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Abstract

How can we model users’ preferences? How do anomalies, fraud, and spam effect our models of normal
users? How can we modify our models to catch fraudsters? In this tutorial we will answer these questions
- connecting graph analysis tools for user behavior modeling to anomaly and fraud detection. In particular,
we will focus on the application of subgraph analysis, label propagation, and latent factor models to static,
evolving, and attributed graphs.

For each of these techniques we will give a brief explanation of the algorithms and the intuition behind
them. We will then give examples of recent research using the techniques to model, understand and predict
normal behavior. With this intuition for how these methods are applied to graphs and user behavior, we
will focus on state-of-the-art research showing how the outcomes of these methods are effected by fraud, and
how they have been used to catch fraudsters.

Perspective and Target Audience

Perspective: In this tutorial we focus on understanding anomaly and fraud detection through the lens
of normal user behavior modeling. The data mining and machine learning communities have developed a
plethora of models and methods for understanding user behavior. However, these methods generally assume
that the behavior is that of real, honest people. On the other hand, fraud detection systems frequently use
similar techniques as those used in modeling “normal” behavior, but are often framed as an independent
problem. However, by focusing on the relations and intersections of the two perspectives we can gain a more
complete understanding of the methods and hopefully inspire new research joining these two communities.

Target Audience: This tutorial is aimed at anyone interested in modeling and understanding user behavior,
from data mining and machine learning researchers to practitioners from industry and government. For those
new to the field, the tutorial will cover the necessary background material to understand these systems and
will offer a concise, intuitive overview of the state-of-the-art. Additionally, the tutorial aims to offer a
new perspective that will be valuable and interesting even for researchers with more experience in these
domains. For those having worked in classic user behavior modeling, we will demonstrate how fraud can
effect commonly-used models that expect normal behavior, with the hope that future models will directly
account for fraud. For those having worked in fraud detection systems, we hope to inspire new research
directions through connecting with recent developments in modeling “normal” behavior.
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Outline

I. Introduction (10 min)

A. Graphs are a useful abstraction for a wide variety of domains: social networks, movie or product
ratings and reviews, text in articles, medical diagnoses, financial transactions, etc.

B. How can we make sense of the data? What does normal behavior look like? For example, we can
predict ratings on Netflix or friends on Twitter and fill in missing information on Facebook.

C. Fraud is rampant in nearly all of these applications - fake reviews on Yelp, purchased followers on
Twitter, inflated trust on eBay, medical fraud, bank fraud. This activity deceives users and ma-
nipulates our prediction algorithms. Therefore it is important to understand how fraud influences
our models and how we can isolate and catch anomalous behavior.

II. Subgraph Analysis and Patterns (40 min)

A. Background: Graph clustering and partitioning (5 min)
i. Local search and graph queries [4} [19]
ii. Co-clustering and cross associations [23], [13]
B. Normal Behavior: Subgraph Patterns (10 min)
i. Ego-nets: [29] [5]
ii. Subgraph patterns in social networks: [40]
iii. Influence of subgraphs on recommendation: [41]
iv. Co-clustering for recommendation: ACCAMS [6]
C. Abnormal Behavior: What are anomalous or fraudulent subgraphs? (25 min)
i. Ego-net analysis: COI [14], OddBall [3]
ii. Attributed subgraphs: FocusCO [35], SODA [20], CODA [16]
iii. Temporal lockstep behavior: CopyCatch [§]; extended in [I1]
iv. Graph queries: “volcanoes” and “blackholes” on static graphs [30], attributed subgraph [46]
v. Detecting fraud with co-clustering [34]
vi. Graph cut for intrusion detection [I5]

III. Label Propagation Methods (1 hour)

A. Random Walks and Eigenvectors (10 min)
i. Background: Why do random walks “find” important parts of a graph?
ii. Normal Behavior: Power method, HITS [27], and PageRank [9]
B. Belief and Label Propagation (10 min)
i. Background: What is semi-supervised learning? What are belief and label propagation?
ii. Normal Behavior: Predict attributes on nodes or why certain people are friends [12]
C. Abnormal Behavior: How can random walks help us find fraud? (40 min)
i. Surprising patterns in HITS: CatchSync [25]
ii. Modifications of PageRank: TrustRank [22], SybilRank[10], CollusionRank[I7], BadRank [43]
iii. Use belief propagation for “guilt-by-association:”
e Binary graphs: NetProbe [31]
e Attributed graphs: FraudEagle [2], [26]
e “Guilt-by-constellation” [42]



IV. Latent Factor Models (1 hour)

A. Background: What is the singular vector decomposition? (5 min)

i. Generalization from Eigenvectors and HITS

ii. Why do latent factor models, like SVD, work well for relational data?

iii. What do the factors typically represent? Why? For example, the factorization of a user by
movie ratings matrix gives genres; the decomposition of a word by document matrix gives
topics.

