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Abstract. The present study is devoted to interpretable artificial intelligence in 

medicine. In our previous work we proposed an approach to clustering results 
interpretation based on Bayesian Inference. As an application case we used clinical 

pathways clustering explanation. However, the approach was limited by working 

for only binary features. In this work, we expand the functionality of the method and 
adapt it for modelling posterior distributions of continuous features. To solve the 

task, we apply BEST algorithm to provide Bayesian t-testing and use NUTS 

algorithm for posterior sampling. The general results of both binary and continuous 
interpretation provided by the algorithm have been compared with the interpretation 

of two medical experts. 
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1. Introduction 

With the raise of machine learning (ML) application to the real-world problems the issue 

of trust to the modelling results is growing rapidly. The more human depend on such 

solutions, the more urgent it become to understand the principles of modeling and a solid 

argumentation for predictions. Along with the accuracy and inference time of ML models, 

interpretation has become the third criteria of ML models evaluation. 

The importance of interpretation is great, especially in the fields directly related with 

people’s health and lives. The users of decision support systems based on the black box 

models require the explanation and logic that lies behind each prognosis. It is clear that 

each person interacting with a black-box model may benefit from interpretation. 

However, each potential user plays a specific role, has different goals, background, 

domain knowledge. Therefore, each potential user has different explanation 

requirements [1–3]. 

Therefore, the form of interpretation may differ. Sometimes it could be a list of 

features used for modelling, ranged according to their significance [4]. Other examples 

use graphical representation in the form of diagrams [5, 6] or pixel heatmaps on the 

processed image [7]. Text explanation could also be used, for instance in image 
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processing using deep learning. Regardless the form, interpretation, in broader sense, is 

something that provides useful insights into the intrinsic work of the model or its results. 

The big amount of interpretation approaches can be classified as model-specific [8] 

and model agnostic methods [9]. Another classification divides them into intrinsic [8] 

and post-hoc [4, 10]. 

Our goal is to automatically explain clinical pathways clustering results, described 

in the work of Funkner et al [11]. The objective of the authors was to predict which 

pathway a patient would follow during hospitalization. The data sample includes acute 

coronary syndrome (ACS) patients. Each patient is represented by a sequence of hospital 

departments. This data was collected from hospital EHRs: the logs of clinical events. A 

part of the solution was a clustering method K-Means. 

In our previous paper we proposed an approach to explain clustering results 

automatically [12]. In terms of aforementioned classification, the proposed approach is 

post-hoc, since we analyze only model’s output, and model-agnostic, since it could be 

used for any clustering model. 

However, it had a limitation, taking only binary features for processing. In the 

present paper we continue to develop the approach of interpretation. Here we are 

expanding the algorithms functionality to work with continuous features used for 

explanation and determine the way of posterior sampling for such data. 

2. Methods 

Let  be a number of successes a person belongs to cluster  with  being a 

corresponding total number of observations for cluster  and  is the probability a 

patient belongs to cluster . 

Our approach is based on Bayesian inference [13]. The algorithm consists of three 

stages: posterior sampling, comparison matrix calculation and identification of features 

typical for each cluster by comparing the sampled distributions [12]. 

.1 Explanation algorithm 

Step 1. Posterior Sampling 

For each feature  , : 

For each cluster : 

1. Determine the priors for  and ; 

2. Calculate the posterior distribution ; 

3. Sample new observations from the posterior ; 

Output: vector of sampled probabilities . 

Step 2. Comparison matrix 

 Let  be a 2D matrix with the number of rows and columns equal to the number 

of clusters. The value of each matrix element is equal to the mean value of sampled 

probabilities comparison. The calculation depends on the hypothesis we want to check. 

Each hypothesis is described in chapter 3.2. 

Step 3. Identification of features more typical for a cluster 

Output: dictionary with keys equal to cluster numbers and values equal to array of 

specific features for this cluster [12]. 
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.2 Explanation algorithm modification 

In order to adapt this procedure to continuous variables, we had to modify the first 

step of posterior sampling. 
In case of binary distributions, we assigned a beta distribution as prior  

and  to observations. Since both distributions have conjugate 

relations, we could calculate it as follows and eliminate MCMC modeling. However, for 

continuous variables such as time, or blood test parameters we should select different 

priors and posterior modeling methods. 

