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Abstract

Human feedback plays a critical role in learning and refin-
ing reward models for text-to-image generation, but the op-
timal form the feedback should take for learning an accu-
rate reward function has not been conclusively established.
This paper investigates the effectiveness of fine-grained feed-
back which captures nuanced distinctions in image qual-
ity and prompt-alignment, compared to traditional coarse-
grained feedback (for example, thumbs up/down or ranking
between a set of options). While fine-grained feedback holds
promise, particularly for systems catering to diverse societal
preferences, we show that demonstrating its superiority to
coarse-grained feedback is not automatic. Through experi-
ments on real and synthetic preference data, we surface the
complexities of building effective models due to the interplay
of model choice, feedback type, and the alignment between
human judgment and computational interpretation. We iden-
tify key challenges in eliciting and utilizing fine-grained feed-
back, prompting a reassessment of its assumed benefits and
practicality. Our findings – e.g., that fine-grained feedback
can lead to worse models for a fixed budget, in some set-
tings; however, in controlled settings with known attributes,
fine grained rewards can indeed be more helpful – call for
careful consideration of feedback attributes and potentially
beckon novel modeling approaches to appropriately unlock
the potential value of fine-grained feedback in-the-wild.

Introduction
Human feedback serves as a critical element in adapt-
ing large-scale generative models, particularly within the

*Work conducted while at Google.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example text-image pair where granular feedback
matters.

Reinforcement Learning with Human Feedback (RLHF)
paradigm (Casper et al. 2023; Christiano et al. 2017; Ouyang
et al. 2022). However, conventional methods often rely on
coarse-grained feedback, such as a single binary preference
or Likert-scale rating, which may not adequately capture
the nuances of quality and prompt-alignment in complex
domains like text-to-image generation. A generated image
may be highly visually appealing while deviating from the
prompt, or conversely, align with the prompt and target visu-
als in some but not all desired ways, as illustrated in Figure
1. Recent research in text-to-text models (i.e. Large Lan-
guage Models) suggests the potential of fine-grained feed-
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Figure 2: Top: a typical coarse-grained feedback reward pipeline; bottom: proposed method for modeling fine-grained feedback.

back to address this challenge by enabling users to express
their preferences with greater granularity, targeting specific
features or interactions within the generated output (Wu
et al. 2023b; Lee et al. 2023; Liang et al. 2023). This granu-
lar feedback mechanism promises more precise control over
model adaptation and behavior, which could lead to text-to-
image models that exhibit enhanced responsiveness to di-
verse user needs and preferences. For example, a user may
want more photorealistic owls for a presentation but less for
a fun t-shirt (Dutta et al. 2024).

This paper explores the complexities and trade-offs asso-
ciated with utilizing fine-grained feedback for text-to-image
model adaptation. We investigate its impact on model per-
formance and explore strategies for integrating this nuanced
information, taking into account the difficulty of elicitation.
Our experiments reveal a complex interplay between model
architecture, feedback type, and the alignment between hu-
man judgment and simulated AI preference judgments, ul-
timately influencing the effectiveness of fine-grained feed-
back. In particular, we critically examine the hypothesis
that reward models trained on fine-grained feedback ex-
hibit superior performance in capturing human preferences
within the text-to-image setting. Our empirical investiga-
tions, encompassing simulated and real human judgments
alongside controlled scenarios, reveal surprisingly that while
fine-grained feedback can provide an advantage under spe-
cific conditions, it does not consistently outperform coarse-
grained feedback in the construction of effective reward
models. In fact, coarse-grained feedback occasionally led
to superior performance, highlighting the complexities of

human preference modeling and the potential influence of
architectural choices. However, when we do have complete
knowledge of the attributes that may “matter” in preference
judgements, as we explore through a de novo controlled
experimental set-up, we do indeed illuminate the potential
value of fine-grained feedback.

This work underscores the need for further exploration of
alternative modeling paradigms capable of effectively har-
nessing the richness of fine-grained feedback while address-
ing the limitations of current approaches. Additionally, care-
ful consideration of feedback attributes and task character-
istics is crucial for maximizing the value and efficiency of
incorporating human feedback into text-to-image model de-
velopment.

