Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization
Abstract
:1. Introduction
2. Liquefied Natural Gas Technologies
2.1. SMR Processes
2.2. APCI Technologies
2.3. AP-X Technologies
2.4. ConocoPhillips Technologies
2.5. Dual-Stage Mixed Refrigerant Processes
2.6. Mixed Fluid Cascade Processes
2.7. Axens Liquefin Processes
3. Thermodynamic Analysis
3.1. Specific Power Consumption
3.2. Coefficient of Performance
3.3. T-S and P-H Diagrams
3.4. Pinch Technology
3.5. Exergy Analysis
3.6. Equations of State
4. Integrated Process Structures
4.1. Nitrogen Separation from Natural Gas
4.2. LNG/NRU Hybrid Units
4.3. LNG/NGL Hybrid Units
4.4. LNG/NGL/NRU Hybrid Units
4.5. Hybrid Helium Recovery Systems
5. Solutions to Improve LNG System Efficiency
5.1. Process Enhancement Through Various Algorithms
5.2. Multi-Component Refrigerant System in Natural Gas Liquefaction
5.3. Absorption Refrigeration Process
5.4. Thermoelectric Generator Units in LNG Processes
5.5. Liquid Air Cold Recovery in LNG Processes
5.6. Ejector Refrigeration Cycles in LNG Processes
6. Economic, Safety, Risk, and Environmental Perspectives on Liquid Natural Gas
7. Current Status and Future Outlook of Liquid Natural Gas
8. Key Thermodynamic Insights on LNG Units
- The academic literature review on various LNG liquefaction processes provides significant variability in SPC across different technologies. SMR processes were widely utilized in onshore liquefaction plants, with the SPC ranging from 0.22 to 0.48 kWh/kg LNG. Also, the C3MR processes as common technology showed SPC values between 0.2 and 0.41 kWh/kg LNG. The CPOC processes demonstrated an SPC of 0.205–0.341 kWh/kg LNG, although technical reports suggested a slightly higher consumption of 0.324–0.384 kWh/kg LNG. The DMR processes exhibited an SPC of 0.212–0.414 kWh/kg LNG, while the MFC processes recorded an SPC of 0.196–0.423 kWh/kg LNG.
- The MFC process had the lowest SPC, which made it the most energy-efficient option. The DMR and C3MR processes also showed strong energy efficiency, while the SMR processes, though less efficient, maintained acceptable energy consumption compared to others. The SPC for LNG processes indicated that SMR cycles ranged between 0.3 and 0.4 kWh/kg LNG, whereas C3MR, DMR, and MFC cycles had SPCs below 0.3 kWh/kg LNG. Energy and economic analyses revealed discrepancies in expected relationships: more complex liquefaction processes did not necessarily result in lower energy consumption, and energy-efficient processes did not always lead to lower total annualized costs. Although the SMR process consumed the most energy, it remained the most cost-effective.
- Exergy efficiency is an important metric for assessing the performance of LNG liquefaction processes, and it varies among the different technologies. SMR-based LNG processes had reported exergy efficiencies of 30–67.8%, indicating a broad range of performance depending on operational conditions. The C3MR processes that are widely adopted in the industry showed exergy efficiencies of 29.2–65.2%. Also, the DMR processes had documented exergy efficiencies of 28.2–62.3%. Meanwhile, the MFC processes demonstrated a higher efficiency (i.e., 51.8–62.8%), making it one of the more effective options in terms of energy conversion. These findings highlight the importance of optimizing exergy efficiency to enhance overall process performance and reduce operational costs in LNG production.
- The PR, ideal gas law, SRK, BWR, REFPROP database, and Lee–Kesler EOSs were utilized in cryogenic NG liquefaction. The study demonstrated that the PR EOS achieved greater accuracy than the other EOSs. It is particularly effective for phase balance analysis and predicting MRs’ enthalpy and entropy trends. According to the literature findings, the components of the refrigerant mixture should be chosen from a combination of several pure substances with low and high boiling points to cover the wide temperature range required by the process effectively. As the cooling temperature decreases, a mixture with components that have a lower boiling point (and lower molecular weight) should be employed. The design and development of cryogenic cycles using MRs for low-temperature processes involve several important decisions regarding the composition percentages of refrigerant components, operating pressures, temperatures, and the overall arrangement of the cryogenic cycle. Analysis results indicate that the power consumption of refrigeration cycles with a specific arrangement is highly dependent on the operating pressures and the composition percentages of refrigerant components while being less influenced by the sub-cooling temperature parameter. The modified combined and exergy diagrams provide a detailed graphical indication of the cryogenic cycle’s arrangement and its deviation from the optimal configuration, serving as a quality indicator. These diagrams assist in adjusting the structure and arrangement of equipment within the cryogenic cycle to improve efficiency.
9. Summary and Conclusions
- The GSP is commonly employed to maximize C2H6 recovery at minimal cost. Integrating LNG, NGL, and NRU processes involves removing the reboiler and condenser from the demethanizer and N2 removal towers. In this approach, side streams are extracted from various trays of the towers, cooled using multi-stream heat exchangers, and then reintroduced into the tower. This integration of low-temperature NG processes leads to reduced energy consumption and lower operating costs. While this integration simplifies the system by eliminating additional equipment such as reboilers, condensers, and separate refrigeration cycles, it also increases the complexity of the overall structure. Therefore, a detailed economic analysis is essential to assess the investment required for hybrid cryogenic NG liquefaction.
- Helium production processes can be effectively integrated with the final cooling stage in LNG production to enable effective extraction. This integration was designed to minimize energy consumption and simplify the overall system design. The results illustrated that flash-based processes required fewer pieces of equipment and were simpler to configure compared to other methods, such as distillation or a combination of flash evaporation and distillation. This process had a lower SPC and provided an efficient rate of helium extraction.
- Different approaches were employed to improve the performance of cryogenic NG processes. These approaches included using optimization algorithms, MR systems, ARCs, DARCs, ACAR, TEG, liquid air recovery systems, ejector refrigeration cycles, and integration with renewable energies and waste heat recovery. Optimization strategies for LNG units focused on various objectives, including minimizing power consumption, maximizing exergy efficiency, increasing production, reducing operating costs, lowering total annual costs, minimizing environmental impact, improving economic parameters (e.g., profit and net present value), and addressing multi-objective functions. The results illustrated that using ARC, ACAR, DARC, and liquid air recovery cycles instead of CRC cycles for pre-cooling in hybrid cryogenic NG processes reduced SPC and operating costs. However, it is necessary to consider exergy and initial investment cost analyses. Integrating renewable thermal energy (e.g., solar and geothermal) and industrial waste heat with hybrid cryogenic NG process units was possible through three methods: using waste heat in ARC/DARC units, power generation systems, and a combination of ARC/DARC and power generation cycles. Using renewable and industrial waste heat in ARC cycles was found to be more efficient than the other two methods.
- Capital cost estimates found in academic sources (173.2–1184 USD/TPA based on 2024) were considerably lower than those presented in technical reports (486.7–3839 USD/TPA based on 2024). Also, LNG prices calculated in academic studies (0.2–0.45 USD/kg based on 2024) were considerably lower than those presented in technical reports (0.3–0.7 USD/kg based on 2024).
- LNG has significant risks to human health, the environment, and economic stability due to its hazardous properties and the complexities of its storage and transportation. The conversion of NG to LNG reduces its volume, enabling easier transport in specialized insulated containers, but the extremely low temperatures of LNG can cause material degradation and severe injuries. To mitigate these risks, storage and transport infrastructure can use cryogenic materials designed to withstand such conditions. Major risks associated with LNG include fires and explosions that can occur due to leaks and spills, with the severity depending on various factors such as LNG composition and temperature. Different qualitative and quantitative risk assessment methods were employed to evaluate these risks and inform strategic safety frameworks such as risk-based inspection and maintenance. In the USA, multiple federal agencies, including the FERC, PHMSA, and the United States Coast Guard, regulate LNG facilities’ safety and operational integrity. These efforts are supported by industry standards such as NFPA 59A and the Seveso III Directive, which set stringent safety criteria for LNG storage and bunkering operations.
- While Qatar, Iran, and Russia could offer lower-cost LNG, challenges may limit their progress, positioning USA projects as key suppliers and keeping the long-term price around 7 USD/MMBtu. Over 50 LNG projects are competing to fill a 30–60 MTPA supply gap from 2040 onward, with North American projects, costing below 8–9 USD/MMBtu, expected to lead. The 2030–2040 period may be the last chance for new LNG developments due to growing demand through 2050.
- To further this research, examining environmental parameters in the NG transmission supply chain, including different methods such as LNG, CNG, NGH, and gas-to-liquid (GTL) conversion, would be beneficial. Furthermore, updating and reviewing codes and standards related to the physical storage of NG (particularly for LNG and CNG) can be considered. The use of multi-component refrigeration cycles with lower SPC compared to C3MR and CPOC in industrial applications could also be explored.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |
AC | Air cooler |
ACAR | Auto-cascade absorption refrigeration |
ACS | Air cooling system |
ADR | Agreement Concerning the International Carriage of Dangerous Goods by Road |
ADN | European Agreement Concerning the International Carriage of Dangerous Goods by Inland Waterways |
AGRU | Acid gas removal unit |
AP | Air Products |
APCI | Air Products and Chemicals, Inc. |
AP-C3MR | Air Products’ propane pre-cooled mixed refrigerant |
AP-N | Air Products’ nitrogen expansion process |
AP-X | Air Products’ advanced mixed refrigerant |
ARC | Absorption refrigeration cycle |
BAHEs | Brazed Aluminum Heat Exchangers |
BHGE | Baker Hughes General Electric |
BHP | Broken Hill Proprietary Company |
BOG | Boil-off gas |
BOX | Box constraints |
BWR | Benedict–Webb–Rubin |
C3MR | Propane pre-cooled mixed refrigerant |
CAPEXs | Capital costs |
CCs | Composite charts |
CCL | Corpus Christi Liquefaction |
CNG | Compressed natural gas |
COP | Coefficient of performance |
CPEA | Combined pinch and exergy analysis |
CPOC | ConocoPhillips’ optimized cascade |
CRR | Cold residue recycle |
CRS | Compression refrigeration system |
CW | Cooling water |
DARC | Diffusion–absorption refrigeration cycle |
DMR | Dual mixed refrigerant |
DOE | Department of Energy |
DOT | Department of Transportation |
ECC | Exergy composite curve |
EGCC | Exergy grand composite curves |
ELC | Elba Liquefaction Company |
eLNG | Enhanced liquefied natural gas |
EN | European Norm |
EOS | Equation of state |
EPC | Engineering, procurement, and construction |
ETA | Event tree analysis |
EXP | Sole expander-based technology |
FAA | Federal Aviation Administration |
FERC | Federal Energy Regulatory Commission |
FMEA | Failure modes and effects analysis |
FLNG | Floating liquefied natural gas |
FTA | Fault tree analysis |
GA | Genetic algorithm |
GCCs | Grand composite curves |
GHG | Greenhouse gas |
GSP | Gas sub-cooled process |
GTL | Gas to liquid |
HCs | Hydrocarbons |
HeXU | Helium extraction unit |
HHP | High–high-pressure propane |
HP | High pressure |
IGC Code | International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk |
IGF Code | International Code of Safety for Ships Using Gases or Other Low-Flashpoint Fuels |
ISO | International Organization for Standardization |
JT | Joule–Thomson |
JKM | Japan Korea Marker |
KBR | Kellogg Brown & Root |
LCAs | Life cycle assessments |
LHV | Lower heating value |
LINMAP | Linear programming technique for multidimensional analysis of preference |
LIMUM | Linde Multi-Stage Mixed Refrigerant process |
LNG | Liquefied natural gas |
LP | Low pressure |
LPG | Liquefied petroleum gas |
Merox | Mercaptan oxidation process |
MFC | Mixed fluid cascade |
MINLP | Mixed-integer nonlinear programming |
MP | Medium pressure |
MLNG | Malaysia LNG |
MMSCFD | Million standard cubic feet per day |
MR | Mixed refrigerant |
MRU | Mercury removal unit |
MTPA | Million tons per annum |
NFPA | National Fire Protection Association |
NG | Natural gas |
NGH | Natural gas hydrate |
NGL | Natural gas liquid |
NIST | National Institute of Standards and Technology |
NLP | Nonlinear programming |
NRC | Nuclear Regulatory Commission |
NRU | Nitrogen removal unit |
NSGAII | Non-dominated sorting genetic algorithm II |
OPEXs | Operational costs |
ORC | Organic Rankine cycle |
P-H | Pressure–enthalpy |
PCMR | Pre-cooled Mixed Refrigerant Process |
PFLNG | Petronas floating liquefied natural gas |
PFHE | Plate-fin heat exchanger |
PHMSA | Pipeline and Hazardous Materials Safety Administration |
PMR | Pure mixed refrigerant |
PR | Peng–Robinson |
PRICO | Peak-shaving Refrigerated Inlet Cascade Operation |
PSA | Pressure swing adsorption |
PSRK | Predictive Soave–Redlich–Kwong |
PSO | Particle swarm optimization |
RBI | Risk-based inspection |
RBIM | Risk-based integrity management |
RBM | Risk-based maintenance |
REFPROPs | Refrigerant properties |
RR | Residue recycle |
SLNG | Southern LNG Company |
SMR | Single mixed refrigerant |
SPC | Specific power consumption |
SQP | Sequential quadratic programming |
SRK | Soave–Redlich–Kwong |
Sulfrex | Sulfur removal technology |
SW | Seawater |
SWHE | Spiral-wound heat exchanger |
TEG | Thermoelectric generator |
TE | Turbo-expander |
TEALARC | Thermally Efficient Auto-Refrigerated Cascade |
TOPSIS | Technique for order of preference by similarity to ideal solution |
T-S | Temperature–entropy |
TTF | Title Transfer Facility |
UCCI | Upstream Capital Costs Index |
UK | United Kingdom |
USA | United States |
Variables/Letters | |
Ci/Ki | Compressor i |
C2/C2H6 | Ethane |
C₂⁺ | Ethane and heavier hydrocarbons |
C3/C3H8 | Propane |
C4/C4H10 | Butane |
C5/C5H12 | Pentane |
C1/CH4 | Methane |
CO2 | Carbon dioxide |
CS2 | Carbon disulfide |
Di/Fi | Flash drum i |
Ei | Heat exchanger i/evaporator i |
GT | Gas turbine |
H2 | Hydrogen |
H2O | Water |
H2S | Hydrogen sulfide |
He | Helium |
Qabs | Heat released in the absorber |
Qcon | Heat rejected in the condenser |
Qevap | Heat absorbed in the evaporator |
Qgen | Heat supplied to the generator |
Qrec | Heat recovery in the rectifier |
M | Motor |
N2 | Nitrogen |
NH3 | Ammonia |
SOx | Sulfur oxides |
Ti | Tower i |
Vi | Valve i |
References
- Speight, J.G. Handbook of Natural Gas Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 9781119240280. [Google Scholar] [CrossRef]
- Shingan, B.; Timung, S.; Jain, S.; Singh, V.P. Technological horizons in natural gas processing: A comprehensive review of recent developments. Sep. Sci. Technol. 2024, 59, 1216–1240. [Google Scholar] [CrossRef]
- Poe, W.; Mokhatab, S. Introduction to natural gas processing plants. In Modeling, Control, and Optimization of Natural Gas Processing Plants; Gulf Professional Publishing: Cambridge, MA, USA; Oxford, UK, 2017; pp. 1–72. [Google Scholar]
- Li, Q.; Li, Q.; Wu, J.; Li, X.; Li, H.; Cheng, Y. Wellhead Stability During Development Process of Hydrate Reservoir in the Northern South China Sea: Evolution and Mechanism. Processes 2024, 13, 40. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Cao, H.; Wu, J.; Wang, F.; Wang, Y. The Crack Propagation Behaviour of CO2 Fracturing Fluid in Unconventional Low Permeability Reservoirs: Factor Analysis and Mechanism Revelation. Processes 2025, 13, 159. [Google Scholar] [CrossRef]
- Sharanik, J.; Duri, M.; Hadjistassou, C. Liquefied natural gas (LNG). In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2024; pp. 871–892. [Google Scholar]
- Speight, J. 6-History of gas processing. In Natural Gas, 2nd ed.; Gulf Professional Publishing: Boston, MA, USA, 2019; pp. 189–218. ISBN 978-0-12-809570-6. [Google Scholar] [CrossRef]
- Khan, M.S.; Karimi, I.A.; Wood, D.A. Retrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: A review. J. Nat. Gas Sci. Eng. 2017, 45, 165–188. [Google Scholar] [CrossRef]
- Papavinasam, S. Oil and gas industry network. In Corrosion Control in the Oil and Gas Industry; Elsevier: London, UK; Waltham, MA, USA; San Diego, CA, USA, 2014; pp. 41–131. ISBN 978-0-12-397022-0. [Google Scholar] [CrossRef]
- Riazi, M.; Eser, S.; Agrawal, S.S.; Díez, J.P. Petroleum Refining and Natural Gas Processing; ASTM International: West Conshohocken, PA, USA, 2013; ISBN 978-0-8031-7022-3. [Google Scholar] [CrossRef]
- Mohamadi-Baghmolaei, M.; Hajizadeh, A.; Zendehboudi, S.; Duan, X.; Shiri, H.; Cata Saady, N.M. Exergy and exergoeconomic assessment of an acid gas removal unit in a gas refinery plant. Ind. Eng. Chem. Res. 2021, 60, 14591–14612. [Google Scholar] [CrossRef]
- Natural Gas Processing. Pennsylvania State University. Available online: https://www.e-education.psu.edu/fsc432/content/natural-gas-processing (accessed on 1 February 2025).
- Kondori, J.; Zendehboudi, S.; Hossain, M.E. A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective. J. Pet. Sci. Eng. 2017, 159, 754–772. [Google Scholar] [CrossRef]
- Ghorbani, B.; Hamedi, M.-H.; Amidpour, M. Development and optimization of an integrated process configuration for natural gas liquefaction (LNG) and natural gas liquids (NGL) recovery with a nitrogen rejection unit (NRU). J. Nat. Gas Sci. Eng. 2016, 34, 590–603. [Google Scholar] [CrossRef]
- Ghorbani, B.; Hamedi, M.-H.; Amidpour, M.; Shirmohammadi, R. Implementing absorption refrigeration cycle in lieu of DMR and C3MR cycles in the integrated NGL, LNG and NRU unit. Int. J. Refrig. 2017, 77, 20–38. [Google Scholar] [CrossRef]
- Ghorbani, B.; Hamedi, M.-H.; Amidpour, M. Exergoeconomic evaluation of an integrated nitrogen rejection unit with LNG and NGL Co-Production processes based on the MFC and absorbtion refrigeration systems. Gas Process. J. 2016, 4, 1–28. [Google Scholar]
- Ebrahimi, A.; Ghorbani, B.; Skandarzadeh, F.; Ziabasharhagh, M. Integrated LNG/NRU Configuration with the Biomass Gasification Unit and Absorption-Compression Refrigeration System. Waste Biomass Valorization 2022, 13, 1731–17488. [Google Scholar] [CrossRef]
- Ghorbani, B.; Shirmohammadi, R.; Mehrpooya, M. A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles—Economic and exergy analyses. Appl. Therm. Eng. 2018, 132, 283–295. [Google Scholar] [CrossRef]
- Naquash, A.; Riaz, A.; Qyyum, M.A.; Aziz, M.; Assareh, E.; Lee, M. Liquid hydrogen storage and regasification process integrated with LNG, NGL, and liquid helium production. Renew. Energy 2023, 213, 165–175. [Google Scholar] [CrossRef]
- Khan, M.S.; Chaniago, Y.D.; Getu, M.; Lee, M. Energy saving opportunities in integrated NGL/LNG schemes exploiting: Thermal-coupling common-utilities and process knowledge. Chem. Eng. Process. Process Intensif. 2014, 82, 54–64. [Google Scholar] [CrossRef]
- Jin, C.; Lim, Y. Optimization and economic evaluation of integrated natural gas liquids (NGL) and liquefied natural gas (LNG) processing for lean feed gas. Appl. Therm. Eng. 2019, 149, 1265–1273. [Google Scholar] [CrossRef]
- Vatani, A.; Mehrpooya, M.; Tirandazi, B. A novel process configuration for co-production of NGL and LNG with low energy requirement. Chem. Eng. Process. Process Intensif. 2013, 63, 16–24. [Google Scholar] [CrossRef]
- Kim, D.; Gundersen, T. Use of exergy efficiency for the optimization of LNG processes with NGL extraction. Energy 2020, 197, 117232. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Hossieni, M.; Vatani, A. Novel LNG-based integrated process configuration alternatives for coproduction of LNG and NGL. Ind. Eng. Chem. Res. 2014, 53, 17705–17721. [Google Scholar] [CrossRef]
- He, T.; Ju, Y. Design and optimization of a novel mixed refrigerant cycle integrated with NGL recovery process for small-scale LNG plant. Ind. Eng. Chem. Res. 2014, 53, 5545–5553. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mehrpooya, M.; Ghasemzadeh, H. Investigation of a hybrid water desalination, oxy-fuel power generation, and CO₂ liquefaction process. Energy 2018, 158, 1105–1119. [Google Scholar] [CrossRef]
- Ghorbani, B.; Shirmohammadi, R.; Mehrpooya, M.; Mafi, M. Applying an integrated trigeneration incorporating hybrid energy systems for natural gas liquefaction. Energy 2018, 149, 848–864. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mehrpooya, M.; Omid, E. Hybrid solar liquefied natural gas, post combustion carbon dioxide capture and liquefaction. Energy Convers. Manag. 2020, 207, 112512. [Google Scholar] [CrossRef]
- Smith, E.C. Some Pioneers of Refrigeration. Trans. Newcom. Soc. 1942, 23, 99–107. [Google Scholar] [CrossRef]
- Almqvist, E. Industrial Gases: Background. In History of Industrial Gases; Springer: New York, USA, 2003; pp. 47–135. [Google Scholar]
- Damu, D.A.J. The Study of Interchangeability in Liquefied Natural Gas (LNG) in Comparison to Other Fuels. Bachelor’s Thesis, Universiti Malaysia, Pahang, Malaysia, 2010. [Google Scholar]
- Hrastar, J. Liquid Natural Gas in the United States: A History; McFarland: Jefferson, NC, USA, 2014. [Google Scholar]
- Adriatic LNG Energy for Better Future. Available online: https://www.adriaticlng.it/en/the-terminal/why-lng/lng-history (accessed on 1 February 2025).
