
ar
X

iv
:2

00
4.

02
76

9v
1

 [
cs

.L
G

]
 6

 A
pr

 2
02

0

Online Hyperparameter Search Interleaved with

Proximal Parameter Updates

Luis M. Lopez-Ramos, Member, IEEE, and Baltasar Beferull-Lozano, Senior Member, IEEE

Abstract—There is a clear need for efficient algorithms to tune
hyperparameters for statistical learning schemes, since the com-
monly applied search methods (such as grid search with N-fold
cross-validation) are inefficient and/or approximate. Previously
existing algorithms that efficiently search for hyperparameters
relying on the smoothness of the cost function cannot be applied
in problems such as Lasso regression. In this contribution, we
develop a hyperparameter optimization method that relies on the
structure of proximal gradient methods and does not require a
smooth cost function. Such a method is applied to Leave-one-
out (LOO)-validated Lasso and Group Lasso to yield efficient,
data-driven, hyperparameter optimization algorithms. Numerical
experiments corroborate the convergence of the proposed method
to a local optimum of the LOO validation error curve, and the
efficiency of its approximations.

Index Terms—Hyperparameter optimization, online learning,
successive convex approximation method

I. INTRODUCTION

Given their proven utility to control the model complexity,

hyperparameters are crucial for a successful application of

many statistical learning schemes in real-world engineering

problems. The generalization capability and performance of

such schemes on unknown instances can be improved with a

careful hyperparameter selection. Regularized models control

the trade-off between a data fidelity term and a complexity

term known as regularizer by means of one or several hyper-

parameters. Ridge regression, Lasso, Group Lasso, and Elastic

net are instances of regularized models. While the regression

weights can be optimized efficiently via the proximal gradient

descent (PGD) method and its variants, the associated hy-

perparameter optimization (HO) is a non-convex, challenging

problem [1]. One main motivation to develop HO schemes for

PGD-based learning algorithms is the interest in solving for

models with sparsity, which can enhance their interpretability.

Given a dataset in batch form, a commonly applied criterion

for hyperparameter optimization is the leave-one-out (LOO)

validation error, because it reflects the ability of an estimator

to predict outputs for unobserved patterns [2]. The compu-

tational cost of evaluating the LOO validation error grows

superlinearly with the number of data points, so that it is

often approximated by N-fold cross validation (CV) with a

small N (e.g., 10). Common practice to search for (sub)optimal

hyperparameters is to use grid search or random search [1],

[3] because of their simplicity.

This work was supported by grants SFI Offshore Mechatronics 237896/E30,
PETROMAKS Smart-Rig 244205/E30, IKTPLUSS INDURB 270730/O70

The authors are with the WISENET Center, Dept. of ICT, University of
Agder, Jon Lilletunsvei 3, Grimstad, 4879 Norway. E-mails:{luismiguel.lopez,
baltasar.beferull}@uia.no.

An improved form of random search are configuration-

evaluation methods, which focus the computation resources in

promising hyperparameter configurations by quickly eliminat-

ing poor ones, important examples of it being the Hyperband

[4] and Bayesian optimization-based approaches in [5].

Gradient-based (exact and approximate) HO methods have

been proposed recently for problems where the cost function

is smooth. Several recent approaches formulate a bi-level

program where an inner program is the optimization of the

model parameters (model weights in the case of regression)

and the outer program is the minimization of a surrogate

of the generalization capability (e.g. validation MSE). In

particular, [6] applies the implicit function Theorem to a

stationarity condition to obtain the hypergradient (gradient of

the outer cost function w.r.t. the hyperparameters); however,

this approach requires calculating the Hessian w.r.t. the model

parameters and, consequently, it cannot be applied to widely

used non-smooth regularizers (such as Lasso/group Lasso).

The approaches in [7]–[9] obtain a hypergradient by model-

ing the optimization of the regression weights as a dynamical

system, where the state space is the parameter space and

each iteration corresponds to a mapping from/to the same

space. While [7] requires the aforementioned mapping to be

invertible, [8], [9] avoid such a requirement by resorting to

an approximation. This work combines ideas from [6], [8]

to formulate a different implicit equation, derive the exact

hypergradient, and develop a method that can work with non-

smooth regularizers and, additionally, admits an online variant.

