
Concatenative Programming

From Ivory to Metal

Jon Purdy ● Why Concatenative Programming
Matters (2012)

● Spaceport (2012–2013)
Compiler engineering

● Facebook (2013–2014)
Site integrity infrastructure (Haxl)

● There Is No Fork: An Abstraction
for Efficient, Concurrent, and
Concise Data Access (ICFP 2014)

● Xamarin/Microsoft (2014–2017)
Mono runtime (performance, GC)

What I Want in a
Programming
Language

● Prioritize reading & modifying
code over writing it

● Be expressive—syntax closely
mirroring high-level semantics

● Encourage “good” code (reusable,
refactorable, testable, &c.)

● “Make me do what I want anyway”
● Have an “obvious” efficient

mapping to real hardware (C)
● Be small—easy to understand &

implement tools for
● Be a good citizen—FFI, embedding
● Don’t “assume you’re the world”

● Forth (1970)
Chuck Moore

● PostScript (1982)
Warnock, Geschke, & Paxton

● Joy (2001)
Manfred von Thun

● Factor (2003)
Slava Pestov &al.

● Cat (2006)
Christopher Diggins

● Kitten (2011)
Jon Purdy

● Popr (2012)
Dustin DeWeese

● …

Notable
Concatenative
Programming
Languages

History

Three
Formal Systems of
Computation

● Lambda Calculus (1930s)
Alonzo Church

● Turing Machine (1930s)
Alan Turing

● Recursive Functions (1930s)
Kurt Gödel

λx.x ≅ λy.y

λx.(λy.x) ≅ λy.(λz.y)

(λx.λy.λz.xz(yz))(λx.λy.x)(λx.λy.x)
≅ (λy.λz.(λx.λy.x)z(yz))(λx.λy.x)
≅ λz.(λx.λy.x)z((λx.λy.x)z)
≅ λz.(λx.λy.x)z((λx.λy.x)z)
≅ λz.z

e ::= x Variables
| λx. e Functions
| e1 e2 Applications

λx.M[x] ⇒ λy.M[y] α-conversion

(λx.M)E ⇒ M[E/x] β-reduction

Church’s Lambdas

M = ⟨Q, Γ, b, Σ, δ, q0, F⟩

Q Set of states
Γ Alphabet of symbols
b ∈ Γ Blank symbol
Σ ⊆ Γ ∖ {b} Input symbols
q0 ∈ Q, F ⊆ Q Initial & final states
δ State transition function

δ : (Q ∖ F) × Γ → Q × Γ × {L, R}

Turing’s Machines

● Begin with initial state & tape
● Repeat:

○ If final state, then halt
○ Apply transition function
○ Modify tape
○ Move left or right

Gödel’s Functions

f(x1, x2, …, xk) = n Constant

S(x) = x + 1 Successor

Pi
k(x1, x2, …, xk) = xi Projection

f ∘ g Composition

ρ(f, g) Primitive recursion

μ(f) Minimization

Three Four
Formal Systems of
Computation

● Lambda Calculus (1930s)
Alonzo Church

● Turing Machine (1930s)
Alan Turing

● Recursive Functions (1930s)
Kurt Gödel

● Combinatory Logic (1950s)
Moses Schönfinkel, Haskell Curry

Combinatory Logic (SKI, BCKW)

Bxyz = x(yz) Compose
Cxyz = xzy Flip
Kxy = x Constant
Wxy = xyy Duplicate

SKKx = Kx(Kx) = x

M = SII = λx.xx
L = CBM = λf.λx.f(xx)
Y = SLL = λf.(λx.f(xx))(λx.f(xx))

Just combinators and applications!

Sxyz = xz(yz) Application
S = λx.λy.λz.xz(yz) “Starling”

Kxy = x Constant
K = λx.λy.x “Kestrel”

Ix = x Identity
I = λx.x “Idiot”

Turing machines → imperative
Lambda calculus → functional
Combinatory logic →* concatenative

“A concatenative programming
language is a point-free computer
programming language in which all
expressions denote functions, and the
juxtaposition of expressions denotes
function composition.”

