribution immunotherapy prognosis task with three-dimensional (3D) com-
puted tomography (CT) and clinical inputs. b Results on immunotherapy-induced
pneumonitis using different methods, including the reference method, M3FM-CT
which only takes CT as inputs, M3FM-Clinical which only takes the clinical data as

inputs, M3FM-Scratch that was trained from scratch without utilizing the pre-
trained model, and M3FM that takes both CT and clinical data as inputs and was
finetuned from the pre-trained model. The error bars represent mean AUC
± standard deviations from five-fold cross-validation (n = 5), with each fold for a
distinct train/test split of the same dataset. CTViT Computed Tomography Vision
Transformer. Source data are provided as a Source Data file.
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effective method of information display to improve decision-making
with multimodal information without inundating physicians and com-
promising their workflow efficiency. While our experimental results
affirm that larger-scale models yield better multimodal multitask per-
formance, the performance gain when upgrading fromM3FM-Large to
M3FM-Huge is less impressive than when upgrading from M3FM-Base
to M3FM-Large. We believe that this limited improvement could be
substantially attributed to the size and quality of the current datasets,
and with even larger and better datasets we expect to have a higher
performance gain, by the scaling laws. Although the current M3FM
models can perform a major set of LCS-related tasks covering all radi-
ological labels in NLST, it is limited to predicting the abnormalities
within the lungs and heart since the available labels are mainly targeted
to these regions in our collected datasets. However, thanks to the built-
in capability of multi-scale deep CT image analysis, it is straightforward
to extend our M3FMmodels to handle other opportunistic findings54–57

by focusing on the involved regions coupled with relevant clinical data
and corresponding labels. It is also observed that the AI model perfor-
mance faces significant challenges, especially for real-world clinical
tasks with highly imbalanced data distributions and small abnormality
regions in the 3D input that contains no location annotations. By
addressing these limitations, there are opportunities for clinical impacts
of M3FM. After its regulatory clearance and integration into real-time
clinical workflows, M3FM can provide a dynamic, and customizable
dashboard for information summary and decision-making. For exam-
ple, during the reporting of lung findings, it would be helpful to have a
display of M3FM-derived results, previously reported lung-specific
clinical findings (such as Chronic Obstructive Pulmonary Disease
(COPD), prior lung nodules, and LungRADS categories); and during
cardiovascular field reporting, to have a display of M3FM-based esti-
mates and cardiac risks factors from the past medical history.

As discussed in58, there are specific concerns for AI in medicine,
such as generalizability, explainability, adaptability, etc. This study has
demonstrated initial efforts in addressing such AI-specific concerns.

The M3FM models show better generalizability to independent
WFUSM and MGH datasets than the SOTA models. It is worth men-
tioning that the independent evaluation is prospective in terms of the
data collection date. Our experimental results show that M3FMs
achieved consistently and significantly better results by up to 20+%
than the previous models trained in the same setting. However, for
some tasks, multi-modality modeling could decrease the general-
izability relative to single-modality modeling. This might be due to the
variability in data collection procedures and standards. Thus, it is
important to design a standardized and robust data resourcing and
collecting pipeline. In all our experiments, multitask learning con-
sistently improved generalizability.

The M3FMs are capable of identifying informative clinical ele-
ments both quantitatively and qualitatively, which offers a high-level
explainability. It is achievedwith theMQA framework and the attention
mechanism. Specifically, the MQA framework naturally allows users to
examine the response changes to different combinations of imaging
and clinical data, and thus the informative clinical elements can be
identified as those contributing to statistically high prediction accu-
racy. Our M3FMs have uncovered a strong positive correlation
between CVD diagnosis, CVD mortality prediction and the historical
presence of heart disease/attacks, hypertension, stroke, and diabetes
through ablation inference. Assuming this discovery is not a piece of
common knowledge,M3FM could contribute to important biomedical
insights. Quantitatively, attention maps can be visualized for both
image and text inputs through the attention mechanism, illuminating
the elements that correlate with predictions. This visualization offers a
certain interpretability of M3FM in terms of the relationships between
clinical data and diseases.

The M3FM has the adaptability to significantly improve multi-
modal modeling for out-of-distribution tasks through transfer

learning. A key feature of foundationmodels is their ability to aid tasks
beyond those defined by the training datasets. In this study, we fine-
tuned our M3FM for immunotherapy prognosis prediction, an out-of-
distribution task characterized by entirely different clinical inputs. Our
experiments demonstrated that the pre-trained M3FM model can
handle the out-of-distribution task with a high performance on a
relatively small dataset. This capability is particularly valuable when
expanding some clinical datasets is challenging due to data rarity and
associated costs.