If the data is received in a streaming fashion, and the

data distribution is time-varying, one may be interested in

algorithms that find the right regularization parameter in

different time segments or data windows, such as the adaptive

approach in [7], which is specific for Lasso estimators. On

the contrary, our approach is general enough to be applied to

several generalizations of Lasso, such as Group Lasso.

On the other hand, methods that train a neural network

to predict optimal regression weights given a hyperparameter

vector [10] have been proposed, together with approximations

that alternate between updating the neural network weights and

the hyerparameters. However, these methods incur in heavy

over-parameterization, to the point of requiring more neural

network parameters than the dimensionality of the regression

weights and the hyperparameters together.

Another approximation alleviating computation in hyper-

parameter search is porposed in [11], where the structure of

specific estimators such as Lasso is exploited to approximately

compute the LOO error metric at a very low cost. Note the

http://arxiv.org/abs/2004.02769v1

difference with [10] because here it is only the error metric

what is approximated, instead of the parameter vector. Despite

the reduced computation, using this approximation for HO still

requires a grid/random search scheme, which does not scale

well with the dimensionality.

In this paper, we propose and evaluate a method that jointly

optimizes the regression weights and hyperparameter of a

(Group-) Lasso regression model and converges to a stationary

point of the LOO error curve. Our method can be extended

to other estimators with proximable, non-smooth regularizers.

The formulation is inspired by the forward-mode gradient

computation in [8], but where we use efficient approximations

based on online (stochastic) gradient descent.

The contributions and structure of the present paper are

listed in the following: Sec. II provides the general formula-

tion for the HO in supervised learning and presents the use of

PGD for our problem. In Sec. III, we present the derivation of

the hypergradient (gradient w.r.t the hyperparameters). In Sec.

IV, we discuss how to design our method for non-smooth

cost functions in problems such as Lasso and Group Lasso.

The main contribution is presented in Sec. V, consisting in the

derivation of an online algorithm and an approximate scheme,

both aimed at saving computation. Sec. VI contains numerical

tests with synthetic data, and concludes the paper.

II. PROBLEM FORMULATION

Given a set of training input/label pairs {xi, yi}Ni=1, with

xi ∈ R
P and yi ∈ R, consider the supervised learning problem

of minimizing a linear combination of empirical risk (data fit)

and structural risk (regularization term):

w∗(λ,B) := argmin
w

1

|B|

∑

i∈B

ℓi(w) + λ⊤Ω(w), (1)

for λ ∈ R
D
+ . This can be for instance particularized to the

Lasso regression problem with w ∈ R
P , ℓi(w) = (yi−x⊤

i w)
2,

and Ω(w) = ‖w‖1; section IV discusses other estimators.

It is well known that minimizing the empirical risk (in-

sample error) does not guarantee that the estimated model will

predict labels of unobserved inputs with low error. The role of

regularization is to select the right model complexity, and the

right choice of the hyperparameter λ is crucial. To this end,

any estimator in the form (1) can be embedded in the bi-level

optimization problem (minimization of the validation error):

λ̆∗ := argmin
λ

1

|V|

∑

j∈V

ℓVAL
j (w∗(λ,Bj)). (2)

where V denotes the set of validation samples, and Bj denotes

the training batch associated with the j-th validation sample.

A typical choice in supervised learning is ℓVAL
j (w) = (yj −

x⊤
j w)

2. Since (2) may have several local minima, the notation

λ̆∗ is reserved for a global minimizer, whereas λ∗ will be used

throughout the text to denote a stationary point.

Regarding the collection of training batches and the valida-

tion samples: In a held-out validation scheme, Bj = B ∀j,

and V∩B = ∅. In N -fold cross-validation (CV), V is the train-

and-validate dataset; the folds {F1, . . . ,FN} are a partition of

V ; and Bj =
⋃

j /∈Fn
Fn. Leave-one-out (LOO) validation is a

special case of CV where N = |V|, and Fi = {i} ∀ i; and

therefore, Bj = V \ {j}.

