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Abstract: Precision agriculture includes the optimum and adequate use of
resources depending on several variables that govern crop yield. Precision agri-
culture offers a novel solution utilizing a systematic technique for current agricul-
tural problems like balancing production and environmental concerns. Weed
control has become one of the significant problems in the agricultural sector. In
traditional weed control, the entire field is treated uniformly by spraying the soil,
a single herbicide dose, weed, and crops in the same way. For more precise farm-
ing, robots could accomplish targeted weed treatment if they could specifically
find the location of the dispensable plant and identify the weed type. This may
lessen by large margin utilization of agrochemicals on agricultural fields and
favour sustainable agriculture. This study presents a Harris Hawks Optimizer with
Graph Convolutional Network based Weed Detection (HHOGCN-WD) technique
for Precision Agriculture. The HHOGCN-WD technique mainly focuses on iden-
tifying and classifying weeds for precision agriculture. For image pre-processing,
the HHOGCN-WD model utilizes a bilateral normal filter (BNF) for noise
removal. In addition, coupled convolutional neural network (CCNet) model is uti-
lized to derive a set of feature vectors. To detect and classify weed, the GCN mod-
el is utilized with the HHO algorithm as a hyperparameter optimizer to improve
the detection performance. The experimental results of the HHOGCN-WD tech-
nique are investigated under the benchmark dataset. The results indicate the pro-
mising performance of the presented HHOGCN-WD model over other recent
approaches, with increased accuracy of 99.13%.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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1 Introduction

Weeds are unwanted plants that grow in fields and compete with crops for light, water, space, and
nutrients. If uncontrollable, they might have many adverse impacts like loss of crop yields, contamination
of grain during harvesting, and production of a considerable amount of seeds, thus forming a weed seed
bank in the fields [1]. Conventionally, weed management program involves the control of weeds via
mechanical or chemical resources, namely the uniform application of herbicides all over the fields [2].
But, the spatial density of weeds isn’t uniform throughout the fields, thus resulting in the overuse of
chemicals that lead to the evolution of herbicide-resistant weeds and environmental concerns. A site-
specific weed management (SSWM) concept that represents detecting weed patches and removal or spot
spraying by mechanical resources was introduced to resolve these shortcomings in the early 90s [3].
Earlier control of Weeds in the season is crucial because the weed will compete with the crop yields for
the resource in the development phase of the crops, which leads to potential yield loss [4–6]. A
considerable study has developed specific variable spraying methods to prevent waste and herbicide
residual difficulties caused by conventional full-coverage spraying [7]. To accomplish accurate variable
spraying, a major problem must be resolved in real-time accurate identification and detection of weeds
and crops. Approaches to realizing the weed detection field through the computer vision (CV) technique
primarily involve deep learning (DL) and conventional image processing [8]. While the detection of
weeds is carried out with conventional image-processing techniques, extracting features, like shape, color,
and texture, of the image and combining with conventional machine learning (ML) approaches like
Support Vector Machine (SVM) or random forest (RF) approach, for the detection of weeds are needed
[9]. Such techniques should have high dependence and design features manually on the quality of feature
extraction, pre-processing methods, and image acquisition methods. With the increase in data volume and
the advancement in computing power, the DL algorithm could extract multi-dimensional and multi-scale
spatial semantic features of weed via Convolution Neural Network (CNN) because of their improved data
expression abilities for images, which avoids the disadvantage of conventional extraction method [10].
Consequently, they have gained considerable interest among the researcher workers.

Ukaegbu et al. [11] define the advancement of a modular unmanned aerial vehicle (UAV) to eradicate
and detect weeds on farmland. Precision agriculture involves resolving the issue of poor agricultural yield
because of competition for nutrients by weeds and offers a rapid method to eliminate the difficult weeds
utilizing developing technologies. This work has solved the mentioned problem. A quadcopter has been
built, and lightweight resources accumulate elements. The system has a lithium polymer (li-po) battery,
electric motor, propellers, receiver, flight controller, electronic speed controller, GPS, and frame. In [12],
a DL mechanism can be advanced to find crops and weeds in croplands. The advanced system has been
enforced and assessed by high-resolution UAV images captured on 2 different target fields: strawberry
and pea; the advanced system can find weeds. In [13], a method can be advanced for accelerating the
manual labelling of pixels utilizing a 2-step process. Firstly, the foreground and background were divided
by maximum likelihood classification; secondly, the weed pixels were labelled manually. These labelled
data were utilized for training semantic segmentation techniques that classify crop and background pixels
into one class and other vegetation into the second class.

