Program for Sudoku Generator
Given an integer k, the task is to generate a 9 x 9 Sudoku grid having k empty cells while following the below set of rules:
- In all 9 submatrices 3×3, the elements should be 1-9, without repetition.
- In all rows, there should be elements between 1-9, without repetition.
- In all columns, there should be elements between 1-9, without repetition.
Naive Approach
- Randomly take any number 1-9.
- Check if it is safe to put in the cell. (row, column and box)
- If safe, place it and increment to the next location and go to step 1.
- If not safe, then without increment go to step 1.
- Once the matrix is filled, remove k elements randomly to complete the game.
Efficient Approach
We can improve the solution if we understand the pattern in this game. We can observe that all 3 x 3 matrices, which are diagonally present are independent of other 3 x 3 adjacent matrices initially, as others are empty.
3 8 5 0 0 0 0 0 0
9 2 1 0 0 0 0 0 0
6 4 7 0 0 0 0 0 0
0 0 0 1 2 3 0 0 0
0 0 0 7 8 4 0 0 0
0 0 0 6 9 5 0 0 0
0 0 0 0 0 0 8 7 3
0 0 0 0 0 0 9 6 2
0 0 0 0 0 0 1 4 5
We can observe that in above matrix, the diagonal matrices are independent of other empty matrices initially. So if we fill them first, then we will only have to do box check and thus column/row check not required.
Secondly, while we fill rest of the non-diagonal elements, we will not have to use random generator, but we can fill recursively by checking 1 to 9.
Step by step approach:
- Fill all the diagonal 3×3 matrices.
- Fill recursively rest of the non-diagonal matrices. For every cell to be filled, we try all numbers until we find a safe number to be placed.
- Once matrix is fully filled, remove k elements randomly to complete game.
// C++ program to generate a valid sudoku
// with k empty cells
#include <bits/stdc++.h>
using namespace std;
// Returns false if given 3x3 block contains num
// Ensure the number is not used in the box
bool unUsedInBox(vector<vector<int>> &grid, int rowStart, int colStart, int num) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (grid[rowStart + i][colStart + j] == num) {
return false;
}
}
}
return true;
}
// Fill a 3x3 matrix
// Assign valid random numbers to the 3x3 subgrid
void fillBox(vector<vector<int>> &grid, int row, int col) {
int num;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
do {
// Generate a random number between 1 and 9
num = (rand() % 9) + 1;
} while (!unUsedInBox(grid, row, col, num));
grid[row + i][col + j] = num;
}
}
}
// Check if it's safe to put num in row i
// Ensure num is not already used in the row
bool unUsedInRow(vector<vector<int>> &grid, int i, int num) {
for (int j = 0; j < 9; j++) {
if (grid[i][j] == num) {
return false;
}
}
return true;
}
// Check if it's safe to put num in column j
// Ensure num is not already used in the column
bool unUsedInCol(vector<vector<int>> &grid, int j, int num) {
for (int i = 0; i < 9; i++) {
if (grid[i][j] == num) {
return false;
}
}
return true;
}
// Check if it's safe to put num in the cell (i, j)
// Ensure num is not used in row, column, or box
bool checkIfSafe(vector<vector<int>> &grid, int i, int j, int num) {
return (unUsedInRow(grid, i, num) && unUsedInCol(grid, j, num) &&
unUsedInBox(grid, i - i % 3, j - j % 3, num));
}
// Fill the diagonal 3x3 matrices
// The diagonal blocks are filled to simplify the process
void fillDiagonal(vector<vector<int>> &grid) {
for (int i = 0; i < 9; i = i + 3) {
// Fill each 3x3 subgrid diagonally
fillBox(grid, i, i);
}
}
// Fill remaining blocks in the grid
// Recursively fill the remaining cells with valid numbers