The rest of this section reviews how w∗(λ,Bj) is obtained.

The next section will discuss the minimization of (2) via the

computation of the gradient w.r.t. the hyperparameter λ, also

referred to as hyper-gradient [8], [12].

A. Proximal Gradient Descent

The proximal gradient descent (PGD) algorithm allows to

iteratively compute w∗(λ,Bj) given the training batch Bj and

the hyperparameter λ, and it is advocated here for its sim-

plicity. Extending our formulation to accommodate algorithms

such as the accelerated PGD (which gives rise to FISTA when

applied to ℓ1-regularized problems) is out of the scope of the

present paper and left as future work.

Given a function Ψ, the proximity (prox) operator is defined

as [13]

proxηΨ(v) , argmin
x∈dom Ψ

[

Ψ(x) +
1

2η
‖x− v‖22

]

. (3)

If Ω is such that the prox operator can be computed in

closed form, it is said that Ω is a proximable function, and

problem (1) can be solved efficiently via proximal gradient

descent (PGD):

w(k+1) = proxλα
(k)

Ω (w(k) −
α(k)

|Bj |

∑

i∈Bj

(∇wℓi(w
(k)))) (4)

where α(k) is a step size sequence satisfying α(k) < 1/L,

where L is the Lipschitz smoothness parameter of the empir-

ical risk (aggregate loss component of the cost function). In

fact, for α(k) < 1/L, it holds that w
(k)
j −−−−→

k→∞
w∗(λ,Bj). The

PGD step (4) is the composition of a gradient step with the

prox operator, and the iteration is frequently split in two steps,

yielding the equivalent forward-backward iterations:

w
(k)
f =Fα(k)

B (w(k)) , w(k) −
α(k)

|Bj|

∑

i∈B

∇wℓi(w
(k)) (5a)

w(k+1) =proxλα
(k)

Ω (w
(k)
f) (5b)

Moreover, for α ∈ (0, 1/L] the optimality condition holds:

w∗(λ,B) = proxλαΩ (Fα
B (w∗(λ,B))). (6)

III. COMPUTING THE HYPER-GRADIENT

The condition in (6) establishes optimality w.r.t. the weight

vector, but not w.r.t. the hyperparameter λ. To optimize over λ,

we leverage the forward-mode gradient computation described

by [8] in this section. The condition for λ∗ being a stationary

point for the optimization in (2) is:
∑

j∈V

∇λℓ
VAL
j (w∗(λ∗,Bj)) = 0. (7)

The hyper-gradient can be written using the chain rule as

∇λℓ
VAL

j (w∗(λ,B)) =
(∂w∗(λ,B)

∂λ

)⊤

∇wℓ
VAL

j (w∗(λ,B)), (8)

where the argument of ⊤ is the derivative (Jacobian) matrix

(column vector if λ is scalar). In the sequel, we leverage the

technique in [8] to compute the latter.

Consider a generic iterative algorithm, whose t-th iterate

is st ∈ R
P , and a hyperparameter vector λ ∈ R

D . The t-th
iteration can be expressed as: st = Mt(st−1, λ), where

Mt : (R
P × R

D) → R
P

is a smooth mapping that represents the operation performed

at the latter. The following equation [8, eq. (13)] is fulfilled

by the iterates st:

dst
dλ

=
∂Mt(st−1, λ)

∂st−1

dst−1

dλ
+

∂Mt(st−1, λ)

∂λ
(9)

In the case of PGD, the mapping Mk is the composition

prox
λα(k)
Ω ◦ F

α(k)
B [cf. (5)]. For simplicity, we will consider

in the sequel a constant step size α(k) = α for PGD, so that

Mk = M = proxλαΩ ◦ Fα
B , and

dw(k+1)

dλ
= A(w

(k)
f)

∂Fα
B (w

(k))

∂w(k)

dw(k)

dλ
+B(w

(k)
f) (10)

where A(wf) ,
∂(proxλαΩ)(wf)

∂wf
, B(wf) ,

∂(proxλαΩ)(wf)

∂λ
.

