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What we have learned so far      

Model Checking Basic Concepts:

• Systems are modeled by finite state machines

• Properties are written in propositional temporal logic

• Verification procedure is an exhaustive search
of the state space of the design

• Diagnostic counterexamples
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What we have learned so far (2)     
Complexity Reduction Techniques:

• Compositional reasoning (reasoning about parts of the system)

• Abstraction (elimination of details irrelevant to verification of a property)

• Symbolic Verification (BDDs represent state transition diagrams more 
efficiently)

• Partial Order Reduction (reduction of number of states that must be 
enumerated)

• Domain specific reductions (syntactic program transformations)

• Other (symmetry, cone of influence reduction, ….)
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Today’s Lecture

Various approaches to model checking software
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Hypothesis

– Model checking is an algorithmic approach to 
analysis of finite-state systems

– Model checking has been originally developed for 
analysis of hardware designs and communication 
protocols

– Model checking algorithms and tools have to be 
tuned to be applicable to analysis of software
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Application of Model Checking to 
Hardware Verification

– Simple data structures are used

– Systems are modular

– Mostly finite-state systems

– System components have well defined interfaces

– Mostly synchronous execution
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Application of Model Checking to 
Software Verification

– Complex data structures are used

- Procedural or OO design

– Non-finite state systems

– System components do not have well defined interfaces

– Complex coordination between SW components

– Synchronous or asynchronous execution
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Model Checking Software
(code verification)

� 1. Design/Implementation/Testing

� 2. Modeling/Property Specification
• Finite-state model extraction
• Simplifications

• Restrictions

� 3. Verification
• Abstractions

• Divide-and-conquer
techniques (when applicable)

• Other complexity reduction 
techn.
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Model Checking Software
(code verification)
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Limitations:

• Final (expensive) stage in the 
program development 

• Consistency problem between code 
and model

• Mostly limited to simplified systems 
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Model Checking Software
(design verification)
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�3. Verification

• State space reduction techniques

� 4. Code Generation (last stage)

� 1. Executable Design Specifications

• Abstraction from low-level to 

high-level operations

� 2. Modeling/Property Specification
• Finite-state model extraction
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Model Checking Software
(design verification)
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Advantages:

• Applied earlier in the design 
cycle (Earlier bug detection)

• Direct translation of informal  
program into formal syntax (no 
simplifications)

• Separation of concerns: 
abstraction of control from data

• Domain-specific property  
specification
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State-of-the-art Software Model Checking

Counterexample-guided abstraction refinement 
framework (CEGAR)

[Kurshan et al. ’93] – Bell Labs/Cadence

[Clarke et al. ’00] - CMU

[Ball, Rajamani ’00] - Microsoft Research
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CEGAR
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Major Software Model Checkers

• FormalCheck/xUML (UT Austin, Bell Labs)

• ComFoRT (CMU/SEI) built on top of MAGIC (CMU)

• SPIN (JPL/formely Bell Labs)

• Verisoft (Bell Labs)

• Bandera (Kansas State)

• Java PathFinder (NASA Ames)

• SLAM/Bebop (Microsoft Research)

• BLAST (Berkeley)

• CBMC (CMU)
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Class Presentations

SPIN: explicit state LTL model checker

ComFoRT: explicit state LTL and ACTL* model checker
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SPIN: LTL Model Checking

• Properties are expressed in LTL
– Subset of CTL* of the form:

• A f

where f is a path formula which does not contain 
any quantifiers

• The quantifier A is usually omitted
• G is substituted by � (always)
• F is substituted by ◊ (eventually)
• X is (sometimes) substituted by ° (next)
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LTL Formulae

• Always eventually p: � ◊ p
AGFp in CTL*

AG(p→→→→Fq) in CTL*

• Fairness:

( � ◊ p ) → ϕ

AG(p →→→→AFq) in CTL

AG AF p in CTL

A((GF p) →→→→ ϕϕϕϕ) in CTL*

Can’t express it in CTL

• Always after p there is eventually q: 
� ( p → ( ◊ q ) )
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LTL Model Checking

• An LTL formula defines a set of traces

• Check trace containment
– Traces of the program must be a subset of the 

traces defined by the LTL formula
– If a trace of the program is not in such set

• It violates the property
• It is a counterexample

– LTL formulas are universally quantified
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LTL Model Checking

• Trace containment can be turned into emptiness 
checking
– Negate the formula corresponds to complement the 

defined set:

– Subset corresponds to empty intersection:

)()( φφ ¬= setset

0=∩⇔⊆ BABA
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Buchi Automata

• An LTL formula defines a set of infinite traces

• Define an automaton which accepts those 
traces

• Buchi automata are automata which accept 
sets of infinite traces
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Buchi Automata

• A Buchi automaton is 4-tuple <S,I,δ,F>:
– S is a set of states
– I ⊆ S is a set of initial states
– δ: S → 2S is a transition relation
– F ⊆ S is a set of accepting states

• We can define a labeling of the states:
– λ: S → 2L is a labeling function
where L is the set of literals.
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Buchi Automata

s0 s1 s2

S = { s0, s1, s2 }

I = { s0 }

δ = { (s0, {s0, s1}), (s1, {s2}), (s2, {s2}) }

F = { s2 }

λ = { (s0, {a}), (s1, {b}), (s2, {}) }

a b true
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Buchi Automata

• An infinite trace  σ = s0s1… is accepted by a 
Buchi automaton iff:
– s0 ∈ I
– ∀ i ≥ 0: si+1 ∈ δ(si)
– ∀ i ≥ 0:  ∃ j > i: sj ∈ F