To solve this task, we applied BEST algorithm [14] to Step 1. This algorithm allows 

the comparison of two or more groups and replicates statistical T-test. BEST helps not 

only to tell if the groups differ, but also to estimate how different are two samples, which 

is more informative. Another advantage is that BEST algorithm also allows to estimate 

the uncertainty related with the model parameters due to the intrinsic stochasticity of the 

system. 

In order to perform the comparison, we have to build a probabilistic model. In our 

experiments we tested the difference between age of patients and the period of time they 

spent in the hospital before operation. For age we chose the Student-t distribution (1) as 

prior, since it is more robust to the outliers than Normal distribution. 

    (1) 

There are three parameters in Student-t distribution:  - mean,  – inverse variance, 

 – the degrees of freedom parameter, responsible for the measure of “normality” in data. 

In probabilistic model we used normal distribution for  as prior and uniform distribution 

for  , and exponential for . 

For the time feature we used gamma distribution as prior with  as a shape 

parameter and  as an inversed scale parameter. 

      (2) 

As a sampling method (Step 1.3) for both tasks, we applied NUTS algorithm, which is 

an MCMC algorithm, that allows to converge more quickly than Gibs or Metropolis 

sampling [15] 

3. Results 

Considering the posterior modelling of age and time before operation we have to 

conclude that the probabilistic models converged. However, the significant difference of 

mean and standard deviations based on these features wasn’t found. 
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Figure 1. Samples from Posterior Distribution of  for Age Feature 

We would also like to introduce the updated results where we compared the 

clustering results interpretation of two medical experts (D1 and D2) with algorithms’ 

interpretation (A). Each of the medical experts provided a set of features which he or she 

connects with patients in a particular cluster during analysis. Based on that we have 

calculated the DICE coefficient and measure the extent to which opinions coincide. The 

higher the metric – the higher is the concordance of opinions. 

Table 1. Comparison of algorithms’ and human’s interpretations 

Cluster D1 D2 A D1vsA D2vsA D1vsD2 
1 rehabilitation, 

rehospitalization, 

additional 
surgeries 

 

surgery, 
coronarography, 

cardio_department, 
other_department, 

comorbidity, icu 

 

'coronarograp
hy', 'icu', 

'rehabilitation'
, 'stenting' 

 

0.22 
 

0.44 0 

3 outcome death, 

comorbidity, 

coronarography,  
no surgery, 

revascularization, 

no_surgery, 

outcome_death, 

cardio_department, 
icu 

 

'death', 'icu' 

 

0.3 0.66 0.22 

 

8 serious_condition,  
transfer_from_stati

onar,  

emergency_operati
on,  stroke,  

clinical_death,  

cardiac_shock 

surgery, 
outcome_death, 

cardio_department, 

icu 
 

'death', 
'stenting' 

 

0.43 
 

0.33 
 

0 

9 outcome death,  

coronarography,  

no_operation 
 

no_surgery, 

coronarography, 

outcome_death, 
icu 

 

'death', 

'coronarograp

hy', 'icu' 
 

0.35 

 

0.86 

 

0.57 

MEAN 
DICE on 

10 

Clusters 

- - - 0.185 
 

0.438 
 

0.155 
 

All in all, the proposed approach could be applied to make clustering more 

transparent, informative and efficient. Based on such interpretation, we can 

automatically build a typical patient portrait in a certain cluster to use the results more 

proficiently (Figure 2). We believe that such interpretation based on data exploration and 

statistical inference can help in providing better patients treatment. 

 

Figure 2. Portrait of a typical patient in cluster 2 
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4. Conclusions 

Taking everything into consideration, we would like to say that the proposed objective 

is reached, and the functionality of continuous variables processing is developed. The 

proposed approach may be applied to explain the output of any clustering algorithm 

trained on the variables with categorial or continuous distributions. Moreover, it may be 

built into the decision support systems based on clustering algorithms to explain the 

results of the model to a doctor and make the interface of such systems more user-friendly. 

Such improvements contribute to the higher trust between models and users and reveal 

new opportunities for validation [16]. 

Concerning the future works, we are planning to test this methodology on different 

clustering tasks, using various data and clustering methods. 
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