Our key contributions include:

• Assessment framework: We propose a framework utiliz-
ing rejection sampling as a proxy for large-scale adap-
tation, enabling efficient evaluation of fine-grained feed-
back utility.

• Empirical case studies: Our experiments demonstrate
that the additional value of fine-grained feedback for
training text-to-image reward models is highly condi-
tional.

• Open challenges: We identify and discuss open chal-
lenges surrounding the construction and evaluation of
reward models for text-to-image systems based on fine-
grained feedback.



Related Work
The rise of generative AI systems and power of RLHF
– fueled by human feedback – has ignited further inter-
est in gleaning insights from human data at scale to guide
improved generation, e.g., to better align images to text
prompts (Yarom et al. 2023; Hu et al. 2023; Kirstain et al.
2023; Xu et al. 2023) or to personalize image-generation
models (von Rutte et al. 2023; Fan et al. 2023). Improved
generative models offer immense potential to transform hu-
man productivity and creativity – provided they adequately
meet the diverse needs and preferences of users. It is not yet
clear what kind of feedback is best to elicit to improve their
output – nor how best to incorporate such feedback when
elicited. Works have taken steps to explore human feedback
in text-to-image contexts (Liang et al. 2023; Lee et al. 2023)
as well as at evaluation-time (Lee et al. 2024). Yet, the sheer
computational scale of such generative models renders them
challenging to systematically explore design choices around
feedback elicitation and incorporation. Here, we take steps
to address this gap by offering further empirical glimpses
into the nuanced value of fine-grained feedback in genera-
tive AI applications.

Several prior works have investigated the interplay be-
tween richer forms of human feedback and model perfor-
mance. Notably, recent research in the text-to-text domain
has explored the potential of fine-grained feedback (Wu
et al. 2023b; Lee et al. 2023; Liang et al. 2023; Ouyang et al.
2022). In these studies, “fine-grained” refers to feedback that
goes beyond simple binary judgments or single-score rat-
ings, allowing users to target specific aspects of the output,
such as factual accuracy, logical coherence, or stylistic el-
ements. This granular feedback enables more precise con-
trol over model adaptation and behavior, leading to outputs
that better align with diverse user preferences. In addition to
granularity, richer feedback can also encompass representa-
tions of disagreement and uncertainty in human labels. For
instance, researchers have explored the value of eliciting and
learning with traces of human uncertainty in the form of soft
labels (Peterson et al. 2019; Uma et al. 2020; Collins, Bhatt,
and Weller 2022; Collins et al. 2023b; Sucholutsky et al.
2023).

These studies have primarily focused on training classi-
fiers for traditional machine learning tasks like image recog-
nition, where human feedback is typically collected before
training. However, practical applications often necessitate
the ability to provide feedback on already trained models,
potentially due to legislative requirements (e.g., Article 13
in the EU AI Act (European-Parliament 2024)) or evolving
user needs. Concept Bottleneck Models (CBMs), which map
inputs to higher-level attributes before regressing a final tar-
get, offer a potential solution by allowing humans to pro-
vide feedback on a model’s intermediate outputs (Koh et al.
2020), which we explore in the remainder of our work for
modeling fine-grained feedback.

Problem Setting
We first provide a primer on the task of learning a reward
model for adapting a generative model; we then introduce

our model.

Reward Modeling Our goal is to learn a reward func-
tion Rθ : X → S that takes in a set of features x ∈ X
and produces a scalar score s ∈ R indicating the quality
of x1. Many popular reward learning-based frameworks ex-
ist that adapt pre-trained language (Ouyang et al. 2022) or
diffusion-based models (Fan et al. 2024; Black et al. 2023;
Dvijotham et al. 2023) to generate outputs with high reward
scores.

How do we build a good Rθ? A popular approach is
to learn the parameters of the reward model (θ) from hu-
man feedback. That is, we curate a bank of examples D =
{(x1, s1), (x2, s2), ... (xN , sN )} where s are the result of
human annotations. We can then update θ on any standard
loss function L to improve our mapping from features to the
score. Ideally, this produces a reward modelRθ that matches
human preferences over “good” x.