- Marston, J.C. An Assessment of LPG Tanker Operating Regulations in the Port of Vancouver, BC. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 1982. [Google Scholar]
- Grigas, A. The New Geopolitics of Natural Gas; Harvard University Press: Cambridge, MA, USA; London, UK, 2017; ISBN 9780674971837. [Google Scholar]
- Tahchi, B. Algerian gas to strengthen energy security of the European Union: Policy, capacity and strategy. Energy Rep. 2024, 11, 3600–3613. [Google Scholar] [CrossRef]
- Himri, Y.; Rehman, S.; Mostafaeipour, A.; Himri, S.; Mellit, A.; Merzouk, M.; Merzouk, N.K. Overview of the role of energy resources in Algeria’s energy transition. Energies 2022, 15, 4731. [Google Scholar] [CrossRef]
- Furda, P.; Variny, M.; Labovská, Z. Towards time-effective optimization: Enviro-economic study of the C3MR LNG process. Energy Convers. Manag. 2022, 260, 115602. [Google Scholar] [CrossRef]
- 2024 World LNG Report, Published on 26 June 2024. Available online: https://maritimecyprus.com/wp-content/uploads/2024/06/IGU-2024-LNG-Report_c.pdf (accessed on 1 February 2025).
- Air Products & Chemicals Inc. Large to Mega-Scale LNG Plant Processes and Equipment. 2021. Available online: https://www.airproducts.com/equipment/large-scale-lng-plants (accessed on 1 February 2025).
- U.S. Department of Energy. Global LNG Fundamentals. Award Number DE-FE0024160. 2018. Available online: https://www.energy.gov/sites/prod/files/2018/03/f49/Global%20LNG%20Fundamentals%2C%20Updated%203.15.18.pdf (accessed on 1 February 2025).
- Air Products & Chemicals Inc. Mid-Scale LNG Plant Processes and Equipment. 2021. Available online: https://www.airproducts.com/equipment/mid-scale-lng-plants (accessed on 1 February 2025).
- Air Products & Chemicals Inc. Floating LNG Plants Processes and Equipment. 2021. Available online: https://www.airproducts.com/equipment/floating-lng-plants (accessed on 1 February 2025).
- Rodgers, P.; Mortazavi, A.; Eveloy, V.; Al-Hashimi, S.; Hwang, Y.; Radermacher, R. Enhancement of LNG plant propane cycle through waste heat powered absorption cooling. Appl. Therm. Eng. 2012, 48, 41–53. [Google Scholar] [CrossRef]
- He, Y.; Li, R.; Chen, G.; Wang, Y. A potential auto-cascade absorption refrigeration system for pre-cooling of LNG liquefaction. J. Nat. Gas Sci. Eng. 2015, 24, 425–430. [Google Scholar] [CrossRef]
- Ghorbani, B.; Roshani, H. Advanced exergy and exergoeconomic analysis of the integrated structure of simultaneous production of NGL recovery and liquefaction. Chall. Nano Micro Scale Sci. Technol. 2018, 6, 8–14. [Google Scholar]
- Park, J.H.; Khan, M.S.; Andika, R.; Getu, M.; Bahadori, A.; Lee, M. Techno-economic evaluation of a novel NGL recovery scheme with nine patented schemes for offshore applications. J. Nat. Gas Sci. Eng. 2015, 27, 2–17. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Ghorbani, B. Chapter 3-Physical-Based Hydrogen Storage, Hydrogen Production, Transportation, Storage, and Utilization; Elsevier: Amsterdam, The Netherlands; London, UK; Cambridge, MA, USA, 2025. [Google Scholar]
- Nikkho, S.; Abbasi, M.; Zahirifar, J.; Saedi, M.; Vatani, A. Energy and exergy investigation of two modified single mixed refrigerant processes for natural gas liquefaction. Comput. Chem. Eng. 2020, 140, 106854. [Google Scholar] [CrossRef]
- Ali, W.; Khan, M.S.; Qyyum, M.A.; Lee, M. Surrogate-assisted modeling and optimization of a natural-gas liquefaction plant. Comput. Chem. Eng. 2018, 118, 132–142. [Google Scholar] [CrossRef]
- Ghorbani, B.; Hamedi, M.-H.; Amidpour, M.; Mehrpooya, M. Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU)). Energy 2016, 115, 88–106. [Google Scholar] [CrossRef]
- Ransbarger, W.L.; Ortego, J.D., Jr. Enhanced Nitrogen Removal in an LNG Facility. U.S. Patent 9,528,759, 27 December 2016. [Google Scholar]
- Davis, R.A.; Herron, D.M.; Pervier, J.W.; Vines, H.L. Nitrogen Rejection from Natural Gas Integrated with NGL Recovery. U.S. Patent 4,504,295, 12 March 1985. [Google Scholar]
- McNeil, B.A.; Evans, M.H. Dual Column Process to Remove Nitrogen from Natural Gas. U.S. Patent 5,617,741, 8 April 1997. [Google Scholar]
- Ghorbani, B.; Mafi, M.; Shirmohammadi, R.; Hamedi, M.-H.; Amidpour, M. Optimization of operation parameters of refrigeration cycle using particle swarm and NLP techniques. J. Nat. Gas Sci. Eng. 2014, 21, 779–790. [Google Scholar] [CrossRef]
- Ghorbani, B.; Hamedi, M.-H.; Shirmohammadi, R.; Hamedi, M.; Mehrpooya, M. Exergoeconomic analysis and multi-objective Pareto optimization of the C3MR liquefaction process. Sustain. Energy Technol. Assess. 2016, 17, 56–67. [Google Scholar] [CrossRef]
- Ghorbani, B.; Salehi, G.R.; Ghaemmaleki, H.; Amidpour, M.; Hamedi, M.H. Simulation and optimization of refrigeration cycle in NGL recovery plants with exergy-pinch analysis. J. Nat. Gas Sci. Eng. 2012, 7, 35–43. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Omidi, M.; Vatani, A. Novel mixed fluid cascade natural gas liquefaction process configuration using absorption refrigeration system. Appl. Therm. Eng. 2016, 98, 591–604. [Google Scholar] [CrossRef]
- Ansarinasab, H.; Mehrpooya, M. Advanced exergoeconomic analysis of a novel process for production of LNG by using a single effect absorption refrigeration cycle. Appl. Therm. Eng. 2017, 114, 719–732. [Google Scholar] [CrossRef]
- Niasar, M.S.; Amidpour, M. Conceptual design and exergy analysis of an integrated structure of natural gas liquefaction and production of liquid fuels from natural gas using Fischer-Tropsch synthesis. Cryogenics 2018, 89, 29–41. [Google Scholar] [CrossRef]
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D. Handbook of Liquefied Natural Gas; Gulf Professional Publishing: Oxford, UK, 2013; ISBN 978-0-12-404585-9. [Google Scholar] [CrossRef]
- Sakmar, S.L. Energy for the 21st Century: Opportunities and Challenges for Liquefied Natural Gas (LNG); New Horizons in Environmental and Energy Law Series; Edward Elgar Publishing: Cheltenham, UK, 2013; ISBN 9781849804219. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghorbani, B. Introducing a hybrid oxy-fuel power generation and natural gas/carbon dioxide liquefaction process with thermodynamic and economic analysis. J. Clean. Prod. 2018, 204, 1016–1033. [Google Scholar] [CrossRef]
- Zhang, J.; Meerman, H.; Benders, R.; Faaij, A. Comprehensive review of current natural gas liquefaction processes on technical and economic performance. Appl. Therm. Eng. 2020, 166, 114736. [Google Scholar] [CrossRef]
- Ammar Taqvi, S.A.; Sarfaraz, B. 1—Introduction to natural gas storage and transportation technologies. In Advances in Natural Gas: Formation, Processing, and Applications. Volume 6: Natural Gas Transportation and Storage; Rahimpour, M.R., Makarem, M.A., Meshksar, M., Eds.; Elsevier: Amsterdam, The Netherlands; London, UK; Cambridge, MA, USA, 2024; pp. 3–22. [Google Scholar]
- Cao, Y.; Mohammadian, M.; Pirouzfar, V.; Su, C.-H.; Khan, A. Break Even Point analysis of liquefied natural gas process and optimization of its refrigeration cycles with technical and economic considerations. Energy 2021, 237, 121643. [Google Scholar] [CrossRef]
- Hashemzehi, M.; Pirouzfar, V.; Nayebzadeh, H.; Alihosseini, A. Effect of synthesizing conditions on the activity of zinc-copper aluminate nanocatalyst prepared by microwave combustion method used in the esterification reaction. Fuel 2020, 263, 116422. [Google Scholar] [CrossRef]
- Mokhatab, S.; Economides, M.J. Onshore LNG production process selection. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–27 September 2006; p. SPE-102160-MS. [Google Scholar]
- Kakaee, A.-H.; Paykani, A.; Ghajar, M. The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines. Renew. Sustain. Energy Rev. 2014, 38, 64–78. [Google Scholar] [CrossRef]
- Kumar, S.; Kwon, H.-T.; Choi, K.-H.; Lim, W.; Cho, J.H.; Tak, K.; Moon, I. LNG: An eco-friendly cryogenic fuel for sustainable development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Chamberlain, G.; Global, S.; Solutions, U.; de Groot, M. Management of large LNG hazards. In Proceedings of the International Gas Union World Gas Conference Papers, Amsterdam, The Netherlands, 5–9 June 2006; pp. 5–9. [Google Scholar]
- Hwang, J.-H.; Ku, N.-K.; Roh, M.-I.; Lee, K.-Y. Optimal design of liquefaction cycles of liquefied natural gas floating, production, storage, and offloading unit considering optimal synthesis. Ind. Eng. Chem. Res. 2013, 52, 5341–5356. [Google Scholar] [CrossRef]
- Lee, I.; Park, J.; Moon, I. Key issues and challenges on the liquefied natural gas value chain: A review from the process systems engineering point of view. Ind. Eng. Chem. Res. 2017, 57, 5805–5818. [Google Scholar]
- Lin, Z.-h.; Li, J.-y.; Jin, Z.-j.; Qian, J.-y. Fluid dynamic analysis of liquefied natural gas flow through a cryogenic ball valve in liquefied natural gas receiving stations. Energy 2021, 226, 120376. [Google Scholar] [CrossRef]
- Çelikaslan, Z.; Kılıç, A. Safety precautions for the use of LNG as marine fuel. J. Marit. Transp. Logist. 2023, 4, 11–22. [Google Scholar]
- Chandel, S.S.; Agarwal, T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew. Sustain. Energy Rev. 2017, 67, 581–596. [Google Scholar] [CrossRef]
- Gómez, M.R.; Gómez, J.R.; López-González, L.M.; López-Ochoa, L.M. Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture. Energy 2016, 105, 32–44. [Google Scholar]
- Querol, E.; Gonzalez-Regueral, B.; García-Torrent, J.; Ramos, A. Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal. Appl. Energy 2011, 88, 2382–2390. [Google Scholar] [CrossRef]
- Cheenkachorn, K.; Poompipatpong, C.; Ho, C.G. Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas). Energy 2013, 53, 52–57. [Google Scholar]
- Querol, E.; Gonzalez-Regueral, B.; García-Torrent, J.; García-Martínez, M. Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals. Appl. Energy 2010, 87, 3384–3392. [Google Scholar]
- Fernández, I.A.; Gómez, M.R.; Gómez, J.R.; Insua, Á.B. Review of propulsion systems on LNG carriers. Renew. Sustain. Energy Rev. 2017, 67, 1395–1411. [Google Scholar] [CrossRef]
- Dobrota, Đ.; Lalić, B.; Komar, I. Problem of boil-off in LNG supply chain. Trans. Marit. Sci. 2013, 2, 91–100. [Google Scholar]
- Yu, Y.H.; Kim, B.G. Cryogenic reliability of the sandwich insulation board for LNG ship. Compos. Struct. 2013, 95, 547–556. [Google Scholar] [CrossRef]
- Miana, M.; Del Hoyo, R.; Rodrigálvarez, V.; Valdés, J.R.; Llorens, R. Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation. Appl. Energy 2010, 87, 1687–1700. [Google Scholar]
- Barclay, M.; Shukri, T. Enhanced single mixed refrigerant process for stranded gas liquefaction. In Proceedings of the 79th Annual GPA Convention, Atlanta, GA, USA, 13–14 March 2000. [Google Scholar]
- Xu, X.; Liu, J.; Jiang, C.; Cao, L. The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process. Applied Energy 2013, 102, 1127–1136. [Google Scholar] [CrossRef]
- PRICO® LNG Technology. Delivering Proven Solutions for over 50 Year. Available online: https://webassets.bv.com/2020-09/20%20OG%20PRICO%20LNG%20Tech%20Brochure%20WEB.pdf (accessed on 1 February 2025).
- Lim, W.; Lee, I.; Tak, K.; Cho, J.H.; Ko, D.; Moon, I. Efficient configuration of a natural gas liquefaction process for energy recovery. Ind. Eng. Chem. Res. 2014, 53, 1973–1985. [Google Scholar]
- Xiong, X.; Lin, W.; Gu, A. Design and optimization of offshore natural gas liquefaction processes adopting PLNG (pressurized liquefied natural gas) technology. J. Nat. Gas Sci. Eng. 2016, 30, 379–387. [Google Scholar]
- Pham, T.N.; Long, N.V.D.; Lee, S.; Lee, M. Enhancement of single mixed refrigerant natural gas liquefaction process through process knowledge inspired optimization and modification. Appl. Therm. Eng. 2017, 110, 1230–1239. [Google Scholar] [CrossRef]
- Tak, K.; Lee, I.; Kwon, H.; Kim, J.; Ko, D.; Moon, I. Comparison of multistage compression configurations for single mixed refrigerant processes. Ind. Eng. Chem. Res. 2015, 54, 9992–10000. [Google Scholar]
- Qyyum, M.A.; Minh, L.Q.; Ali, W.; Hussain, A.; Bahadori, A.; Lee, M. Feasibility study of environmental relative humidity through the thermodynamic effects on the performance of natural gas liquefaction process. Appl. Therm. Eng. 2018, 128, 51–63. [Google Scholar] [CrossRef]
- Park, K.; Won, W.; Shin, D. Effects of varying the ambient temperature on the performance of a single mixed refrigerant liquefaction process. J. Nat. Gas Sci. Eng. 2016, 34, 958–968. [Google Scholar] [CrossRef]
- Lee, S.; Long, N.V.D.; Lee, M. Design and optimization of natural gas liquefaction and recovery processes for offshore floating liquefied natural gas plants. Ind. Eng. Chem. Res. 2012, 51, 10021–10030. [Google Scholar]
- Pham, T.N.; Khan, M.S.; Minh, L.Q.; Husmil, Y.A.; Bahadori, A.; Lee, S.; Lee, M. Optimization of modified single mixed refrigerant process of natural gas liquefaction using multivariate Coggin’s algorithm combined with process knowledge. J. Nat. Gas Sci. Eng. 2016, 33, 731–741. [Google Scholar] [CrossRef]
- Na, J.; Lim, Y.; Han, C. A modified DIRECT algorithm for hidden constraints in an LNG process optimization. Energy 2017, 126, 488–500. [Google Scholar]
- Xu, X.; Liu, J.; Cao, L. Optimization and analysis of mixed refrigerant composition for the PRICO natural gas liquefaction process. Cryogenics 2014, 59, 60–69. [Google Scholar] [CrossRef]
- Mokarizadeh Haghighi Shirazi, M.; Mowla, D. Energy optimization for liquefaction process of natural gas in peak shaving plant. Energy 2010, 35, 2878–2885. [Google Scholar] [CrossRef]
- Lee, G.-C. Optimal Design and Anaylysis of Refrigeration Systems for Low Temperature Processes. Ph.D. Thesis, The University of Manchester, University, UK, 2001. [Google Scholar]
- Khan, M.S.; Lee, M. Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints. Energy 2013, 49, 146–155. [Google Scholar] [CrossRef]
- Aspelund, A.; Gundersen, T.; Myklebust, J.; Nowak, M.P.; Tomasgard, A. An optimization-simulation model for a simple LNG process. Comput. Chem. Eng. 2010, 34, 1606–1617. [Google Scholar] [CrossRef]
- Khan, M.S.; Lee, S.; Lee, M. Optimization of single mixed refrigerant natural gas liquefaction plant with nonlinear programming. Asia-Pac. J. Chem. Eng. 2012, 7, S62–S70. [Google Scholar] [CrossRef]
- Khan, M.S.; Karimi, I.A.; Bahadori, A.; Lee, M. Sequential coordinate random search for optimal operation of LNG (liquefied natural gas) plant. Energy 2015, 89, 757–767. [Google Scholar] [CrossRef]
- Austbø, B.; Wahl, P.E.; Gundersen, T. Constraint handling in stochastic optimization algorithms for natural gas liquefaction processes. In Computer Aided Chemical Engineering; Kraslawski, A., Turunen, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 32, pp. 445–450. [Google Scholar]
- Park, J.H.; Khan, M.S.; Lee, M. Modified coordinate descent methodology for solving process design optimization problems: Application to natural gas plant. J. Nat. Gas Sci. Eng. 2015, 27, 32–41. [Google Scholar] [CrossRef]
- Khan, M.S.; Lee, S.; Rangaiah, G.P.; Lee, M. Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes. Appl. Energy 2013, 111, 1018–1031. [Google Scholar] [CrossRef]
- Lee, G.; Smith, R.; Zhu, X. Optimal synthesis of mixed-refrigerant systems for low-temperature processes. Ind. Eng. Chem. Res. 2002, 41, 5016–5028. [Google Scholar]
- Mofid, H.; Khosravi-Nikou, M.R.; Razavi, S.A.; Mohammadian, M. Optimization and design selection of a single mixed refrigerant (SMR) liquefaction process for offshore application: A multi-objective approach. Appl. Therm. Eng. 2024, 245, 122810. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Long, N.V.D.; Minh, L.Q.; Lee, M. Design optimization of single mixed refrigerant LNG process using a hybrid modified coordinate descent algorithm. Cryogenics 2018, 89, 131–140. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Yasin, M.; Nawaz, A.; He, T.; Ali, W.; Haider, J.; Qadeer, K.; Nizami, A.-S.; Moustakas, K.; Lee, M. Single-Solution-Based Vortex Search Strategy for Optimal Design of Offshore and Onshore Natural Gas Liquefaction Processes. Energies 2020, 13, 1732. [Google Scholar] [CrossRef]
- Rehman, A.; Qyyum, M.A.; Qadeer, K.; Zakir, F.; He, X.; Nawaz, A.; Lee, M.; Wang, L. Single mixed refrigerant LNG process: Investigation of improvement potential, operational optimization, and real potential for further improvements. J. Clean. Prod. 2021, 284, 125379. [Google Scholar] [CrossRef]
- He, T.; Liu, Z.; Ju, Y.; Parvez, A.M. A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant. Energy 2019, 167, 1–12. [Google Scholar] [CrossRef]
- Almeida-Trasvina, F.; Smith, R.; Jobson, M. Development of an energy-efficient single mixed refrigerant cycle for small-scale LNG production. Ind. Eng. Chem. Res. 2021, 60, 12049–12067. [Google Scholar] [CrossRef]
- He, T.; Zhou, Z.; Mao, N.; Qyyum, M.A. Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization. Energy 2024, 294, 130893. [Google Scholar] [CrossRef]
- Martin, P.-Y.; Pigourier, J.; Fischer, B. Natural gas liquefaction processes comparison. In Proceedings of the 14th International Conference and Exhibition on Liquefied Natural Gas (LNG-14), Doha, Qatar, 21–24 March 2004; pp. 21–24. [Google Scholar]
- Lim, W.; Choi, K.; Moon, I. Current Status and Perspectives of Liquefied Natural Gas (LNG) Plant Design. Ind. Eng. Chem. Res. 2013, 52, 3065–3088. [Google Scholar] [CrossRef]
- Won, W.; Lee, S.K.; Choi, K.; Kwon, Y. Current trends for the floating liquefied natural gas (FLNG) technologies. Korean J. Chem. Eng. 2014, 31, 732–743. [Google Scholar] [CrossRef]
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D.A. (Eds.) Chapter 3—Natural Gas Liquefaction. In Handbook of Liquefied Natural Gas; Gulf Professional Publishing: Boston, MA, USA, 2014; pp. 147–183. [Google Scholar]
- Changizian, M.; Shirkhani, Z.; Tamsilian, Y. Exploring Efficiency: An In-Depth Analysis of the Energy, Exergy, and Sensitivity in Four Traditional Liquefied Natural Gas Processes. J. Therm. Anal. Calorim. 2024, 149, 9477–9499. [Google Scholar] [CrossRef]
- Zhang, S.; Zou, Z.; Klemeš, J.J.; Varbanov, P.S.; Shahzad, K.; Ali, A.M.; Wang, B.-H. A New Strategy for Mixed Refrigerant Composition Optimisation in the Propane Precooled Mixed Refrigerant Natural Gas Liquefaction Process. Energy 2023, 274, 127324. [Google Scholar] [CrossRef]
- Mortazavi, A.; Somers, C.; Hwang, Y.; Radermacher, R.; Rodgers, P.; Al-Hashimi, S. Performance enhancement of propane pre-cooled mixed refrigerant LNG plant. Appl. Energy 2012, 93, 125–131. [Google Scholar] [CrossRef]
- Wang, M.; Khalilpour, R.; Abbas, A. Thermodynamic and economic optimization of LNG mixed refrigerant processes. Energy Convers. Manag. 2014, 88, 947–961. [Google Scholar] [CrossRef]
- Sanavandi, H.; Ziabasharhagh, M. Design and comprehensive optimization of C3MR liquefaction natural gas cycle by considering operational constraints. J. Nat. Gas Sci. Eng. 2016, 29, 176–187. [Google Scholar] [CrossRef]
- Wang, M.; Khalilpour, R.; Abbas, A. Operation optimization of propane precooled mixed refrigerant processes. J. Nat. Gas Sci. Eng. 2013, 15, 93–105. [Google Scholar] [CrossRef]
- Lee, I.; Tak, K.; Lee, S.; Ko, D.; Moon, I. Decision making on liquefaction ratio for minimizing specific energy in a LNG pilot plant. Ind. Eng. Chem. Res. 2015, 54, 12920–12927. [Google Scholar] [CrossRef]
- Khan, N.B.N.; Barifcani, A.; Tade, M.; Pareek, V. A case study: Application of energy and exergy analysis for enhancing the process efficiency of a three stage propane pre-cooling cycle of the cascade LNG process. J. Nat. Gas Sci. Eng. 2016, 29, 125–133. [Google Scholar] [CrossRef]
- Song, C.; Tan, S.; Qu, F.; Liu, W.; Wu, Y. Optimization of mixed refrigerant system for LNG processes through graphically reducing exergy destruction of cryogenic heat exchangers. Energy 2019, 168, 200–206. [Google Scholar] [CrossRef]
- Sanavandi, H.; Mafi, M.; Ziabasharhagh, M. Normalized sensitivity analysis of LNG processes—Case studies: Cascade and single mixed refrigerant systems. Energy 2019, 188, 116068. [Google Scholar] [CrossRef]
- Primabudi, E.; Morosuk, T.; Tsatsaronis, G. Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process. Energy 2019, 185, 492–504. [Google Scholar] [CrossRef]
- Santos, L.F.; Costa, C.B.; Caballero, J.A.; Ravagnani, M.A. Framework for embedding process simulator in GAMS via kriging surrogate model applied to C3MR natural gas liquefaction optimization. Chem. Eng. Trans. 2021, 88, 475–480. [Google Scholar] [CrossRef]
- He, T.; Lin, W. Energy saving and production increase of mixed refrigerant natural gas liquefaction plants by taking advantage of natural cold sources in winter. J. Clean. Prod. 2021, 299, 126884. [Google Scholar] [CrossRef]
- Semyonov, V.Y.; Alikov, S. Comparison of C3MR and Arctic Cascade Cycles for Operation in Arctic Conditions Using Entropy-Statistical Analysis Method. Chem. Pet. Eng. 2022, 58, 23–32. [Google Scholar] [CrossRef]
- Sun, H.; Geng, J.; Na, F.; Rong, G.; Wang, C. Performance evaluation and comparison of commonly used optimization algorithms for natural gas liquefaction processes. Energy Rep. 2022, 8, 4787–4800. [Google Scholar] [CrossRef]
- Chang, H.-M.; Park, J.H.; Gwak, K.H.; Choe, K.H. Nitrogen expander cycles for large capacity liquefaction of natural gas. AIP Conf. Proc. 2014, 1573, 1652–1657. [Google Scholar]
- Omar, M.N.B. Thermodynamic and Economic Evaluation of Existing and Perspective Processes for Liquefaction of Natural Gas in Malaysia. Master’s Thesis, Technische Universitaet Berlin, Berlin, Germany, 2016. [Google Scholar]
- Akinsipe, O.; Anozie, A.; Babatunde, D. A study of LNG processes to determine the effect of end flash systems on efficiency. Arch. Thermodyn. 2020, 41, 35–63. [Google Scholar]
- Park, J.; Mun, H.; Kim, J.; Lee, I. Advanced natural gas liquefaction process on LNG supply chain with liquid air: From design to thermodynamic and techno-economic analyses. Energy Convers. Manag. 2022, 252, 115107. [Google Scholar] [CrossRef]
- Hareem, M.; Raza, F.; Kazmi, B.; Ghauri, R.; Zafar, K.; Ahmed, H.; Taqvi, S.A.A.; Naqvi, M. Sustainability evaluation of C3MR natural gas liquefaction process: Integrating life cycle analysis with Energy, Exergy, and economic aspects. J. Ind. Eng. Chem. 2024, 137, 619–636. [Google Scholar] [CrossRef]
- Sabbagh, O.; Fanaei, M.A.; Arjomand, A. Optimal design of a novel NGL/LNG integrated scheme: Economic and exergetic evaluation. J. Therm. Anal. Calorim. 2021, 145, 851–866. [Google Scholar] [CrossRef]
- Song, R.; Cui, M.; Liu, J. Single and multiple objective optimization of a natural gas liquefaction process. Energy 2017, 124, 19–28. [Google Scholar] [CrossRef]
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D.A. (Eds.) Chapter 6—Process Control and Automation of LNG Plants and Import Terminals. In Handbook of Liquefied Natural Gas; Gulf Professional Publishing: Boston, MA, USA, 2014; pp. 259–296. [Google Scholar]
- Expertise in Turbomachinery Controls. Available online: https://www.cccglobal.com/wp-content/uploads/2020/01/CCC-White-Paper_Sharing-the-Load_Jan_2015-1.pdf (accessed on 2 August 2024).