— Wikipedia,
Concatenative Programming Language

What is
concatenative
programming?

“…a point-free computer
programming language…”

find . -name '*.txt'

 | awk '{print length($1),$1}'

 | sort -rn

 | head

hist ∷ String → [(Char, Int)]

hist = map (head &&& length)

 . group . sort

 . filter (not . isSpace)

define hist (List<Char>

 → List<Pair<Char, Int>>):

 { is_space not } filter

 sort group

 { \head \length both_to

 pair } map

Point-Free Programming

Point-Free
(Pointless, Tacit)
Programming

● Programming: dataflow style
using combinators to avoid
references to variables or
arguments

● Topology/geometry: abstract
reasoning about spaces & regions
without reference to any specific
set of “points”

● Variables are “goto for data”:
unstructured, sometimes needed,
but structured programming is a
better default

● “Name code, not data”

Can Programming Be Liberated
from the Von Neumann Style?
(1977) John Backus

CPU & memory connected by “von
Neumann bottleneck” via primitive
“word-at-a-time” style; programming
languages reflect that

Value-Level Programming

int inner_product

(int n, int a[], int b[])

{

 int p = 0;

 for (int i = 0; i < n; ++i)

 p += a[i] * b[i];

 return p;

}

n=3; a={1, 2, 3}; b={6, 5, 4};

p ← 0;

i ← 0;

p ← 0 + 1 * 6 = 6;

i ← 0 + 1 = 1;

p ← 6 + 2 * 5 = 16;

i ← 1 + 1 = 2;

p ← 16 + 3 * 4 = 28;

28

Value-Level Programming

int inner_product

(int n, int a[], int b[])

{

 int p = 0;

 for (int i = 0; i < n; ++i)

 p += a[i] * b[i];

 return p;

}

● No high-level combining forms:
everything built from primitives

● No useful algebraic properties:
○ Can’t easily factor out

subexpressions without
writing “wrapper” code

○ Can’t reason about subparts
of programs without context
(state, history)

● Semantics & state closely
coupled: values depend on all
previous states

● Too low-level:
○ Compiler infers structure to

optimize (e.g. vectorization)
○ Programmer mentally

executes program or steps
through it in a debugger

Value-Level Programming

Def InnerProd ≡
(Insert +) ∘ (ApplyToAll ×) ∘ Transpose

Def InnerProd ≡
(/ +) ∘ (α ×) ∘ Trans

innerProd ∷ Num a ⇒ [[a]] → a

innerProd = sum

 . map product

 . transpose

FP

Def InnerProd ≡
(Insert +) ∘ (ApplyToAll ×) ∘
Transpose

Def InnerProd ≡
(/ +) ∘ (α ×) ∘ Trans

FP

InnerProd:⟨⟨1, 2, 3⟩, ⟨6, 5, 4⟩⟩
((/ +) ∘ (α ×) ∘ Trans):⟨⟨1,2,3⟩, ⟨6,5,4⟩⟩
(/ +):((α ×):(Trans:⟨⟨1,2,3⟩, ⟨6,5,4⟩⟩))
(/ +):((α ×):⟨⟨1,6⟩, ⟨2,5⟩, ⟨3,4⟩⟩)
(/ +):(⟨×:⟨1,6⟩, ×:⟨2,5⟩, ×:⟨3,4⟩⟩)
(/ +):⟨6,10,12⟩
+:⟨6, +:⟨10,12⟩⟩
+:⟨6,22⟩
28

● Stateless: values have no
dependencies over time; all data
dependencies are explicit

● High-level:
○ Expresses intent
○ Compiler knows structure
○ Programmer reasons about

large conceptual units

● Made by only combining forms
● Useful algebraic properties
● Easily factor out subexpressions:

Def SumProd ≡ (+ /) ∘ (α ×)
Def ProdTrans ≡ (α ×) ∘ Trans

● Subprograms are all pure
functions—all context explicit

Function-Level Programming

innerProd =: +/@:(*/"1@:|:)

innerProd >1 2 3; 6 5 4

(+/ @: (*/"1 @: |:))

 >1 2 3; 6 5 4

+/ (*/"1 (|: >1 2 3; 6 5 4))

+/ (*/"1 >1 6; 2 5; 3 4)

+/ 6 10 12

28

J

You can give verbose names to things:

sum =: +/

of =: @:

products =: */"1

transpose =: |:

innerProduct =:

 sum of products of transpose

(J programmers don’t.)