Fine-Grained Feedback But what makes an x “good”?
Casper et al. raise several crucial open questions for learn-
ing reward models from human feedback, e.g., heterogene-
ity across humans and the challenge of going beyond sin-
gle aggregate preferences. This task becomes all the more
challenging when we consider generative models produc-
ing complex and highly structured outputs such as text-to-
image models. For example, an image might be visually
compelling and highly creative, but not necessarily aligned
to either the main intention or minor attributes of the input
prompt (or vice versa). Moreover, there may be multiple fac-
tors that together determine the quality or aesthetic value of
the image (e.g., it does not have artifacts, uses an appealing
color palette etc).

We consider the setting of eliciting fine-grained feed-
back where human annotators are asked to provide a set of
M scores si = (s1i , s

2
i , ..., s

M
i ) for each example xi with

i ∈ 1, . . . , N . The individual scores are scalar values repre-
senting the degree to which the prompt-image pair satisfies
some particular aspect of quality (e.g. photorealism). Our
goal then is to learn a “good” (see Section ) Rθ from such
feedback. We refer to reward models learned from more than
one feedback as “fine-grained reward models” compared to
those trained on a single aggregate score, s̃ (“coarse-reward
models”) and discuss different ways to concretely opera-
tionalize “good” in our experiments.

Costs While there seems to be intuitive value to collect-
ing finer-grained feedback over more attributes, the elici-
tation of such feedback necessarily incurs some additional
time (or other resource) cost, over the cost of collecting
coarse-grained feedback. We consider the setting where each
j = 1 . . .M dimension of feedback is associated with some
elicitation cost cj > 0. For our computational experiments,
we assume each form of feedback has equivalent procure-
ment costs. We discuss deviations from this assumption in
Section .

1The reward models we consider in this work produce point-
wise, rather than pairwise, quality scores for each input.



Reward Models from Fine-Grained Feedback
What kind of model structure empowers us to effectively
learn from such rich feedback? We consider a two-stage
structure which first predicts each fine-grained attributes and
then aggregates the scores, similar to (Wu et al. 2023b). This
structure parallels a Concept Bottleneck Model (Koh et al.
2020) (see above), wherein our concepts our fine-grained at-
tributes (is the image malformed? is the image blurry? is the
image aligned to the text for verbs?). Rather than learn a
mapping directly from Rθ : x → s̃, we learn two sets of
parameters: fϕ : x → s1, ...sM and gψ : s1, ...sM → s̃.
The functions then compose to produce a single aggregate
score for a given input gψ(fϕ(x)) = s̃ with the added ben-
efit that we can inspect the fine-grained attributes predicted
rendering our model more interpretable.

Our Model There are many functional forms that our two-
stage modeling pipeline can take on. Here, we let f be a
multi-headed multi-layer perception (MLP). Following pop-
ular practice in the CBM literature, g is a simple linear ag-
gregator (Koh et al. 2020; Espinosa Zarlenga et al. 2022;
Margeloiu et al. 2021; Collins et al. 2023a). We consider the
sequential CBM setting (Koh et al. 2020), learning ϕ then ψ
separately.

Embeddings Additionally, in the text-to-image setting,
we need some way of providing the multimodal stimulus
(text and image) as input to our model. Following standard
practice, we use learned embeddings of the image pixels
and text tokens respectively. We assume that the feature ex-
tractors which produce the embeddings are fixed (see Ap-
pendix2). This approach has a benefit in common real-world
scenarios where practitioners only have access to features in
black-box fashion.

Experiment Outline
It is natural to expect that more informative supervision
(finer-grained feedback) will be better for RLHF scenarios.
In particular, we hypothesize that fine-grained feedback will
be valuable when training reward models in regimes with
few examples, following the literature around informative-
ness of label supervision (Sucholutsky et al. 2023). We posit
based on previous results in text-to-text generation e.g. (Wu
et al. 2023b) that reward models trained from fine-grained
feedback will be able to better capture preference judgments
than a model trained on coarse preference judgments alone.