bool fillRemaining(vector<vector<int>> &grid, int i, int j) {
// If we've reached the end of the grid
if (i == 9) {
return true;
}
// Move to next row when current row is finished
if (j == 9) {
return fillRemaining(grid, i + 1, 0);
}
// Skip if cell is already filled
if (grid[i][j] != 0) {
return fillRemaining(grid, i, j + 1);
}
// Try numbers 1-9 in current cell
for (int num = 1; num <= 9; num++) {
if (checkIfSafe(grid, i, j, num)) {
grid[i][j] = num;
if (fillRemaining(grid, i, j + 1)) {
return true;
}
grid[i][j] = 0;
}
}
return false;
}
// Remove K digits randomly from the grid
// This will create a Sudoku puzzle by removing digits
void removeKDigits(vector<vector<int>> &grid, int k) {
while (k > 0) {
// Pick a random cell
int cellId = rand() % 81;
// Get the row index
int i = cellId / 9;
// Get the column index
int j = cellId % 9;
// Remove the digit if the cell is not already empty
if (grid[i][j] != 0) {
// Empty the cell
grid[i][j] = 0;
// Decrease the count of digits to remove
k--;
}
}
}
// Generate a Sudoku grid with K empty cells
vector<vector<int>> sudokuGenerator(int k) {
// Initialize an empty 9x9 grid
vector<vector<int>> grid(9, vector<int>(9, 0));
// Fill the diagonal 3x3 matrices
fillDiagonal(grid);
// Fill the remaining blocks in the grid
fillRemaining(grid, 0, 0);
// Remove K digits randomly to create the puzzle
removeKDigits(grid, k);
return grid;
}
int main() {
// Seed the random number generator
srand(time(0));
// Set the number of empty cells
int k = 20;
vector<vector<int>> sudoku = sudokuGenerator(k);
// Print the generated Sudoku puzzle
for (const auto &row : sudoku) {
for (int cell : row) {
cout << cell << " ";
}
cout << endl;
}
return 0;
}
// Java program to generate a valid sudoku
// with k empty cells
import java.util.Random;
class GfG {
// Returns false if given 3x3 block contains num
// Ensure the number is not used in the box
static boolean unUsedInBox(int[][] grid, int rowStart, int colStart, int num) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (grid[rowStart + i][colStart + j] == num) {
return false;
}
}
}
return true;
}
// Fill a 3x3 matrix
// Assign valid random numbers to the 3x3 subgrid
static void fillBox(int[][] grid, int row, int col) {
Random rand = new Random();
int num;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
do {
// Generate a random number between 1 and 9
num = rand.nextInt(9) + 1;
} while (!unUsedInBox(grid, row, col, num));
grid[row + i][col + j] = num;
}
}
}
// Check if it's safe to put num in row i
// Ensure num is not already used in the row
static boolean unUsedInRow(int[][] grid, int i, int num) {
for (int j = 0; j < 9; j++) {
if (grid[i][j] == num) {
return false;
}
}
return true;
}
// Check if it's safe to put num in column j
// Ensure num is not already used in the column
static boolean unUsedInCol(int[][] grid, int j, int num) {
for (int i = 0; i < 9; i++) {
if (grid[i][j] == num) {
return false;
}
}
return true;
}
// Check if it's safe to put num in the cell (i, j)
// Ensure num is not used in row, column, or box
static boolean checkIfSafe(int[][] grid, int i, int j, int num) {
return (unUsedInRow(grid, i, num) && unUsedInCol(grid, j, num) &&
unUsedInBox(grid, i - i % 3, j - j % 3, num));
}
// Fill the diagonal 3x3 matrices
// The diagonal blocks are filled to simplify the process
static void fillDiagonal(int[][] grid) {
for (int i = 0; i < 9; i = i + 3) {
// Fill each 3x3 subgrid diagonally
fillBox(grid, i, i);
}
}
// Fill remaining blocks in the grid
// Recursively fill the remaining cells with valid numbers
static boolean fillRemaining(int[][] grid, int i, int j) {
// If we've reached the end of the grid