J

● Primitive pure functions
● Combining forms: combinators,

HoFs, “forks” & “hooks”
● Semantics defined by rewriting,

not state transitions
● Enables purely algebraic reasoning

about programs (“plug & chug”)
● Reuse mathematical intuitions

from non-programming education
● Simple factoring of subprograms:

“extract method” is cut & paste

Function-Level
Programming:
Summary

Three Four Five
Formal Systems of
Computation

● Lambda Calculus (1930s)
Alonzo Church

● Turing Machine (1930s)
Alan Turing

● Recursive Functions (1930s)
Kurt Gödel

● Combinatory Logic (1950s)
Moses Schönfinkel, Haskell Curry

● Concatenative Calculus (~2000s)
Manfred von Thun, Brent Kirby

[A] dup = [A] [A]

[A] [B] swap = [B] [A]

[A] drop =

[A] quote = [[A]]

[A] [B] cat = [A B]

[A] call = A

The Theory of Concatenative
Combinators (2002) Brent Kirby

E ::= C Combinator
| [E] Quotation
| E1 E2 Composition

(E2 ∘ E1)

Concatenative Calculus

{ dup, swap, drop, quote, cat, call } is
Turing-complete!

Smaller basis:

[B] [A] k = A
[B] [A] cake = [[B] A] [A [B]]

[B] [A] cons = [[B] A]
[B] [A] take = [A [B]]

Concatenative Calculus

● B — apply functions
● C — reorder values
● K — delete values
● W — duplicate values

Connection to logic: substructure!

● W — contraction
● C — exchange
● K — weakening

Combinatory Logic (BCKW)

Bkab = k(ab) Compose/apply
Ckab = kba Flip
Kka = k Constant
Wka = kaa Duplicate

Combinatory Logic

● BI = ordered + linear
“Exactly once, in order”
(Works in any category!)

● BCI = linear
“Exactly once”

● BCKI = affine
“At most once”

● BCWI = relevant
“At least once”

● BCKW = SKI
○ S = B(BW)(BBC)
○ K = K
○ I = WK

● SKI → LC (expand combinators)
● LC → SKI (abstraction algorithm)
● { B, C, K, W } = LC

Substructural Type Systems

● Rust, ATS, Clean, Haskell (soon)
● Rust (affine): if a mutable

reference exists, it must be
unique—eliminate data races &
synchronization overhead

● Avoid garbage collection:
precisely track lifetimes of
objects to make memory usage
deterministic (predictable perf.)

● Reason about any resource:
memory, file handles, locks,
sockets…

● Enforce protocols: “consume”
objects that are no longer valid

● Prevent invalid state transitions
● Reversible computing
● Quantum computing

Substructural Rules in Concatenative Calculus

[A] dup k = [A] [A] k
Wka = kaa

[A] [B] swap k = [B] [A] k
Ckab = kba

[A] drop k = k
Kka = k

● Continuations are no longer
scary or confusing

● “Current continuation” (call/cc)
is simply the remainder of the
program

● Saving a continuation is as easy
as saving the stacks and
instruction pointer

Concatenative Calculus
≈ Combinatory Logic
+ Continuation-Passing Style

“…all expressions denote functions
[…] juxtaposition…denotes function
composition.”

● Composition is the main way to
build programs, but what are we
composing functions of?

● We need a convenient data
structure to store the program
state and allow passing multiple
values between functions

● Most concatenative languages use
a heterogeneous stack, separate
from the call stack, accessible to
the programmer

● Other models proposed; stack is
convenient & efficient in practice

Stacks

Literals (“nouns”) take stack & return
it with corresponding value on top.