To address our hypothesis, we design a series of computa-
tional experiments with feedback of varying levels of gran-
ularity and dataset sizes. We consider two classes of fine-
grained feedback important for measuring the quality of a
text-to-image generation following (Lee et al. 2024):

1. Image quality: whether the image itself meets a desired
criteria (e.g., photorealistic, not malformed).

2. Text-image alignment: whether the image is aligned to
the text according to a particular semantic category (e.g.,
attributes from the prompt are captured in the image).

2The full Appendix can be found in the arXiv version of this
paper.

Recall in our reward model that we employ a two-stage
pipeline: first predicting fine-grained feedback, then predict-
ing aggregate targets. As such, like in CBMs, we need two
sets of labels (over fine-grained attributes and aggregate tar-
gets). In this work, the additional fine-grained feedback sig-
nals are inferred by querying the state-of-the-art PaLI model
(Chen et al. 2022) (see Section ) — we leave the expan-
sion of collecting and incorporating granular feedback from
human annotators for future work. In all experiments, the
coarse- and fine-grained models are trained on the same final
targets — real human preference judgments in Experiment 1
and a synthetic target permitting more controlled exploration
in Experiment 2.

We consider two experimental settings. In the first, we ex-
plore the impact of fine-grained feedback for capturing real
human preference judgments. In light of our negative result
on the utility of learning CBM-based reward models from
fine-grained feedback, we design a second, controlled do-
main to further disentangle the source of the poor perfor-
mance.

Experiment 1: Predicting Human Preference
Judgments from Fine-Grained Feedback

In this section, we consider the task of predicting real human
preference judgements. We first overview our experimental
set-up before presenting our results. We close with a discus-
sion of what may underlie our observations that fine-grained
feedback may not be preferable in this setting.

Experimental Details
Data We use the approximately 5k images from (Dutta
et al. 2024). Images were generated from DALL-E (Ramesh
et al. 2021) and Stable Diffusion (Rombach et al. 2022) for
over 1.3k text prompts from PartiPrompts (Yu et al. 2022).
Each image has been annotated by nine humans, where im-
ages are scored rated on a scale of 1-4 for how “satisfied” the
viewer is with the image for the intended prompt, with a par-
ticular motivational context in mind (i.e., participants were
asked to rate how good an image-prompt pair is for a par-
ticular motivational context: for use as a phone background,
graphic t-shirt, or presentation slide-deck). Here, we aver-
age all context-conditioned scores to form a single prefer-
ence (“goodness”) score per image-prompt pair. This score
forms our “coarse”-grained preference of interest. We con-
duct a 50/25/25 train/val/test split at the level of the prompts
(as there are four images per prompt). Additional details on
data processing are included in the Appendix.

Fine-Grained Attributes The generative output of text-
to-image models can be scored along both fidelity of the
image to the prompt (text-image alignment (Yarom et al.
2023)) and image quality. We consider fine-grained at-
tributes along each type: image quality and prompt align-
ment. For each image, we elicit granular quality attribute
scores by querying PaLI (Chen et al. 2022) as discussed
above. PaLI is a multimodal model which takes as input im-
age and text and produces a text response; we can there-
fore use the model to simulate crowdsourced responses to
text-image pairs by asking for a numerical score along some
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Figure 3: Comparing reward models trained on coarse feedback (i.e., direct human preference judgments; black) against CBM-
based models learned from fine-grained feedback. Reward models are differentiated by whether they were trained on granular
feedback only about image quality (blue), image-text alignment (red), or both (purple). Left: Each point represents a reward
model trained on N image-prompt examples (x axis); ROC-AUC of the binary reward against held-out human preference
judgments is presented on the y axis. Higher is better. Right: The same reward models, where the x axis (presented on a log
scale) depicts estimated annotation cost, if each attribute is assumed to be equally costly to procure.

dimension. In particular, we train our model on eight im-
age quality attributes (whether the image is distorted, pho-
torealistic, bright, captivating, chaotic, visually compelling,
disturbing, or funny). We select these attributes to span a
range of valence and relevance. Additional details on granu-
lar queries are included in the Appendix.

