
1

1

Formal Verification by Model
Checking

Guest Lectures at the Analysis of Software Artifacts
Class, Spring 2005

Natasha Sharygina

Carnegie Mellon University

2

Outline

Lecture 1: Overview of Model Checking

Lecture 2: Complexity Reduction Techniques

Lecture 3: Software Model Checking

Lecture 4: State/Event-based software model checking

Lecture 5: Component Substitutability

Lecture 6: Model Checking Practicum (Student Reports
on the Lab exercises)

2

3

What we have learned so far

Model Checking Basic Concepts:

• Systems are modeled by finite state machines

• Properties are written in propositional temporal logic

• Verification procedure is an exhaustive search
of the state space of the design

• Diagnostic counterexamples

4

What we have learned so far (2)
Complexity Reduction Techniques:

• Compositional reasoning (reasoning about parts of the system)

• Abstraction (elimination of details irrelevant to verification of a property)

• Symbolic Verification (BDDs represent state transition diagrams more
efficiently)

• Partial Order Reduction (reduction of number of states that must be
enumerated)

• Domain specific reductions (syntactic program transformations)

• Other (symmetry, cone of influence reduction, ….)

3

5

Today’s Lecture

Various approaches to model checking software

6

Hypothesis

– Model checking is an algorithmic approach to
analysis of finite-state systems

– Model checking has been originally developed for
analysis of hardware designs and communication
protocols

– Model checking algorithms and tools have to be
tuned to be applicable to analysis of software

4

7

Application of Model Checking to
Hardware Verification

– Simple data structures are used

– Systems are modular

– Mostly finite-state systems

– System components have well defined interfaces

– Mostly synchronous execution

8

Application of Model Checking to
Software Verification

– Complex data structures are used

- Procedural or OO design

– Non-finite state systems

– System components do not have well defined interfaces

– Complex coordination between SW components

– Synchronous or asynchronous execution

5

9

Model Checking Software
(code verification)

� 1. Design/Implementation/Testing

� 2. Modeling/Property Specification
• Finite-state model extraction
• Simplifications

• Restrictions

� 3. Verification
• Abstractions

• Divide-and-conquer
techniques (when applicable)

• Other complexity reduction
techn.

 Model

No

Model Checker

Error
track

Code

Yes

Property

OUT of
 M/T

Re-design

10

Model Checking Software
(code verification)

 Model

No

Model Checker

Error
track

Code

Yes

Property

OUT of
 M/T

Re-design

Limitations:

• Final (expensive) stage in the
program development

• Consistency problem between code
and model

• Mostly limited to simplified systems

6

11

Model Checking Software
(design verification)

 Design
Model

No

Model Checker

Error
track

Code

Yes

Property

OUT of
 M/T

 Formal
Model

Testing
Tool

Re-design

�3. Verification

• State space reduction techniques

� 4. Code Generation (last stage)

� 1. Executable Design Specifications

• Abstraction from low-level to

high-level operations

� 2. Modeling/Property Specification
• Finite-state model extraction

12

Model Checking Software
(design verification)

 Design
Model

No

Model Checker

Error
track

Code

Yes

Property

OUT of
 M/T

 Formal
Model

Testing
Tool

Re-design
Advantages:

• Applied earlier in the design
cycle (Earlier bug detection)

• Direct translation of informal
program into formal syntax (no
simplifications)

• Separation of concerns:
abstraction of control from data

• Domain-specific property
specification

7

13

State-of-the-art Software Model Checking

Counterexample-guided abstraction refinement
framework (CEGAR)

[Kurshan et al. ’93] – Bell Labs/Cadence

[Clarke et al. ’00] - CMU

[Ball, Rajamani ’00] - Microsoft Research

14

CEGAR

Actual
Program

Concurrent
Boolean
Program

Model
Checker

Abstraction refinement

Verification
Initial

Abstraction
No error

or bug found

Spurious counterexample

Simulator

Property
holds

Simulation
successful

Bug found

Refinement

Counterexample

[Kurshan et al. ’93]

[Clarke et al. ’00]
[Ball, Rajamani ’00]

8

15

Major Software Model Checkers

• FormalCheck/xUML (UT Austin, Bell Labs)