(11)

The derivations so far have followed a path common to [9],

where an approximation to the hypergradient is computed by

reverse-mode gradient computation [8]. However, differently

to this work, in our approach we identify a fixed point equation

for the derivatives at the convergence point of PGD:

dw∗(λ,B)

dλ
= A(w∗

f)
∂Fα

B (w
∗(λ,B))

∂w∗(λ,B)

dw∗(λ,B)

dλ
+B(w∗

f)

(12)

where w∗
f , Fα

B (w
∗(λ,B)); if the linear equation has a

solution, it can be expressed in closed form as
dw∗(λ,B)

dλ =
ZB(w

∗(λ,B)), where

ZB(w
∗(λ,B)) ,

(

I −A(w∗
f)

∂Fα
B (w∗(λ,B))

∂w∗(λ,B)

)−1

B(w∗
f).

(13)

A. Hyper-gradient descent (HGD)

If the iterates
λ(k+1) :=

[

λ(k) −
β(k)

|V|
×

∑

j∈V

(

ZB(w
∗(λ(k),Bj))

)⊤

∇wℓ
VAL
j (w∗(λ(k),Bj))

]

+

(14)

(where [·]+ denotes projection onto the positive orthant) are

executed, with an appropriate step size sequence β(k), the

sequence λ(k) will converge to a stationary point of (2).

Remark. Existence of ZB(·) requires the prox operator

to be smooth. However, important estimation problems such

as Lasso regression rely on non-smooth prox operators. In

the next section, a slight modification of the hyper-gradient

descent is proposed in order to deal with those problems.

IV. NON-SMOOTH PROX OPERATORS

In this section, we propose the hyper-subgradient descent

method, and its extension for large datasets, namely, the online

hyper-subgradient descent (OHSD) method.

If the prox operator is nonsmooth, its derivatives may not

exist at all points, and thus Zj(w
∗(λ,Bj)) may not be com-

putable. One can instead compute a valid subderivative (which

will be denoted by Z̃j(w
∗(λ,Bj))) by replacing the derivatives

of the prox operator with the corresponding subderivatives.

If Zj(w
∗(λ,Bj)) is replaced in (14) with Z̃j(w

∗(λ,Bj)),
the resulting algorithm will be termed hereafter as hyper-

subgradient descent (HSGD).

The HSGD will be advocated in the next section to optimize

the hyperparameters for several estimation problems with non-

smooth prox operators, namely Lasso and Group Lasso.Before

proceeding, some of the functions that have been presented

before as generic functions, will be particularized to facilitate

the readability of the derivations and algorithms.

Regularized least-squares (LS) linear estimators such as

Lasso use the loss function ℓi(w) = (yi − x⊤
i w)

2. Conse-

quently, the forward operator and its Jacobian are

Fα
B (w) = w− α(Φjw− rj), and

∂Fα
B (w)

∂w
= (I − αΦj),

where Φj := 1
|Bj |

∑

i∈Bj
xix

⊤
i , and rj := 1

|Bj |

∑

i∈Bj
yixi.

If the LOO validation scheme is chosen, then Φj can be

computed efficiently as

Φj :=
1

N−1 (NΦ− xix
⊤
i), rj :=

1
N−1 (Nr − xiyi); (15)

with Φ , 1
N

∑

i∈V xix
⊤
i , r , 1

N

∑

i∈V xiyi. (16)

If the validation error metric is ℓVAL
j = (yj − x⊤

j w)
2, then

∇wℓ
VAL
j (w) = xj(x

⊤
j w − yj).

The equations for particular cases of Ω(·) will be presented

after the HSGD algorithm.

A. Hyper-subgradient descent (HSGD)

Let Ãj(wf) and B̃j(wf) be valid subderivative (sub-

Jacobian) matrices of proxλαΩ (wf) w.r.t. wf and λ, respec-

tively. Then, a valid subderivative matrix of w∗(λ,Bj) with

respect to λ is [cf. (13)]

Z̃j(w
∗(λ,Bj)) :=

(

I − Ãj(w
∗
f)(I − αΦj)

)−1

B̃j(w
∗
f);

(17)

where w∗
f := Fα

B (w∗(λ,B)); and the HSGD iterates can be

written as λ(k+1) :=
[

λ(k) − β(k)×

∑

j∈V

(

Z̃j(w
∗(λ(k),Bj))

)⊤

xj(x
⊤
j w

∗(λ(k),Bj)− yj)
]

+

(18)

Remark. The inverse at (17) will not exist if Φj is rank-

defficient. This happens when the model dimensionality P is

less than N + 1, and may also happen when the input data

xj have a high degree of colinearity. In such cases, the LS

solution of the linear system can be used. Another option is to

numerically approximate Z̃(·) by using an iterative algorithm

based on the forward-gradient iteration at (10).