To gather granular feedback for text-image alignment, we
employ the V Q2 framework from Yarom et al.. V Q2 eval-
uates image-text alignment by generating question-answer
pairs from the input text. For example, the text “A black ap-
ple and a green backpack” could yield the question-answer
pair “What is the fruit in the picture? - Apple” or “What
color is the backpack? - Green”. These pairs are then as-
sessed against the image using a Visual Question Answer-
ing model, which produces a “Yes” probability indicating
the validity of each pair. The average of these “Yes” proba-
bilities across all question-answer pairs constitutes the final
V Q2 score, reflecting the overall image-text alignment. We
group V Q2 questions using a customized modular semantic
parser into four attribute classes, whether the image matches
the text in regards to: any actions/verbs mentioned in the
prompt, any attributes/adjectives, any objects/nouns, or any
relations mentioned in the prompt. See Appendix for further
details on our feedback extraction.

Models We compare a reward model trained directly on
coarse feedback (the aggregate human scores from Dutta
et al.) against a suite of CBMs trained on varying amounts

(d) and types (e.g., image-based or prompt-based) fine-
grained attributes. Modeling details are included in the Ap-
pendix. Again, each attribute of fine-grained feedback acts
like a “concept” predicted in the first stage of our two-stage
model (Figure 2.

Evaluation We evaluate models in two ways:
• Accuracy of the reward models, in terms of predicting the

aggregated human “goodness” score for held-out exam-
ples from (Dutta et al. 2024) (scored with ROC-AUC),
and

• Simulated adaptation of a downstream text-to-image
generative model through rejection sampling, wherein
we use our reward models to score generated examples,
and check whether people agree with the relative rank-
ings (i.e., that the stimulus rated higher by a fine-grained
model indeed is preferred to a human over a stimulus
rated highly by a coarse-grained model). We design and
conduct a series of human evaluations here along aggre-
gate and fine-grained dimensions.

Results
We compare a reward model trained directly on the coarse
human preferences judgments against our CBM-based fine-
grained models built from varying classes of fine-grained
feedback. We train the suite of models over varying num-
ber of training examples and test on held-out image-prompt
pairs.



Interestingly, in Figure 3, we find that training reward
models simply on coarse-grained feedback is not only more
cost-efficient for a given budget (i.e., if we assume equal
costs for collecting labels for each additional fine-grained
attribute), but yield better fits than the putatively more
“information-rich” fine-grained reward models. We discuss
the impact of deviations from the equal-cost assumption in
Section .

We do see that combining information about image qual-
ity with text-alignment boosts performance (see Figure 3)
over image quality information alone, but it is clear that the
extra information in such attributes is not inducing higher
match to held-out (in-distribution) preference judgments
versus simply using the coarse-grained feedback. This raises
the question that if such feedback has “more information”
why are we seeing a performance drop compared to the
coarse-grained model? We posit several hypotheses for why
this may be the case. There may be:

1. Challenges stemming from the human data, e.g. our tar-
gets here are averages of human judgments originally
produced for separate use cases (it may be better to model
the full distribution), and by the motivation of our work,
we may not want to try to match;

2. Misalignment between the synthetic feedback and real
human judgment, in the values that we produce from
PaLI and V Q2 on the one hand, and the attributes that
we collect from raters;

3. Model expressivity: CBMs may not be adequately ex-
pressive to capture the nuances in the fine-grained feed-
back;

4. Or, it could be that fine-grained feedback is fundamen-
tally not useful here and provides no added value to the
aggregate attributes.

Evaluation Proxy for Adapting a Generative Model with
Reward Models We take a step to address the first point
by running a fresh human evaluation. Recall, one of our
goals for learning reward models from fine-grained feedback
is to better tailor adaptation of downstream generative mod-
els and improve the quality of their output rather than just
matching aggregate human preference judgments – we made
a case in our motivation that aggregate preference judgments
can obfuscate important information. We simulate adapting
a downstream generative model, and getting a sense of pref-
erence along the fine-grained attributes (focusing on the im-
age quality attributes for simplicity). Due to computational
costs, it is not always sensible to test out the quality of a
gamut of reward models by adapting text-to-image models
(see Section ). Instead, we follow Lee et al. in running rejec-
tion sampling with our reward models as a proxy for adapt-
ing a generative model directly. That is, we draw samples
from a generative model and use our reward models to score
the outputs; we then run head-to-head preference judgments
over the generations favored by the respective reward mod-
els. Here, we consider two reward models: the model trained
only on coarse judgments (i.e., the aggregate human prefer-
ence judgments from the train set) and our model trained on

fine-grained simulated attribute annotations3. Details on the
sampled images and annotation procedures are included in
the Appendix.