In conclusion, the unified architecture and exceptional perfor-
mance of the M3FMs herald a promising avenue for leveraging multi-
modal data to perform multitasks in developing AI-empowered,
specialty-oriented superior healthcare solutions. Within the scope of
LCS in particular, we have demonstrated the feasibility of translating the
M3FMmodel on our collaborative clinical sites, broaden and refine LCS
implementation, andultimately reduce lung cancermortality.Hopefully,
ourM3FMsystemwouldbecomeaneffective platform to accommodate
more medical tasks with diverse multimodal data combinations, from
specialized to increasingly more generalized medical AI models.

Methods
Ethics statement
This study was conducted in accordance with all relevant ethical reg-
ulations after the InstitutionalReviewBoard (IRB) approvals ofWFUSM
(IRB approval number: IRB00002960) and MGH (IRB approval num-
ber: 2020P003950). Both IRBs granted a waiver of informed consent
as all data in this studywere retrospective and de-identified, which is in
accordance with 45 CFR 46.116(f). Access to and use of theMIDRC and
NLST datasets were conducted in compliance with their respective
data use agreements and adhered to applicabledata privacy standards.

Medical Multimodal-Multitask Dataset Construction
Figure 2a presents our general workflow for constructing the multi-
modal multitask medical datasets, which consists of the four main
steps: (1) medical task definition; (2) task-specific multimodal data
collection; (3) multimodal data processing and alignment; and (4)
MQA construction. The details for the first two steps are described in
the Results section. Here we describe the third and fourth steps.

Multimodal data processing is to select qualifiedmultimodal data
and prepare them for the alignment with each clinical task of interest,
including CT data processing, clinical data processing, and ground-
truth labeling. In CT data processing, we localize the sub-volumes that
mainly contain the task-relevant regions in the 3D CT volume using a
segmentation model59. Specifically, we segment three parts, i.e., left
lung, right lung, and heart regions consisting of the myocardium, left/
right atrium, left/right ventricle, and pulmonary artery. It is worth
underlining that the precision of the segmentation results does not
need tobehigh.Ourprimaryobjective is to utilize rectangularboxes to
wrap the segmented areas, ensuring that task-relevant sub-volumes
are included and extraneous regions are disregarded.We excluded the
CT series having less than 64 axial slices in all collected datasets. For
eachCT series, the reconstruction voxel sizes are recorded in the axial,
coronal, and sagittal dimensions, and used as input to the CTViT. The
clinical data processing is to represent various combinations of clinical
data as free text. We have established a specific sentence format for
each clinical element, as detailed in Supplementary Table 6. The final
free-text clinical data for each examination is constructed by aggre-
gating the sentences corresponding to all available and labeled clinical
data, as illustrated by the text inputs in Figs. 1 and 7. For ground-truth
labeling, wefirst extract task-specific labels fromdifferent sources (see
Fig. 3a for specific label sources of each task) and then combine all
information as the label. The details for each task ground-truth label
calculation are described in Supplementary Table 7. Next, we align the
clinical data in free text, theCTdatawith segmentedparts andphysical
size, and the labels in all exams for each task. In particular, each task
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anatomically corresponds to its segmented CT sub-volume. The key
consideration is to remove irrelevant image regions to reduce the
computational cost while keeping the original information. The task-
specific CT sub-volumes are illustrated in the image input column of
Fig. 3a. Specifically, the left or right lung sub-volume is used as the
image input for lung nodule detection and characterization. We fixed
thenumber of slices to 16 for each input considering that a lungnodule
is usually tiny relative to the whole lungs. For the nodule-presented
case, the location labels of the left/right lung, slice number, and the
bounding box coordinates are used to crop the target sub-volume. For
the non-presented nodule case, the input sub-volume is randomly
cropped within the segmented lung regions. The CVD tasks use a 3D
box wrapping the heart as the image input. For lung cancer risk pre-
diction, we separately input the left and right lungs. In the training
datasets, the location of the left and/or right lung where lung cancer is
presented is required to align each lung with the risk labels. In the
inference stage, the location of lung cancer is not required because the
ground-truth labels are at the patient level. The predicted lung cancer
risks are the maximum of the scores of two lungs for each patient. For
all other chest diagnosis tasks, a 3D rectangle boxwrapping both lungs
is used as the image input. Subsequently, the MQA construction is to
create questions and answers for each specific task with the aligned
multimodal data, and the resulting MQA datasets define the model’s
input and output formats. In Fig. 3a, one example question and the
corresponding answer candidates are presented for each task. In the

training stage, ten different questions for each task were used as
shown in Supplementary Table 8. Note that there is no need for radi-
ologists to make labeling efforts across the whole workflow so that
large-scale medical multimodal multitask datasets can be cost-
effectively constructed.