- Roberts, M.J.; Petrowski, J.M.; Liu, Y.-N.; Bronfenbrenner, J.C. Large capacity single train AP-XTM Hybrid LNG Process. In Proceedings of the GASTECH 2002, Doha, Qatar, 13–16 October 2002. [Google Scholar]
- ConocoPhillips Company. Available online: https://static.conocophillips.com/files/resources/22-0788-lng-brochure.pdf (accessed on 2 August 2024).
- Houser, C.; Krusen, L. The Phillips optimised cascade LNG process. In Proceedings of the GASTECH’96: International LNG/LPG/Natural Gas Conference and Exhibition, Vienna, Austria, 3–6 December 1996. [Google Scholar]
- Mouneer, T.A.; Hawwash, A.A.; Aly, M.H.; Mina, E.M. Thermodynamic analysis for novel vapor compression/absorption cascade refrigeration system for LNG liquefaction processes in Egypt. Energy Convers. Manag. 2022, 270, 116238. [Google Scholar] [CrossRef]
- Rooholamini, S.; Ghorbani, B.; Ebrahimi, A. Introducing a novel hybrid system for cogeneration of liquefied natural gas and hot water using ejector-compression cascade refrigeration system (energy, exergy, pinch and sensitivity analyses). Appl. Therm. Eng. 2021, 196, 117283. [Google Scholar] [CrossRef]
- Venkatarathnam, G.; Timmerhaus, K.D. Cryogenic Mixed Refrigerant Processes; Springer: New York, NY, USA, 2008; Volume 100, ISBN 978-1-4419-2690-6. [Google Scholar]
- Hwang, J.-H.; Roh, M.-I.; Lee, K.-Y. Determination of the optimal operating conditions of the dual mixed refrigerant cycle for the LNG FPSO topside liquefaction process. Comput. Chem. Eng. 2013, 49, 25–36. [Google Scholar] [CrossRef]
- Bahadori, A. Natural Gas Processing: Technology and Engineering Design; Gulf Professional Publishing: Waltham, MA, USA, 2014; ISBN 978-0-12-800219-3. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Qadeer, K.; Khan, M.S.; Naqvi, M.; Rehman, A.; Wang, L.; Lee, M. Weed colonization-based performance improvement opportunities in dual-mixed refrigerant natural gas liquefaction process. Energy Sci. Eng. 2021, 9, 297–312. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Lee, M. Hydrofluoroolefin-based novel mixed refrigerant for energy efficient and ecological LNG production. Energy 2018, 157, 483–492. [Google Scholar]
- Qyyum, M.A.; Ahmed, F.; Nawaz, A.; He, T.; Lee, M. Teaching-learning self-study approach for optimal retrofitting of dual mixed refrigerant LNG process: Energy and exergy perspective. Appl. Energy 2021, 298, 117187. [Google Scholar] [CrossRef]
- Pereira, M.A.M.; Santos, L.F.; Caballero, J.A.; Ravagnani, M.A.S.S.; Costa, C.B.B. Energy and economic comparison of five mixed-refrigerant natural gas liquefaction processes. Energy Convers. Manag. 2022, 272, 116364. [Google Scholar] [CrossRef]
- Qyyum, M.A.; He, T.; Qadeer, K.; Mao, N.; Lee, S.; Lee, M. Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction. Appl. Energy 2020, 268, 115022. [Google Scholar] [CrossRef]
- Mehrpooya, M. Conceptual design and energy analysis of novel integrated liquefied natural gas and fuel cell electrochemical power plant processes. Energy 2016, 111, 468–483. [Google Scholar] [CrossRef]
- Khan, M.S.; Karimi, I.; Lee, M. Evolution and optimization of the dual mixed refrigerant process of natural gas liquefaction. Appl. Therm. Eng. 2016, 96, 320–329. [Google Scholar] [CrossRef]
- Lee, I.; Moon, I. Economic optimization of dual mixed refrigerant liquefied natural gas plant considering natural gas extraction rate. Ind. Eng. Chem. Res. 2017, 56, 2804–2814. [Google Scholar]
- Roberts, M.J.; Agrawal, R. Dual Mixed Refrigerant Cycle for Gas Liquefaction. U.S. Patent 6,269,655 B1, 7 August 2001. [Google Scholar]
- Mun, H.; Kim, D.; Park, J.; Lee, I. Advanced dual mixed refrigerant (DMR) natural gas liquefaction plant with liquid air: Focus on configuration and optimization. Energy 2024, 313, 133747. [Google Scholar] [CrossRef]
- Osagie, E.; Akpan, J.; Ekpotu, W.; Umoh, G.; Akintola, J.; Moses, Q.; Udom, P. Energy conservation and techno-environmental analysis in natural gas liquefaction with single and dual-mixed refrigerants: A comparison. Frankl. Open 2025, 10, 100196. [Google Scholar] [CrossRef]
- Vatani, A.; Mehrpooya, M.; Palizdar, A. Energy and exergy analyses of five conventional liquefied natural gas processes. Int. J. Energy Res. 2014, 38, 1843–1863. [Google Scholar]
- Grini, P.G.; Pettersen, J.; Andersen, H.S. Gas processing and Integrated Environmental Management. In Proceedings of the 2nd Annual Gas Processing Symposium, 11–14 January 2010; pp. 163–176. [Google Scholar]
- Wang, X.; Economides, M. Advanced Natural Gas Engineering; Elsevier: Houston, TX, USA, 2013; ISBN 0127999949. [Google Scholar]
- Nawaz, A.; Qyyum, M.A.; Qadeer, K.; Khan, M.S.; Ahmad, A.; Lee, S.; Lee, M. Optimization of mixed fluid cascade LNG process using a multivariate Coggins step-up approach: Overall compression power reduction and exergy loss analysis. Int. J. Refrig. 2019, 104, 189–200. [Google Scholar] [CrossRef]
- Majeed, K.; Qyyum, M.A.; Nawaz, A.; Ahmad, A.; Naqvi, M.; He, T.; Lee, M. Shuffled complex evolution-based performance enhancement and analysis of cascade liquefaction process for large-scale LNG production. Energies 2020, 13, 2511. [Google Scholar] [CrossRef]
- Jackson, S.; Eiksund, O.; Brodal, E. Impact of ambient temperature on LNG liquefaction process performance: Energy efficiency and CO2 emissions in cold climates. Ind. Eng. Chem. Res. 2017, 56, 3388–3398. [Google Scholar] [CrossRef]
- Ansarinasab, H.; Afshar, M.; Mehrpooya, M. Exergoeconomic evaluation of LNG and NGL co-production process based on the MFC refrigeration systems. Iran. J. Oil Gas Sci. Technol. 2016, 5, 45–61. [Google Scholar]
- Tak, K.; Park, J.; Moon, I.; Lee, U. Comparison of mixed refrigerant cycles for natural gas liquefaction: From single mixed refrigerant to mixed fluid cascade processes. Energy 2023, 272, 127051. [Google Scholar]
- Zaitsev, A.; Mehrpooya, M.; Ghorbani, B.; Sanavbarov, R.; Naumov, F.; Shermatova, F. Novel integrated helium extraction and natural gas liquefaction process configurations using absorption refrigeration and waste heat. Int. J. Energy Res. 2020, 44, 6430–6451. [Google Scholar]
- Ramezani, T.; Nargessi, Z.; Palizdar, A.; Vatani, A. Control Structure Design and Dynamic Simulation of Mixed Fluid Cascade Natural Gas Liquefaction Process. J. Gas Technol. 2020, 5, 4–21. [Google Scholar]
- Ding, H.; Sun, H.; Sun, S.; Chen, C. Analysis and optimisation of a mixed fluid cascade (MFC) process. Cryogenics 2017, 83, 35–49. [Google Scholar] [CrossRef]
- Taghavi, M.; Yoon, H.-J.; Choi, J.-U.; Lee, C.-J. Innovative Structure of a Liquefied Natural Gas (LNG) Process by Mixed Fluid Cascade Using Solar Renewable Energy, Photovoltaic Panels (PV), and Absorption Refrigeration System. In Computer Aided Chemical Engineering; Manenti, F., Reklaitis, G.V., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2024; Volume 53, pp. 2071–2076. [Google Scholar]
- Martin, P.; Pigourier, J.; Boutelant, P. Liquefin™: An Innovative Process to Reduce LNG Costs. In Proceedings of the 22nd World Gas Conference, Tokyo, Japan, 1–5 June 2003. [Google Scholar]
- Pu, L.; Xiong, Y.; Wang, K.; Tang, L.; Qiu, L.; Wang, K. Design and optimization of large-scale natural gas liquefaction process based on triple refrigeration cycles. Energy 2024, 313, 133750. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, Q.; Sun, N.; Li, Y. Enhancement of energy performance in a boil-off gas re-liquefaction system of LNG carriers using ejectors. Energy Convers. Manag. 2016, 126, 875–888. [Google Scholar]
- Jin, C.; Lim, Y.; Xu, X. Performance analysis of a boil-off gas re-liquefaction process for LNG carriers. Energy 2023, 278, 127823. [Google Scholar]
- Palizdar, A.; Ramezani, T.; Nargessi, Z.; AmirAfshar, S.; Abbasi, M.; Vatani, A. Thermodynamic evaluation of three mini-scale nitrogen single expansion processes for liquefaction of natural gas using advanced exergy analysis. Energy Convers. Manag. 2017, 150, 637–650. [Google Scholar] [CrossRef]
- Austbø, B. Use of optimization in evaluation and design of liquefaction processes for natural gas. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2015. [Google Scholar]
- Yazdaninia, A.; Vatani, A.; Zare, M.; Abbasi, M. Simulation and Thermodynamic Analysis of a Closed Cycle Nitrogen Expansion Process for Liquefaction of Natural Gas in Mini-Scale. J. Gas Technol. 2021, 6, 1–13. [Google Scholar]
- Waldmann, I. Evaluation of process systems for floating LNG production units. In Proceedings of the Tekna Conference, Stavanger, Norway, 18–19 June 2008. [Google Scholar]
- Vatani, A.; Mehrpooya, M.; Palizdar, A. Advanced exergetic analysis of five natural gas liquefaction processes. Energy Convers. Manag. 2014, 78, 720–737. [Google Scholar] [CrossRef]
- Qian, S.; Nasuta, D.; Rhoads, A.; Wang, Y.; Geng, Y.; Hwang, Y.; Radermacher, R.; Takeuchi, I. Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance. Int. J. Refrig. 2016, 62, 177–192. [Google Scholar] [CrossRef]
- Caliskan, H.; Hepbasli, A.; Dincer, I.; Maisotsenko, V. Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle. Int. J. Refrig. 2011, 34, 980–990. [Google Scholar] [CrossRef]
- Ghorbani, B.; Shirmohammadi, R.; Amidpour, M.; Inzoli, F.; Rocco, M. Design and thermoeconomic analysis of a multi-effect desalination unit equipped with a cryogenic refrigeration system. Energy Convers. Manag. 2019, 202, 112208. [Google Scholar]
- Tirandazi, B.; Mehrpooya, M.; Vatani, A.; Moosavian, S.M.A. Exergy analysis of C2+ recovery plants refrigeration cycles. Chem. Eng. Res. Des. 2011, 89, 676–689. [Google Scholar] [CrossRef]
- Lee, I.; Park, J.; You, F.; Moon, I. A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis. Energy 2019, 173, 691–705. [Google Scholar] [CrossRef]
- Ghorbani, B.; Ebrahimi, A.; Skandarzadeh, F.; Ziabasharhagh, M. Energy, exergy and pinch analyses of an integrated cryogenic natural gas process based on coupling of absorption–compression refrigeration system, organic Rankine cycle and solar parabolic trough collectors. J. Therm. Anal. Calorim. 2021, 145, 925–953. [Google Scholar]
- Jovijari, F.; Kosarinia, A.; Mehrpooya, M.; Nabhani, N. Retrofit design of an industrial natural gas liquids recovery process based on the pinch technology concept. Gas Process. J. 2021, 9, 51–72. [Google Scholar]
- Tjoe, T.N.; Linnhoff, B. Using pinch technology for process retrofit. Chem. Eng. 1986, 93, 47–60. [Google Scholar]
- Ghorbani, B.; Shirmohammadi, R.; Mehrpooya, M.; Hamedi, M.-H. Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm. Energy 2018, 159, 410–428. [Google Scholar] [CrossRef]
- Kamalinejad, M.; Amidpour, M.; Naeynian, S.M. Thermodynamic design of a cascade refrigeration system of liquefied natural gas by applying mixed integer non-linear programming. Chin. J. Chem. Eng. 2015, 23, 998–1008. [Google Scholar] [CrossRef]
- Shivaee-Gariz, R.; Tahouni, N.; Panjeshahi, M.H.; Abbasi, M. Development of a new graphical tool for calculation of exergy losses to design and optimisation of sub-ambient processes. J. Clean. Prod. 2020, 275, 123161. [Google Scholar] [CrossRef]
- Ghorbani, B.; Miansari, M.; Zendehboudi, S.; Hamedi, M.-H. Exergetic and economic evaluation of carbon dioxide liquefaction process in a hybridized system of water desalination, power generation, and liquefied natural gas regasification. Energy Convers. Manag. 2020, 205, 112374. [Google Scholar]
- Ghorbani, B.; Zendehboudi, S.; Alizadeh Afrouzi, Z.; Lohi, A.; Khan, F. Efficient design of the hydrogen liquefaction system: Thermodynamic, economic, environmental, and uncertainty perspectives. Ind. Eng. Chem. Res. 2024, 63, 14668–14699. [Google Scholar]
- Safari, D.; Kasiri, N.; Khalili-Garakani, A.; Mafi, M. Investigation on Distillation Column Sequence and Heat Integration Effects in Methanol to Propylene Separation Unit: An Economic Optimization Study Based on Pinch and Exergy Analysis. Korean J. Chem. Eng. 2024, 41, 1329–1342. [Google Scholar]
- Ghorbani, B.; Mehrpooya, M.; Shirmohammadi, R.; Hamedi, M.-H. A comprehensive approach toward utilizing mixed refrigerant and absorption refrigeration systems in an integrated cryogenic refrigeration process. J. Clean. Prod. 2018, 179, 495–514. [Google Scholar]
- Gourmelon, S.; Théry-Hétreux, R.; Floquet, P. A systematic approach: Combining process optimisation exergy analysis and energy recovery for a better efficiency of industrial processes. Int. J. Exergy 2017, 23, 298–329. [Google Scholar] [CrossRef]
- Ghorbani, B.; Zendehboudi, S.; Saady, N.M.C.; Duan, X.; Albayati, T.M. Strategies to improve the performance of hydrogen storage systems by liquefaction methods: A comprehensive review. ACS Omega 2023, 8, 18358–18399. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, R.; Alkilde, O.F.; Upadhyayula, S. Applying pinch and exergy analysis for energy efficient design of diesel hydrotreating unit. J. Clean. Prod. 2019, 232, 337–349. [Google Scholar]
- Mafi, M.; Ghorbani, B.; Salehi, G.R.; Amidpour, M.; Mousavi, N.S. The mathematical method and thermodynamic approaches to design Multi-Component refrigeration used in cryogenic process part II: Optimal arrangement. Gas Process. J. 2014, 2, 32–39. [Google Scholar]
- Amidpour, M.; Hamedi, M.H.; Mafi, M.; Ghorbani, B.; Shirmohammadi, R.; Salimi, M. Sensitivity analysis, economic optimization, and configuration design of mixed refrigerant cycles by NLP techniques. J. Nat. Gas Sci. Eng. 2015, 24, 144–155. [Google Scholar] [CrossRef]
- Taghavi, M.; Lee, C.J. Development of a novel hydrogen liquefaction structure based on liquefied natural gas regasification operations and solid oxide fuel cell: Exergy and economic analyses. Fuel 2025, 384, 133826. [Google Scholar]
- Fazlali Serkani, A.; Mafi, M. Sensitivity Analysis of Simple Expander–Nitrogen and Two Expander–Nitrogen Liquefaction Processes of Natural Gas. Gas Process. J. 2020, 8, 49–68. [Google Scholar]
- Nguyen, T.-V.; Rothuizen, E.D.; Markussen, W.B.; Elmegaard, B. Thermodynamic comparison of three small-scale gas liquefaction systems. Appl. Therm. Eng. 2018, 128, 712–724. [Google Scholar]
- Lee, I.; Moon, I. Total cost optimization of a single mixed refrigerant process based on equipment cost and life expectancy. Ind. Eng. Chem. Res. 2016, 55, 10336–10343. [Google Scholar]
- Aslambakhsh, A.H.; Moosavian, M.A.; Amidpour, M.; Hosseini, M.; AmirAfshar, S. Global cost optimization of a mini-scale liquefied natural gas plant. Energy 2018, 148, 1191–1200. [Google Scholar] [CrossRef]
- Ahmadnejad, A.; Ebrahimi, A.; Ghorbani, B. Pinch and exergy assessment of an innovative hydrogen and methane purification process configuration based on solar renewable energy. Fuel 2024, 359, 130391. [Google Scholar]
- Qadeer, K.; Qyyum, M.A.; Lee, M. Krill-herd-based investigation for energy saving opportunities in offshore liquefied natural gas processes. Ind. Eng. Chem. Res. 2018, 57, 14162–14172. [Google Scholar]
- Ebrahimi, A.; Tamnanloo, J.; Mousavi, S.H.; Soroodan Miandoab, E.; Hosseini, E.; Ghasemi, H.; Mozaffari, S. Discrete-continuous genetic algorithm for designing a mixed refrigerant cryogenic process. Ind. Eng. Chem. Res. 2021, 60, 7700–7713. [Google Scholar]
- Wahl, P.E.; Løvseth, S.W.; Mølnvik, M.J. Optimization of a simple LNG process using sequential quadratic programming. Comput. Chem. Eng. 2013, 56, 27–36. [Google Scholar] [CrossRef]
- Zheng, X. Design and Integration of Refrigeration and Power Systems. Ph.D. Thesis, University of Manchester, Manchester, UK, 2009. [Google Scholar]
- Taghavi, M.; Lee, C.-J. Development of novel hydrogen liquefaction structures based on waste heat recovery in diffusion-absorption refrigeration and power generation units. Energy Convers. Manag. 2024, 302, 118056. [Google Scholar] [CrossRef]
- Ghorbani, B.; Ebrahimi, A.; Moradi, M.; Ziabasharhagh, M. Energy, exergy and sensitivity analyses of a novel hybrid structure for generation of Bio-Liquefied natural Gas, desalinated water and power using solar photovoltaic and geothermal source. Energy Convers. Manag. 2020, 222, 113215. [Google Scholar] [CrossRef]
- Ghorbani, B.; Ebrahimi, A.; Ziabasharhagh, M. Thermodynamic and economic evaluation of biomethane and carbon dioxide liquefaction process in a hybridized system of biogas upgrading process and mixed fluid cascade liquefaction cycle. Process Saf. Environ. Prot. 2021, 151, 222–243. [Google Scholar] [CrossRef]
- Ghorbani, B.; Zendehboudi, S.; Saady, N.M.C.; Azarpour, A.; Albayati, T.M. Thermoeconomic Analysis of an Innovative Integrated System for Cogeneration of Liquid Hydrogen and Biomethane by a Cryogenic-Based Biogas Upgrading Cycle and Polymer Electrolyte Membrane Electrolysis. Ind. Eng. Chem. Res. 2024, 63, 7227–7257. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mehrpooya, M.; Sharifzadeh, M.M.M. Introducing a hybrid photovoltaic-thermal collector, ejector refrigeration cycle and phase change material storage energy system (Energy, exergy and economic analysis). Int. J. Refrig. 2019, 103, 61–76. [Google Scholar]
- Mehrpooya, M.; Ghorbani, B.; Sadeghzadeh, M. Hybrid solar parabolic dish power plant and high-temperature phase change material energy storage system. Int. J. Energy Res. 2019, 43, 5405–5420. [Google Scholar] [CrossRef]
- Taghavi, M.; Salarian, H.; Ghorbani, B. Thermodynamic and exergy evaluation of a novel integrated hydrogen liquefaction structure using liquid air cold energy recovery, solid oxide fuel cell and photovoltaic panels. J. Clean. Prod. 2021, 320, 128821. [Google Scholar] [CrossRef]
- Ghorbani, B.; Javadi, Z.; Zendehboudi, S.; Amidpour, M. Energy, exergy, and economic analyses of a new integrated system for generation of power and liquid fuels using liquefied natural gas regasification and solar collectors. Energy Convers. Manag. 2020, 219, 112915. [Google Scholar] [CrossRef]
- Ghorbani, B.; Salehi, G.; Ebrahimi, A.; Taghavi, M. Energy, exergy and pinch analyses of a novel energy storage structure using post-combustion CO2 separation unit, dual pressure Linde-Hampson liquefaction system, two-stage organic Rankine cycle and geothermal energy. Energy 2021, 233, 121051. [Google Scholar]
- Ebrahimi, A.; Ghorbani, B.; Taghavi, M. Novel integrated structure consisting of CO2 capture cycle, heat pump unit, Kalina power, and ejector refrigeration systems for liquid CO2 storage using renewable energies. Energy Sci. Eng. 2022, 10, 3167–3188. [Google Scholar] [CrossRef]
- Sabbagh, O.; Fanaei, M.A.; Arjomand, A.; Hossein Ahmadi, M. Multi-objective optimization assessment of a new integrated scheme for co-production of natural gas liquids and liquefied natural gas. Sustain. Energy Technol. Assess. 2021, 47, 101493. [Google Scholar] [CrossRef]