if (i == 9) {
return true;
}
// Move to next row when current row is finished
if (j == 9) {
return fillRemaining(grid, i + 1, 0);
}
// Skip if cell is already filled
if (grid[i][j] != 0) {
return fillRemaining(grid, i, j + 1);
}
// Try numbers 1-9 in current cell
for (int num = 1; num <= 9; num++) {
if (checkIfSafe(grid, i, j, num)) {
grid[i][j] = num;
if (fillRemaining(grid, i, j + 1)) {
return true;
}
grid[i][j] = 0;
}
}
return false;
}
// Remove K digits randomly from the grid
// This will create a Sudoku puzzle by removing digits
static void removeKDigits(int[][] grid, int k) {
Random rand = new Random();
while (k > 0) {
// Pick a random cell
int cellId = rand.nextInt(81);
// Get the row index
int i = cellId / 9;
// Get the column index
int j = cellId % 9;
// Remove the digit if the cell is not already empty
if (grid[i][j] != 0) {
// Empty the cell
grid[i][j] = 0;
// Decrease the count of digits to remove
k--;
}
}
}
// Generate a Sudoku grid with K empty cells
static int[][] sudokuGenerator(int k) {
// Initialize an empty 9x9 grid
int[][] grid = new int[9][9];
// Fill the diagonal 3x3 matrices
fillDiagonal(grid);
// Fill the remaining blocks in the grid
fillRemaining(grid, 0, 0);
// Remove K digits randomly to create the puzzle
removeKDigits(grid, k);
return grid;
}
public static void main(String[] args) {
// Seed the random number generator
Random rand = new Random();
// Set the number of empty cells
int k = 20;
int[][] sudoku = sudokuGenerator(k);
// Print the generated Sudoku puzzle
for (int[] row : sudoku) {
for (int cell : row) {
System.out.print(cell + " ");
}
System.out.println();
}
}
}
# Python program to generate a valid sudoku
# with k empty cells
import random
# Returns false if given 3x3 block contains num
# Ensure the number is not used in the box
def unUsedInBox(grid, rowStart, colStart, num):
for i in range(3):
for j in range(3):
if grid[rowStart + i][colStart + j] == num:
return False
return True
# Fill a 3x3 matrix
# Assign valid random numbers to the 3x3 subgrid
def fillBox(grid, row, col):
for i in range(3):
for j in range(3):
while True:
# Generate a random number between 1 and 9
num = random.randint(1, 9)
if unUsedInBox(grid, row, col, num):
break
grid[row + i][col + j] = num
# Check if it's safe to put num in row i
# Ensure num is not already used in the row
def unUsedInRow(grid, i, num):
return num not in grid[i]
# Check if it's safe to put num in column j
# Ensure num is not already used in the column
def unUsedInCol(grid, j, num):
for i in range(9):
if grid[i][j] == num:
return False
return True
# Check if it's safe to put num in the cell (i, j)
# Ensure num is not used in row, column, or box
def checkIfSafe(grid, i, j, num):
return (unUsedInRow(grid, i, num) and
unUsedInCol(grid, j, num) and
unUsedInBox(grid, i - i % 3, j - j % 3, num))
# Fill the diagonal 3x3 matrices
# The diagonal blocks are filled to simplify the process
def fillDiagonal(grid):
for i in range(0, 9, 3):
# Fill each 3x3 subgrid diagonally
fillBox(grid, i, i)
# Fill remaining blocks in the grid
# Recursively fill the remaining cells with valid numbers
def fillRemaining(grid, i, j):
# If we've reached the end of the grid
if i == 9:
return True
# Move to next row when current row is finished
if j == 9:
return fillRemaining(grid, i + 1, 0)
# Skip if cell is already filled
if grid[i][j] != 0:
return fillRemaining(grid, i, j + 1)
# Try numbers 1-9 in current cell
for num in range(1, 10):
if checkIfSafe(grid, i, j, num):
grid[i][j] = num
if fillRemaining(grid, i, j + 1):
return True
grid[i][j] = 0
return False
