AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes.
Example of AVL Tree:

The above tree is AVL because the differences between the heights of left and right subtrees for every node are less than or equal to 1.
Example of a Tree that is NOT an AVL Tree:

The above tree is not AVL because the differences between the heights of the left and right subtrees for 8 and 12 are greater than 1.
Why AVL Trees? Most of the BST operations (e.g., search, max, min, insert, delete, floor and ceiling) take O(h) time where h is the height of the BST. The cost of these operations may become O(n) for a skewed Binary tree. If we make sure that the height of the tree remains O(log(n)) after every insertion and deletion, then we can guarantee an upper bound of O(log(n)) for all these operations. The height of an AVL tree is always O(log(n)) where n is the number of nodes in the tree.
Insertion in AVL Tree:
To make sure that the given tree remains AVL after every insertion, we must augment the standard BST insert operation to perform some re-balancing. Following are two basic operations that can be performed to balance a BST without violating the BST property (keys(left) < key(root) < keys(right)).
- Left Rotation
- Right Rotation
T1, T2 and T3 are subtrees of the tree, rooted with y (on the left side) or x (on the right side)
y x
/ \ Right Rotation / \
x T3 - - - - - - - > T1 y
/ \ < - - - - - - - / \
T1 T2 Left Rotation T2 T3
Keys in both of the above trees follow the following order
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)
So BST property is not violated anywhere.
Steps to follow for insertion:
Let the newly inserted node be w
- Perform standard BST insert for w.
- Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y be the child of z that comes on the path from w to z and x be the grandchild of z that comes on the path from w to z.
- Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be 4 possible cases that need to be handled as x, y and z can be arranged in 4 ways.
- Following are the possible 4 arrangements:
- y is the left child of z and x is the left child of y (Left Left Case)
- y is the left child of z and x is the right child of y (Left Right Case)
- y is the right child of z and x is the right child of y (Right Right Case)
- y is the right child of z and x is the left child of y (Right Left Case)
Following are the operations to be performed in above mentioned 4 cases. In all of the cases, we only need to re-balance the subtree rooted with z and the complete tree becomes balanced as the height of the subtree (After appropriate rotations) rooted with z becomes the same as it was before insertion.
1. Left Left Case
T1, T2, T3 and T4 are subtrees.
z y
/ \ / \
y T4 Right Rotate (z) x z
/ \ - - - - - - - - -> / \ / \
x T3 T1 T2 T3 T4
/ \
T1 T2
2. Left Right Case
z z x
/ \ / \ / \
y T4 Left Rotate (y) x T4 Right Rotate(z) y z
/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \
T1 x y T3 T1 T2 T3 T4
/ \ / \
T2 T3 T1 T2
3. Right Right Case
z y
/ \ / \
T1 y Left Rotate(z) z x
/ \ - - - - - - - -> / \ / \
T2 x T1 T2 T3 T4
/ \
T3 T4
4. Right Left Case
z z x
/ \ / \ / \
T1 y Right Rotate (y) T1 x Left Rotate(z) z y
/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \
x T4 T2 y T1 T2 T3 T4
/ \ / \
T2 T3 T3 T4
Illustration of Insertion at AVL Tree





Approach: The idea is to use recursive BST insert, after insertion, we get pointers to all ancestors one by one in a bottom-up manner. So we don’t need a parent pointer to travel up. The recursive code itself travels up and visits all the ancestors of the newly inserted node.
Follow the steps mentioned below to implement the idea:
- Perform the normal BST insertion.
- The current node must be one of the ancestors of the newly inserted node. Update the height of the current node.
- Get the balance factor (left subtree height – right subtree height) of the current node.
- If the balance factor is greater than 1, then the current node is unbalanced and we are either in the Left Left case or left Right case. To check whether it is left left case or not, compare the newly inserted key with the key in the left subtree root.
- If the balance factor is less than -1, then the current node is unbalanced and we are either in the Right Right case or Right-Left case. To check whether it is the Right Right case or not, compare the newly inserted key with the key in the right subtree root.