B. Application of HSGD to Lasso and Group Lasso

Depending on the choice of the function Ω, we obtain

different regularized estimators, and associated prox operators

and HSGD iterates.

1) Lasso: The regularizer is Ω(w) = ‖w‖1; its prox

operator is known as soft-thresholding Sαλ(w) , proxαλ‖·‖1
(w)

[14], and the latter can be computed entrywise as

[Sαλ(wf)]n := [wf]n

[

1−
αλ

|[wf]n|

]

+

. (19)

The corresponding subderivatives Ã(wf) ∈ R
P×P , and

B̃(wf) ∈ R
P×1 are defined so that Ã(wf) is diagonal and

[Ã(wf)]nn =1{|[wf]n| ≥ αλ} (20a)

[B̃(wf)]n =α (1{[wf]n ≤ −αλ} − 1{[wf]n ≥ αλ}) .
(20b)

2) Group Lasso: The regularizer depends on an a priori

defined group structure. With P denoting the dimensionality

of w, and Ng the number of groups, let {K1,K2, ...KNg} be a

partition of {1, 2, ..., P}. Let [w]K denote the sub-vector of w
containing the components indexed by K. The regularizer

is Ω(w) = ‖w‖2,1 ,
∑Ng

g=1 ‖wKg
‖2; its prox operator

is known as multidimensional soft-thresholding SG
αλ(w) ,

proxαλ‖·‖2,1
(w) [15], and the latter can be computed group-wise

as

[SG
αλ(wf)]K = [wf]K

[

1−
αλ

‖[wf]K‖2

]

+

. (21)

With K(n) denoting the subset of the partition where n
belongs, the corresponding subderivative matrices Ã(wf) ∈
R
P×P , and B̃(wf) ∈ R

P×1 are defined so that Ã(wf) is

diagonal, and

[Ã(wf)]nn =1{‖[wf]K(n)‖2 ≥ αλ} (22a)

[B̃(wf)]n =

{

−α
[wf]K(n)

‖[wf]K(n)‖2
, ‖[wf]K(n)‖2 ≥ αλ,

0, ‖[wf]K(n)‖2 < αλ.
(22b)

Algorithm 1 Hyper-subgradient descent for Lasso or Group

Lasso

Input: {xi, yi}
N
i=1, {β

(k)}k, λ
(1)

Output: λ∗

1: Compute Φ, r via (16)

2: α = 1/ρ(Φ)
3: for k = 1, 2, . . . do (until convergence)

4: for j = 1, . . . , N do

5: Compute Φj , rj via (15)

6: for m = 1, 2, . . . do (until convergence) ⊲ PGD

7: w
(m)
f = w(m−1) − α(Φjw

(m−1) − rj)

8: Compute w(m) via (19) or (21)

9: Compute Ãj(w
∗
f), B̃j(w

∗
f) via (20) or (22)

10: Compute Z̃j(w
∗(λ(k),Bj)) via (17)

11: Update λ(k+1) via (18)

The HSGD algorithm applied to Lasso and Group Lasso is

summarized in the Algorithm 1. The approach in this paper

can be extended also to other estimators with proximable

regularizers, particularly several generalizations of Lasso such

as Weighted Lasso and Fused Lasso, which are left out of the

scope of this article for space constraints.

V. APPROXIMATE ALGORITHMS

This section presents two approximations that improve the

efficiency of HSGD.