- Sabbagh, O.; Fanaei, M.A.; Arjomand, A. Techno-economic evolution of an existing operational NGL plant with adding LNG production part. Oil Gas Sci. Technol. Rev. d’IFP Energ. Nouv. 2020, 75, 27. [Google Scholar]
- Uwitonze, H.; Lee, I.; Hwang, K.S. Alternatives of integrated processes for coproduction of LNG and NGLs recovery. Chem. Eng. Process.-Process Intensif. 2016, 107, 157–167. [Google Scholar]
- He, T.; Lin, W. A novel propane pre-cooled mixed refrigerant process for coproduction of LNG and high purity ethane. Energy 2020, 202, 117784. [Google Scholar] [CrossRef]
- Ansarinasab, H.; Mehrpooya, M. Evaluation of novel process configurations for coproduction of LNG and NGL using advanced exergoeconomic analysis. Appl. Therm. Eng. 2017, 115, 885–898. [Google Scholar] [CrossRef]
- Al-Sobhi, S.A.; Alfadala, H.E.; El-Halwagi, M.M. Simulation and Energy Integration of a Liquefied Natural Gas (LNG) Plant. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009; Alfadala, H.E., Rex Reklaitis, G.V., El-Halwagi, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1, pp. 131–135. [Google Scholar]
- Baek, S.; Hwang, G.; Jeong, S. Development of the hybrid JT-expander cycle for NG liquefaction cycle. AIP Conf. Proc. 2010, 1218, 1113–1120. [Google Scholar] [CrossRef]
- Shamsi, M.; Rahimi, M.; Sheidaei, M.; Majidi Dorcheh, S.H.; Bonyadi, M. A new integrated process for LNG production based on the single mixed refrigerant: Energy, exergy, environmental, and economic analysis. Arab. J. Sci. Eng. 2023, 48, 15805–15821. [Google Scholar]
- Castillo, L.; Majzoub Dahouk, M.; Di Scipio, S.; Dorao, C.A. Conceptual analysis of the precooling stage for LNG processes. Energy Convers. Manag. 2013, 66, 41–47. [Google Scholar] [CrossRef]
- Cipolato, L.; Lirani, M.C.A.; Costa, T.V.; Fábrega, F.M.; d’Angelo, J.V.H. Exergetic optimization of a refrigeration cycle for natural gas liquefaction. In Computer Aided Chemical Engineering; Karimi, I.A., Srinivasan, R., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2012; Volume 31, pp. 440–444. [Google Scholar]
- Nogal, F.D.; Kim, J.-K.; Perry, S.; Smith, R. Optimal design of mixed refrigerant cycles. Ind. Eng. Chem. Res. 2008, 47, 8724–8740. [Google Scholar]
- Du, H.; Huang, Y.; Li, H.; Ying, Q.; Fan, Q.; Jia, L. Numerical simulation and optimization of small-scale LNG plant for skid mounted. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar]
- Gao, T.; Lin, W.; Gu, A.; Gu, M. Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling. Appl. Energy 2010, 87, 2142–2147. [Google Scholar] [CrossRef]
- Hatcher, P.; Khalilpour, R.; Abbas, A. Optimisation of LNG mixed-refrigerant processes considering operation and design objectives. Comput. Chem. Eng. 2012, 41, 123–133. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Xu, Q.; Li, K. Thermodynamic-Analysis-Based Energy Consumption Minimization for Natural Gas Liquefaction. Ind. Eng. Chem. Res. 2011, 50, 12630–12640. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Xu, Q. Optimal design and operation of a C3MR refrigeration system for natural gas liquefaction. Comput. Chem. Eng. 2012, 39, 84–95. [Google Scholar] [CrossRef]
- Tak, K.; Lim, W.; Choi, K.; Ko, D.; Moon, I. Optimization of mixed-refrigerant system in LNG liquefaction process. In Computer Aided Chemical Engineering; Pistikopoulos, E.N., Georgiadis, M.C., Kokossis, A.C., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2011; Volume 29, pp. 1824–1828. [Google Scholar]
- Singh, A.; Hovd, M.; Kariwala, V. Controlled variables selection for liquefied natural gas plant. IFAC Proc. Vol. 2008, 41, 13913–13918. [Google Scholar]
- Rian, A.B.; Ertesvåg, I.S. Exergy Evaluation of the Arctic Snøhvit Liquefied Natural Gas Processing Plant in Northern Norway—Significance of Ambient Temperature. Energy Fuels 2012, 26, 1259–1267. [Google Scholar]
- Hasan, M.F.; Zheng, A.M.; Karimi, I. Minimizing boil-off losses in liquefied natural gas transportation. Ind. Eng. Chem. Res. 2009, 48, 9571–9580. [Google Scholar] [CrossRef]
- Kamath, R.S.; Biegler, L.T.; Grossmann, I.E. Modeling multistream heat exchangers with and without phase changes for simultaneous optimization and heat integration. AIChE J. 2012, 58, 190–204. [Google Scholar] [CrossRef]
- Kanoglu, M.; Dincer, I.; Rosen, M.A. Performance analysis of gas liquefaction cycles. Int. J. Energy Res. 2008, 32, 35–43. [Google Scholar] [CrossRef]
- Chang, H.-M.; Chung, M.J.; Kim, M.J.; Park, S.B. Thermodynamic design of methane liquefaction system based on reversed-Brayton cycle. Cryogenics 2009, 49, 226–234. [Google Scholar] [CrossRef]
- Cammarata, G.; Fichera, A.; Guglielmino, D. Optimization of a liquefaction plant using genetic algorithms. Appl. Energy 2001, 68, 19–29. [Google Scholar] [CrossRef]
- Hasan, M.M.F.; Karimi, I.A.; Alfadala, H.E. Optimizing Compressor Operations in an LNG Plant. In Proceedings of the 1st Annual Gas Processing Symposium, Doho, Qatar, 10–12 January 2009; Alfadala, H.E., Rex Reklaitis, G.V., El-Halwagi, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1, pp. 179–184. [Google Scholar]
- Hasan, M.M.F.; Razib, M.S.; Karimi, I.A. Optimization of Compressor Networks in LNG Operations. In Computer Aided Chemical Engineering; de Brito Alves, R.M., do Nascimento, C.A.O., Biscaia, E.C., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2009; Volume 27, pp. 1767–1772. [Google Scholar]
- Zhang, R.; Wu, C.; Song, W.; Deng, C.; Yang, M. Energy integration of LNG light hydrocarbon recovery and air separation: Process design and technic-economic analysis. Energy 2020, 207, 118328. [Google Scholar] [CrossRef]
- Chang, H.-M.; Chung, M.J.; Lee, S.; Choe, K.H. An efficient multi-stage Brayton–JT cycle for liquefaction of natural gas. Cryogenics 2011, 51, 278–286. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Ding, Y. An optimal design methodology for large-scale gas liquefaction. Appl. Energy 2012, 99, 484–490. [Google Scholar] [CrossRef]
- Vidal, J. Thermodynamics. Applications in Chemical Engineering and the Petroleum Industry; Thermodynamique. Application au Genie Chimique et a L’industrie Petroliere; Editions Technip: Paris, France, 2003. [Google Scholar]
- Chen, G.-J.; Sun, C.-Y.; Guo, T.-M. A theoretical revision of the derivation of liquid property expressions from an equation of state and its application. Chem. Eng. Sci. 2000, 55, 4913–4923. [Google Scholar] [CrossRef]
- Remeljej, C.W.; Hoadley, A.F.A. An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes. Energy 2006, 31, 2005–2019. [Google Scholar]
- Gong, M.; Wu, J.; Luo, E.; Qi, Y.; Zhou, Y. Study of the single-stage mixed-gases refrigeration cycle for cooling temperature-distributed heat loads. Int. J. Therm. Sci. 2004, 43, 31–41. [Google Scholar]
- Cao, W.-s.; Lu, X.-s.; Lin, W.-s.; Gu, A.-z. Parameter comparison of two small-scale natural gas liquefaction processes in skid-mounted packages. Appl. Therm. Eng. 2006, 26, 898–904. [Google Scholar] [CrossRef]
- Danesh, A. PVT and Phase Behaviour of Petroleum Reservoir Fluids; Developments in Petroleum Science, Book Series; Elsevier: Amsterdam, The Netherlands, 1998; Volume 47, ISBN 978-0-444-82196-6. [Google Scholar]
- Maboudi, M.; Ziabasharhagh, M.; Mafi, M. Prediction of Thermodynamic Properties of Helium and Neon as Working Fluids in Cryogenic Processes using Fundamental Equations of States. Gas Process. J. 2018, 6, 75–84. [Google Scholar]
- Ghorbani, B.; Mafi, M.; Amidpour, M.; Mousavi, N.S.; Salehi, G.R. Mathematical method and thermodynamic approaches to design multi-component refrigeration used in cryogenic process Part I: Optimal operating conditions. Gas Process. J. 2013, 1, 13–21. [Google Scholar] [CrossRef]
- Mafi, M.; Ghorbani, B.; Amidpour, M.; Mousavi Naynian, S.M. Design of mixed refrigerant cycle for low temperature processes using thermodynamic approach. Sci. Iran. 2013, 20, 1254–1268. [Google Scholar]
- Mafi, M.; Amidpour, M.; Mousavi Naeynian, S.M. Development in Mixed Refrigerant Cycles Used in Olefin Plants. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009; Alfadala, H.E., Rex Reklaitis, G.V., El-Halwagi, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1, pp. 154–161. [Google Scholar]
- Shariati, M.; Amidpour, M. Development of an Integrated Structure of CHP and Heavy Hydrocarbons Liquids Using Fischer-Tropsch Synthesis. Gas Process. J. 2016, 4, 32–44. [Google Scholar]
- Mafi, M.; Amidpour, M.; Mousavi Naeynian, S. Comparison of low temperature mixed refrigerant cycles for separation systems. Int. J. Energy Res. 2009, 33, 358–377. [Google Scholar]
- Lee, Y.; Baek, K.H.; Lee, S.; Cha, K.; Han, C. Design of boil-off CO2 re-liquefaction processes for a large-scale liquid CO2 transport ship. Int. J. Greenh. Gas Control. 2017, 67, 93–102. [Google Scholar]
- Optimal Gas Pretreatment Technologies for Developing FLNG Projects. Available online: https://gasprocessingnews.com/articles/2019/06/optimal-gas-pretreatment-technologies-for-developing-flng-projects/#:~:text=The%20specifications%20to%20be%20met%20are%20hydrogen%20sulfide,mercury%20%28Hg%29%20to%20levels%20of%200.01%20%C2%B5g%2FNm%203 (accessed on 1 February 2025).
- Mehrpooya, M.; Ghorbani, B.; Vatani, A. Cryogenic Processes of Natural Gas Refinery (Process Design and Description of Process Configurations; Academic University Publications; University of Tehran: Tehran, Iran, 2021; ISBN 978-964-0301-84-5. [Google Scholar]
- Linde Engineering. State-of-the-Art Nitrogen Rejection Technology. Available online: https://assets.linde.com/-/media/global/engineering/engineering/home/products-and-services/process-plants/sustainable-hydrocarbon-solutions/biolng-plants/state-of-art-nitrogen-rejection-technology.pdf (accessed on 1 February 2025).
- Almomani, F.; Othman, A.; Pal, A.; Al-Musleh, E.I.; Karimi, I.A. Prospective of upfront nitrogen (N2) removal in LNG plants: Technical communication. Energies 2021, 14, 3616. [Google Scholar] [CrossRef]
- Effendy, S.; Xu, C.; Farooq, S. Optimization of a pressure swing adsorption process for nitrogen rejection from natural gas. Ind. Eng. Chem. Res. 2017, 56, 5417–5431. [Google Scholar] [CrossRef]
- Weh, R.; Xiao, G.; Islam, M.A.; May, E.F. Nitrogen rejection from natural gas by dual reflux-pressure swing adsorption using activated carbon and ionic liquidic zeolite. Sep. Purif. Technol. 2020, 235, 116215. [Google Scholar]
- Khoramzadeh, E.; Bakhtyari, A.; Mofarahi, M. Nitrogen rejection from natural gas by adsorption processes and swing technologies. In Advances Natural Gas: Formation, Processing, and Applications. Volume 5: Natural Gas Impurities and Condensate Removal; Elsevier: Amsterdam, The Netherlands; London, UK; Cambridge, MA, USA, 2024; pp. 201–228. [Google Scholar]
- Kuo, J.C.; Wang, K.H.; Chen, C. Pros and cons of different Nitrogen Removal Unit (NRU) technology. J. Nat. Gas Sci. Eng. 2012, 7, 52–59. [Google Scholar] [CrossRef]
- MacKenzie, D.; Cheta, I.; Burns, D. Removing nitrogen. Hydrocarb. Eng. 2002, 7, 57–63. [Google Scholar]
- Noorani, N.; Mehrdad, A. Improving the Separation of CO2/N2 Using Impregnation of a Deep Eutectic Solvent on a Porous MOF. ACS Omega 2024, 9, 9516–9525. [Google Scholar] [CrossRef]
- Lak, S.Z.; Rostami, M.; Rahimpour, M.R. 9—Nitrogen separation from natural gas using absorption and cryogenic processes. In Advances in Natural Gas: Formation, Processing, and Applications. Volume 5: Natural Gas Impurities and Condensate Removal; Rahimpour, M.R., Makarem, M.A., Meshksar, M., Eds.; Elsevier: Amsterdam, The Netherlands; London, UK; Cambridge, MA, USA, 2024; pp. 185–200. [Google Scholar]
- Rahimpour, M.R.; Makarem, M.A.; Meshksar, M. Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Production and Preparation; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2022. [Google Scholar]
- He, T.; Liu, Z.; Son, H.; Gundersen, T.; Lin, W. Comparative analysis of cryogenic distillation and chemical absorption for carbon capture in integrated natural gas liquefaction processes. J. Clean. Prod. 2023, 383, 135264. [Google Scholar] [CrossRef]
- Elliot, D.; Kuo, J.; Nasir, P. Plant Processing of Natural Gas; University of Texas Continuing Education Petroleum Extension Service: Austin, TX, USA, 2008; 208p, ISBN 978-0-88698-223-2. [Google Scholar]
- Jones, S.; Lee, S.; Evans, M.; Chen, R. Simultaneous Removal of Water and BTEX from Feed Gas for a Cryogenic Plant; British Gas Tunisia Ltd.: Sfax, Tunisia, 1999. [Google Scholar]
- Hamedi, H.; Karimi, I.A.; Gundersen, T. Optimal cryogenic processes for nitrogen rejection from natural gas. Comput. Chem. Eng. 2018, 112, 101–111. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Sharifzadeh, M.M.M.; Ansarinasab, H. Investigation of a novel integrated process configuration for natural gas liquefaction and nitrogen removal by advanced exergoeconomic analysis. Appl. Therm. Eng. 2018, 128, 1249–1262. [Google Scholar] [CrossRef]
- Ghazizadeh, V.; Ghorbani, B.; Shirmohammadi, R.; Mehrpooya, M.; Hamedi, M.H. Advanced exergoeconomic analysis of C3MR, MFC, and DMR refrigeration cycles in an integrated cryogenic process. Gas Process. J. 2018, 6, 41–71. [Google Scholar]
- Ghorbani, B.; Mehrpooya, M.; Hamedi, M.-H.; Amidpour, M. Exergoeconomic analysis of integrated natural gas liquids (NGL) and liquefied natural gas (LNG) processes. Appl. Therm. Eng. 2017, 113, 1483–1495. [Google Scholar] [CrossRef]
- Cuellar, K.T.; Hudson, H.; Wilkinson, J. Economical options for recovering NGL/LPG at LNG receiving terminals. In Proceedings of the 86th GPA Annual Convention, San Antonio, TX, USA, 11–14 March 2007; pp. 2–10. [Google Scholar]
- Lynch, J.; Wilkinson, J.; Hudson, H.; Pitman, R. Process retrofits maximize the value of existing NGL and LPG recovery plants. In Proceedings of the 82nd Annual Convention of the Gas Processors Association, San Antonio, TX, USA, 10–12 March 2003. [Google Scholar]
- Ransbarger, W.L. Intermediate Pressure LNG Refluxed NGL Recovery Process. U.S. Patent 2008/0098770 A1, 1 May 2008. [Google Scholar]
- Mak, J. Intergrated Ngl Recovery and Lng Liquefaction. U.S. Patent 2008/0271480 A1, 6 November 2008. [Google Scholar]
- Price, B.; Russell, F.; Morgan, D.; Kramer, J.; Minkkinen, A.; Heigold, B.; Soto, G.; Rivelsrud, H.; Bothamley, M.; Hall, K. Engineering Data Book; FPS Version, Volumes I & II, Section 1–26; Gas Processors Suppliers Association (GPSA): Tulsa, OK, USA, 2004. [Google Scholar]
- Mak, J.; Graham, C. Configurations and Methods of Integrated NGL Recovery and LNG Liquefaction. U.S. Patent 20070157663A1, 12 July 2007. [Google Scholar]
- Mak, J.; Graham, C. Configurations and Methods of Integrated NGL Recovery and LNG Liquefaction. U.S. Patent 20130061633A1, 14 March 2013. [Google Scholar]
- Mehrpooya, M.; Shafaei, A. Advanced exergy analysis of novel flash based Helium recovery from natural gas processes. Energy 2016, 114, 64–83. [Google Scholar] [CrossRef]
- Quader, M.A.; Rufford, T.E.; Smart, S. Modeling and cost analysis of helium recovery using combined-membrane process configurations. Sep. Purif. Technol. 2020, 236, 116269. [Google Scholar] [CrossRef]
- Shafaei, A.; Mehrpooya, M. Process development and sensitivity analysis of novel integrated helium recovery from natural gas processes. Energy 2018, 154, 52–67. [Google Scholar] [CrossRef]
- Emley, R.L.; Maloney, J.J. Cryogenic Rectification System for Producing Higher Purity Helium. U.S. Patent 5771714A, 30 June 1998. [Google Scholar]
- Scholes, C.A.; Stevens, G.W.; Kentish, S.E. Membrane gas separation applications in natural gas processing. Fuel 2012, 96, 15–28. [Google Scholar] [CrossRef]
- Nakoryakov, V.E.; Vitovsky, O.V.; Seryapin, A.V. Helium production technology based on natural gas combustion and beneficial use of thermal energy. Therm. Sci. 2016, 20, 19–22. [Google Scholar]
- Mehrpooya, M.; Mood, N.G.; Ansarinasab, H.; Alsagri, A.S.; Mehdipourrad, M. A novel sensitivity analysis of a new integrated helium extraction process through the interaction of costs and environmental impacts. Appl. Therm. Eng. 2019, 159, 113787. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, H.; Zheng, W.; Xiao, W.; Jiang, X.; He, G.; Ruan, X. Multi-membrane integrated processes for helium and methane synergistic recovery after flash-vaporization units in LNG plants. Sep. Purif. Technol. 2023, 326, 124825. [Google Scholar] [CrossRef]
- Ansarinasab, H.; Mehrpooya, M.; Parivazh, M.M. Evaluation of the cryogenic helium recovery process from natural gas based on flash separation by advanced exergy cost method—Linde modified process. Cryogenics 2017, 87, 1–11. [Google Scholar] [CrossRef]
- Ansarinasab, H.; Mehrpooya, M.; Pouriman, M. Advanced exergoeconomic evaluation of a new cryogenic helium recovery process from natural gas based on the flash separation—APCI modified process. Appl. Therm. Eng. 2018, 132, 368–380. [Google Scholar] [CrossRef]
- Al-Sobhi, S.A.; AlNouss, A.; Alsaba, W.; Elkamel, A. Sustainable design and analysis for helium extraction from sale gas in liquefied natural gas production. J. Nat. Gas Sci. Eng. 2022, 102, 104599. [Google Scholar] [CrossRef]
- Jiang, H.; Gao, P.; Li, H. Optimization of co-production process of cryogenic helium concentration and liquefied natural gas. Appl. Therm. Eng. 2023, 225, 120153. [Google Scholar] [CrossRef]
- Daly, J.W. Helium recovery from LNG. In Proceedings of the International Petroleum Technology Conference 2005, Doha, Qatar, 21–23 November 2005; p. IPTC-10720-MS. [Google Scholar]
- Mehrpooya, M.; Ghorbani, B.; Bahnamiri, F.K. Basic design and thermodynamic analysis of a high helium content natural gas-fuel cell power plant. J. Clean. Prod. 2020, 262, 121401. [Google Scholar]
- Ghorbani, B.; Amidpour, M. Energy, exergy, and sensitivity analyses of a new integrated system for generation of liquid methanol, liquefied natural gas, and crude helium using organic Rankine cycle, and solar collectors. J. Therm. Anal. Calorim. 2021, 145, 1485–1508. [Google Scholar]
- Paradowski, H.; Vovard, S. Process for Producing Liquid and Gaseous Nitrogen Streams, a Gaseous Stream Which is Rich in Helium and a Denitrided Stream of Hydrocarbons and Associated Installation. U.S. Patent 9316434B2, 19 April 2016. [Google Scholar]
- Pakzad, P.; Mehrpooya, M.; Zaitsev, A. Investigation of a new energy-efficient cryogenic process configuration for helium extraction and liquefaction. Int. J. Energy Res. 2021, 45, 10355–10377. [Google Scholar] [CrossRef]
- Froehlich, P.; Clausen, J. Large scale helium liquefaction and considerations for site services for a plant located in Algeria. AIP Conf. Proc. 2008, 985, 549–556. [Google Scholar]