M3FM
Overall architecture. Our medical multimodal multitask foundation
model is designed to effectively encode multimodal data and flexibly
perform multitasks via text prompting in a unified and scalable fash-
ion. As shown in Fig. 1a, M3FM consists of four main components:
CTViT, text Transformer, task encoder, and predictors. The key details
of each component are given in Fig. 8. CTViT takes volumetric CT
images of varying sizes as inputs, extracts multi-scale image patches,
and computes discriminative features of these patches. The text
Transformer produces the embedding of clinical text and the
embedding of textual questions respectively. Given any combination
of image, text, and task token embeddings, the task encoder extracts
the task-specific features corresponding to the special < TASK > token.
Finally, the task-specific predictor outputs the final answer from the
task-specific features of the integrated multimodal data. In the fol-
lowing, we will describe each component in detail.

CTViT. CTViT extracts embedding features of multi-scale 3D CT
volumes with size awareness. CTViT has two parts: a multi-scale CT

Fig. 8 | M3FM architecture. a The overall M3FM architecture with Computed
Tomography Vision Transformer (CTViT), text transformers, encoders, and pre-
dictors. b CTViT pretraining. c image encoder. d text encoder. e task encoder. S,H,
Wdenote the sizes ofCT volume inpixels. s,h,wdenote the sizes inmillimeters of a
voxel in CT. txt1, txt2, ⋯ , txtT denote the clinical text tokens. que1, que2, ⋯ ,
queQ denote the question text tokens. < MASK > and < TASK > are the special text

tokens. Task ID is the identifierof a specific task.q, k, vdenote the queries, keys, and
values in theTransformermodel.Nimg,Ntxt,Ntaskdenote the numberofTransformer
blocks in the Image Encoder, Text Encoder, and Task Encoder, respectively. Dif-
ferent colors with Multi-Scale Linear Tokenizers/De-Tokenziers match different
scales.
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tokenizer and an image encoder. To process a 3D CT scan, we divide
each image volume into non-overlapped 3D patches as in60. Each 3D
patch is referred to as an image token. Since various diseases are at
different scales in the CT images, we design amulti-scale CT tokenizer,
which consists of multiple linear embedding layers corresponding to
different sizes of image patches, as shown in Fig. 8a. Each embedding
layer has a linear transformation and a set of learnable positional
embeddings. Each image token embedding is the sum of its linear
transformation and the positional embedding. All sizes of image
tokens aremapped to the same image embedding space. Inspired by61,
we decompose the 3D position embedding into two parts indexing in-
plane and through-plane positions respectively. In other words, we
have twopositional embeddings: one for the 2D spacewithin each slice
and the other for the 1D range of slice position. The 3D positional
embedding is the sum of them. By doing so, the number of learned
parameters can be reduced. Figure 8c shows the image encoder in
detail. Different CT scans may have different physical sizes specific to
the individual patient size. The physical size is an important factor in
some clinical tasks. Thus, we encode the physical size with sine-cosine
functions of different frequencies and add it to the image token
embedding. Then, the image encoder was implemented as in the plain
ViT39 that consists of multiple self-attention Transformer layers and a
subsequent linear transformation layer that maps the image embed-
ding space to the task embedding space. By disentangling physical size
from the image content, we can flexibly perceive any size of CT
volumes with size awareness without resampling CT volumes to have a
consistent image tensor across different inputs.

Empirically, we predefined four scales of embedding layers; i.e.,
the volume size of 16 × 448 × 320with the patch size of 4 × 16 × 16, the
volume size of 128 × 448 × 320 with the patch size of 16 × 16 × 16, the
volumesize of 128× 192× 224with thepatch size of 16 × 16× 16, and the
volume size of 128 × 320 × 448 with the patch size of 16 × 16 × 16, to
encode lung nodule, heart, lung cancer, and other chest abnormalities
respectively. It is worth noting that any prior attention to sub-volumes
can be further applied within each scale by adding the attentionmasks
to all self-attention layers as what is done inNLPmodels62. We used the
bounding boxes of lungs to make the model attend to lungs only in
predicting and characterizing lung nodules. For M3FM-Base, M3FM-
Large, and M3FM-Huge, the numbers of transformer layers are 12, 24,
and 32, and the sizes of image token embeddings are 768, 1,024, and
1,280, respectively.