Osorio et al. [14] devise 3 techniques for weed estimation related to DL image processing in lettuce
crops and a comparison made to visual assessments by professionals. One technique depended on SVM
utilizing histograms of oriented gradients (HOG) as feature descriptors. The second one depends on
YOLOV3 (you only look once at V3), using its robust structure for object detection. The last method
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relies upon Mask R-CNN (region-oriented CNN) to receive an instance segmentation for every individual.
Such techniques are supplemented with a normalized difference vegetation index (NDVI) index (normal
difference vegetation indexes) as a background sub-tractor to remove non-photosynthetic objects. In [15],
a novel technique that integrates high-resolution RGB and low-resolution MS imageries is presented for
detecting Gramineae weed in rice fields with plants 50 days afterwards emergence. The images were
taken from a UAV. The presented technique will combine the texture data offered by high-resolution
RGB imagery and the reflectance data presented by low-resolution MS imagery to obtain an integrated
RGB-MS image with superior weed-discriminating features. After scrutinizing the normalized green-red
difference index (NGRDI) and NDVI for detecting weeds, it is noted that NGRDI provides superior features.

This study presents a Harris Hawks Optimizer with Graph Convolutional Network based Weed
Detection (HHOGCN-WD) technique for Precision Agriculture. The presented HHOGCN-WD technique
mainly focuses on identifying and classifying weeds for precision agriculture. For image pre-processing,
the HHOGCN-WD model utilizes a normal bilateral filter (BNF) for noise removal. In addition, coupled
convolutional neural network (CCNet) model is utilized to derive a set of feature vectors. To detect and
classify weed, the GCN model is utilized with the HHO algorithm as a hyperparameter optimizer to
improve the detection performance. The experimental results of the HHOGCN-WD technique are
investigated under the benchmark dataset.

2 The Proposed Model

This study developed a new HHOGCN-WD technique for weed detection and classification for
Precision Agriculture. The presented HHOGCN-WD technique mainly focuses on identifying and
classifying weeds for precision agriculture. Fig. 1 depicts the overall block diagram of the HHOGCN-
WD approach.

2.1 Image Pre-Processing

For image pre-processing, the HHOGCN-WD model utilizes BNF for noise removal. The BNF
technique is a two-stage process that upgrades normal Niter time and later upgrades vertices Viter times
[16]. The procedure of denoising process with the BNF is denoted by (update normal) Niter þ (update
vertices) Viter. The BNF upgrades the normal vector through the weighted average of the noisy
neighbourhood normal vector in the following [16]:

Figure 1: Overall block diagram of HHOGCN-WD approach
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In Eq. (1), Ki denotes the normalization factor. rc and rs control the kernel width of Gaussian function
WC and WS , correspondingly [16],

WC kc fið Þ � c fj
� �k; rc

� � ¼ exp �kc fið Þ � c fj
� �k2

2r2c

 !
; (2)

WS kni � njk; rs
� � ¼ exp �kni � njk2

2r2s

 !
: (3)

Function WC provides a smaller weight while the distance between the geometric center (the centroids)
of fi and the adjacent face is larger. Function WS provides additional weight as a similarity between
neighbouring normal and ni rises.

2.2 Feature Extraction: CCNet Model

The CCNet model is utilized at this stage to derive a set of feature vectors. It is well-known that CNN has
established impressive abilities in image processing. Likewise, numerous CNN and derivative has been
proposed for capturing the neighbourhood spatial feature from the image in weed classification [17]. The
discriminatory feature allows discrimination against targeted regions in complicated scenes.