# Remove K digits randomly from the grid
# This will create a Sudoku puzzle by removing digits
def removeKDigits(grid, k):
while k > 0:
# Pick a random cell
cellId = random.randint(0, 80)
# Get the row index
i = cellId // 9
# Get the column index
j = cellId % 9
# Remove the digit if the cell is not already empty
if grid[i][j] != 0:
# Empty the cell
grid[i][j] = 0
# Decrease the count of digits to remove
k -= 1
# Generate a Sudoku grid with K empty cells
def sudokuGenerator(k):
# Initialize an empty 9x9 grid
grid = [[0] * 9 for _ in range(9)]
# Fill the diagonal 3x3 matrices
fillDiagonal(grid)
# Fill the remaining blocks in the grid
fillRemaining(grid, 0, 0)
# Remove K digits randomly to create the puzzle
removeKDigits(grid, k)
return grid
if __name__ == "__main__":
# Seed the random number generator
random.seed()
# Set the number of empty cells
k = 20
sudoku = sudokuGenerator(k)
# Print the generated Sudoku puzzle
for row in sudoku:
print(" ".join(map(str, row)))
// C# program to generate a valid sudoku
// with k empty cells
using System;
class GfG {
// Returns false if given 3x3 block contains num
// Ensure the number is not used in the box
static bool unUsedInBox(int[,] grid, int rowStart, int colStart, int num) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (grid[rowStart + i, colStart + j] == num) {
return false;
}
}
}
return true;
}
// Fill a 3x3 matrix
// Assign valid random numbers to the 3x3 subgrid
static void fillBox(int[,] grid, int row, int col) {
Random rand = new Random();
int num;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
do {
// Generate a random number between 1 and 9
num = rand.Next(1, 10);
} while (!unUsedInBox(grid, row, col, num));
grid[row + i, col + j] = num;
}
}
}
// Check if it's safe to put num in row i
// Ensure num is not already used in the row
static bool unUsedInRow(int[,] grid, int i, int num) {
for (int j = 0; j < 9; j++) {
if (grid[i, j] == num) {
return false;
}
}
return true;
}
// Check if it's safe to put num in column j
// Ensure num is not already used in the column
static bool unUsedInCol(int[,] grid, int j, int num) {
for (int i = 0; i < 9; i++) {
if (grid[i, j] == num) {
return false;
}
}
return true;
}
// Check if it's safe to put num in the cell (i, j)
// Ensure num is not used in row, column, or box
static bool checkIfSafe(int[,] grid, int i, int j, int num) {
return (unUsedInRow(grid, i, num) && unUsedInCol(grid, j, num) &&
unUsedInBox(grid, i - i % 3, j - j % 3, num));
}
// Fill the diagonal 3x3 matrices
// The diagonal blocks are filled to simplify the process
static void fillDiagonal(int[,] grid) {
for (int i = 0; i < 9; i += 3) {
// Fill each 3x3 subgrid diagonally
fillBox(grid, i, i);
}
}
// Fill remaining blocks in the grid
// Recursively fill the remaining cells with valid numbers
static bool fillRemaining(int[,] grid, int i, int j) {
if (i == 9) {
return true;
}
if (j == 9) {
return fillRemaining(grid, i + 1, 0);
}
if (grid[i, j] != 0) {
return fillRemaining(grid, i, j + 1);
}
for (int num = 1; num <= 9; num++) {
if (checkIfSafe(grid, i, j, num)) {
grid[i, j] = num;
if (fillRemaining(grid, i, j + 1)) {
return true;
}
grid[i, j] = 0;
}
}
return false;
}
// Remove K digits randomly from the grid
// This will create a Sudoku puzzle by removing digits
static void removeKDigits(int[,] grid, int k) {
Random rand = new Random();
while (k > 0) {
int cellId = rand.Next(81);
int i = cellId / 9;
int j = cellId % 9;
if (grid[i, j] != 0) {
grid[i, j] = 0;
k--;
}
}
}
// Generate a Sudoku grid with K empty cells
static int[,] sudokuGenerator(int k) {
int[,] grid = new int[9, 9];
fillDiagonal(grid);
fillRemaining(grid, 0, 0);