Below is the implementation of the above approach:
C++14
// C++ program to insert a node in AVL tree
#include <bits/stdc++.h>
using namespace std;
// An AVL tree node
struct Node {
int key;
Node *left;
Node *right;
int height;
Node(int k) {
key = k;
left = nullptr;
right = nullptr;
height = 1;
}
};
// A utility function to
// get the height of the tree
int height(Node *N) {
if (N == nullptr)
return 0;
return N->height;
}
// A utility function to right
// rotate subtree rooted with y
Node *rightRotate(Node *y) {
Node *x = y->left;
Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = 1 + max(height(y->left),
height(y->right));
x->height = 1 + max(height(x->left),
height(x->right));
// Return new root
return x;
}
// A utility function to left rotate
// subtree rooted with x
Node *leftRotate(Node *x) {
Node *y = x->right;
Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = 1 + max(height(x->left),
height(x->right));
y->height = 1 + max(height(y->left),
height(y->right));
// Return new root
return y;
}
// Get balance factor of node N
int getBalance(Node *N) {
if (N == nullptr)
return 0;
return height(N->left) - height(N->right);
}
// Recursive function to insert a key in
// the subtree rooted with node
Node* insert(Node* node, int key) {
// Perform the normal BST insertion
if (node == nullptr)
return new Node(key);
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys are not allowed in BST
return node;
// Update height of this ancestor node
node->height = 1 + max(height(node->left),
height(node->right));
// Get the balance factor of this ancestor node
int balance = getBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
// Return the (unchanged) node pointer
return node;
}
// A utility function to print
// preorder traversal of the tree
void preOrder(Node *root) {
if (root != nullptr) {
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
// Driver Code
int main() {
Node *root = nullptr;
// Constructing tree given in the above figure
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
cout << "Preorder traversal : \n";
preOrder(root);
return 0;
}
C
// C program to insert a node in AVL tree
#include<stdio.h>
#include<stdlib.h>
// An AVL tree node
struct Node
{
int key;
struct Node *left;
struct Node *right;
int height;
};
// A utility function to get the height of the tree
int height(struct Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct Node* newNode(int key)
{
struct Node* node = (struct Node*)
malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially added at leaf
return(node);
}
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct Node *rightRotate(struct Node *y)
{
struct Node *x = y->left;
struct Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left),
height(y->right)) + 1;
x->height = max(height(x->left),
height(x->right)) + 1;
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct Node *leftRotate(struct Node *x)
{
struct Node *y = x->right;
struct Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left),
height(x->right)) + 1;
y->height = max(height(y->left),
height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct Node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
// Recursive function to insert a key in the subtree rooted
// with node and returns the new root of the subtree.
struct Node* insert(struct Node* node, int key)
{
/* 1. Perform the normal BST insertion */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys are not allowed in BST
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this ancestor
node to check whether this node became
unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then
// there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
// A utility function to print preorder traversal
// of the tree.
// The function also prints height of every node
void preOrder(struct Node *root)
{
if(root != NULL)
{
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
/* Driver program to test above function*/
int main()
{
struct Node *root = NULL;
/* Constructing tree given in the above figure */
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
printf("Preorder traversal : \n");
preOrder(root);
return 0;
}
Java
// Java program to insert a node in AVL tree
import java.util.*;
class Node {
int key;
Node left;
Node right;
int height;
Node(int k) {
key = k;
left = null;
right = null;
height = 1;
}
}
class GfG {
// A utility function to get the
// height of the tree
static int height(Node N) {
if (N == null)
return 0;
return N.height;
}
// A utility function to right rotate
// subtree rooted with y
static Node rightRotate(Node y) {
Node x = y.left;
Node T2 = x.right;
// Perform rotation
x.right = y;
y.left = T2;
// Update heights
y.height = 1 + Math.max(height(y.left),
height(y.right));
x.height = 1 + Math.max(height(x.left),
height(x.right));
// Return new root
return x;
}
// A utility function to left rotate
// subtree rooted with x
static Node leftRotate(Node x) {
Node y = x.right;