2 : ∀s. s → s × ℤ
"hello" : ∀s. s → s × string

Operators & functions (“verbs”) pop
inputs from & push outputs to stack.

(+) : ∀s. s × ℤ × ℤ → s × ℤ
(±) : ∀s. s × ℤ × ℤ → s × ℤ × ℤ

Term 2 is a function, pushes value 2.
2 3 + is a function, equal to 5. Can
be split into 2 3 and + or 2 and 3 +.

Higher-order functions (“adverbs”)
take functions (“quotations”).

["ay", "bee", "cee"]

{ "bo" (+) say } each

// aybo beebo ceebo

“Everything is an object a list a function”

: SQ (n -- n^2) DUP * ;

2 SQ

Imperative or pure? Both!

2 SQ ⇒ 2 DUP * ⇒ 2 2 * ⇒ 4

2 ⇒ 2 2 ⇒ 4

: READ (-- str) … ;

: EVAL (str -- val) … ;

: PRINT (val --) … ;

: LOOP (--)

 READ EVAL PRINT LOOP ;

: REPL LOOP ;

Forth

Stack Shuffling

3 5 MAX

3 5 2DUP < IF SWAP THEN DROP

3 5 3 5 < IF SWAP THEN DROP

3 5 1 IF SWAP THEN DROP

3 5 SWAP DROP

5 3 DROP

5

: MAX 2DUP < IF SWAP THEN DROP ;

5 3 MAX

5 3 2DUP < IF SWAP THEN DROP

5 3 5 3 < IF SWAP THEN DROP

5 3 0 IF SWAP THEN DROP

5 3 DROP

5

Locals are simply lambda
expressions in disguise—composing
instead of applying. “Lambda” is
decoupled into “anonymous function”
and “variable binding”.

Remember: f g = g ∘ f = λs. g (f s)

f (→ x; g)

= λs. (λx. g (snd s)) (fst s)

Local Variables

Can be more readable to drop from
function to value level with local
variables.

dup2 (<) if { swap } drop

→ x, y;

if (x < y) { y } else { x }

Simple translation from concatenative terms to lambda terms:

(a b)′ = λs. b′ (a′ s)
[a]′ = λs. pair (λt. a′ t) s [strict]

= λs. pair a′ s [lazy]

dup′ = λs. pair (fst s) s
swap′ = λs. pair (fst (snd s)) (pair (fst s) (snd (snd s)))
…

Translation to Lambdas

Having the option to write operators
infix makes it easier to copy & tweak
math expressions from other
languages, even if it breaks
concatenativity.

Same goes for control flow: people
are accustomed to if…elif…else
and can choose a combinator form if
they want its specific advantages.

(1 + 2) * (3 + 4)

1 2 (+) 3 4 (+) (*)

b neg

 + (b ^ 2 - 4 * a * c) sqrt

 / (2 * a)

b neg b 2 (^) 4 a (*) c (*)

(-) sqrt (+) 2 a (*) (/)

Without local variables? Have fun.

A Spoonful of Sugar

● Data flow order matches
program order: things happen
the way you write them

● Syntax monoid: concatenation
and empty program; semantic
monoid: function composition
and identity function on stacks

● Monoid homomorphism from
syntax to semantics, preserving
identity and joining operation

Close mapping from syntax to semantics

● Not an isomorphism: multiple
input programs can map to the
same semantics

● Programs compose! The
meaning of the concatenation of
two programs is the composition
of their meanings

● Can be concatenative at the
lexical level (Forth, Factor) or the
term level (Kitten)

Factor(ing)

concatenative.org wiki

“C”:

var price =

 customer.orders[0].price;

Factor:

orders>> first price>>

var orders =

 (customer == null ? null

 : customer.orders);

var order =

 (orders == null ? null

 : orders[0]);

var price =

 (order == null ? null

 : order.price);

dup [orders>>] when

dup [first] when

dup [price>>] when

Factor(ing)

concatenative.org wiki

Factor(ing)

concatenative.org wiki

dup [orders>>] when

dup [first] when

dup [price>>] when

MACRO: maybe (quots --)