• ComFoRT (CMU/SEI) built on top of MAGIC (CMU)

• SPIN (JPL/formely Bell Labs)

• Verisoft (Bell Labs)

• Bandera (Kansas State)

• Java PathFinder (NASA Ames)

• SLAM/Bebop (Microsoft Research)

• BLAST (Berkeley)

• CBMC (CMU)

16

Class Presentations

SPIN: explicit state LTL model checker

ComFoRT: explicit state LTL and ACTL* model checker

9

17

SPIN: LTL Model Checking

• Properties are expressed in LTL
– Subset of CTL* of the form:

• A f

where f is a path formula which does not contain
any quantifiers

• The quantifier A is usually omitted
• G is substituted by � (always)
• F is substituted by ◊ (eventually)
• X is (sometimes) substituted by ° (next)

18

LTL Formulae

• Always eventually p: � ◊ p
AGFp in CTL*

AG(p→→→→Fq) in CTL*

• Fairness:

(� ◊ p) → ϕ

AG(p →→→→AFq) in CTL

AG AF p in CTL

A((GF p) →→→→ ϕϕϕϕ) in CTL*

Can’t express it in CTL

• Always after p there is eventually q:
� (p → (◊ q))

10

19

LTL Model Checking

• An LTL formula defines a set of traces

• Check trace containment
– Traces of the program must be a subset of the

traces defined by the LTL formula
– If a trace of the program is not in such set

• It violates the property
• It is a counterexample

– LTL formulas are universally quantified

20

LTL Model Checking

• Trace containment can be turned into emptiness
checking
– Negate the formula corresponds to complement the

defined set:

– Subset corresponds to empty intersection:

)()(φφ ¬= setset

0=∩⇔⊆ BABA

11

21

Buchi Automata

• An LTL formula defines a set of infinite traces

• Define an automaton which accepts those
traces

• Buchi automata are automata which accept
sets of infinite traces

22

Buchi Automata

• A Buchi automaton is 4-tuple <S,I,δ,F>:
– S is a set of states
– I ⊆ S is a set of initial states
– δ: S → 2S is a transition relation
– F ⊆ S is a set of accepting states

• We can define a labeling of the states:
– λ: S → 2L is a labeling function
where L is the set of literals.

12

23

Buchi Automata

s0 s1 s2

S = { s0, s1, s2 }

I = { s0 }

δ = { (s0, {s0, s1}), (s1, {s2}), (s2, {s2}) }

F = { s2 }

λ = { (s0, {a}), (s1, {b}), (s2, {}) }

a b true

24

Buchi Automata

• An infinite trace σ = s0s1… is accepted by a
Buchi automaton iff:
– s0 ∈ I
– ∀ i ≥ 0: si+1 ∈ δ(si)
– ∀ i ≥ 0: ∃ j > i: sj ∈ F

13

25

Buchi Automata

• Some properties:
– Not all non-deterministic Buchi automata have an

equivalent deterministic Buchi automata
– Not all Buchi automata correspond to an LTL

formula
– Every LTL formula corresponds to a Buchi

automaton
– Set of Buchi automata closed under

complemention, union, intersection, and
composition

26

Buchi Automata

ba true
s0 s1 s2

a U b

What LTL formula does this Buchi automaton
corresponds to (if any)?

14

27

LTL Model Checking

• Generate a Buchi automaton for the negation
of the LTL formula to check

• Compose the Buchi automaton with the
automaton corresponding to the system

• Check emptiness

28

LTL Model Checking

• Composition:
– At each step alternate transitions from the system

and the Buchi automaton

• Emptiness:
– To have an accepted trace:

• There must be a cycle
• The cycle must contain an accepting state

15

29

LTL Model Checking

• Cycle detection
– Nested DFS

• Start a second DFS
• Match the start state in the second DFS

– Cycle!