13

25

Buchi Automata

• Some properties:
– Not all non-deterministic Buchi automata have an 

equivalent deterministic Buchi automata
– Not all Buchi automata correspond to an LTL 

formula
– Every LTL formula corresponds to a Buchi

automaton
– Set of Buchi automata closed under 

complemention, union, intersection, and 
composition

26

Buchi Automata

ba true
s0 s1 s2

a U b

What LTL formula does this Buchi automaton
corresponds to (if any)?
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LTL Model Checking

• Generate a Buchi automaton for the negation 
of the LTL formula to check

• Compose the Buchi automaton with the 
automaton corresponding to the system

• Check emptiness
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LTL Model Checking

• Composition:
– At each step alternate transitions from the system 

and the Buchi automaton

• Emptiness:
– To have an accepted trace:

• There must be a cycle
• The cycle must contain an accepting state
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LTL Model Checking

• Cycle detection
– Nested DFS

• Start a second DFS
• Match the start state in the second DFS

– Cycle!

• Second DFS needs to be started at each state?
– Accepting states only will suffice

• Each second DFS is independent
– If started in post-order states need to be visited at most 

once in the second DFS searches
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LTL Model Checking

procedure DFS(s)

visited = visited  ∪ {s}
for each successor s’ of s

if s’ ∉ visited then
DFS(s’ )
if s’ is accepting then

DFS2(s’ , s’ )
end if

end if
end for

end procedure
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LTL Model Checking

procedure DFS2(s, seed )

visited2 = visited2  ∪ {s}
for each successor s’ of s
if s’ = seed then
return “Cycle Detect” ;

end if

if s’ ∉ visited2 then
DFS2(s’ , seed )

end if
end for

end procedure
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SPIN: The Promela Language

• Process Algebra
– An algebraic approach to the study of concurrent 

processes. Its tools are algebraical languages for the 
specification of processes and the formulation of 
statements about them, together with calculi for the 
verification of these statements. [Van Glabbeek, 
1987]

• Describes the system in a way similar to a 
programming language

34

Promela

• Asynchronous composition of independent 
processes

• Communication using channels and global 
variables

• Non-deterministic choices and interleavings
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An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }

NC

C

T
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An Example

mtype = { NONCRITICAL, TRYING, CRITICAL };
show mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1); }

NC

C

T
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Enabled Statements

• A statement needs to be enabled for the 
process to be scheduled.

bool a, b;

proctype p1()

{

a = true;

a & b;

a = false;

}

proctype p2()

{

b = false;

a & b;

b = true;

}

init { a = false; b = false; run p1(); run p2(); }

These statements are enabled 
only if both a and b are true.

In this case b is always false 
and therefore there is a 
deadlock.
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Other constructs

• Do loops
do

:: count = count + 1;

:: count = count - 1;

:: (count == 0) -> break

od
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Other constructs

• Do loops

• Communication over channels
proctype sender(chan out)

{

int x;

if

::x=0;

::x=1;

fi

out ! x;

}
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Other constructs

• Do loops

• Communication over channels

• Assertions
proctype receiver(chan in)

{

int value;

out ? value;

assert(value == 0 || value == 1)

}
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Other constructs

• Do loops

• Communication over channels

• Assertions

• Atomic Steps
int value;

proctype increment()

{ atomic {

x = value;

x = x + 1;

value = x;

} }

57

Mutual Exclusion
• Peterson’s solution to the mutual exclusion 

problem

flag 0=1 

turn=0

flag 1 == 0 || turn == 1

flag 1 != 0 && turn != 1

flag 0=0 

Critical
Section
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Mutual Exclusion in SPIN

flag 0=1 

turn=0

flag 1 == 0 || turn == 1

flag 1 != 0 && turn != 1

flag 0=0 

Critical
Section

bool turn;

bool flag[2];

proctype mutex0() {

again:

flag[0] = 1;

turn = 0;

(flag[1] == 0 || turn == 0);

/* critical section */

flag[0] = 0;

goto again;   

}
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Mutual Exclusion in SPIN
bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

/* critical section */

flag[_pid] = 0;

goto again;   

}

Active process:
automatically creates instances of processes

_pid:
Identifier of the process

assert:
Checks that there are only 
at most two instances with 
identifiers 0 and 1
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Mutual Exclusion in SPIN
bool turn, flag[2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--;

flag[_pid] = 0;

goto again;   

}

ncrit:
Counts the number of
Process in the critical section

assert:
Checks that there are always
at most one process in the
critical section
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Mutual Exclusion in SPIN
bool turn, flag[2];

bool critical[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

critical[_pid] = 1;

/* critical section */

critical[_pid] = 0;

flag[_pid] = 0;

goto again;   

}

LTL Properties:

[] (critial[0] || critical[1])

[] <> (critical[0])
[] <> (critical[1])

[] (critical[0] -> 
(critial[0] U 
(!critical[0] && 
((!critical[0] && 
!critical[1]) U critical[1]))))

[] (critical[1] -> 
(critial[1] U 
(!critical[1] && 
((!critical[1] && 
!critical[0]) U critical[0]))))