A. Online Hyper-subgradient Descent (OHSGD)

To avoid having to evaluate w∗(λ,Bj) for all j in each iter-

ation of HSGD, the online optimization technique is applied

here, which consists in doing a gradient descent iteration per j,

using the corresponding contribution to the subgradient (also

known as stochastic subgradient):

j(k) :=k mod |V| (23a)

w(k) :=w∗(λ(k),Bj(k)) (23b)

λ(k+1) :=
[

λ(k) − β(k)×
(

Z̃j(k)(w
(k))

)⊤

xj(k)(x
⊤
j(k)w

(k) − yj(k))
]

+
(23c)

To save computation, the instance of PGD that calculates

w∗(λ(k),Bj(k)) should be initialized at w(k−|V|) if k > |V|.

B. OHSGD with inexact weight vector

The algorithm proposed in the previous section requires

to evaluate w∗(λ(k),Bj(k)). The iterates produced by PGD

converge to the exact optimizer, but in practice one has to

stop the inner loop after a certain stopping criterion is met.

Clearly, there is a trade-off between the number of iterations

m(k) in the k-th (inner) loop and the suboptimality of its final

iterate, ‖w
(m(k))
j − w∗(λ,Bj(k))‖.

Even if one is interested in a very precise approximation

of (λ∗, {w∗(λ∗,Bj)}j∈V), most of the times PGD is run

to evaluate w∗(λ(k),Bj(k)) for λ(k) far away from λ∗, and

w∗(λ(k),Bj(k)) is only used to compute the hypergradient. It

is well known that when applying gradient methods, using

coarsely approximated (hyper) gradients before getting close

to a stationary point usually does not hinder the convergence,

and may significantly alleviate computation. Even if the num-

ber of hyper-gradient steps required for converge increases, the

computation savings in the inner loop usually yield a faster

overall convergence. In addition, if the the prox operator is

computationally heavy, fast (inexact) approximations of the

prox operator also lower the complexity per iteration (inexact

PGD method) [16].

VI. NUMERIC TESTS

For the two experiments in this section, data are generated

so that the inputs xi ∈ R
100 are i.i.d., and yi := w⊤

truexi + ǫi,
with wtrue being a 10-sparse vector, and ǫi generated i.i.d. so

that yi has a signal-to-noise ratio (SNR) of 0.3. The train-and-

validate set contains 200 samples. A test set is generated with

the same model and 2000 samples.

103 104 105

ISTA iterations

0

0.1

0.2

0.3

0.4
HSGD, = 1e-4
HSGD, = 2.15e-4
HSGD, = 4.64e-4
OHSGD, = 1e-5
OHSGD, = 2.15e-5
OHSGD, = 4.64e-5

Fig. 1: Iterates of HSGD and OHSGD for different values of β

104 105

ISTA iterations

0

0.2

0.4

0.6

0.8
tol = 1e-4
tol = 3.1e-4
tol = 1e-3
tol = 3.1e-3
tol = 0.01
tol = 0.03
tol = 0.1

Fig. 2: OHSGD iterates for β = 6e− 5, and different values of the
tolerance to stop PGD/ISTA.

The first experiment is run in order to visually compare

in Fig. 1 the convergence rates of HSGD and OHSGD with

different constant stepsizes β(k) = β, in terms of the number

of PGD/ISTA iterations executed before producing a given

value of λ. The tolerance to stop the inner loop is set to 1e-3.

The second experiment consists in evaluating the conver-

gence rate of OHSGD with inexact weight vectors within

a scale of coarser-finer approximate values of the optimal

solution of (6). Fig. 2 shows the value of the λ iterates

(averaged over the last Ntrain to show a stable value, since

online iterates hover around the optimizer) against the number

of PGD (ISTA) iterations. The PGD loop is stopped when

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.88

0.9

0.92

0.94

0.96

0.98

V
al

id
at

io
n

er
ro

r

Leave-one-out
HSGD
Test

Fig. 3: Validation error of LOO, Test, and solution generated by
OHSGD (experiment 2)

the distance between 0 and subgradient of the training loss is

smaller than tol. To confirm the optimality of λ∗, Fig. 3 shows

the LOO and test error curves for a grid of values for λ.

The results show that approximate weights as with a subgra-

dient tolerance as coarse as 0.1 still allow convergence of λ to

λ∗, and the computation is significantly reduced with respect to

instances of OHSGD that calculate the weights more exactly.