Node T2 = y.left;
// Perform rotation
y.left = x;
x.right = T2;
// Update heights
x.height = 1 + Math.max(height(x.left),
height(x.right));
y.height = 1 + Math.max(height(y.left),
height(y.right));
// Return new root
return y;
}
// Get balance factor of node N
static int getBalance(Node N) {
if (N == null)
return 0;
return height(N.left) - height(N.right);
}
// Recursive function to insert a key in
// the subtree rooted with node
static Node insert(Node node, int key) {
// Perform the normal BST insertion
if (node == null)
return new Node(key);
if (key < node.key)
node.left = insert(node.left, key);
else if (key > node.key)
node.right = insert(node.right, key);
else // Equal keys are not allowed in BST
return node;
// Update height of this ancestor node
node.height = 1 + Math.max(height(node.left),
height(node.right));
// Get the balance factor of this ancestor node
int balance = getBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node.left.key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node.right.key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node.left.key) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.right.key) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
// Return the (unchanged) node pointer
return node;
}
// A utility function to print preorder
// traversal of the tree
static void preOrder(Node root) {
if (root != null) {
System.out.print(root.key + " ");
preOrder(root.left);
preOrder(root.right);
}
}
// Driver code
public static void main(String[] args) {
Node root = null;
// Constructing tree given in the above figure
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
System.out.println("Preorder traversal : ");
preOrder(root);
}
}
Python
class Node:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.height = 1
# A utility function to get the
# height of the tree
def height(node):
if not node:
return 0
return node.height
# A utility function to right rotate
# subtree rooted with y
def right_rotate(y):
x = y.left
T2 = x.right
# Perform rotation
x.right = y
y.left = T2
# Update heights
y.height = 1 + max(height(y.left), height(y.right))
x.height = 1 + max(height(x.left), height(x.right))
# Return new root
return x
# A utility function to left rotate
# subtree rooted with x
def left_rotate(x):
y = x.right
T2 = y.left
# Perform rotation
y.left = x
x.right = T2
# Update heights
x.height = 1 + max(height(x.left), height(x.right))
y.height = 1 + max(height(y.left), height(y.right))
# Return new root
return y
# Get balance factor of node N
def get_balance(node):
if not node:
return 0
return height(node.left) - height(node.right)
# Recursive function to insert a key in
# the subtree rooted with node
def insert(node, key):
# Perform the normal BST insertion
if not node:
return Node(key)
if key < node.key:
node.left = insert(node.left, key)
elif key > node.key:
node.right = insert(node.right, key)
else:
# Equal keys are not allowed in BST
return node
# Update height of this ancestor node
node.height = 1 + max(height(node.left), height(node.right))
# Get the balance factor of this ancestor node
balance = get_balance(node)
# If this node becomes unbalanced,
# then there are 4 cases
# Left Left Case
if balance > 1 and key < node.left.key:
return right_rotate(node)
# Right Right Case
if balance < -1 and key > node.right.key:
return left_rotate(node)
# Left Right Case
if balance > 1 and key > node.left.key:
node.left = left_rotate(node.left)
return right_rotate(node)
# Right Left Case
if balance < -1 and key < node.right.key:
node.right = right_rotate(node.right)
return left_rotate(node)
# Return the (unchanged) node pointer
return node
# A utility function to print preorder
# traversal of the tree
def pre_order(root):
if root:
print(root.key, end=" ")
pre_order(root.left)
pre_order(root.right)
# Driver code
root = None
# Constructing tree given in the above figure
root = insert(root, 10)
root = insert(root, 20)
root = insert(root, 30)
root = insert(root, 40)
root = insert(root, 50)
root = insert(root, 25)
# The constructed AVL Tree would be
# 30
# / \
# 20 40
# / \ \
# 10 25 50
print("Preorder traversal :")
pre_order(root)
C#
using System;
class Node {
public int Key;
public Node Left;
public Node Right;
public int Height;
public Node(int key) {
Key = key;
Left = null;
Right = null;
Height = 1;
}
}
public class GfG {
// A utility function to get
// the height of the tree
static int Height(Node node) {
if (node == null)
return 0;
return node.Height;
}
// A utility function to right rotate
// subtree rooted with y
static Node RightRotate(Node y) {
Node x = y.Left;
Node T2 = x.Right;
// Perform rotation
x.Right = y;
y.Left = T2;
// Update heights
y.Height = 1 + Math.Max(Height(y.Left),
Height(y.Right));
x.Height = 1 + Math.Max(Height(x.Left),
Height(x.Right));
// Return new root
return x;
}
// A utility function to left rotate
// subtree rooted with x
static Node LeftRotate(Node x) {
Node y = x.Right;
Node T2 = y.Left;