It is noted that the input dataset XH or XLð Þ is initially transported to the adjacency patch sampler that
samples and produces a sequence of adjacency patches (3D spectral cubes PH 2 Rp�p�D or 2D elevation path
PL 2 Rp�pÞ from the novel dataset based on the provided neighborhood size p� pð Þ. Then, they are fed into
the respective CNN module for representation learning or feature extraction. Especially the model primarily
comprises two nearly similar CNN architectures for LiDAR and HS datasets, correspondingly. The input to
the CNN at the top of the figure is PH extracted from the hyperspectral images, whereas the input to the CNN
at the bottom is PL extracted from the LiDAR images. It should be noticeable that the two used CNN network
contains 4 convolution blocks. Those blocks have the same architecture comprising nonlinear activation,
convolution, batch normalization (BN), and MaxPooling layers. For all the CNN networks, the amount of
convolution kernels in four convolution layers is 32, 64, 128, and 128, correspondingly. The initial
3 convolution layer uses a size of 3 � 3 convolution kernel, and the final layer is 1 � 1. CH 2 RN�128

and CL 2 RN�128 represent the short-range spatial feature extracted from the CNN on LiDAR and HS
dataset, correspondingly.

Because of the weight-sharing module, the two CNN networks share the parameter and setting of the
additional 3 convolution layers, excluding the initial convolution layer. It has the apparent advantage of a
larger reduction in several major variables. Then, the convolutional operation rule of the two CNN
models is shown below:

Hlþ1
j ¼ f

X
m
Hl

mW
lþ1
j;m þ blþ1

j;m

� �
: (4)

In Eq. (4), Hl
m indicates the mth feature maps at the lth layers.Wlþ1

j;m signifies the jth convolutional kernel
interconnected with the mth feature map at l þ 1ð Þth layers, and blþ1

j;m indicates the corresponding bias. Now,

H0 ¼ PH or PL: f :ð Þ represents the nonlinear activation functions such as ReLU. The size of the sampled
neighborhood could considerably affect the concluding classifier outcome.
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2.3 Weed Detection Using GCN Model

This study utilises the GCN model to detect and classify weeds. Assume an input image I, the objective
of multilabel image classifier is to evaluate a f function which forecasts the occurrence or not of label
belonging to a set L ¼ 1; Nf g, and it is formulated in the following [18],

f :Rw�h ! ½0; 1�N

I 7!y ¼ ðyiÞi2L;
where w and h correspondingly represent the pixel-wise width and height of the image. Noted that yi ¼ 1
when the label i exists in I or yi ¼ 0. As deliberated in Section 1, graph-based multi-label models, namely
IML-GCN and ML-GCN, comprise two subdivisions. The initial one depends on the out-off-shelf CNN
models, which allow the extraction of discriminatory image representation. Especially, IML-GCN and
ML-GCN integrate a TResNet-M and ResNet-101. The latter comprises an effective form of ResNet-50.
The next branch depends on a specific GCN aim is to generate N inter-dependent binary classifications.
Consider the input graph = V ; E; Ff g, with V = v1; v2; . . . ; vN½ � the subset of vertices so that vi
corresponding to the vertex related to the label, E ¼ e1; e2; . . . ; eM½ � the subset generated using M
edges interconnecting the vertices and F ¼ f1; f2; fN½ � the vertex features so that fi 2 Rd characterizes
the feature of vertex i. Consider A 2 RN�N as the neighborhood matrix defining the topology of the
graph. A is evaluated by assuming the co-occurrence possibility of the label. Additionally, a threshold s
is fixed and is utilized for ignoring rare co-occurrence that is regarded as noisy. For i; j 2 L;

Aij ¼ 0; if Pij, T ;
1; if Pij � T 0

�
(5)

In Eq. (5), Pij ¼ PðjjiÞ indicates the co-occurrence probability that the label j seems provided that i is
previously presented.

Next, assume that Fl 2 Rn�dl encoded the input vertex feature of lth layer, the GCN calculates the node
feature of ðl þ 1Þth layer Flþ1 2 Rn�dlþ1

,

Flþ1 ¼ h AFlW l
� �

: (6)

where h refers to the nonlinear activation function frequently selected as a Leaky Rectified Linear Unit
(Leaky ReLU), Wl 2 Rdl�dlþ1

the learned weight matrixes of layer l. Noted that A is standardized
beforehand employing the above equation. Lastly, the vertex feature is generated using the final layer
from the N inter-dependent classifier.