- Victory, D.; Miles, M.W.; Oelfke, R.H. Helium Recovery from Natural Gas Integrated with NGL Recovery. U.S. Patent 20110174017A1, 21 July 2011. [Google Scholar]
- Spilsbury, C.G. Dual Stage Nitrogen Rejection from Liquefied Natural Gas. U.S. Patent 7520143B2, 21 April 2009. [Google Scholar]
- Kim, D. Helium Extraction from LNG end Flash. Master’s Thesis, National Taiwan Normal University (NTNU), Trondheim, Norway, 2014. [Google Scholar]
- Shazed, A.R.; Ashraf, H.M.; Katebah, M.A.; Bouabidi, Z.; Al-musleh, E.I. Overcoming the energy and environmental issues of LNG plants by using solid oxide fuel cells. Energy 2021, 218, 119510. [Google Scholar] [CrossRef]
- Arora, J.S. Introduction to Optimum Design; Elsevier: Waltham, MA, USA; Oxford, UK, 2004. [Google Scholar]
- Ghorbani, B.; Zendehboudi, S.; Alizadeh Afrouzi, Z. Thermo-economic optimization of a novel hybrid structure for power generation and portable hydrogen and ammonia storage based on magnesium–chloride thermochemical process and liquefied natural gas cryogenic energy. J. Clean. Prod. 2023, 403, 136571. [Google Scholar] [CrossRef]
- Cha, J.-H.; Lee, J.-C.; Roh, M.-I.; Lee, K.-Y. Determination of the optimal operating condition of the hamworthy mark I cycle for LNG-FPSO. J. Soc. Nav. Archit. Korea 2010, 47, 733–742. [Google Scholar] [CrossRef]
- Jensen, J.B. Optimal Operation of Refrigeration Cycles. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2008. [Google Scholar]
- Gong, M.; Luo, E.; Zhou, Y.; Liang, J.; Zhang, L. Optimum composition calculation for multicomponent cryogenic mixture used in Joule-Thomson refrigerators. Adv. Cryog. Eng. 2000, 45, 283–290. [Google Scholar]
- Boiarski, M.; Khatri, A.; Kovalenko, V. Design optimization of the throttle-cycle cooler with mixed refrigerant. In Cryocoolers 10; Springer: Berlin/Heidelberg, Germany, 1999; pp. 457–465. [Google Scholar]
- Shirmohammadi, R.; Ghorbani, B.; Hamedi, M.; Hamedi, M.H.; Romeo, L.M. Optimization of mixed refrigerant systems in low-temperature applications by means of group method of data handling (GMDH). J. Nat. Gas Sci. Eng. 2015, 26, 303–312. [Google Scholar] [CrossRef]
- Jin, C.; Yuan, Y.; Son, H.; Lim, Y. Novel propane-free mixed refrigerant integrated with nitrogen expansion natural gas liquefaction process for offshore units. Energy 2022, 238, 121765. [Google Scholar] [CrossRef]
- Veldandi, P.K.; Kurian, S. Design Optimization of C3MR Natural Gas Liquefaction Process. In Computer Aided Chemical Engineering; Pierucci, S., Manenti, F., Bozzano, G.L., Manca, D., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2020; Volume 48, pp. 517–522. [Google Scholar]
- Katebah, M.; Hussein, M.; Al-musleh, E.I. A Straightforward Optimization Approach for a Baseload Propane-Mixed Refrigerant Process. In Computer Aided Chemical Engineering; Pierucci, S., Manenti, F., Bozzano, G.L., Manca, D., Eds.; Elsevier: Amsterdam The Netherlands; Oxford, UK; Cambridge, MA, USA, 2020; Volume 48, pp. 1921–1926. [Google Scholar]
- He, T.; Lin, W. Energy saving research of natural gas liquefaction plant based on waste heat utilization of gas turbine exhaust. Energy Convers. Manag. 2020, 225, 113468. [Google Scholar] [CrossRef]
- Rao, H.N.; Nair, S.K.; Karimi, I.A. Operational optimization of processes with multistream heat exchangers using data-driven predictive modeling. Ind. Eng. Chem. Res. 2019, 58, 5838–5850. [Google Scholar] [CrossRef]
- Hajji, A.; Chahartaghi, M.; Kahani, M. Thermodynamic analysis of natural gas liquefaction process with propane pre-cooled mixed refrigerant process (C3MR). Cryogenics 2019, 103, 102978. [Google Scholar] [CrossRef]
- Sun, H.; Shu, D.; Zhu, H.M. Process Optimization of One-Stage Propane Pre-Cooled MRC Cycle for Small-Scale LNG Plant. Adv. Mater. Res. 2012, 516, 1184–1187. [Google Scholar] [CrossRef]
- Lee, I.; Tak, K.; Lim, W.; Choi, K.; Moon, I. Optimization of Pure-Refrigerant Cycle Compressing Ratio on C3-MR Process. In Computer Aided Chemical Engineering; Karimi, I.A., Srinivasan, R., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, MA, USA, 2012; Volume 31, pp. 1472–1476. [Google Scholar]
- Husnil, Y.A.; Park, C.; Lee, M. Simulation based Heuristics Approach for Plantwide Control of Propane Precooled Mixed Refrigerant in Natural Gas Liquefaction Process. In Computer Aided Chemical Engineering; Karimi, I.A., Srinivasan, R., Eds.; Elsevier: Amsterdam The Netherlands; Oxford, UK; Cambridge, MA, USA, 2012; Volume 31, pp. 400–404. [Google Scholar]
- Alabdulkarem, A.; Mortazavi, A.; Hwang, Y.; Radermacher, R.; Rogers, P. Optimization of propane pre-cooled mixed refrigerant LNG plant. Appl. Therm. Eng. 2011, 31, 1091–1098. [Google Scholar] [CrossRef]
- Katebah, M.A.; Hussein, M.M.; Al-Musleh, E.I.; Almomani, F. A systematic optimization approach of an actual LNG plant: Power savings and enhanced process economy. Energy 2023, 269, 126710. [Google Scholar] [CrossRef]
- Vaidyaraman, S.; Maranas, C.D. Synthesis of Mixed Refrigerant Cascade Cycles. Chem. Eng. Commun. 2002, 189, 1057–1078. [Google Scholar] [CrossRef]
- Jensen, J.B.; Skogestad, S. Steady-state operational degrees of freedom with application to refrigeration cycles. Ind. Eng. Chem. Res. 2009, 48, 6652–6659. [Google Scholar] [CrossRef]
- Austbø, B.; Løvseth, S.W.; Gundersen, T. Annotated bibliography—Use of optimization in LNG process design and operation. Comput. Chem. Eng. 2014, 71, 391–414. [Google Scholar] [CrossRef]
- Jouybari, A.K.; Ilinca, A.; Ghorbani, B. Thermo-economic optimization of a new solar-driven system for efficient production of methanol and liquefied natural gas using the liquefaction process of coke oven gas and post-combustion carbon dioxide capture. Energy Convers. Manag. 2022, 264, 115733. [Google Scholar] [CrossRef]
- Jensen, J.B.; Skogestad, S. Single-cycle mixed-fluid LNG process Part II: Optimal operation. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009; pp. 219–226. [Google Scholar]
- Shah, N.M.; Rangaiah, G.; Hoadley, A. Multi-objective optimization of the dual independent expander gas-phase refrigeration process for LNG. In Proceedings of the AIChE Annual Meeting, Salt Lake City, UT, USA, 4–9 November 2007. [Google Scholar]
- Jacobsen, M.G.; Skogestad, S. Active constraint regions for a natural gas liquefaction process. J. Nat. Gas Sci. Eng. 2013, 10, 8–13. [Google Scholar] [CrossRef]
- Lee, I.; Moon, I. Strategies for process and size selection of natural gas liquefaction processes: Specific profit portfolio approach by economic based optimization. Ind. Eng. Chem. Res. 2017, 57, 5845–5857. [Google Scholar] [CrossRef]
- Shah, N.M.; Hoadley, A.F.; Rangaiah, G.P. Inherent safety analysis of a propane precooled gas-phase liquified natural gas process. Ind. Eng. Chem. Res. 2009, 48, 4917–4927. [Google Scholar] [CrossRef]
- Sayyaadi, H.; Babaelahi, M. Multi-objective optimization of a joule cycle for re-liquefaction of the Liquefied Natural Gas. Appl. Energy 2011, 88, 3012–3021. [Google Scholar] [CrossRef]
- Shao, Y.L.; Soh, K.Y.; Wan, Y.D.; Huang, Z.F.; Islam, M.R.; Chua, K.J. Multi-objective optimization of a cryogenic cold energy recovery system for LNG regasification. Energy Convers. Manag. 2021, 244, 114524. [Google Scholar] [CrossRef]
- Ghorbani, B.; Roshani, H.; Mehrpooya, M.; Shirmohammadi, R.; Razmjoo, A. Evaluation of an integrated cryogenic natural gas process with the aid of advanced exergy and exergoeconomic analyses. Gas Process. J. 2020, 8, 17–36. [Google Scholar]
- Goel, V.; Furman, K.C.; Song, J.-H.; El-Bakry, A.S. Large neighborhood search for LNG inventory routing. J. Heuristics 2012, 18, 821–848. [Google Scholar] [CrossRef]
- Özelkan, E.C.; D’Ambrosio, A.; Teng, S.G. Optimizing liquefied natural gas terminal design for effective supply-chain operations. Int. J. Prod. Econ. 2008, 111, 529–542. [Google Scholar] [CrossRef]
- Lee, I.; Tak, K.; Kwon, H.; Kim, J.; Ko, D.; Moon, I. Design and optimization of a pure refrigerant cycle for natural gas liquefaction with subcooling. Ind. Eng. Chem. Res. 2014, 53, 10397–10403. [Google Scholar] [CrossRef]
- Taleshbahrami, H.; Saffari, H. Optimization of the C3MR cycle with genetic algorithm. Trans. Can. Soc. Mech. Eng. 2010, 34, 433–448. [Google Scholar] [CrossRef]
- Mahabadipour, H.; Ghaebi, H. Development and comparison of two expander cycles used in refrigeration system of olefin plant based on exergy analysis. Appl. Therm. Eng. 2013, 50, 771–780. [Google Scholar] [CrossRef]
- Castillo, L.; Dorao, C.A. Consensual decision-making model based on game theory for LNG processes. Energy Convers. Manag. 2012, 64, 387–396. [Google Scholar] [CrossRef]
- Afrouzy, Z.A.; Taghavi, M. Thermo-economic analysis of a novel integrated structure for liquefied natural gas production using photovoltaic panels. J. Therm. Anal. Calorim. 2021, 145, 1509–1536. [Google Scholar] [CrossRef]
- Sleiti, A.K.; Al-Ammari, W.A. Novel integration between propane pre-cooled mixed refrigerant LNG process and concentrated solar power system based on supercritical CO2 power cycle. Energy Rep. 2023, 9, 4872–4892. [Google Scholar] [CrossRef]
- Halvorsen-Weare, E.E.; Fagerholt, K. Routing and scheduling in a liquefied natural gas shipping problem with inventory and berth constraints. Ann. Oper. Res. 2013, 203, 167–186. [Google Scholar] [CrossRef]
- Santos, L.F.; Costa, C.B.; Caballero, J.A.; Ravagnani, M.A. Multi-objective simulation–optimization via kriging surrogate models applied to natural gas liquefaction process design. Energy 2023, 262, 125271. [Google Scholar] [CrossRef]
- Sun, H.; Ding, D.; He, M.; Sun, S. Simulation and optimisation of AP-X process in a large-scale LNG plant. J. Nat. Gas Sci. Eng. 2016, 32, 380–389. [Google Scholar] [CrossRef]
- Boulougouris, E.K.; Papanikolaou, A.D. Multi-objective optimisation of a floating LNG terminal. Ocean Eng. 2008, 35, 787–811. [Google Scholar] [CrossRef]
- Ghorbani, B.; Zendehboudi, S.; Jouybari, A.K. Thermo-economic optimization of a hydrogen storage structure using liquid natural gas regasification and molten carbonate fuel cell. J. Energy Storage 2022, 52, 104722. [Google Scholar] [CrossRef]
- Ding, H.; Sun, H.; He, M. Optimisation of expansion liquefaction processes using mixed refrigerant N2–CH4. Appl. Therm. Eng. 2016, 93, 1053–1060. [Google Scholar] [CrossRef]
- Moein, P.; Sarmad, M.; Ebrahimi, H.; Zare, M.; Pakseresht, S.; Vakili, S.Z. APCI-LNG single mixed refrigerant process for natural gas liquefaction cycle: Analysis and optimization. J. Nat. Gas Sci. Eng. 2015, 26, 470–479. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Cai, L.; Li, Y. Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction. Appl. Energy 2020, 275, 115333. [Google Scholar] [CrossRef]
- He, T.; Mao, N.; Liu, Z.; Qyyum, M.A.; Lee, M.; Pravez, A.M. Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes. Energy 2020, 199, 117378. [Google Scholar] [CrossRef]
- Jin, C.; Son, H.; Lim, Y. Optimization and economic analysis of liquefaction processes for offshore units. Appl. Therm. Eng. 2019, 163, 114334. [Google Scholar] [CrossRef]
- Morin, A.; Wahl, P.E.; Mølnvik, M. Using evolutionary search to optimise the energy consumption for natural gas liquefaction. Chem. Eng. Res. Des. 2011, 89, 2428–2441. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Frangopoulos, C. Synthesis, design and operation optimization of the marine energy system for a liquefied natural gas carrier. Int. J. Thermodyn. 2008, 11, 203–211. [Google Scholar]
- Tahouni, N.; Smith, R.; Panjeshahi, M.H. Comparison of stochastic methods with respect to performance and reliability of low-temperature gas separation processes. Can. J. Chem. Eng. 2010, 88, 256–267. [Google Scholar] [CrossRef]
- Tahouni, N.; Hassan Panjeshahi, M.; Ataei, A. Comparison of sequential and simultaneous design and optimization in low-temperature liquefaction and gas separation processes. J. Frankl. Inst. 2011, 348, 1456–1469. [Google Scholar] [CrossRef]
- Gundersen, T.; Aspelund, A.; Barton, P.I. An Overview of New Methodologies for the Design of Cryogenic Processes with an emphasis on LNG. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009; Alfadala, H.E., Rex Reklaitis, G.V., El-Halwagi, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1, pp. 104–112. [Google Scholar]
- Ali, W.; Qyyum, M.A.; Qadeer, K.; Lee, M. Energy optimization for single mixed refrigerant natural gas liquefaction process using the metaheuristic vortex search algorithm. Appl. Therm. Eng. 2018, 129, 782–791. [Google Scholar] [CrossRef]
- Qadeer, K.; Ahmad, A.; Naquash, A.; Qyyum, M.A.; Majeed, K.; Zhou, Z.; He, T.; Nizami, A.-S.; Lee, M. Neural network-inspired performance enhancement of synthetic natural gas liquefaction plant with different minimum approach temperatures. Fuel 2022, 308, 121858. [Google Scholar] [CrossRef]
- Kazemi, N.; Ghaedi, M.; Zaremoayedi, F.; Behmanesh, H. Modifying rock compressibility to analyze the production data of non-volumetric gas and gas condensate reservoirs. J. Nat. Gas Sci. Eng. 2022, 97, 104367. [Google Scholar] [CrossRef]
- Zaremoayedi, F.; Ghaedi, M.; Kazemi, N. A new approach to production data analysis of non-volumetric naturally fractured gas condensate reservoirs. J. Nat. Gas Sci. Eng. 2022, 105, 104703. [Google Scholar] [CrossRef]
- Podbielniak, W.J. Art of Refrigeration. U.S. Patent 2,041,725, 26 May 1936. [Google Scholar]
- Kleemenko, A.P. One Flow Cascade Cycle. In Proceedings of the 10th International Congress of Refrigeration, Copenhagen, Denmark, 19–26 August 1959. [Google Scholar]
- Gaumer, L.S., Jr.; Newton, C.L. Liquefaction of Natural Gas Employing Multiple-Component Refrigerants. U.S. Patent 3,593,535, 20 July 1971. [Google Scholar]
- Steed, J.M. Present uses of chlorofluorocarbons and effects due to environmental regulations. Int. J. Thermophys. 1989, 10, 545–552. [Google Scholar] [CrossRef]
- Lamb, R.; Foumeny, E.; Haselden, G.G. The use of wide boiling refrigerant mixtures in water chiller units for power saving. In Proceedings of the ICheme Research Event: Second European Conference for Young Researchers in Chemical Engineering, Leeds, UK, 2–3 April 1996. [Google Scholar]
- Duvedi, A.; Achenie, L.E.K. On the design of environmentally benign refrigerant mixtures: A mathematical programming approach. Comput. Chem. Eng. 1997, 21, 915–923. [Google Scholar] [CrossRef]
- Gong, M.Q.; Wu, J.F.; Luo, E.G. Performances of the mixed-gases Joule–Thomson refrigeration cycles for cooling fixed-temperature heat loads. Cryogenics 2004, 44, 847–857. [Google Scholar] [CrossRef]
- Maytal, B.Z.; Nellis, G.F.; Klein, S.A.; Pfotenhauer, J.M. Elevated-pressure mixed-coolants Joule–Thomson cryocooling. Cryogenics 2006, 46, 55–67. [Google Scholar] [CrossRef]
- Bosma, P.; Nagelvoort, R.K. Liquefaction Technology; Developments through History. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009; Alfadala, H.E., Rex Reklaitis, G.V., El-Halwagi, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1, pp. 19–31. [Google Scholar]
- Jensen, J.B.; Skogestad, S. Single-cycle mixed-fluid LNG process Part I: Optimal design. In Proceedings of the 1st Annual Gas Processing Symposium, Doha, Qatar, 10–12 January 2009; Alfadala, H.E., Rex Reklaitis, G.V., El-Halwagi, M.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1, pp. 211–218. [Google Scholar]
- Barclay, M.; Denton, N. Selecting offshore LNG processes. LNG J. 2005, 10, 34–36. [Google Scholar]
- Shukri, T. LNG technology selection. Hydrocarb. Eng. 2004, 9, 71–76. [Google Scholar]
- Shukri, T.; Barclay, M. Single mixed refrigerant process has appeal for growing offshore market. LNG J. 2007, 3, 31–37. [Google Scholar]
- Sayadmosleh, E.; Soleimani, M.; Shirazi, L.; Sarmad, M. Mixed refrigerant components selection criteria in LNG processes; thermodynamic analysis and prioritization guidelines. Sustain. Energy Technol. Assess. 2022, 49, 101788. [Google Scholar] [CrossRef]
- Wang, R.Z.; Oliveira, R.G. Adsorption refrigeration—An efficient way to make good use of waste heat and solar energy. Prog. Energy Combust. Sci. 2006, 32, 424–458. [Google Scholar] [CrossRef]
- Yan, X.; Chen, G.; Hong, D.; Lin, S.; Tang, L. A novel absorption refrigeration cycle for heat sources with large temperature change. Appl. Therm. Eng. 2013, 52, 179–186. [Google Scholar] [CrossRef]
- Han, W.; Sun, L.; Zheng, D.; Jin, H.; Ma, S.; Jing, X. New hybrid absorption–compression refrigeration system based on cascade use of mid-temperature waste heat. Appl. Energy 2013, 106, 383–390. [Google Scholar] [CrossRef]
- Popli, S.; Rodgers, P.; Eveloy, V. Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Appl. Therm. Eng. 2013, 50, 918–931. [Google Scholar] [CrossRef]
- Mortazavi, A.; Somers, C.; Alabdulkarem, A.; Hwang, Y.; Radermacher, R. Enhancement of APCI cycle efficiency with absorption chillers. Energy 2010, 35, 3877–3882. [Google Scholar] [CrossRef]
- Kalinowski, P.; Hwang, Y.; Radermacher, R.; Al Hashimi, S.; Rodgers, P. Application of waste heat powered absorption refrigeration system to the LNG recovery process. Int. J. Refrig. 2009, 32, 687–694. [Google Scholar] [CrossRef]
- Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S. A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 2001, 5, 343–372. [Google Scholar] [CrossRef]
- Ghorbani, B.; Manesh, M.H.K.; Ebrahimi, A. Exergy and pinch investigation of a novel configuration for the liquid hydrogen production by polymer electrolyte membrane electrolyzer and mixed refrigerant-absorption cooling cycles. Fuel 2023, 341, 127623. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Bahramian, P.; Pourfayaz, F.; Katooli, H.; Delpisheh, M. A novel hybrid liquefied natural gas process with absorption refrigeration integrated with molten carbonate fuel cell. Int. J. Low-Carbon Technol. 2021, 16, 956–976. [Google Scholar] [CrossRef]
- Ghorbani, B.; Rahnavard, Z.; Ahmadi, M.H.; Jouybari, A.K. An innovative hybrid structure of solar PV-driven air separation unit, molten carbonate fuel cell, and absorption–compression refrigeration system (Process development and exergy analysis). Energy Rep. 2021, 7, 8960–8972. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mehrpooya, M.; Shokri, K. Developing an integrated structure for simultaneous generation of power and liquid CO2 using parabolic solar collectors, solid oxide fuel cell, and post-combustion CO2 separation unit. Appl. Therm. Eng. 2020, 179, 115687. [Google Scholar] [CrossRef]
- Deng, J.; Wang, R.; Han, G. A review of thermally activated cooling technologies for combined cooling, heating and power systems. Prog. Energy Combust. Sci. 2011, 37, 172–203. [Google Scholar] [CrossRef]