B. Normal Behavior: Modifications for different settings: (15 min)
i. Finding communities (binary matrices): MMSB [I], overlapping communities [44]

ii. Missing data and prediction: SVD++ [28], BPMF [37], CoBaFi [7]

ili. Multi-modal data: PARAFAC, Tensor factorization [33] [32]

iv. Coupled factorization [39, [21]

C. Abnormal Behavior: What happens if there is fraud in the data? (40 min)

i. Surprising patterns in latent factors (binary matrices): EigenSpokes [36], Get-the-scoop [24],
fBox [38]
ii. Surprising group patterns in ratings data: CoBaFi [T]
iii. Surprising pattern in coupled factorization for heterogeneous graphs [18]
iv. Group anomalies: GLAD [45]

V. Looking forward (10 min)

A. How can we handle multiple data sources and complex data?
B. With more complex data and methods, how can maintain the interpretability of discovered fraud?

C. Can we provide an adversarial analysis of our methods and offer provable guarantees?

Similar tutorials

e “What is Strange in Large Networks? Graph-based Irregularity and Fraud Detection” (http://www3.
cs.stonybrook.edu/~leman/icdm12/, ICDM 2012, Brussels, Belgium) - A subset of this tutorial
focused on fraud detection systems, many of which are included in this tutorial. However, the tutorial
was generally framed as finding “strange” structures and patterns in large graphs, some of which could
be fraudulent patterns. This differs significantly from the perspective of this tutorial, which focuses
on (1) the models and methods used in fraud detection systems and (2) their relation to modeling
“normal” behavior.

Presenters

e Christos Faloutsos is a Professor at Carnegie Mellon University. He has received the Presidential
Young Investigator Award by the National Science Foundation (1989), the Research Contributions
Award in ICDM 2006, the Innovations award in KDD10, 20 “best paper” awards, and several teaching
awards. He has served as a member of the executive committee of SIGKDD; he has published over 200
refereed articles, 11 book chapters and one monograph. He holds five patents and he has given over
30 tutorials and over 10 invited distinguished lectures. His research interests include data mining for
graphs and streams, fractals, database performance, and indexing for multimedia and bio-informatics
data. More details can be found at http://www.cs.cmu.edu/~christos/.
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e Leman Akoglu is an Assistant Professor in the Department of Computer Science at Stony Brook
University since August 2012. She received her Ph.D. from the Computer Science Department at
Carnegie Mellon University. Her research interests span a wide range of data mining and machine
learning topics with a focus on algorithmic problems arising in graph mining, pattern discovery, social
and information networks, and especially anomaly, fraud, and event detection. Dr. Akoglu’s research
has won 3 publication awards; one Best Knowledge Discovery Paper at ECML/PKDD 2009, a Best
Paper at PAKDD 2010, and a Best Paper at ADC 2014. She also holds 3 U.S. patents filed by
IBM T. J. Watson Research Labs. Dr. Akoglu is a recipient of the NSF CAREER award (2015)
and an Army Research Office Young Investigator award (2013). Her research is supported by the
National Science Foundation, the US Army Research Office, Office of Naval Research, and a gift from
Northrop Grumman Aerospace Systems. More details can be found at http://www.cs.stonybrook.
edu/~1leman.

e Alex Beutel is a fourth-year Ph.D. student at Carnegie Mellon University in the Computer Science
Department. He previously received his B.S. from Duke University. His Ph.D. research focuses on
large scale user behavior modeling, covering both recommendation sytems and fraud detection sys-
tems. Alex’s research is supported by the National Science Foundation Graduate Research Fellowship
Program and a Facebook Fellowship. More details can be found at http://alexbeutel.com.
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