2.4 Hyperparameter Tuning

This study applies the HHO algorithm as a hyperparameter optimizer to improve detection performance.
The HHO technique utilized 2 distinct approaches to searching functions from the exploration stage [19].
Each of the approaches is chosen dependent upon q; If q � 0:5, a direct approach has been utilized for
searching nearby most other hawks arbitrarily. However, if q, 0:5, the second approach has been utilized
for the searching function formulated in Eq. (7) [19].

X t þ 1ð Þ ¼
Xrand tð Þ � r1 Xrand tð Þ � 2r2X tð Þj jq � 0:5

Xrabbit tð Þ � Xm tð Þð Þ � r3 LBþ r4 UB� LBð Þð Þq, 0:5
:

(
(7)
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whereas Xm tð Þ is computed dependent upon Eq. (8).

Xm tð Þ ¼ 1

N

XN

i¼1
Xi tð Þ: (8)

A distinct process was utilized for moving from the exploration to the exploitation stages. In optimized
functions, the exploration function was carried out first, then the exploitation function, by improving the
iterations, defining an optimum solution, and creating a promising solution. Eq. (9) has been utilized for
mathematical modeling.

E ¼ 2E0 1� t

T

� �
: (9)

If Ej j � 1, this technique enters the exploration stage. However, if Ej j, 1, it enters the exploitation
stage. The value of E is a reducing movement in the maximum of iterations. The HHO technique utilizes
4 distinct approaches for carrying out optimized functions from the exploitation stage. If E � 0:5,
2 approaches were employed, such as besiege and soft besiege with advanced rapid dives. On the
contrary, if E, 0:5, 2 approaches like besiege and hard besiege with advanced rapid dives were utilized.
All of these approaches are described under.

Soft besiege

If r � 0:5 and Ej j � 0:5, the HHO technique employs a soft besiege technique to optimize functions.
During this case, hawks could not simply hunt rabbits as has a lot of energy for escaping, as determined
in Eqs. (10) and (11).

X t þ 1ð Þ ¼ DX tð Þ � E JXrabbit tð Þ � X tð Þj j: (10)

DX tð Þ ¼ Xrabbit tð Þ � X tð Þ: (11)

In Eq. (10), DX , achieved utilizing in Eq. (11), signifies the distance of chosen hawk to a rabbit, and E
has been attained utilizing in Eq. (14). J is also escaping the energy of rabbits, which is achieved by utilizing
Eq. J ¼ 2 1� r5ð Þ.

Hard besiege

If r � 0:5 and Ej j, 0:5, the HHO approach utilizes a hard besiege method to optimize functions.
During this work, the hawks hunt rabbits with a rapid attack as it no longer has sufficient energy to
escape. The mathematical process of this motion was formulated utilizing Eq. (12).

X t þ 1ð Þ ¼ Xrabbit tð Þ � E DX tð Þj j: (12)

If Ej j � 0:5 but r , 0:5, the soft besiege technique with progressive rapid dives has been utilized. Then,
the rabbit is sufficient energy to escape, and there is until a soft besiege. This process was comparatively more
advanced than the earlier process.

Y ¼ Xrabbit tð Þ � E JXrabbit tð Þ � X tð Þj j: (13)

This method utilizes a Lévy flight (LF) to improve efficiency. In addition, the 2 states of Eq. (18) were
related to the present solution. The LF could not be utilized as an outcome of Y but is employed in Z, provided
in Eq. (8).

Z ¼ Y þ S � LF Dð Þ: (14)

In Eq. (14), S refers to the arbitrary number from the dimension of problems from the range of zero and
one, and LF Dð Þ refers to the LF from the dimensional of problems demonstrated in Eq. (15).
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LF xð Þ ¼ 0:01� u� r

jvj1b
; r ¼

� 1þ bð Þ � sin
pb
2

� �

r
1þ b
2

� �
� b� 2

b� 1

2

� �
0
BB@

1
CCA

1
b

: (15)

In Eq. (15), u and v represent the 2 arbitrary numbers between zero and one, and b has a set and default
number, that is, 1.5.