- Srikhirin, P.; Aphornratana, S. Investigation of a diffusion absorption refrigerator. Appl. Therm. Eng. 2002, 22, 1181–1193. [Google Scholar] [CrossRef]
- Benhmidene, A.; Chaouachi, B.; Gabsi, S. Effect of operating conditions on the performance of the bubble pump of absorption-diffusion refrigeration cycles. Therm. Sci. 2011, 15, 793–806. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Mousavi, S.A.; Delpisheh, M.; Zaitsev, A.; Nikitin, A. 4E assessment and 3D parametric analysis of an innovative liquefied natural gas production process assisted by a diffusion–absorption refrigeration unit. Chem. Pap. 2022, 76, 5231–5252. [Google Scholar]
- Kanoglu, M.; Dincer, I.; Rosen, M.A. Geothermal energy use in hydrogen liquefaction. Int. J. Hydrogen Energy 2007, 32, 4250–4257. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Ghorbani, B. Hydrogen Production, Transportation, Storage, and Utilization: Theoretical and Practical Aspects; Elsevier: Amsterdam The Netherlands; London, UK; Cambridge, MA, USA, 2025; ISBN 9780443240430. [Google Scholar] [CrossRef]
- Habibi, H.; Zoghi, M.; Chitsaz, A.; Javaherdeh, K.; Ayazpour, M. Thermo-economic analysis and optimization of combined PERC-ORC-LNG power system for diesel engine waste heat recovery. Energy Convers. Manag. 2018, 173, 613–625. [Google Scholar] [CrossRef]
- Chen, Y.; Han, W.; Jin, H. Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures. Appl. Energy 2017, 185, 2106–2116. [Google Scholar] [CrossRef]
- Yin, L.; Ju, Y. Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle. Energy 2020, 205, 118008. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Ghorbani, B.; Ali Mousavi, S.; Zaitsev, A. Proposal and assessment of a new integrated liquefied natural gas generation process with auto—Cascade refrigeration (exergy and economic analyses). Sustain. Energy Technol. Assess. 2020, 40, 100728. [Google Scholar] [CrossRef]
- Lu, D.; Liu, Z.; Bai, Y.; Sun, S.; Gong, M.; Shen, J. Experimental study and economic analysis of an absorption refrigeration system with new generator structure applied for pre-cooling in liquefied natural gas plant. Int. J. Refrig. 2021, 129, 78–87. [Google Scholar] [CrossRef]
- Mehrpooya, M.; Amirhaeri, Y.; Hadavi, H. Proposal and investigation of a novel small-scale natural gas liquefaction process using diffusion absorption refrigeration technology. Chem. Pap. 2022, 76, 5901–5927. [Google Scholar]
- Qyyum, M.A.; Qadeer, K.; Lee, M. Comprehensive Review of the Design Optimization of Natural Gas Liquefaction Processes: Current Status and Perspectives. Ind. Eng. Chem. Res. 2018, 57, 5819–5844. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Ghorbani, B.; Ziabasharhagh, M. Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system. Energy 2020, 206, 117982. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Saadat-Targhi, M. Thermodynamic and economic assessment of an integrated thermoelectric generator and the liquefied natural gas production process. Energy Convers. Manag. 2019, 185, 603–610. [Google Scholar] [CrossRef]
- Pourkiaei, S.M.; Ahmadi, M.H.; Sadeghzadeh, M.; Moosavi, S.; Pourfayaz, F.; Chen, L.; Yazdi, M.A.P.; Kumar, R. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy 2019, 186, 115849. [Google Scholar]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Tohidi, F.; Holagh, S.G.; Chitsaz, A. Thermoelectric Generators: A comprehensive review of characteristics and applications. Appl. Therm. Eng. 2022, 201, 117793. [Google Scholar] [CrossRef]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Doraghi, Q.; Ahmad, L.; Norman, L.; Axcell, B.; Wrobel, L.; Dai, S. Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids 2021, 9, 100063. [Google Scholar]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. [Google Scholar] [CrossRef]
- Mamur, H.; Ahıska, R. A review: Thermoelectric generators in renewable energy. Int. J. Renew. Energy Res. 2014, 4, 128–136. [Google Scholar]
- Park, J.; You, F.; Mun, H.; Lee, I. Liquefied natural gas supply chain using liquid air as a cold carrier: Novel method for energy recovery. Energy Convers. Manag. 2021, 227, 113611. [Google Scholar] [CrossRef]
- Faramarzi, S.; Nainiyan, S.M.M.; Mafi, M.; Ghasemiasl, R. A novel hydrogen liquefaction process based on LNG cold energy and mixed refrigerant cycle. Int. J. Refrig. 2021, 131, 263–274. [Google Scholar] [CrossRef]
- Ghorbani, B.; Sadeghzadeh, M.; Ahmadi, M.H.; Sharifpur, M. Exergy assessment and energy integration of a novel solar-driven liquid carbon dioxide and liquefied natural gas cogeneration system using liquid air cold energy recovery. J. Therm. Anal. Calorim. 2023, 148, 1025–1046. [Google Scholar] [CrossRef]
- Ghorbani, B.; Mehrpooya, M.; Sadeghzadeh, M. A novel LNG reproduction layout using ejector refrigeration, an auto-cascade refrigeration system, and an ethylene compression refrigeration cycle. Chem. Pap. 2022, 76, 7647–7665. [Google Scholar]
- Tashtoush, B.M.; Al-Nimr, M.A.; Khasawneh, M.A. A comprehensive review of ejector design, performance, and applications. Appl. Energy 2019, 240, 138–172. [Google Scholar]
- Liu, F. Review on ejector efficiencies in various ejector systems. In Proceedings of the 15th International Refrigeration and Air Conditioning conference at Purdue, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Ghorbani, B.; Ebrahimi, A.; Moradi, M.; Ziabasharhagh, M. Continuous production of cryogenic energy at low-temperature using two-stage ejector cooling system, Kalina power cycle, cold energy storage unit, and photovoltaic system. Energy Convers. Manag. 2021, 227, 113541. [Google Scholar] [CrossRef]
- Besagni, G.; Mereu, R.; Inzoli, F. Ejector refrigeration: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 53, 373–407. [Google Scholar] [CrossRef]
- Abdulateef, J.; Sopian, K.; Alghoul, M.; Sulaiman, M. Review on solar-driven ejector refrigeration technologies. Renew. Sustain. Energy Rev. 2009, 13, 1338–1349. [Google Scholar]
- Jouybari, A.K.; Ilinca, A.; Ghorbani, B.; Rooholamini, S. Thermodynamic and exergy evaluation of an innovative hydrogen liquefaction structure based on ejector-compression refrigeration unit, cascade multi-component refrigerant system, and Kalina power plant. Int. J. Hydrogen Energy 2022, 47, 26369–26393. [Google Scholar] [CrossRef]
- CME Group. Natural Gas Futures. Available online: https://www.cmegroup.com/articles/whitepapers/henry-hub-natural-gas-futures-global-benchmark.html (accessed on 1 February 2025).
- Alberta Energy Regulator (AER). Henry Hub Natural Gas Prices. Available online: https://www.aer.ca/data-and-performance-reports/statistical-reports/alberta-energy-outlook-st98/prices-and-capital-expenditure/natural-gas-prices/henry-hub-price (accessed on 1 February 2025).
- Jensen, J.B.; Skogestad, S. Optimal operation of a simple LNG process. IFAC Proc. Vol. 2006, 39, 241–246. [Google Scholar] [CrossRef]
- Karamloo, B.; Sadatsakkak, S.; Mafi, M.; Manafi, H. Effect of refrigerant component leakage on the performance of double stage mixed refrigerant LNG process. J. Mech. Eng. Tabriz Univ. 2016, 47, 267–276. [Google Scholar]
- Oxford Institute for Energy Studies. LNG Plant Cost Reduction 2014–2018. Available online: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2018/10/LNG-Plant-Cost-Reduction-2014%E2%80%9318-NG137.pdf (accessed on 1 February 2025).
- Oxford Institute for Energy Studies, LNG Plant Cost Escalation. 2014. Available online: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2014/02/NG-83.pdf (accessed on 1 February 2025).
- Explore S&P Global. Costs and Expenditures. Available online: https://www.spglobal.com/commodityinsights/en (accessed on 1 February 2025).
- Wang, C.; Ju, Y.; Fu, Y. Comparative life cycle cost analysis of low pressure fuel gas supply systems for LNG fueled ships. Energy 2021, 218, 119541. [Google Scholar] [CrossRef]
- da Silva Sequeira, P. Economy Analysis Comparison for Liquefied Natural Gas and Gas-to-Liquid Project in Monetizing Excessive Natural Gas Production. Master’s Thesis, The University of Oklahoma, Norman, OK, USA, 2019. [Google Scholar]
- Barents Naturgass. Natural Gas—A Cost Effective Energy Source. Available online: https://barentsnaturgass.com/cost-effectiveness/ (accessed on 1 February 2025).
- UHERO. Liquefied Natural Gas: A Cleaner Fossil Fuel That’s Cheaper than Oil and Pairs Well with Renewable Energy. Available online: https://uhero.hawaii.edu/liquefied-natural-gas-a-cleaner-fossil-fuel-thats-cheaper-than-oil-and-pairs-well-with-renewable-energy/ (accessed on 1 February 2025).
- LNG Alternatives for Clean Electricity Production. Natural Resources Defense Council (NRDC). Available online: https://www.ethree.com/wp-content/uploads/2023/05/LNG-Alternatives-for-Clean-Electricity-Production_May-2023.pdf (accessed on 1 February 2025).
- Ulvestad, M.; Overland, I. Natural gas and CO2 price variation: Impact on the relative cost-efficiency of LNG and pipelines. Int. J. Environ. Stud. 2012, 69, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Zhang, S.; Liu, R.E.; Roda-Stuart, D.J.; Ravikumar, A.P.; Bradley, A.; Masnadi, M.S.; Brandt, A.R.; Bergerson, J.; Bi, X.T. Greenhouse-gas emissions of Canadian liquefied natural gas for use in China: Comparison and synthesis of three independent life cycle assessments. J. Clean. Prod. 2020, 258, 120701. [Google Scholar] [CrossRef]
- Kohout, A.; Jain, P.; Dick, W. Review, identification and analysis of local impact of projectile hazards in the LNG industry. J. Loss Prev. Process Ind. 2019, 57, 304–319. [Google Scholar] [CrossRef]
- Aneziris, O.; Koromila, I.; Nivolianitou, Z. A systematic literature review on LNG safety at ports. Saf. Sci. 2020, 124, 104595. [Google Scholar] [CrossRef]
- Bahadori, A. Thermal Insulation Handbook for the Oil, Gas, and Petrochemical Industries; Gulf Professional Publishing: Waltham, MA, USA; Oxford, UK, 2014; ISBN 978-0-12-800010-6. [Google Scholar] [CrossRef]
- Aneziris, O.N.; Papazoglou, I.A.; Konstantinidou, M.; Nivolianitou, Z. Integrated risk assessment for LNG terminals. J. Loss Prev. Process Ind. 2014, 28, 23–35. [Google Scholar] [CrossRef]
- Pio, G.; Salzano, E. The effect of ultra-low temperature on the flammability limits of a methane/air/diluent mixtures. J. Hazard. Mater. 2019, 362, 224–229. [Google Scholar] [CrossRef]
- Pio, G.; Carboni, M.; Iannaccone, T.; Cozzani, V.; Salzano, E. Numerical simulation of small-scale pool fires of LNG. J. Loss Prev. Process Ind. 2019, 61, 82–88. [Google Scholar] [CrossRef]
- Shindo, A.; Yamazaki, H.; Toki, A.; Maeshima, R.; Koshijima, I.; Umeda, T. An approach to potential risk analysis of networked chemical plants. Comput. Chem. Eng. 2000, 24, 721–727. [Google Scholar] [CrossRef]
- Ballesio, J.; Patel, H.N.; Revenga, A.; Rynn, P.G. SS: Cryogenic Pipelines: Risk Assessment and Technology Qualification Process for Offshore LNG Pipelines. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2009; p. OTC-20301-MS. [Google Scholar]
- Skramstad, E.; Almandoz, D.A.; Savio, F. Key learnings: Risk based verification of process systems on a floating LNG producing unit. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3–7 May 2010; p. OTC-20442-MS. [Google Scholar]
- Vanem, E.; Antão, P.; Østvik, I.; de Comas, F.D.C. Analysing the risk of LNG carrier operations. Reliab. Eng. Syst. Saf. 2008, 93, 1328–1344. [Google Scholar] [CrossRef]
- Yun, G.; Rogers, W.J.; Mannan, M.S. Risk assessment of LNG importation terminals using the Bayesian–LOPA methodology. J. Loss Prev. Process Ind. 2009, 22, 91–96. [Google Scholar] [CrossRef]
- Khalil, M.; Abdou, M.A.; Mansour, M.S.; Farag, H.A.; Ossman, M.E. A cascaded fuzzy-LOPA risk assessment model applied in natural gas industry. J. Loss Prev. Process Ind. 2012, 25, 877–882. [Google Scholar] [CrossRef]
- Hamedifar, H.; Spitzenberger, C.; Stahl, C.; Brown, A.; Nilberg, B.; Demay, V.; Aspholm, O. Terminal and transportation risk assessment for LNG export in North America. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2015; p. OTC-26020-MS. [Google Scholar]
- Martins, M.R.; Pestana, M.A.; Souza, G.F.M.; Schleder, A.M. Quantitative risk analysis of loading and offloading liquefied natural gas (LNG) on a floating storage and regasification unit (FSRU). J. Loss Prev. Process Ind. 2016, 43, 629–653. [Google Scholar] [CrossRef]
- Jeong, B.; Lee, B.S.; Zhou, P.; Ha, S.-m. Evaluation of safety exclusion zone for LNG bunkering station on LNG-fuelled ships. J. Mar. Eng. Technol. 2017, 16, 121–144. [Google Scholar] [CrossRef]
- Li, X.; Tang, W. Structural risk analysis model of damaged membrane LNG carriers after grounding based on Bayesian belief networks. Ocean Eng. 2019, 171, 332–344. [Google Scholar] [CrossRef]
- Yoon, I.K.; Lim, D.Y.; Jung, H.J.; Seo, J.M.; Oh, S.K. A supportive framework for collaborative implementation of quantitative risk analysis in the hazardous process industry and application to natural gas plant. J. Chem. Eng. Jpn. 2019, 52, 349–361. [Google Scholar] [CrossRef]
- Ochiai, S.; Makita, T.; Sanjo, T.; Sato, K.; Katagiri, M. Quantitative risk evaluations of LNG equipment applying ASME risk-based maintenance concepts. Process Saf. Prog. 2005, 24, 187–191. [Google Scholar] [CrossRef]
- Kim, H.; Koh, J.-S.; Kim, Y.; Theofanous, T.G. Risk assessment of membrane type LNG storage tanks in Korea-based on fault tree analysis. Korean J. Chem. Eng. 2005, 22, 1–8. [Google Scholar] [CrossRef]
- Sultana, S.; Okoh, P.; Haugen, S.; Vinnem, J.E. Hazard analysis: Application of STPA to ship-to-ship transfer of LNG. J. Loss Prev. Process Ind. 2019, 60, 241–252. [Google Scholar] [CrossRef]
- Kong, Z.; Lu, X.; Jiang, Q.; Dong, X.; Liu, G.; Elbot, N.; Zhang, Z.; Chen, S. Assessment of import risks for natural gas and its implication for optimal importing strategies: A case study of China. Energy Policy 2019, 127, 11–18. [Google Scholar] [CrossRef]
- Vianello, C.; Maschio, G. Quantitative risk assessment of the Italian gas distribution network. J. Loss Prev. Process Ind. 2014, 32, 5–17. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z. Fire and Explosion Risk Analysis and Evaluation for LNG Ships. Procedia Eng. 2012, 45, 70–76. [Google Scholar] [CrossRef]
- Yeo, C.; Bhandari, J.; Abbassi, R.; Garaniya, V.; Chai, S.; Shomali, B. Dynamic risk analysis of offloading process in floating liquefied natural gas (FLNG) platform using Bayesian Network. J. Loss Prev. Process Ind. 2016, 41, 259–269. [Google Scholar] [CrossRef]
- Vianello, C.; Maschio, G. Risk analysis of LNG terminal: Case study. Chem. Eng. Trans. 2014, 36, 277–282. [Google Scholar] [CrossRef]
- de Souza, G.F.M.; Hidalgo, E.M.P.; Silva, D.W.R.; Martins, M.R. Probabilistic risk analysis of a LNG carrier loading pipeline. In Proceedings of the 31st International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, 1–6 July 2012; pp. 621–630. [Google Scholar]
- Raj, P.K.; Lemoff, T. Risk analysis based LNG facility siting standard in NFPA 59A. J. Loss Prev. Process Ind. 2009, 22, 820–829. [Google Scholar] [CrossRef]
- Leoni, L.; BahooToroody, A.; De Carlo, F.; Paltrinieri, N. Developing a risk-based maintenance model for a Natural Gas Regulating and Metering Station using Bayesian Network. J. Loss Prev. Process Ind. 2019, 57, 17–24. [Google Scholar] [CrossRef]
- de Andrade Melani, A.H.; Silva, D.W.R.; Souza, G.F.M. Use of Bayesian network to support risk-based analysis of LNG carrier loading operation. In Proceedings of the Probabilistic Safety Assessment and Management Conference (PSAM’14), Los Angeles, CA, USA, 16–21 September 2018. [Google Scholar]
- Vinnem, J.E. Risk analysis and risk acceptance criteria in the planning processes of hazardous facilities—A case of an LNG plant in an urban area. Reliab. Eng. Syst. Saf. 2010, 95, 662–670. [Google Scholar] [CrossRef]
- Animah, I.; Shafiee, M. Application of risk analysis in the liquefied natural gas (LNG) sector: An overview. J. Loss Prev. Process Ind. 2020, 63, 103980. [Google Scholar] [CrossRef]
- NFPA 59A; Standard For the Production, Storage, and Handling of Liquefied Natural Gas (LNG). National Fire Protection Association: Quincy, MA, USA, 2023.
- Comité Euro-International du Béton (CEB). Concrete Structures Under Impact and Impulsive Loading—Synthesis Report; Bulletin No. 187; FIB—International Federation for Structural Concrete: Lausanne, Switzerland, 1988. [Google Scholar]
- CEN-CENELEC. EN 1473: LNG—Design of Onshore Installations. Available online: https://www.cencenelec.eu/news-and-events/news/2021/eninthespotlight/2021-05-26-en-1473-lng/ (accessed on 1 February 2025).
- European Commission. Updated Standards for LNG Infrastructure: EN 1473:2021 Overview. 2021. Available online: https://ec.europa.eu/newsroom/cipr/items/722068/en (accessed on 1 February 2025).
- International Maritime Organization. International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code). Available online: https://www.imo.org/en/ourwork/safety/pages/igc-code.aspx (accessed on 1 February 2025).
- International Transport Workers’ Federation. ITF Guideline on IGF Code. Available online: https://www.itfseafarers.org/sites/default/files/node/resources/files/ITF%20Guideline%20on%20IGF%20Code.pdf (accessed on 1 February 2025).
- International Organization for Standardization. Guidelines for Safety and Risk Assessment of LNG Fuel Bunkering Operations, Edition 2. 2021. Available online: https://www.iso.org/standard/76811.html (accessed on 1 February 2025).
- American Bureau of Shipping. Guide for LNG Bunkering. 2018. Available online: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/special_service/245_Guide_for_LNG_Bunkering/LNG_Bunkering_Guide_e-Mar18.pdf (accessed on 1 February 2025).
- International Organization for Standardization. Ships and Marine Technology, Specification for Bunkering of Liquefied Natural Gas Fuelled Vessels (ISO Standard No. 20519:2021). Available online: https://www.iso.org/standard/80842.html (accessed on 1 February 2025).
- Wood Mackenzie. LNG Trade Disrupted as Suez Canal Transits Stop. Available online: https://www.woodmac.com/news/opinion/lng-trade-disrupted-as-suez-canal-transits-stop/ (accessed on 1 February 2025).
- Oxford Institute for Energy Studies. LNG Shipping Chokepoints: The Impact of Red Sea and Panama Canal Disruption. Available online: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2024/02/NG-188-LNG-Shipping-Chokepoints.pdf (accessed on 1 February 2025).
- Spot LNG Shipping Rates Rise for First Time Since November. Available online: https://lngprime.com/europe/spot-lng-shipping-rates-rise-for-first-time-since-november/104460/ (accessed on 1 February 2025).