// Perform rotation
y.Left = x;
x.Right = T2;
// Update heights
x.Height = 1 + Math.Max(Height(x.Left),
Height(x.Right));
y.Height = 1 + Math.Max(Height(y.Left),
Height(y.Right));
// Return new root
return y;
}
// Get balance factor of node N
static int GetBalance(Node node) {
if (node == null)
return 0;
return Height(node.Left) - Height(node.Right);
}
// Recursive function to insert a key in the
// subtree rooted with node
static Node Insert(Node node, int key) {
// Perform the normal BST insertion
if (node == null)
return new Node(key);
if (key < node.Key)
node.Left = Insert(node.Left, key);
else if (key > node.Key)
node.Right = Insert(node.Right, key);
else // Equal keys are not allowed in BST
return node;
// Update height of this ancestor node
node.Height = 1 + Math.Max(Height(node.Left),
Height(node.Right));
// Get the balance factor of this ancestor node
int balance = GetBalance(node);
// If this node becomes unbalanced,
// then there are 4 cases
// Left Left Case
if (balance > 1 && key < node.Left.Key)
return RightRotate(node);
// Right Right Case
if (balance < -1 && key > node.Right.Key)
return LeftRotate(node);
// Left Right Case
if (balance > 1 && key > node.Left.Key) {
node.Left = LeftRotate(node.Left);
return RightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.Right.Key) {
node.Right = RightRotate(node.Right);
return LeftRotate(node);
}
// Return the (unchanged) node pointer
return node;
}
// A utility function to print preorder
// traversal of the tree
static void PreOrder(Node root) {
if (root != null) {
Console.Write(root.Key + " ");
PreOrder(root.Left);
PreOrder(root.Right);
}
}
// Driver code
public static void Main() {
Node root = null;
// Constructing tree given in the above figure
root = Insert(root, 10);
root = Insert(root, 20);
root = Insert(root, 30);
root = Insert(root, 40);
root = Insert(root, 50);
root = Insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
Console.WriteLine("Preorder traversal :");
PreOrder(root);
}
}
JavaScript
class Node {
constructor(key) {
this.key = key;
this.left = null;
this.right = null;
this.height = 1;
}
}
// A utility function to get
// the height of the tree
function height(node) {
if (node === null) {
return 0;
}
return node.height;
}
// A utility function to right rotate
// subtree rooted with y
function rightRotate(y) {
const x = y.left;
const T2 = x.right;
// Perform rotation
x.right = y;
y.left = T2;
// Update heights
y.height = 1 + Math.max(height(y.left), height(y.right));
x.height = 1 + Math.max(height(x.left), height(x.right));
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
function leftRotate(x) {
const y = x.right;
const T2 = y.left;
// Perform rotation
y.left = x;
x.right = T2;
// Update heights
x.height = 1 + Math.max(height(x.left), height(x.right));
y.height = 1 + Math.max(height(y.left), height(y.right));
// Return new root
return y;
}
// Get balance factor of node
function getBalance(node) {
if (node === null) {
return 0;
}
return height(node.left) - height(node.right);
}
// Recursive function to insert a key in
// the subtree rooted with node
function insert(node, key) {
// Perform the normal BST insertion
if (node === null) {
return new Node(key);
}
if (key < node.key) {
node.left = insert(node.left, key);
} else if (key > node.key) {
node.right = insert(node.right, key);
} else {
// Equal keys are not allowed in BST
return node;
}
// Update height of this ancestor node
node.height = 1 + Math.max(height(node.left), height(node.right));
// Get the balance factor of this ancestor node
const balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node.left.key) {
return rightRotate(node);
}
// Right Right Case
if (balance < -1 && key > node.right.key) {
return leftRotate(node);
}
// Left Right Case
if (balance > 1 && key > node.left.key) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node.right.key) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
// Return the (unchanged) node pointer
return node;
}
// A utility function to print preorder
// traversal of the tree
function preOrder(root) {
if (root !== null) {
console.log(root.key + " ");
preOrder(root.left);
preOrder(root.right);
}
}
// Driver code
let root = null;
// Constructing tree given in the above figure
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
console.log("Preorder traversal :");
preOrder(root);
OutputPreorder traversal :
30 20 10 25 40 50
Time Complexity: O(log(n)), For Insertion
Auxiliary Space: O(Log n) for recursion call stack as we have written a recursive method to insert
The rotation operations (left and right rotate) take constant time as only a few pointers are being changed there. Updating the height and getting the balance factor also takes constant time. So the time complexity of the AVL insert remains the same as the BST insert which is O(h) where h is the height of the tree. Since the AVL tree is balanced, the height is O(Logn). So time complexity of AVL insert is O(Logn).