 ['[dup _ when]] map

 [] join ;

{ [orders>>] [first]

 [price>>] } maybe

● Pure functions are a good default
unit of behavior

● Function composition is a good
default means of combining
behaviors

● Juxtaposition is a convenient
notation for composition

● Having a simple language with a
strong mathematical foundation
makes it easier to develop tooling
and reason about code

Value Propositions
of Concatenative
Programming

Implementation

● Forth: typically threaded code to
support dynamic behavior

● Stack is reified in memory for
flexibility, but dynamic effects
(?DUP, PICK) are frowned upon
anyway

● If you have enough arity & type
information, you can do ordinary
native compilation

define ite<R…, S…>

(R…, (R… → S…), (R… →

S…),

 Bool → S…):

 not if { swap } drop call

/* → f, t, x; if (x) { f }

else { t } call */

{"good"} {"oh no"} (1 < 2) ite

How do we make this efficient?

Implementation of Stack-based
Languages on Register Machines
(1996) M. Anton Ertl

● Spectrum of representations
● Represent the stack in memory
● Cache top value in a register

(huge win for code size & perf.)
● Cache multiple values
● FSM of possible registers in calls

Implementation

● Conversion to SSA/SSI/CPS
○ Program is post-order

flattened data flow graph
○ No dynamic stack ops
○ Must know arity of functions

/ generate specializations
○ Uses standard register

allocation techniques
○ Stack shuffling becomes

mov or no-op

Linear Lisp

Linear Logic and Permutation
Stacks—The Forth Shall Be
First (1993) Henry Baker

● Variables are consumed when
used; copies must be explicit

● Can be compiled efficiently to a
stack machine architecture

● Reduce Von Neumann bottleneck

“A…stack cache utilizes its space on
the chip & memory bandwidth better
than a register bank of the same
capacity […] A linear stack machine
should be even more efficient […] all of
the data held in the stack cache is live
data and is not just tying up space.”

Linear Lisp

Linear Logic and Permutation
Stacks—The Forth Shall Be
First (1993) Henry Baker

● “Most people describe the top
several positions of the Forth
stack as ‘locations’, but it is more
productive to think of them as
‘busses’, since no addressing is
required to read from them at
all--the ALU is directly connected
to these busses.”

● “…one can conceive of multiple
arithmetic operations being
performed simultaneously on a
number of the top items of the
‘stack’…in parallel”

● Because call rate is so high, and
functions are small, you can use
the call stack to store not return
addresses, but functions
themselves

● A “call” copies the contents of a
function onto the return stack
(queue) and proceeds

● Can be implemented with a cyclic
shift register—small loops are just
repeated shifts of this register, no
branch prediction required

Linear Lisp

Linear Logic and Permutation
Stacks—The Forth Shall Be
First (1993) Henry Baker

● Pros: uniform representation,
generic functions are easy—no
need to generate specializations

● Cons: performance overhead of
indirections; need RC or GC

● With no types or full static types,
most things can be unboxed

● Small arrays: put elements directly
on the stack; size is known

● Closures: copy captured variables
onto stack w/ function pointer;
invoking closure is just pop+jump

● Otherwise: COW/RC

Value
Representation:
Boxing?

Static Typing

● Most concatenative languages are
dynamically typed (Joy, Factor,
PostScript) or untyped (Forth)

● There have been a handful of
Forths with simple type checkers

● Cat was the first concatenative
language with static types based
on Hindley–Milner; now defunct

● Nobody else was working on a
statically typed one, so I started
working on Kitten (2011)

State of Type
Systems in
Concatenative
Programming

Approach used in some static Forths:
each function has m inputs and n
outputs

dup : a -- a a

swap : a b -- b a

drop : a --

Problem: no stack polymorphism

call
1,1

 : a (a -- b) -- b

call
1,2

 : a (a -- b c) -- b c

call
2,1

 : a b (a b -- c) -- c

…

“Simply Aritied”
Languages

Type Inference for Stack
Languages (2017) Rob Kleffner

Stack represented as a product type
(tuple); “rest of stack” is polymorphic.