- International Energy Agency (IEA). Global Gas Balance Set to Remain Fragile in 2025 as Growing Demand Meets Tight Supply. Available online: https://www.iea.org/news/global-gas-balance-set-to-remain-fragile-in-2025-as-growing-demand-meets-tight-supply (accessed on 1 February 2025).
- Woodway Energy. Natural Gas Supply Chains Under Pressure. Available online: https://www.woodwayenergy.com/natural-gas-supply-chains-under-pressure/ (accessed on 1 February 2025).
- Financier Worldwide. Political Priorities Affecting the Global Liquified Natural Gas Trade. Available online: https://www.financierworldwide.com/political-priorities-affecting-the-global-liquified-natural-gas-trade (accessed on 1 February 2025).
- Haig, S.; Dusyk, N.; Rempel, Z. Why Liquefied Natural Gas Expansion in Canada Is Not Worth the Risk. International Institute for Sustainable Development, 4 June 2024. Available online: https://www.iisd.org/system/files/2024-06/bottom-line-lng-expansion-canada-not-worth-risk.pdf (accessed on 1 February 2025).
- Deloitte. LNG Industry Trends. Available online: https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/lng-industry-trends-oil-natural-gas-report.html (accessed on 1 February 2025).
- Institute for Energy Economics and Financial Analysis. Global LNG Outlook 2023–27. Available online: https://ieefa.org/sites/default/files/2023-02/Global%20LNG%20Outlook_February%202023.pdf (accessed on 1 February 2025).
- International Gas Union (IGU). World LNG Report 2024. Available online: https://safety4sea.com/world-lng-report-2024/ (accessed on 1 February 2025).
- LNG Prime. Japan’s LNG Imports Down 8.1 Percent in 2023. 2024. Available online: https://lngprime.com/asia/japans-lng-imports-down-8-1-percent-in-2023/102988/ (accessed on 1 February 2025).
- Global Gas & LNG Market Outlook to 2035. McKinsey & Company. Available online: https://www.mckinsey.com/industries/oil-and-gas/our-in-sights/~/media/0B218D0C0A6749679268EDCB0E83F57D.ashx (accessed on 1 February 2025).
- Global Energy Perspective 2023: Natural Gas Outlook. Available online: https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2023-natural-gas-outlook (accessed on 1 February 2025).
- Proven Infrastructure Powering the World. Sabine Pass Liquefaction. Available online: https://www.cheniere.com/where-we-work/sabine-pass (accessed on 1 February 2025).
- Institute for Energy Economics and Financial Analysis. Global LNG Outlook 2024–2028. Available online: https://ieefa.org/sites/default/files/2024-04/Global%20LNG%20Outlook%202024-2028_April%202024%20%28Final%29.pdf (accessed on 1 February 2025).
- Projects Seek to Further Grow U.S. LNG Export Capacity. Available online: https://maritime-executive.com/article/projects-seek-to-further-grow-u-s-lng-export-capacity#:~:text=Sabine%20Pass%2C%20which%20produced%20its%20first%20LNG%20in,million%20tonnes%20per%20annum%20%28mtpa%29%20operating%20six%20trains (accessed on 1 February 2025).
- Cove Point LNG Facility Now Second in U.S. to Export Natural Gas. Available online: https://gcaptain.com/cove-point-lng-facility-now-second-in-u-s-to-export-natural-gas/ (accessed on 1 February 2025).
- Where Operational Excellence Meets Growth Opportunity. Corpus Christi Liquefaction. Available online: https://cheniere.com/where-we-work/ccl (accessed on 1 February 2025).
- The United States Department of Energy. Liquefied Natural Gas (LNG) Exports. Available online: https://www.energy.gov/sites/default/files/2024-01/LNG%20Snapshot%20Dec%2031%2023u.pdf (accessed on 1 February 2025).
- Deal Opens Way for Sabine Pass Area LNG Export Terminal. Available online: https://www.chron.com/business/energy/article/deal-opens-way-for-sabine-pass-area-lng-export-4507386.php (accessed on 1 February 2025).
- Berkshire Hathaway Increases Stake to 75% of Cove Point LNG, Buys Out Dominion Energy. Available online: https://traderscommunity.com/berkshire-hathaway-increases-stake-to-75-of-cove-point-lng-buys-out-dominion-energy/ (accessed on 1 February 2025).
- NS Energy. Elba LNG Export Project, Georgia. Available online: https://www.nsenergybusiness.com/projects/elba-lng-export-project-georgia/?cf-view&cf-closed (accessed on 1 February 2025).
- Cheniere: Sabine Pass Hits Contract Target. Available online: https://www.naturalgasintel.com/news/cheniere-sabine-pass-hits-contract-target/ (accessed on 1 February 2025).
- BHE GT&S. Cove Point LNG. Available online: https://www.bhegts.com/our-businesses/cove-point-LNG (accessed on 1 February 2025).
- Cove Point LNG Facility, US. Available online: https://www.nsenergybusiness.com/projects/cove-point-lng-project/?cf-view (accessed on 1 February 2025).
- Corpus Christi Liquefaction Project. Texas, US. Available online: https://www.bechtel.com/projects/corpus-christi-liquefaction-project/ (accessed on 1 February 2025).
- Cameron LNG Project, Louisiana. Available online: https://www.nsenergybusiness.com/projects/cameron-lng-project-louisiana/?cf-view (accessed on 1 February 2025).
- TotalEnergies in the U.S. Launch of Cameron LNG Expansion to Increase Liquefied Natural Gas Production. Available online: https://corporate.totalenergies.us/news/launch-cameron-lng-expansion-increase-liquefied-natural-gas-production (accessed on 1 February 2025).
- NS Energy. Freeport LNG Export Terminal, Quintana Island, Texas. Available online: https://www.nsenergybusiness.com/projects/freeport-lng-export-terminal-quintana-island-texas/?cf-view&cf-closed (accessed on 1 February 2025).
- Freeport LNG Nears End of Expansion that Will Increase Output. Available online: https://gasprocessingnews.com/news/2024/08/freeport-lng-nears-end-of-expansion-that-will-increase-output/ (accessed on 1 February 2025).
- GE Vernova. Full Electrical Solution for LNG Plant – Freeport. 2022. Available online: https://www.gevernova.com/power-conversion/sites/default/files/2022-09/GEA34891_OG_CS_Full-electrical-solution-for-LNG-plant-%5BFreeport%5D_EN_20220919_LR.pdf (accessed on 1 February 2025).
- LNGPrime. Venture Global Ready to Start LNG Production at Calcasieu Pass. Available online: https://lngprime.com/americas/venture-global-ready-to-start-lng-production-at-calcasieu-pass/31957/ (accessed on 1 February 2025).
- Calcasieu Pass LNG Export Facility, Louisiana. Available online: https://www.nsenergybusiness.com/projects/calcasieu-pass-lng-facility-louisiana/?cf-view (accessed on 2 August 2024).
- Elba Liquefaction Project, Georgia. Available online: https://www.hydrocarbons-technology.com/projects/elba-liquefaction-project-georgia/ (accessed on 1 February 2025).
- LNG Plant Had History of Safety Issues Before Explosion. Available online: https://www.eenews.net/articles/lng-plant-had-history-of-safety-issues-before-explosion/ (accessed on 1 February 2025).
Technologies [References] | Refrigeration Stages | Advantages | Disadvantages | Performance Metrics |
---|---|---|---|---|
SMR [39,86,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,175] | ▪ Pre-cooling: MR ▪ Liquefaction: - ▪ Sub-cooling: - | ▪ Efficient layout ▪ Lower investment cost ▪ Compact structure | ▪ Lower efficiency compared to multi-refrigerant systems ▪ Restricted expansion potential ▪ Use of flammable refrigerants | ▪ SPC (kWh/kg LNG): 0.22–0.48 ▪ Exergy efficiency: 0.3–0.678 ▪ Capacity (MTPA): 0.6–2.5 |
C3MR [14,24,38,39,56,88,103,106,110,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,175] | ▪ Pre-cooling: Propane ▪ Liquefaction: MR ▪ Sub-cooling: - | ▪ High efficiency and widely used ▪ Better energy consumption than SMR ▪ Well-established technology | ▪ Less suitable for offshore use ▪ Significant propane storage requirement ▪ Higher capital cost than SMR | ▪ SPC: 0.2–0.41 ▪ Exergy efficiency: 0.292–0.652 ▪ Capacity (MTPA): 1.2–5.5 |
DMR [15,22,24,39,122,149,151,152,153,154,155,156,157,158,159,160,161,162] | ▪ Pre-cooling: MR ▪ Liquefaction: MR ▪ Sub-cooling: - | ▪ Eliminating constraints on C3 compressors ▪ Enhanced capacity ▪ Higher efficiency than SMR and C3MR ▪ Good for cold environments | ▪ More complex operation and control than SMR and C3MR ▪ Requires high capital investment | ▪ SPC (kWh/kg LNG): 0.212–0.414 ▪ Exergy efficiency: 0.282–0.623 ▪ Capacity (MTPA): 3.4–4.8 |
MFC [18,24,39,51,58,154,162,165,166,167,168,169,170,171,172,173,175] | ▪ Pre-cooling: MR ▪ Liquefaction: MR ▪ Sub-cooling: MR | ▪ Large throughput ▪ Optimized performance ▪ High efficiency and low SPC ▪ Suitable for modular designs ▪ Lower operational costs | ▪ Significant investment requirements ▪ Complex process with multiple refrigerants ▪ Requires advanced process control | ▪ SPC (kWh/kg LNG): 0.196–0.423 ▪ Exergy efficiency: 0.518–0.628 ▪ Capacity (MTPA): 1.1–4.3 |
CPOC [39,64,118,145,146,175] | ▪ Pre-cooling: Propane ▪ Liquefaction: Ethylene ▪ Sub-cooling: Methane | ▪ Simpler than C3MR ▪ Lower footprint and capital costs ▪ Suitable for medium-scale LNG | ▪ Lower efficiency than C3MR and DMR ▪ Limited scalability for large plants | ▪ SPC (kWh/kg LNG): 0.205–0.341 ▪ Capacity (MTPA): 3–5.2 |
AP-X [8,39,174,175] | ▪ Pre-cooling: Propane ▪ Liquefaction: MR ▪ Sub-cooling: N2 | ▪ High efficiency ▪ Suitable for mega-scale LNG production ▪ Reduces SPC | ▪ Complex and expensive ▪ Requires extensive process expertise | ▪ Capacity (MTPA): 7.8 |
NRU Technology | Key Features | Applications/Limitations | Remarks |
---|---|---|---|
Cryogenic fractionation | ▪ Utilizes J-T or expander methods, cooling, and distillation at cryogenic temperatures. ▪ Needs recompression. ▪ Uses a cold box with BAHE. | ▪ Suitable for a wide range of inlet gas pressures and flow rates. ▪ May be less efficient for low gas throughput. ▪ Handles very low CH4 concentrations (100 PPM to 1.5%) in N2 vent streams. | ▪ Can recover >99% HC. ▪ Requires pre-treatment including compression, AGRU, molecular sieve dehydration, and MRU, with further cryogenic distillation and recompression. ▪ Widely used in commercial applications. Some companies such as APCI, Bechtel, Linde, and KBR can provide EPC services globally. |
Membranes | ▪ Uses single or multiple membrane modules to separate N2 from HCs. ▪ May require recompression, especially for multiple membrane installations. | ▪ Design pressure capped at 85 barg. ▪ Maximum design capacity is 100 MMSCFD per train. | ▪ Recovers about 90% HC, depending on N₂ concentration and pressure. ▪ Pre-treatment is typically not needed, though CO2 removal might be necessary based on CO2 concentration in the feed. |
Molecular gate | ▪ Similar to molecular sieve adsorption technology. ▪ Recompression is likely required. | ▪ Maximum design pressure of 85 barg. ▪ Operates optimally at 17–41 barg. | ▪ Recovers around 90% HC. ▪ Requires pre-treatment, including inlet handling, AGRU for CO2 removal, and molecular sieve dehydration. Can remove N2 and CO2 in a single step. |
Solvent absorption | ▪ Separates HCs from N2 using a solvent. ▪ HCs are released from the solvent by pressure reduction in multiple gas decompression steps. | ▪ Operates at a maximum pressure of 70 barg. ▪ Maximum capacity is 5 MMSCFD per train. | ▪ Recovers > 99% HC. ▪ Some commercial success with N2 contents as high as 50 mol%. |
N2 sponge | ▪ Absorbs H2O and N2. | ▪ Design pressure limited to 4 barg. ▪ Throughput limited to 5 MMSCFD per train. | ▪ Recovers > 92% HC. ▪ Pre-treatment is generally not required except for inlet handling. |
Cryogenic lean oil absorption | ▪ CH4 is absorbed into cryogenic lean oil. | ▪ No information on commercial programs. | ▪ Requires high recompression pressure for HC products. |
Pressure swing adsorption | ▪ Adsorbs HCs at high pressure and releases them at low pressure. | ▪ No information on commercial programs. | ▪ Can tolerate a wide range of feed gas pressures. |
Chelating solvent absorption | ▪ A chelating solvent absorbs N2 selectively. | ▪ No information on commercial programs. | ▪ No commercial usage; still in R&D. |
References | SPC (kWh/kg LNG) Unless Indicated Otherwise | Exergy Efficiency | Remarks |
---|---|---|---|
Sabbagh et al. [223] | 0.3473 | 0.5512 | ▪ C3MR unit (LNG/NGL) ▪ PR EOS ▪ ASPEN PLUS package ▪ Controlled NSGAII ▪ Multi-objective (annualized profit, exergy efficiency, and SPC) ▪ Multi-criteria decision-making (LINMAP and TOPSIS) |
Sabbagh et al. [224] | 0.347 | - | ▪ C3MR unit (LNG/NGL) ▪ PR EOS ▪ ASPEN PLUS/EDR package ▪ GA method ▪ Single objective (annualized profit) |
Sabbagh et al. [139] | 0.3626 | 0.7179 | ▪ C3MR unit (LNG/NGL) ▪ PR EOS ▪ ASPEN PLUS package ▪ GA method ▪ Single objective (SPC) |
Khan et al. [20] | 0.3863 | - | ▪ SMR unit (LNG/NGL) ▪ PR EOS ▪ ASPEN HYSYS package ▪ Knowledge-based methodology ▪ Single objective (SPC) |
Vatani et al. [22] | 0.414 | - | ▪ DMR units (LNG/NGL) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package |
Uwitonze et al. [225] | - | - | ▪ DMR unit (LNG/NGL) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package ▪ Knowledge-based methodology ▪ Single objective (power consumption) |
Ghorbani et al. [14] | 0.359 | 0.6162 | ▪ C3MR unit (LNG/NGL/NRU) ▪ Pinch approach (CC) ▪ ASPEN HYSYS ▪ NSGAII method ▪ Multi-objective (period of return and SPC) |
Ghorbani et al. [191] | 0.339 | 0.6614 | ▪ DMR unit (LNG/NGL/NRU) ▪ PR EOS ▪ Pinch approach (CC and ECC) ▪ ASPEN HYSYS package |
Ghorbani et al. [51] | 0.33–0.343 | 0.6282 | ▪ MFC unit (LNG/NGL/NRU) ▪ Pinch approach (CC and ECC) ▪ ASPEN HYSYS package ▪ NSGAII method ▪ Single objective (SPC) |
Ghorbani et al. [18] | MCF: 0.4231 ARC-MR2: 0.2722 | MCF: 0.5606 ARC-MR2: 0.4893 | ▪ MFC-ARC/MR2 units (LNG/NGL) ▪ Pinch approach (CC) ▪ ASPEN HYSYS package ▪ Prime cost of the product: MFC (0.305) and ARC-MR2 (0.237 USD/kg LNG) |
He et al. [226] | 0.44 kWh/Nm3 | 0.47 | ▪ C3MR unit (LNG/NGL) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package ▪ GA algorithm ▪ Single objective (SPC) |
He et al. [25] | 0.371 kWh/Nm3 | - | ▪ SMR unit (LNG/NGL) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package ▪ GA algorithm ▪ Single objective (SPC) |
Mehrpooya et al. [24,227] | MFC: 0.364 C3MR: 0.391 DMR: 0.375 | MFC: 0.59 C3MR: 0.56 DMR: 0.55 | ▪ MFC-C3MR-DMR units (LNG/NGL) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package |
Mehrpooya et al. [281] | - | 0.4127 | ▪ C3MR unit (LNG/NRU) ▪ Peng–Robinson–Stryjek–Vera equation ▪ ASPEN HYSYS package |
Ebrahimi et al. [17] | 0.7673 | - | ▪ ARC-CRS-MR unit (LNG/NRU) ▪ ASPEN HYSYS package ▪ Integrated with power plant and biomass gasification unit |
Mak et al. [289,290] | - | - | ▪ Pure MR ▪ C2H6 recovery: 25–85% ▪ Pinch approach (CC) |
References | Helium Extraction Rate | Power Consumption Ratio (kWh/kmol He) Unless Indicated Otherwise | Remarks |
---|---|---|---|
Zaitsev et al. [170] | 0.951 | 132.9 | ▪ MFC unit and ARC-MR2 unit (LNG/He recovery) ▪ PR EOS ▪ ASPEN HYSYS package and M-file code ▪ Pinch approach (CC and ECC) ▪ SPC: MFC (0.265) and ARC-MR2 (0.1849) kWh/kg LNG ▪ Exergy efficiency: MFC (0.8966) and ARC-MR2 (0.8896) ▪ Prime cost of the product: MFC (0.2069) and ARC-MR2 (0.1939) USD/kg LNG |
Mehrpooya et al. [304] | 0.9142 | - | ▪ Multi-stage flash unit, modified APCI (LNG/He recovery) ▪ PR EOS ▪ ASPEN HYSYS package and M-file code ▪ Integrated with fuel cell, ARC, and steam power system ▪ SPC: 0.2086 kWh/kg LNG ▪ Exergy efficiency: 0.9491 |
Mehrpooya et al. [291] | ▪ Linde (flash): 0.96 ▪ APCI (flash): 0.91 | ▪ Linde (flash): 388 ▪ APCI (flash): 227 | ▪ Multi-stage flash unit, modified APCI (LNG/He recovery) ▪ PR EOS ▪ ASPEN HYSYS package and M-file code ▪ Pinch approach (CC and ECC) |
Donghoi Kim [311] | ▪ APCI (flash): 0.9 ▪ Linde (flash): 0.95 ▪ APCI (distillation): 0.9 ▪ Technip (distillation): 0.63 ▪ Reboiled (distillation): 0.95 ▪ Linde (integration): 0.95 ▪ Exxon (integration): 0.95 | ▪ APCI (flash): 87 kWh/Sm3 He ▪ Linde (flash): 139 ▪ APCI (distillation): 93 ▪ Technip (distillation): 87 ▪ Reboiled (distillation): 99 ▪ Linde (integration): 28 ▪ Exxon (integration): 27 | ▪ LNG/He recovery ▪ PR EOS ▪ ASPEN HYSYS package |
Ansarinasab et al. [299] | 0.958 | - | ▪ Multi-stage flash unit, modified Linde process (LNG/He recovery) ▪ PR EOS ▪ ASPEN HYSYS package and M-file code ▪ Integrated with fuel cell, ARC, and steam power system |
Shafaei et al. [293] | ▪ Modified Linde (integration): 0.97 ▪ Modified ExxonMobil (integration): 0.95 ▪ Linde (integration): 0.9 ▪ ExxonMobil (integration): 0.9 | ▪ Modified Linde (integration): 1249 ▪ Modified ExxonMobil (integration): 605 | ▪ Hybrid method, modified Linde and ExxonMobil processes (LNG/He recovery) ▪ PR EOS ▪ ASPEN HYSYS package ▪ Pinch approach (CC) |
Reference | Optimization Approach | Objective Function | Remarks |
---|---|---|---|
Alabdulkarem et al. [329] | GA | Power consumption | ▪ C3MR unit ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package ▪ SPC for optimized plant: 5.14 kWh/kmol LNG ▪ Second law efficiency: 49.97% |
Lee et al. [345] | SQP | Power consumption | ▪ C3MR unit ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package ▪ Energy reduction vs. baseline: 17.74% |
Taleshbahrami et al. [346] | GA | Power consumption | ▪ C3MR unit ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code ▪ Energy reduction vs. baseline: 23% |
Hwang et al. [72,149] | GA and SQP | Power consumption | ▪ DMR unit ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code ▪ Energy reduction vs. baseline: 7.45% [72] ▪ Energy reduction vs. baseline: 34.5% [149] |
Xu et al. [97] | GA | Power consumption | ▪ SMR unit ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN PLUS package ▪ SPC for optimized plant: 1003 kJ/kg LNG ▪ COP: 0.782 ▪ Exergy efficiency: 43.9% |
Xu et al. [86] | GA | Power consumption | ▪ SMR unit ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN PLUS package ▪ SPC for optimized plant: 1013 kJ/kg LNG ▪ COP: 0.762 ▪ Exergy efficiency: 39.6–42.3% |