Text transformer. Any decent language model can be utilized as the
text Transformer in M3FM. Here the text Transformer was imple-
mented as a Byte-level Byte-Pair-Encoding (BBPE) tokenizer62, a text
encoder consisting of the original Transformer layers63 and a linear
transformation layer, as shown in Fig. 8d. On one hand, the text
encoder encodes patient-specific clinical information, such as demo-
graphics, smoking history, disease history, cancer history, and other
clinical data, which are free text; for example: The patient is 56.0 years
old. Gender is Female. Ethnicity is neither Hispanic nor Latino. Height
is 60.0 inches. Weight is 105.0 pounds. Education is associate degree/
some college. Former smoker. Smoking duration is 38.0 pack years.
Smoking intensity is 20.0 cigarettes per day. 2.0 years since quit
smoking. The patient had asthma (childhood) diagnosed at 7.0 years
old. The patient had hypertension diagnosed at 53.0 years old. The
patient had pneumonia diagnosed at 50.0 years old. Patient’s broth-
er(s) (including half-brothers) have lung cancer. On the other hand, the
text encoder encodes free-text task instructions/questions, which are
used as the input of the task encoder to extract task-specific embed-
ding features from the multimodal data; for example: Is there any
significant cardiovascular abnormality? and Predict the lung cancer
risk over 6 years. This approach allows for embedding any combina-
tion of clinical information through free-text prompting, regardless of
order. The control signals for specific tasks are then extracted from the

text prompts by the same text encoder. Again, the linear transforma-
tionmaps the text embedding space to the task embedding space. For
all our M3FMs, the number of Transformer layers is 12, and the size of
text token embeddings is 768. Additionally, we comprehensively
compareddifferentmethods for encoding clinical data in the formatof
an array, format-fixed text, and free-form text respectively. The results
show that encoding clinical data with either format-fixed or free-form
text achieved better results than that with array data. Also, encoding
clinical data into format-fixed and free-form text achieved similar
results. See Supplementary Methods and Supplementary Table 9 for
details.

Task Encoder. Figure 8e illustrates the task encoder to extract task-
specific embedding features from the multimodal token embeddings,
given the special < TASK > token embedding. The task encoder was
implemented withmultiple Transformer layers, treating all tokens as a
single input sequence. Note that only the special < TASK > token is
forwarded to the task encoder and the rest of the question tokens are
ignored, aswe empirically found that the other tokens did not increase
the performance in practice. The special token embedding from the
final Transformer layer serves as the task-specific embedding feature
that integrates all multimodal data. For M3FM-Base, M3FM-Large, and
M3FM-Huge, the number of Transformer layers is 4 in every case, and
the sizes of task token embeddings are 768, 1024, and 1280,
respectively.

Predictors
The Predictors map task-specific embedding features to answers. In
this study, we found that the task-specific predictor can be auto-
matically selected well through the Task ID Predictor, which takes the
< TASK > embedding corresponding to the question text. We imple-
mented all Predictors including the Task ID Predictor as a two-layer
MLP. Different tasks may have different Predictors or shared Pre-
dictors for the same output dimension, such as Yes or No answers.
Similar to language models that regard text generation as the token
classification over a vocabulary, we formulate our answer prediction as
a classification problem over the predefined answer candidates, as
summarized in Fig. 3a, except for a six-year lung cancer risk prediction.
Similar to14, we formulate lung cancer risk prediction as a hazard
regression problem. It is worth mentioning that more types of pre-
diction tasks, such as image segmentation andobject detection, can be
incorporated into M3FM by adding the corresponding lightweight
task-specific predictors as demonstrated in our previous study64.

Self-supervised pretraining
A key step to optimize large models is self-supervised pretraining with
large unlabeled datasets. In this study, we adapted the masked auto-
encoder method61,65 to pretrain our CTViT on our OpenM3Chest pre-
training dataset. Figure 8b shows the CTViT pretraining architecture,
which consists of CTViT, an image decoder, and amulti-scale linear de-
tokenizer. The image encoder was optimized by predicting masked
cubes (85%) from a small number of visible cubes (15%). To reduce the
memory overhead, only some selected slices along the longitude
direction were predicted while recovering each 3D patch. We pre-
trainedCTViTwith thepre-definedmulti-scale 3DCTvolumes and a set
of data augmentation operations, including random cropping, rota-
tion, resizing, and perturbed displaywindowing. The text Transformer
in M3FM was initialized with the off-the-shelf RoBERTa model pre-
trained via masked language modeling and then trained end-to-
end62,66.