Concluding remarks: In this paper, the (hyper)gradient

of the validation error w.r.t. the hyperparameters has been

derived for estimators with non-smooth regularizers exploiting

the structure of PGD. An algorithm has been developed (with

an online variant) to optimize hyperparameters for Lasso and

Group Lasso. Actually, this approach is flexible enough to

accomodate any convex, proximable regularization term.

REFERENCES

[1] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl,
“Algorithms for hyper-parameter optimization,” in Proc. Advances

Neural Inf. Process. Syst., 2011, pp. 2546–2554.
[2] Darren Homrighausen and Daniel J McDonald, “Leave-one-out cross-

validation is risk consistent for lasso,” Machine learning, vol. 97, no.
1-2, pp. 65–78, 2014.

[3] James Bergstra and Yoshua Bengio, “Random search for hyper-
parameter optimization,” J. Mach. Learn. Res., vol. 13, no. Feb, pp.
281–305, 2012.

[4] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar, “Hyperband: A novel bandit-based approach to
hyperparameter optimization,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6765–6816, 2018.

[5] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank
Hutter, “Fast bayesian optimization of machine learning hyperparam-
eters on large datasets,” in Artificial Intelligence and Stat., 2017, pp.
528–536.

[6] Fabian Pedregosa, “Hyperparameter optimization with approximate
gradient,” arXiv preprint arXiv:1602.02355, 2016.

[7] Ricardo P Monti, Christoforos Anagnostopoulos, and Giovanni Montana,
“Adaptive regularization for lasso models in the context of nonstationary
data streams,” Stat. Analysis and Data Mining: The ASA Data Science

Journal, vol. 11, no. 5, pp. 237–247, 2018.
[8] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano

Pontil, “Forward and reverse gradient-based hyperparameter optimiza-
tion,” in Proc. Int. Conf. Mach. Learn., 2017, vol. 70, pp. 1165–1173.

[9] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and
Massimiliano Pontil, “Bilevel programming for hyperparameter opti-
mization and meta-learning,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1568–1577.

[10] Jonathan Lorraine and David Duvenaud, “Stochastic hyperparameter
optimization through hypernetworks,” arXiv preprint arXiv:1802.09419,
2018.

[11] Shuaiwen Wang, Wenda Zhou, Arian Maleki, Haihao Lu, and Va-
hab Mirrokni, “Approximate leave-one-out for high-dimensional non-
differentiable learning problems,” arXiv preprint arXiv:1810.02716,
2018.

[12] Dougal Maclaurin, David Duvenaud, and Ryan Adams, “Gradient-
based hyperparameter optimization through reversible learning,” in
International Conference on Machine Learning, 2015, pp. 2113–2122.

[13] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[14] Ingrid Daubechies, Michel Defrise, and Christine De Mol, “An iterative
thresholding algorithm for linear inverse problems with a sparsity
constraint,” Communications on Pure and Applied Mathem., vol. 57,
no. 11, pp. 1413–1457, 2004.

[15] Arnau Tibau Puig, Ami Wiesel, Gilles Fleury, and Alfred O Hero,
“Multidimensional shrinkage-thresholding operator and group lasso
penalties,” IEEE Signal Processing Letters, vol. 18, no. 6, pp. 363–
366, 2011.

[16] Mark Schmidt, Nicolas L Roux, and Francis R Bach, “Convergence
rates of inexact proximal-gradient methods for convex optimization,” in
Proc. Advances Neural Inf. Process. Syst., 2011, pp. 1458–1466.

	I Introduction
	II Problem formulation
	II-A Proximal Gradient Descent

	III Computing the Hyper-gradient
	III-A Hyper-gradient descent (HGD)

	IV Non-smooth prox operators
	IV-A Hyper-subgradient descent (HSGD)
	IV-B Application of HSGD to Lasso and Group Lasso
	IV-B1 Lasso
	IV-B2 Group Lasso

	V Approximate algorithms
	V-A Online Hyper-subgradient Descent (OHSGD)
	V-B OHSGD with inexact weight vector

	VI Numeric tests
	References