Khan et al. [102] | SQP | Power consumption | ▪ SMR unit ▪ PR EOS ▪ Pinch approach (CC) ▪ UniSim package ▪ Energy reduction vs. baseline: 4.5% |
Kamath et al. [243] | NLP | Power consumption | ▪ SMR unit ▪ SRK EOS ▪ Pinch approach (CC) ▪ GAMS package ▪ Energy reduction vs. baseline: 12% |
Khan et al. [100] | PSO | Power consumption | ▪ SMR unit ▪ PR EOS ▪ Pinch approach (CC) ▪ UniSim package and M-file code ▪ Exergy efficiency: 42% ▪ Energy reduction vs. baseline: 7.7% ▪ Exergy improvement vs. baseline: 5% |
Sun et al. [133] | GA, BOX, and PSO | Power consumption and exergy efficiency | ▪ SMR, C3MR, DMR, and MFC units ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code |
Furda et al. [38] | GA | Levelized costs and CO2 emissions | ▪ SMR, C3MR, DMR, and MFC units ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN PLUS package and M-file code |
He et al. [25] | GA | Power consumption | ▪ SMR unit for NGL/LNG ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code ▪ Payback period: 3.84 years ▪ Energy reduction vs. baseline: 9.64% |
Pereira et al. [154] | PSO | Power consumption | ▪ SMR, C3MR, DMR, MFC, and AP-X units ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code |
Santos et al. [341] | GA | Power consumption and overall heat transfer coefficient | ▪ SMR and C3MR units ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package, M-file code, and GAMS |
Reference | SPC in Modified Unit (kWh/kg LNG) | Remarks |
---|---|---|
Mehrpooya et al. [58] | 0.172 | ▪ ARC-MR2 unit (MFC-based LNG) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code ▪ Energy reduction vs. baseline: 31% ▪ Cold box surface reduction vs. baseline: 30% ▪ COP for the ARC: 0.48 |
Ansarinasab et al. [59] | 0.207 | ▪ ARC-MR1 unit (C3MR-based LNG) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code ▪ Energy reduction vs. baseline: 20.38% ▪ COP for the ARC: 0.49 |
Ghorbani et al. [18] | 0.2722 | ▪ ARC-MR2 unit (MFC-based LNG/NGL) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package ▪ Exergy efficiency: 0.4893 ▪ Energy reduction vs. baseline: 35.66% ▪ Exergy reduction vs. baseline: 12.72% ▪ Prime cost of product reduction vs. baseline: 22% ▪ Annualized cost reduction vs. baseline: 4.32% |
Ghorbani et al. [15] | 0.25 | ▪ ARC-MR1 unit (DMR-based LNG/NGL/NRU) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code ▪ Exergy efficiency: 0.581 ▪ Energy reduction vs. baseline: 12.6% ▪ Exergy reduction vs. baseline: 6.7% ▪ Capital cost reduction vs. baseline: 25% ▪ Increase in annual net profit vs. baseline: 27% |
Ghorbani et al. [15] | 0.25 | ▪ ARC-MR1 unit (C3MR-based LNG/NGL/NRU) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code ▪ Exergy efficiency: 0.581 ▪ Energy reduction vs. baseline: 18.4% ▪ Exergy reduction vs. baseline: 5.6% ▪ Capital cost reduction vs. baseline: 23% ▪ Increase in annual net profit vs. baseline: 12% |
Yin et al. [403] | 0.7878 | ▪ ARC-CRS (N2 expansion-based LNG) ▪ PR EOS ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code ▪ Exergy efficiency: 0.3657 ▪ Energy reduction vs. baseline: 11% ▪ Increase in exergy efficiency vs. baseline: 12.6% ▪ Increase in COP vs. baseline: 11.8% ▪ Increase in capital cost vs. baseline: 11.75% ▪ Operating cost reduction vs. baseline: 0.222% |
Shariati Niasar et al. [60] | 0.1988 | ▪ ARC-MR2 unit (MFC-based LNG) ▪ Pinch approach (CC) ▪ ASPEN HYSYS package and M-file code |
Mehrpooya et al. [404] | 0.189 | ▪ ACAR-MR1 unit (DMR-based LNG) ▪ PR EOS for the LNG process ▪ PSRK EOS for the ACS process ▪ Pinch approach (CC and ECC) ▪ ASPEN HYSYS package and M-file code ▪ Prime cost of the product: 0.1959 USD/kg LNG ▪ COP of the ACS: 0.268 |
Ghorbani et al. [197] | 0.179 | ▪ ARC-MR2 unit (MFC-based LNG/NGL/NRU) ▪ PR EOS ▪ Pinch approach (CC and ECC) ▪ ASPEN HYSYS package and M-file code ▪ Exergy efficiency: 0.5811 ▪ Energy reduction vs. baseline: 38.94% ▪ Exergy reduction vs. baseline: 4.7% ▪ Capital cost reduction vs. baseline: 31.9% ▪ Prime cost of the product reduction vs. baseline: 15.31% |
Zaitsev et al. [170] | 0.1849 | ▪ ARC-MR2 unit (MFC-based LNG/He recovery) ▪ PR EOS ▪ Pinch approach (CC and ECC) ▪ ASPEN HYSYS package and M-file code ▪ Exergy efficiency: 0.8896 ▪ SPC reduction vs. baseline: 30.22% ▪ Exergy reduction vs. baseline: 0.781% ▪ Operating cost reduction vs. baseline: 6.51% ▪ Increase in capital cost vs. baseline: 31.21% ▪ Increase in prime cost of the product vs. baseline: 6.283% |
Lu et al. [405] | - | ▪ ARC-CRS unit (CRS-based LNG/NGL) ▪ ASPEN PLUS package ▪ COP of ARC: 0.29–35 ▪ SPC of the modified cycle: 0.28 kWh/Nm3 ▪ SPC reduction vs. baseline: 30% ▪ Operating cost reduction vs. baseline: 9.4% ▪ Annual natural gas consumption cost reduction vs. baseline: 17.3% |
Taghavi et al. [173] | 0.172 | ▪ ARC-MR2 unit (MFC-based LNG) ▪ PR EOS ▪ ASPEN HYSYS and PVsyst packages ▪ Energy reduction vs. baseline: 30% ▪ Cold box surface reduction vs. baseline: 31% ▪ COP for the ARC: 0.48 |
Mehrpooya et al. [406] | 0.225 | ▪ DARC-MR1 unit (SMR-based LNG/NGL/NRU) ▪ ASPEN HYSYS package and M-file code ▪ Energy reduction vs. baseline: 19.36% ▪ CO2 emission reduction vs. baseline: 17.85% |
Liquefaction Technology | Specific Capital Cost 2024 (USD/TPA) | LNG Price (USD/kg) | Capacity (MTPA) | Reference |
---|---|---|---|---|
MCFC-based LNG/NGL | 708.6 | 0.3670 | 0.8360 | Ghorbani et al. [18] |
ARC/MR2-based LNG/NGL | 591.7 | 0.2851 | 0.8360 | Ghorbani et al. [18] |
C3MR-based LNG/NGL/NRU | 621.6 | 0.3464 | 1.656 | Ghorbani et al. [15] |
DMR-based LNG/NGL/NRU | 643.8 | 0.3835 | 1.656 | Ghorbani et al. [15] |
ARC/MR1-based LNG/NGL/NRU | 476.4 | 0.3216 | 1.656 | Ghorbani et al. [15] |
ACAR/MR1-based LNG | - | 0.2519 | 1 | Mehrpooya et al. [404] |
C3MR-based LNG | 836–930 | 0.219–0.229 | 3 | Wang et al. [122] |
DMR-based LNG | 826–1184 | 0.205–0.235 | 3 | Wang et al. [122] |
MFC-based LNG/NGL/NRU | 932.4 | 0.4115 | 1.656 | Ghorbani et al. [191] |
MFC-based LNG/He recovery | 173.2 | 0.2649 | 31.52 | Zaitsev et al. [170] |
ARC/MR2-based LNG/He recovery | 251.8 | 0.2483 | 31.52 | Zaitsev et al. [170] |
Location | LNG Facility Type | Deaths | Hospital Admissions | Projectile | Cost (million USD) |
---|---|---|---|---|---|
Cleveland, Ohio, USA (1944) | LNG containment tank (peak demand facility) | 128 | 200–400 | No | |
La Spezia, Italy (1971) | LNG receiving port | - | - | No | |
New York, USA (1973) | LNG peak demand facility | 37 | - | No | |
Skikda, Algeria (1975) | LNG cryogenic processing facility | - | - | - | - |
Cove Point, Maryland, USA (1979) | LNG processing terminal | 1 | 1 | No | 3 |
Pinson, Alabama, USA (1985) | LNG peak demand facility | 0 | 6 | Yes | |
Skikda, Algeria (1989) | LNG delivery | 0 | 0 | - | |
Thurley, United Kingdom (1989) | LNG peak demand facility | 0 | 2 | No | |
Indonesia (1993) | Liquefaction process | - | - | No | |
East of the Strait of Gibraltar (2002) | LNG marine vessel, Norman Lady | - | - | No | |
Catalonia, Spain (2002) | LNG transport vehicle incident | 1 | 2 | Yes | |
Skikda, Algeria (2004) | Liquefaction process | 27 | 80 | No | |
Nigeria (2010) | LNG Edo | - | - | No | |
Plymouth/Benton County, WA, USA (2014) | LNG storage vessel | 0 | 1 (Injuries: 6) | Yes | 45.74 (2014) |
Middle East | ||||
Country | Infrastructure Start Year | Liquefaction Technology | Liquefaction Plant Train | Liquefaction Capacity (MTPA) |
Qatar | 1996 | AP-C3MR | Qatargas 1 T1 | 3.2 |
Qatar | 1996 | AP-C3MR | Qatargas 1 T2 | 3.2 |
Qatar | 1996 | AP-C3MR | Qatargas 1 T3 | 3.2 |
Qatar | 1999 | AP-C3MR | Rasgas 1 T1 | 3.3 |
Qatar | 1999 | AP-C3MR | Rasgas 1 T2 | 3.3 |
Qatar | 2004 | AP-C3MR/SplitMR | Rasgas 2 T3 | 4.7 |
Qatar | 2005 | AP-C3MR/SplitMR | Rasgas 2 T4 | 4.7 |
Qatar | 2005 | AP-C3MR/SplitMR | Rasgas 2 T5 | 4.7 |
Qatar | 2009 | AP-X | Rasgas 3 T6 | 7.8 |
Qatar | 2009 | AP-X | Rasgas 3 T7 | 7.8 |
Qatar | 2009 | AP-X | Qatargas 2 T4 | 7.8 |
Qatar | 2009 | AP-X | Qatargas 2 T5 | 7.8 |
Qatar | 2010 | AP-X | Qatargas 3 T6 | 7.8 |
Qatar | 2011 | AP-X | Qatargas 4 T7 | 7.8 |
UAE | 1977 | AP-C3MR | Adgas LNG T1 | 1.15 |
UAE | 1977 | AP-C3MR | Adgas LNG T2 | 1.15 |
UAE | 1994 | AP-C3MR | Adgas LNG T3 | 3 |
Oman | 2000 | AP-C3MR | Oman LNG T1 | 3.55 |
Oman | 2000 | AP-C3MR | Oman LNG T2 | 3.55 |
Oman | 2006 | AP-C3MR | Oman LNG T3 (Qalhat) | 3.3 |
Yemen | 2009 | AP-C3MR/SplitMR | Yemen LNG (T1 + T2) | 6.7 |
Southeast Asia | ||||
Country | Infrastructure Start Year | Liquefaction Technology | Liquefaction Plant Train | Liquefaction Capacity (MTPA) |
Malaysia | 1982 | AP-C3MR | MLNG Satu T1-T3 | 8.4 |
Malaysia | 1995 | AP-C3MR | MLNG Dua T4-T6 | 9.6 |
Malaysia | 2003 | AP-C3MR | MLNG Tiga T7-T8 | 7.7 |
Malaysia | 2017 | AP-C3MR/SplitMR | MLNG T9 | 3.6 |
Malaysia | 2017 | AP-N | Petronas FLNG Satu (PFLNG1) | 1.2 |
Malaysia | 2021 | AP-N | Petronas FLNG Rotan (PFLNG2) | 1.5 |
Indonesia | 1983 | AP-C3MR | Bontang LNG TC-TD | 5.6 |
Indonesia | 1989 | AP-C3MR | Bontang LNG TE | 2.8 |
Indonesia | 1993 | AP-C3MR | Bontang LNG TF | 2.8 |
Indonesia | 1988 | AP-C3MR | Bontang LNG TG | 2.8 |
Indonesia | 1999 | AP-C3MR | Bontang LNG TH | 2.95 |
Indonesia | 2009 | AP-C3MR/SplitMR | Tangguh LNG T1 | 3.8 |
Indonesia | 2009 | AP-C3MR/SplitMR | Tangguh LNG T2 | 3.8 |
Indonesia | 2009 | AP-C3MR/SplitMR | Tangguh LNG T3 | 3.8 |
Indonesia | 2015 | AP-C3MR | Donggi-Senoro LNG T1 | 2 |
Brunei | 1972 | AP-C3MR | Brunei LNG T1-T2 | 2.88 |
Brunei | 1973 | AP-C3MR | Brunei LNG T3-T4 | 2.88 |
Brunei | 1974 | AP-C3MR | Brunei LNG T5 | 1.44 |
Asia Pacific | ||||
Country | Infrastructure Start Year | Liquefaction Technology | Liquefaction Plant Train | Liquefaction Capacity (MTPA) |
Australia | 1989 | AP-C3MR | North West Shelf LNG T1 | 2.5 |
Australia | 1989 | AP-C3MR | North West Shelf LNG T2 | 2.5 |
Australia | 1993 | AP-C3MR | North West Shelf LNG T3 | 2.5 |
Australia | 1993 | AP-C3MR | North West Shelf LNG T4 | 4.6 |
Australia | 2006 | CPOC | Darwin LNG T1 | 3.7 |
Australia | 2008 | AP-C3MR | North West Shelf LNG T5 | 4.6 |
Australia | 2012 | Shell Propane Pre-cooled Mixed Refrigerant | Pluto LNG T1 | 4.9 |
Australia | 2015 | CPOC | GLNG T1 | 3.9 |
Australia | 2015 | CPOC | Queensland Curtis LNG T2 | 4.25 |
Australia | 2016 | CPOC | GLNG T2 | 3.9 |
Australia | 2016 | AP-C3MR/SplitMR | Gorgon LNG T1 | 5.2 |
Australia | 2016 | AP-C3MR/SplitMR | Gorgon LNG T2 | 5.2 |
Australia | 2016 | AP-C3MR/SplitMR | Gorgon LNG T3 | 5.2 |
Australia | 2016 | CPOC | Australia Pacific LNG T1 | 4.5 |
Australia | 2016 | CPOC | Australia Pacific LNG T2 | 4.5 |
Australia | 2017 | CPOC | Wheatstone LNG T1 | 4.45 |
Australia | 2017 | CPOC | Wheatstone LNG T2 | 4.45 |
Australia | 2018 | AP-C3MR/SplitMR | Ichthys LNG T1 | 4.45 |
Australia | 2018 | AP-C3MR/SplitMR | Ichthys LNG T2 | 4.45 |
Australia | 2019 | Shell DMR | Prelude FLNG | 3.6 |
North America | ||||
Country | Infrastructure Start Year | Liquefaction Technology | Liquefaction Plant Train | Liquefaction Capacity (MTPA) |
USA | 2016 | CPOC | Sabine Pass T1-T2 | 9–10 |
USA | 2017 | CPOC | Sabine Pass T3-T4 | 9–10 |
USA | 2018 | AP-C3MR | Cove Point LNG T1 | 5.25–5.3 |
USA | 2019 | CPOC | Sabine Pass T5 | 5 |
USA | 2019 | AP-C3MR/SplitMR | Cameron LNG T1 | 4.5 |
USA | 2019 | Shell MMLS | Elba Island T1 | 0.25 |
USA | 2019 | Shell MMLS | Elba Island T2 | 0.25 |
USA | 2019 | Shell MMLS | Elba Island T3 | 0.25 |
USA | 2019 | Shell MMLS | Elba Island T4 | 0.25 |
USA | 2019 | CPOC | Corpus Christi T1 | 4.52–5 |
USA | 2019 | CPOC | Corpus Christi T2 | 4.52–5 |
USA | 2019 | AP-C3MR | Freeport LNG T1 | 5.1 |
USA | 2020 | AP-C3MR/SplitMR | Cameron LNG T2 | 4.5 |
USA | 2020 | AP-C3MR/SplitMR | Cameron LNG T3 | 4.5 |
USA | 2020 | Shell MMLS | Elba Island T5 | 0.25 |
USA | 2020 | Shell MMLS | Elba Island T6 | 0.25 |
USA | 2020 | Shell MMLS | Elba Island T7 | 0.25 |
USA | 2020 | Shell MMLS | Elba Island T8 | 0.25 |
USA | 2020 | Shell MMLS | Elba Island T9 | 0.25 |
USA | 2020 | Shell MMLS | Elba Island T10 | 0.25 |
USA | 2020 | AP-C3MR | Freeport LNG T2 | 5.1 |
USA | 2020 | AP-C3MR | Freeport LNG T3 | 5.1 |
USA | 2021 | CPOC | Corpus Christi T3 | 4.52–5 |
USA | 2022 | CPOC | Sabine Pass T6 | 5 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T1 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T2 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T3 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T4 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T5 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T6 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T7 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T8 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T9 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T10 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T11 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T12 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T13 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T14 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T15 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T16 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T17 | 0.56 |
USA | 2022 | BHGE SMR | Calcasieu Pass LNG T18 | 0.56 |
Trinidad and Tobago | 1999 | CPOC | Atlantic LNG T1 | 3 |
Trinidad and Tobago | 2002 | CPOC | Atlantic LNG T2 | 3.3 |
Trinidad and Tobago | 2003 | CPOC | Atlantic LNG T3 | 3.3 |
Trinidad and Tobago | 2005 | CPOC | Atlantic LNG T4 | 5.2 |
South America | ||||
Country | Infrastructure Start Year | Liquefaction Technology | Liquefaction Plant Train | Liquefaction Capacity (MTPA) |
Peru | 2010 | AP-C3MR/SplitMR | Peru LNG T1 | 4.45 |
Former Soviet Union | ||||
Country | Infrastructure Start Year | Liquefaction Technology | Liquefaction Plant Train | Liquefaction Capacity (MTPA) |
Russia | 2009 | Shell DMR | Sakhalin 2 T1 | 4.8 |
Russia | 2009 | Shell DMR | Sakhalin 2 T2 | 4.8 |
Russia | 2017 | AP-C3MR | Yamal LNG T1 | 5.5 |
Russia | 2018 | AP-C3MR | Yamal LNG T2 | 5.5 |
Russia | 2018 | AP-C3MR | Yamal LNG T3 | 5.5 |
Russia | 2019 | Air Liquide Smartfin | Vysotsk LNG T1 | 0.66 |
Russia | 2021 | Novatek Arctic Cascade | Yamal LNG T4 | 0.9 |
Russia | 2022 | Linde LIMUM | Portovaya LNG T1 | 1.5 |
Africa | ||||
Country | Infrastructure Start Year | Liquefaction Technology | Liquefaction Plant Train | Liquefaction Capacity (MTPA) |
Algeria | 1978 | AP-C3MR | Arzew GL1Z T1-T6 | 7.9 |
Algeria | 1981 | AP-C3MR | Arzew GL2Z T1-T6 | 8.4 |
Algeria | 2013 | AP-C3MR/SplitMR | Skikda GL1K T1 (Rebuild) | 4.5 |
Algeria | 2014 | AP-C3MR/SplitMR | Arzew GL3Z (Gassi Touil) T1 | 4.7 |
Nigeria | 1999 | AP-C3MR | NLNG T1 | 3.3 |
Nigeria | 1999 | AP-C3MR | NLNG T2 | 3.3 |
Nigeria | 2002 | AP-C3MR | NLNG T3 | 3.3 |
Nigeria | 2005 | AP-C3MR | NLNG T4 | 4.1 |
Nigeria | 2006 | AP-C3MR | NLNG T5 | 4.1 |
Nigeria | 2007 | AP-C3MR | NLNG T6 | 4.1 |
Egypt | 2005 | AP-C3MR/SplitMR | Damietta LNG T1 | 5 |
Egypt | 2005 | CPOC | Egyptian LNG (Idku) T1 | 3.6 |
Egypt | 2005 | CPOC | Egyptian LNG (Idku) T2 | 3.6 |
Libya | 1970 | AP-SMR | Marsa El Brega LNG | 3.2 |
Equatorial Guinea | 2007 | CPOC | EG LNG T1 | 3.7 |
Papua New Guinea | 2014 | AP-C3MR | PNG LNG T1 | 3.45 |
Papua New Guinea | 2014 | AP-C3MR | PNG LNG T1 | 3.45 |
Cameroon | 2018 | Black & Veatch PRICO | Cameroon FLNG | 2.4 |
Congo | 2024 | Black & Veatch PRICO | Tango FLNG | 0.6 |
Mozambique | 2022 | AP-DMR | Coral South FLNG | 3.4 |
Angola | 2013 | CPOC | Angola LNG T1 | 5.2 |
Europe | ||||
Country | Infrastructure Start Year | Liquefaction Technology | Liquefaction Plant Train | Liquefaction Capacity (MTPA) |
Norway | 2007 | Linde MF | Snohvit LNG T1 | 4.3 |
Country | Key LNG Projects (MTPA) | Total Capacity (MTPA) | Additional Details |
---|---|---|---|
USA | ▪ Plaquemines LNG (18) ▪ Golden Pass LNG (16) ▪ Rio Grande LNG (15) ▪ Port Arthur LNG (12) ▪ Corpus Christi LNG Expansion (10) | 71 | USA LNG export capacity is set to increase from 94 MTPA today to 172 MTPA by 2028. A 1.4-MTPA project in Mexico using USA gas has recently begun operations, with an additional 6 MTPA in the pipeline. |
Qatar | ▪ North Field project (first phase expected online by 2025/2026, 48 MTPA by 2028, another 16 MTPA by 2030) | 64 | Qatar has the lowest LNG production costs globally, attributed to its vast, low-cost, and liquid-rich gas reserves. |
Russia | ▪ Arctic LNG 2 (initial phase of 20 MTPA) | 20 | The project has encountered delays due to international sanctions with later phases potentially facing further setbacks. |
Canada | ▪ LNG Canada (14 MTPA) ▪ Woodfibre LNG (small-scale, significant cost increases) | 14 | Canada’s first commercial LNG plant is expected to come online by 2025/2026, although delays and cost overruns have hampered the country’s broader LNG ambitions. |
Africa | ▪ Floating LNG projects in Republic of Congo (2 projects) ▪ Mauritania–Senegal the floating LNG ▪ Nigeria LNG expansion and new train, small project in Gabon | 14 | Several LNG projects have been proposed in Mozambique, but local opposition, social unrest, and security risks for project personnel have slowed progress. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbani, B.; Zendehboudi, S.; Saady, N.M.C. Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization. Energies 2025, 18, 1443. https://doi.org/10.3390/en18061443
Ghorbani B, Zendehboudi S, Saady NMC. Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization. Energies. 2025; 18(6):1443. https://doi.org/10.3390/en18061443
Chicago/Turabian StyleGhorbani, Bahram, Sohrab Zendehboudi, and Noori M. Cata Saady. 2025. "Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization" Energies 18, no. 6: 1443. https://doi.org/10.3390/en18061443
APA StyleGhorbani, B., Zendehboudi, S., & Saady, N. M. C. (2025). Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization. Energies, 18(6), 1443. https://doi.org/10.3390/en18061443