Comparison with Red Black Tree:
The AVL tree and other self-balancing search trees like Red Black are useful to get all basic operations done in O(log n) time. The AVL trees are more balanced compared to Red-Black Trees, but they may cause more rotations during insertion and deletion. So if your application involves many frequent insertions and deletions, then Red Black trees should be preferred. And if the insertions and deletions are less frequent and search is the more frequent operation, then the AVL tree should be preferred over Red Black Tree.
AVL Tree | Set 2 (Deletion)
Similar Reads
AVL Tree Data Structure
An AVL tree defined as a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees for any node cannot be more than one. The absolute difference between the heights of the left subtree and the right subtree for any node is known as the balance factor of
4 min read
What is AVL Tree | AVL Tree meaning
An AVL is a self-balancing Binary Search Tree (BST) where the difference between the heights of left and right subtrees of any node cannot be more than one. KEY POINTSIt is height balanced treeIt is a binary search treeIt is a binary tree in which the height difference between the left subtree and r
2 min read
Insertion in an AVL Tree
AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes. Example of AVL Tree: The above tree is AVL because the differences between the heights of left and right subtrees for every node are less than
15+ min read
Insertion, Searching and Deletion in AVL trees containing a parent node pointer
AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes. The insertion and deletion in AVL trees have been discussed in the previous article. In this article, insert, search, and delete operations are
15+ min read
Deletion in an AVL Tree
We have discussed AVL insertion in the previous post. In this post, we will follow a similar approach for deletion. Steps to follow for deletion. To make sure that the given tree remains AVL after every deletion, we must augment the standard BST delete operation to perform some re-balancing. Followi
15+ min read
How is an AVL tree different from a B-tree?
AVL Trees: AVL tree is a self-balancing binary search tree in which each node maintain an extra factor which is called balance factor whose value is either -1, 0 or 1. B-Tree: A B-tree is a self - balancing tree data structure that keeps data sorted and allows searches, insertions, and deletions in
1 min read
Practice questions on Height balanced/AVL Tree
AVL tree is binary search tree with additional property that difference between height of left sub-tree and right sub-tree of any node canât be more than 1. Here are some key points about AVL trees: If there are n nodes in AVL tree, minimum height of AVL tree is floor(log 2 n). If there are n nodes
4 min read
AVL with duplicate keys
Please refer below post before reading about AVL tree handling of duplicates. How to handle duplicates in Binary Search Tree?This is to augment AVL tree node to store count together with regular fields like key, left and right pointers. Insertion of keys 12, 10, 20, 9, 11, 10, 12, 12 in an empty Bin
15+ min read
Count greater nodes in AVL tree
In this article we will see that how to calculate number of elements which are greater than given value in AVL tree. Examples: Input : x = 5 Root of below AVL tree 9 / \ 1 10 / \ \ 0 5 11 / / \ -1 2 6 Output : 4 Explanation: there are 4 values which are greater than 5 in AVL tree which are 6, 9, 10
15+ min read
Difference between Binary Search Tree and AVL Tree
Binary Search Tree:A binary Search Tree is a node-based binary tree data structure that has the following properties: The left subtree of a node contains only nodes with keys lesser than the nodeâs key.The right subtree of a node contains only nodes with keys greater than the nodeâs key.The left and
2 min read