X t þ 1ð Þ ¼ Y if F Yð Þ,F X tð Þð Þ
Z if F Zð Þ,F X tð Þð Þ

�
: (16)

Based on Eq. (16), the outcome of Eq. (13) is superior to the present solutions and, therefore, changes it;
else, the solution achieved in Eq. (14) is related to the present solutions. Assume that Ej j, 0:5 and r, 0:5,
the hard besiege approach with advanced rapid dives has been utilized to optimize functions. Then, the rabbit
could not have sufficient energy to escape and was besieged hard before the surprise pounced to catch the
rabbit. Eqs. (18) and (19) execute dependent upon Eq. (17).

X t þ 1ð Þ ¼ Y if F Yð Þ,F X tð Þð Þ
Z if F Zð Þ,F X tð Þð Þ

�
: (17)

In Eq. (17), Y and Z are attained utilizing Eqs. (18) and (19).

Y ¼ Xrabbit tð Þ � E JXrabbit tð Þ � Xm tð Þj j: (18)

Z ¼ Y þ S � LF Dð Þ: (19)

During this approach, the solution achieved in Eq. (18) changes the present solution when it can be more
effective than others; else, the solution achieved in Eq. (19) is exchanged when it can be more effective than
the present solution. Fig. 2 showcases the flowchart of the HHO technique.

3 Results and Discussion

The weed detection performance of the HHOGCN-WD model is tested using a benchmark weed dataset
[20]. The dataset holds 3000 samples with two classes, as in Table 1. A few sample images are demonstrated
in Fig. 3.

Figure 2: Flowchart of HHO technique
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Fig. 4 depicts the confusion matrices offered by the HHOGCN-WD model under five distinct runs. The
figure implied that the HHOGCN-WD model had identified the weeds proficiently under each class. For
instance, on run-1, the HHOGCN-WD model detected 274 samples under crop and 2693 samples under
weed class. Moreover, on run-2, the HHOGCN-WD technique detected 278 samples under crop and
2692 samples under weed class. Further, on run-3, the HHOGCN-WD approach detected 274 samples
under crop and 2693 samples under weed class. Then, on run-4, the HHOGCN-WD technique detected
270 samples under crop and 2695 samples under weed class. Next, on run-5, the HHOGCN-WD method
detected 282 samples under crop and 2692 samples under weed class.

Table 2 and Fig. 5 demonstrate the overall weed detection outcomes of the HHOGCN-WD model under
five distinct runs. The results indicated that the HHOGCN-WD model had shown enhanced weed detection
outcomes. For instance, on run-1, the HHOGCN-WD model has offered average accuy, precn, recal, Fscore,
and MCC of 98.90%, 96.36%, 97.37%, Fscore of 96.86%, and MCC of 93.72%. In the meantime, on run-2,
the HHOGCN-WD technique has rendered average accuy, precn, recal, Fscore, and MCC of 99%, 96.32%,
98.05%, Fscore of 97.16%, and MCC of 94.35%. Similarly, on run-3, the HHOGCN-WD method has
presented average accuy, precn, recal, Fscore, and MCC of 98.90%, 96.36%, 97.37%, Fscore of 96.86%,
and MCC of 93.72%. Additionally, on run-4, the HHOGCN-WD methodology has rendered average
accuy, precn, recal, Fscore, and MCC of 98.90%, 96.56%, 96.71%, Fscore of 96.63%, and MCC of
93.27%. Finally, on run-5, the HHOGCN-WD algorithm has provided average accuy, precn, recal, Fscore,
and MCC of 99.13%, 96.44%, 98.74%, Fscore of 97.56%, and MCC of 95.16%.

Table 1: Dataset details

Class No. of samples

Crop 287

Weed 2713

Total No. of samples 3000

Figure 3: Sample images
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Figure 4: Confusion matrices of HHOGCN-WD approach (a) Run1, (b) Run2, (c) Run3, (d) Run4, and (e)
Run5

Table 2: Result analysis of HHOGCN-WD approach with distinct measures and runs

Class Accuracy Precision Recall F-Score MCC

Run-1

Crop 98.90 93.20 95.47 94.32 93.72

Weed 98.90 99.52 99.26 99.39 93.72

Average 98.90 96.36 97.37 96.86 93.72

Run-2

Crop 99.00 92.98 96.86 94.88 94.35

Weed 99.00 99.67 99.23 99.45 94.35

Average 99.00 96.32 98.05 97.16 94.35

Run-3

Crop 98.90 93.20 95.47 94.32 93.72

Weed 98.90 99.52 99.26 99.39 93.72

Average 98.90 96.36 97.37 96.86 93.72
(Continued)
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The training accuracy (TRA) and validation accuracy (VLA) acquired by the HHOGCN-WD approach
in the test dataset is shown in Fig. 6. The experimental outcome implicit in the HHOGCN-WD method has
attained maximal values of TRA and VLA. Seemingly the VLA is greater than TRA.