Multitask learning
After self-supervised pretraining, M3FM can be trained with any
combination of different tasks with properly selected multimodal
datasets by optimizing multitask loss functions simultaneously. We
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used the sigmoid cross-entropy loss function for the CVD mortality
risk and lung cancer risk prediction tasks and the softmax cross-
entropy loss for all other tasks. As the number of tasks increases, there
is a significant rise in computational cost. To address this problem, we
designed a distributed task-parallel (DTP) training strategy. TDP
assigns each computing device with a single task and a single data
loader while the total number of training samples remains fixed across
all devices for each task. Since M3FM is a unified model capable of
handling various tasks, despite differences in input and output
dimensions, gradients computed across all tasks can be readily accu-
mulated, enabling simultaneous parameter optimization.

Transfer learning
M3FM is designed for adaptability and generalization, enabling the
enhancement of out-of-distribution task performance through trans-
fer learning. This capability extends to out-of-distribution tasks with
varying image input dimensions, clinical data types, and output
dimensions. To accommodate different image dimensions, the addi-
tion of a linear embedding layer suffices. For diverse clinical datasets,
we can simply describe involved clinical data in free text to themodel,
without needing anymodification on theM3FMarchitecture, as shown
in Fig. 7a. Specifically, adjusting to different output dimensions
requires only the inclusion of a lightweight predictor. Consequently,
M3FM can be easily fine-tuned to enable out-of-distribution tasks by
leveraging the pre-trained model parameters.

Training details
We used the AdamW optimizer67, cosine decay learning rate
schedule68, weight decay of 0.05, and automatic mixed precision in
PyTorch for training all models. In pretraining CTViT, the CT volume
was randomly scaled by the factor of [0.5, 2], [0.6, 1.4], and [0.6, 1.4] in
axial, coronal, and sagittal dimensions, with the voxel size accordingly
calculated. Then, on eachGPU a single input size was randomly chosen
from a predefined set of input sizes. The input region of the chosen
size on the current scale was randomly cropped within the whole CT
volume, not limited to the lung and heart regions. The CTViT was pre-
trained for 200K iterations with 10K warmup iterations, the decoder
depth was 2, the voxel values were normalized within each cube in
calculating the MSE loss, the batch size was 192 and the learning rate
was 3.75 × 10−4. In training task-specific models including the transfer
learning, the batch size was 12, and the number of training iterations
was 30Kwith 2Kwarm-up iterations. The learning ratewas 2 × 10−4, and
the layer-wise learning rate decay of 0.95 was used. In multitask
training, the total batch size was 972, including 12 samples for each of
the 17 tasks and 768 samples for the clinical information retrieval tasks.
All CT inputs had a random HU range perturbation, random rotation
degrees, and random padding in training the M3FM models, with the
corresponding hyperparameters in training for different tasks descri-
bed in Supplementary Table 10. Each clinical data element was ran-
domly included with a probability of 0.8.

Hardware requirement
All our models were trained on the AiMOS Supercomputer in the
Center for Computational Innovation at Rensselaer Polytechnic Insti-
tute (https://docs.cci.rpi.edu/clusters/DCS_Supercomputer/). For
CTViT pretraining and multi-task training, we used 192 NVIDIA Tesla
V100 GPUs with 32 GiB of memory each, i.e., 6 GPUs per node × 32
nodes. The CTViT pretraining took around 60 hours. The multi-task
training took about 30hours. For all single-task training andfinetuning,
we used 12 NVIDIA Tesla V100 GPUs with 32 GiB ofmemory each, i.e., 6
GPUs per node × 2 nodes. The single-task training took about 22 hours.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheOpenM3Chest data generated in this study have been deposited in
the Zenodo database under the accession code 14363994. The corre-
sponding image data in the OpenM3Chest can be obtained from NLST
and MIDRC. The deidentified datasets from WFUSM and MGH only
allow restricted access according to the requirements of the institu-
tional review board-approvals and the data sharing regulations as
WFUSMandMGH forbidopen access to their patients’data. Access can
beobtained after the IRB andData SharingCommittee approvals at the
WFUSM, MGH and the requesting institution (details on how to
request access are available from Dr Christopher Whitlow at WFUSM
and Dr Mannudeep Kalra at MGH). Source data are provided with
this paper.

Code availability
The code used in this study is publicly available at https://github.com/
niuchuangnn/M3FM under the MIT License69. The license text is pro-
vided in the repository’s LICENSE file. Attribution and usage terms
comply with the licensing agreement.
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