• Second DFS needs to be started at each state?
– Accepting states only will suffice

• Each second DFS is independent
– If started in post-order states need to be visited at most

once in the second DFS searches

30

LTL Model Checking

procedure DFS(s)

visited = visited ∪ {s}
for each successor s’ of s

if s’ ∉ visited then
DFS(s’)
if s’ is accepting then

DFS2(s’ , s’)
end if

end if
end for

end procedure

16

31

LTL Model Checking

procedure DFS2(s, seed)

visited2 = visited2 ∪ {s}
for each successor s’ of s
if s’ = seed then
return “Cycle Detect” ;

end if

if s’ ∉ visited2 then
DFS2(s’ , seed)

end if
end for

end procedure

32

References

• http://spinroot.com/
• Design and Validation of Computer Protocols by Gerard

Holzmann
• The Spin Model Checker by Gerard Holzmann
• An automata-theoretic approach to automatic program

verification, by Moshe Y. Vardi, and Pierre Wolper
• An analysis of bitstate hashing, by G.J. Holzmann
• An Improvement in Formal Verification, by G.J. Holzmann

and D. Peled
• Simple on-the-fly automatic verification of linear temporal

logic, by Rob Gerth, Doron Peled, Moshe Vardi, and Pierre
Wolper

• A Minimized automaton representation of reachable states,
by A. Puri and G.J. Holzmann

17

33

SPIN: The Promela Language

• Process Algebra
– An algebraic approach to the study of concurrent

processes. Its tools are algebraical languages for the
specification of processes and the formulation of
statements about them, together with calculi for the
verification of these statements. [Van Glabbeek,
1987]

• Describes the system in a way similar to a
programming language

34

Promela

• Asynchronous composition of independent
processes

• Communication using channels and global
variables

• Non-deterministic choices and interleavings

18

35

An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }

NC

C

T

40

An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }

NC

C

T

19

43

Enabled Statements

• A statement needs to be enabled for the
process to be scheduled.

bool a, b;

proctype p1()

{

a = true;

a & b;

a = false;

}

proctype p2()

{

b = false;

a & b;

b = true;

}

init { a = false; b = false; run p1(); run p2(); }

These statements are enabled
only if both a and b are true.

In this case b is always false
and therefore there is a
deadlock.

44

Other constructs

• Do loops
do

:: count = count + 1;

:: count = count - 1;

:: (count == 0) -> break

od

20

45

Other constructs

• Do loops

• Communication over channels
proctype sender(chan out)

{

int x;

if

::x=0;

::x=1;

fi

out ! x;

}

46

Other constructs

• Do loops

• Communication over channels

• Assertions
proctype receiver(chan in)

{

int value;

out ? value;

assert(value == 0 || value == 1)

}

21

47

Other constructs

• Do loops

• Communication over channels

• Assertions

• Atomic Steps
int value;

proctype increment()

{ atomic {

x = value;

x = x + 1;

value = x;

} }

57

Mutual Exclusion
• Peterson’s solution to the mutual exclusion

problem

flag 0=1

turn=0

flag 1 == 0 || turn == 1

flag 1 != 0 && turn != 1

flag 0=0

Critical
Section

22

66

Mutual Exclusion in SPIN

flag 0=1

turn=0

flag 1 == 0 || turn == 1

flag 1 != 0 && turn != 1

flag 0=0

Critical
Section

bool turn;

bool flag[2];

proctype mutex0() {

again:

flag[0] = 1;

turn = 0;

(flag[1] == 0 || turn == 0);

/* critical section */

flag[0] = 0;

goto again;

}

67

Mutual Exclusion in SPIN
bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

/* critical section */

flag[_pid] = 0;

goto again;

}

Active process:
automatically creates instances of processes

_pid:
Identifier of the process

assert:
Checks that there are only
at most two instances with
identifiers 0 and 1

23

68

Mutual Exclusion in SPIN
bool turn, flag[2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--;

flag[_pid] = 0;

goto again;

}

ncrit:
Counts the number of
Process in the critical section

assert:
Checks that there are always
at most one process in the
critical section

69

Mutual Exclusion in SPIN
bool turn, flag[2];

bool critical[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

critical[_pid] = 1;

/* critical section */

critical[_pid] = 0;

flag[_pid] = 0;

goto again;

}

LTL Properties:

[] (critial[0] || critical[1])

[] <> (critical[0])
[] <> (critical[1])

[] (critical[0] ->
(critial[0] U
(!critical[0] &&
((!critical[0] &&
!critical[1]) U critical[1]))))

[] (critical[1] ->
(critial[1] U
(!critical[1] &&
((!critical[1] &&
!critical[0]) U critical[0]))))