● dup : ∀sa. s × a → s × a × a
● swap : ∀sab. s × a × b → s × b ×

a
● drop : ∀sa. s × a → s
● call : ∀st. s × (s → t) → t

Modus ponens: given a state &
proof (closure) it implies a new
state, can get to the new state

Typing with Tuples

Types can get unwieldy—add
syntactic sugar to make it usable.

define map<S…, A, B>

(S…, List<A>,

 <T…>(T…, A → T… → B)

 → S…, List)

define map<A, B>

(List<A>, (A → B) → List)

● All functions are polymorphic
wrt. the part of the stack they
don’t touch; higher-order
functions are higher-rank;
recursion is polymorphic

● Complete and Easy Bidirectional
Type Checking for Higher-Rank
Polymorphism Joshua Dunfield,
Neel Krishnaswami

Challenges with Stack Polymorphism

E.g., functional argument to map must
be applied on different stack states.

map : ∀sab.
(s × List a × (s × a → s × b)
 → s × List b)

map : ∀sab.
(s × List a × ∀t. (t × a → t × b)
 → s × List b)

E.g., functional argument to dip may
have an arbitrary (but known) effect.

dip : ∀sta. (s × a × (s → t) → t × a)

{ drop } dip

swap drop

{ "meow" } dip

"meow" swap

● Higher-order functions can be
polymorphic over the
stack—need to generate
specializations based on arity
(and calling convention)

Challenges with Stack Polymorphism

Representing
Effects

● Can’t “do” anything with only pure
functions; should we throw up our
hands and have an impure
language? (Forth, Factor, Cat, &al.)

● Haskell uses monads: represent
actions as values, build them with
pure functions; under the hood,
compile to imperative code

● Problem: monads don’t
compose—can’t (always, easily)
mix effects

● Solution: algebraic effects

define newline (-> +IO):

 "\n" print

define print_or_fail

(Bool -> +IO +Fail):

-> x;

if (x):

"good" print

else:

"bad" fail

If f needs +A and g needs +B, f g
needs +A +B or +B +A (commutative)

Effect Types
(Permissions)
in Kitten

Inspired by Koka (2012) Daan Leijen

Compositional: a function has the
effects of the functions it calls.

Polymorphic: a higher-order function
has the effect of its argument:

map<A, B, +P> (List<A>,

 (A → B +P) → List +P)

Effect Types (“Permissions”) in Kitten

● Effects: enforce what a function
is allowed to do (e.g. I/O, unsafe)

● Coeffects: enforce constraints
on the environment where a
function is called (e.g. platform)

● RAII: “handler” that discharges a
permission (e.g. locking)

● Optimizations: functions can be
reordered iff their permissions
are commutative

Finally…

Summary ● Simple, elegant foundation
● Surprising connections to deep

areas of computer science
● Admits efficient implementation

both in theory and in practice
● Amenable to programming

“exotic” machines (stack archs,
reversible/quantum computers)

● Easy to reason about, modify, &
refactor programs; easy to write
good tooling with confidence

● Naturally supports static types and
effect typing

Questions?

Forth style: “compiling” vs.
“interpreting” words (or mixed,
depending on STATE). Factor uses this
with its “macros” and “parsing words”.

Treat preceding terms as stack,
evaluating code at compile time to
construct new terms:

"%s: %d" #printf

Term → Term

List<Char>, Int32 → +IO

Bonus:
Metaprogramming

both<A, B, C, D> // ***

(A, B, (A → C), (B → D) → C,

D)

both_to<A, B, C> // &&&

(A, (A → B), (A → C) → B, C)

dip<S…, T…, A> // first

(S…, A, (S… → T…) → T…, A)

Bonus: Arrows

Concatenative programming is
closely related to the “arrows” of
John Hughes for describing static
data flow graphs.

(f *** g) (x, y) = (f x, g y)

x y \f \g both

(f &&& g) x = (f x, g x)

x \f \g both_to