removeKDigits(grid, k);
return grid;
}
static void Main() {
int k = 20;
int[,] sudoku = sudokuGenerator(k);
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
Console.Write(sudoku[i, j] + " ");
}
Console.WriteLine();
}
}
}
// JavaScript program to generate a valid sudoku
// with k empty cells
// Returns false if given 3x3 block contains num
// Ensure the number is not used in the box
function unUsedInBox(grid, rowStart, colStart, num) {
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
if (grid[rowStart + i][colStart + j] === num) {
return false;
}
}
}
return true;
}
// Fill a 3x3 matrix
// Assign valid random numbers to the 3x3 subgrid
function fillBox(grid, row, col) {
let num;
for (let i = 0; i < 3; i++) {
for (let j = 0; j < 3; j++) {
do {
// Generate a random number between 1 and 9
num = Math.floor(Math.random() * 9) + 1;
} while (!unUsedInBox(grid, row, col, num));
grid[row + i][col + j] = num;
}
}
}
// Check if it's safe to put num in row i
// Ensure num is not already used in the row
function unUsedInRow(grid, i, num) {
for (let j = 0; j < 9; j++) {
if (grid[i][j] === num) {
return false;
}
}
return true;
}
// Check if it's safe to put num in column j
// Ensure num is not already used in the column
function unUsedInCol(grid, j, num) {
for (let i = 0; i < 9; i++) {
if (grid[i][j] === num) {
return false;
}
}
return true;
}
// Check if it's safe to put num in the cell (i, j)
// Ensure num is not used in row, column, or box
function checkIfSafe(grid, i, j, num) {
return unUsedInRow(grid, i, num) && unUsedInCol(grid, j, num) &&
unUsedInBox(grid, i - (i % 3), j - (j % 3), num);
}
// Fill the diagonal 3x3 matrices
// The diagonal blocks are filled to simplify the process
function fillDiagonal(grid) {
for (let i = 0; i < 9; i += 3) {
// Fill each 3x3 subgrid diagonally
fillBox(grid, i, i);
}
}
// Fill remaining blocks in the grid
// Recursively fill the remaining cells with valid numbers
function fillRemaining(grid, i, j) {
// If we've reached the end of the grid
if (i === 9) {
return true;
}
// Move to next row when current row is finished
if (j === 9) {
return fillRemaining(grid, i + 1, 0);
}
// Skip if cell is already filled
if (grid[i][j] !== 0) {
return fillRemaining(grid, i, j + 1);
}
// Try numbers 1-9 in current cell
for (let num = 1; num <= 9; num++) {
if (checkIfSafe(grid, i, j, num)) {
grid[i][j] = num;
if (fillRemaining(grid, i, j + 1)) {
return true;
}
grid[i][j] = 0;
}
}
return false;
}
// Remove K digits randomly from the grid
// This will create a Sudoku puzzle by removing digits
function removeKDigits(grid, k) {
while (k > 0) {
// Pick a random cell
let cellId = Math.floor(Math.random() * 81);
// Get the row index
let i = Math.floor(cellId / 9);
// Get the column index
let j = cellId % 9;
// Remove the digit if the cell is not already empty
if (grid[i][j] !== 0) {
// Empty the cell
grid[i][j] = 0;
// Decrease the count of digits to remove
k--;
}
}
}
// Generate a Sudoku grid with K empty cells
function sudokuGenerator(k) {
// Initialize an empty 9x9 grid
let grid = new Array(9).fill(0).map(() => new Array(9).fill(0));
// Fill the diagonal 3x3 matrices
fillDiagonal(grid);
// Fill the remaining blocks in the grid
fillRemaining(grid, 0, 0);
// Remove K digits randomly to create the puzzle
removeKDigits(grid, k);
return grid;
}
let k = 20;
let sudoku = sudokuGenerator(k);
sudoku.forEach(row => console.log(row.join(" ")));
Output
8 6 5 2 1 3 9 4 7 0 3 7 4 0 9 0 8 0 0 0 9 6 8 7 3 0 5 1 0 8 9 2 0 5 0 0 0 0 2 1 7 0 8 6 4 5 7 6 8 3 4 0 9 1 9 5 3 7 6 0 4 1 2 6 8 1 0 4 2 7 5 9 7 2 4 0 0 1 6 0 8
Time Complexity: O(k)
Auxiliary Space: O(1)