The training loss (TRL) and validation loss (VLL) obtained by the HHOGCN-WD method in the test
dataset are accomplished in Fig. 7. The experimental outcome denotes the HHOGCN-WD approach has
exhibited the least values of TRL and VLL. Particularly, the VLL is lesser than TRL.

A clear precision-recall inspection of the HHOGCN-WD algorithm in the test dataset is given in Fig. 8.
The figure representing the HHOGCN-WD approach has resulted in enhanced precision-recall values in all
classes.

A brief ROC investigation of the HHOGCN-WD technique under the test dataset is portrayed in Fig. 9.
The results implicit the HHOGCN-WD method has displayed its ability in classifying distinct class labels in
the test dataset.

Table 3 and Fig. 10 depict the comparison weed detection results of the HHOGCN-WD model with
other existing models [21,22]. The results implied that the HHOGCN-WD model has obtained enhanced
results in terms of different measures. For instance, concerning accuy, the HHOGCN-WD model has
offered an increased accuy of 99.13%, whereas the AlexNet, GoogleNet, Inception v3, Mask RCNN, and
CNN-WIS model have reached a reduced accuy of 96.33%, 95.38%, 97.57%, 97.49%, and 97.38%
respectively. Temporarily, concerning prenc, the HHOGCN-WD algorithm has presented an increased
prenc of 96.44% whereas the AlexNet, GoogleNet, Inception v3, Mask RCNN, and CNN-WIS technique
have attained a reduced prenc of 95.60%, 94.50%, 95.56%, 95.86%, and 95.69% correspondingly.

Finally, for recal, the HHOGCN-WD method has rendered an increased recal of 98.74% whereas the
AlexNet, GoogleNet, Inception v3, Mask RCNN, and CNN-WIS approach has reached reduced recal of
98.35%, 98.27%, 98.09%, 98.09%, and 97.46% correspondingly. At last, for Fscore, the HHOGCN-WD
method has presented an increased Fscore of 97.56% whereas the AlexNet, GoogleNet, Inception v3,
Mask RCNN, and CNN-WIS techniques have reached a reduced Fscore of 97.47%, 97.23%, 96.55%,
97.15%, and 96.46% correspondingly.

Table 2 (continued)

Class Accuracy Precision Recall F-Score MCC

Run-4

Crop 98.83 93.75 94.08 93.91 93.27

Weed 98.83 99.37 99.34 99.35 93.27

Average 98.83 96.56 96.71 96.63 93.27

Run-5

Crop 99.13 93.07 98.26 95.59 95.16

Weed 99.13 99.81 99.23 99.52 95.16

Average 99.13 96.44 98.74 97.56 95.16
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Figure 5: Average analysis of HHOGCN-WD approach (a) Run1, (b) Run2, (c) Run3, (d) Run4, and (e)
Run5
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Figure 6: TRA and VLA analysis of HHOGCN-WD approach

Figure 7: TRL and VLL analysis of the HHOGCN-WD approach
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Figure 8: Precision-recall analysis of the HHOGCN-WD approach

Figure 9: ROC analysis of HHOGCN-WD approach
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4 Conclusion

In this study, a new HHOGCN-WD technique has been developed for weed detection and classification
for Precision Agriculture. The presented HHOGCN-WD technique mainly focuses on the identification and
classification of weeds for precision agriculture. For image pre-processing, the HHOGCN-WD model
utilizes BNF for noise removal. In addition, the CCNet model is utilized to derive a set of feature vectors.
To detect and classify weed, the GCN model is utilized with the HHO algorithm as a hyperparameter
optimizer to improve the detection performance. The experimental results of the HHOGCN-WD
technique are investigated under the benchmark dataset. The results indicate the promising performance
of the presented HHOGCN-WD model over other recent approaches.
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