We find in Table 1 (first row) that there is not a clear
preference for the images that the reward model trained on
coarse-grained feedback preferentially sample compared to
the model trained on fine-grained feedback (i.e., annota-
tors indicate that they prefer the text-image prompt rated
more highly by the coarse-grained model than the fine-
grained model for about 25% of the examples we survey, and
vice versa for fine- over coarse-). This finding suggests that
the difference between the coarse- and fine-grained feed-
back trained models are not as strong as our in-distribution
prediction-based evaluation (from Sec. ) make them appear
as we move out-of-distribution to a new task: scoring gen-
erated images instead of judging (in-distribution) reward
model accuracy. However, we observe high rates of uncer-
tainty in the human judgements of which image is better
along each attribute (annotators express that they are unsure
which image they prefer for approximately 50% of the sam-
ples).

Such high levels of annotator uncertainty are exacerbated
when we elicit judgments over individual dimensions (see
Table 1). We observe strong signals only along the distorted
and brightness dimensions. These findings suggest: 1) the
preference for the results of the coarse-grained model are
not consistent, and 2) eliciting preferences over fine-grained
attributes may not be particularly meaningful nor informa-
tive. We might observe more interesting preference judg-
ments along granular attributes with a different stimuli pool.
Nonetheless, our results urge caution on the blind elicitation
and incorporation of more granular feedback from annota-
tors – more is not always better (or at least not always in-
formative). Further, we observe that, contrary to our simpli-
fying assumptions, annotation times per dimension are not
uniform (see Table 2), underscoring the importance of judi-
ciously recognizing when to collect fine-grained attributes,
and which to collect.

Experiment 2: Controlled Granular Image
Quality Assessments

As mentioned, there could be a variety of reasons that we
observe a null result for the utility of fine-grained feedback
in Experiment 1. Crucially, we do not know what attributes
people are considering when they are making their prefer-
ence judgments. Perhaps if we elicited the correct attributes,
we would be able to learn better reward models? As such, we
are motivated to create a more controlled experimental setup
where we do know the attributes that are being considered in
the final preference judgment.

To address this gap, we design a second domain wherein
we have complete knowledge over the attributes that inform
the target preference. Unlike in Experiment 1, the target here
is completely synthetic – we build a decision tree over the
fine-grained attributes (obtained from simulated AI feed-

3We consider our most “fine-grained”-trained model with d =
12 attributes



Feedback Type Coarse Fine-Grained Unsure
Aggregate 25.6 24.9 49.5

Distorted 36.9 31.8 31.3
Bright 30.2 26.1 43.6
Captivating 18.4 19.1 62.5
Photorealistic 31.1 31.4 37.5
Chaotic 13.7 12.4 73.9
Visually compelling 20.6 15.8 63.6
Disturbing 8.2 8.6 83.2
Funny 0.5 0.9 98.6

Table 1: We compare pairwise general preferences (top row)
as well as preference along particular granular attributes
(rows below the line). Scores depict % of images where
coarse- vs. fine-grained were preferred (or people were un-
certain), where % depict the votes for each preferred image
over the total number of votes.

Feedback Type Time (s)
Aggregate 52.7

Distorted 56.1
Bright 18.4
Captivating 20.2
Photorealistic 19.4
Chaotic 24.1
Visually compelling 16.2
Disturbing 19.2
Funny 12.8

Table 2: Average annotator answer time (in seconds) for
each annotation task.

back) that exactly determines the quality of an attribute4.
This enables us direct control, but again, necessitates cau-
tious interpretation as it side-steps the question (which may
drive the null result in Experiment 1) of whether our AI-
based feedback is even aligned with the judgments humans
– or particular humans – make.

For simplicity, we focus on the case of only image-
dependent evaluation (i.e., just considering the image at-
tributes along and not those of the prompt). Since the ground
truth is exactly captured by a custom decision tree with the
simulated AI feedback attributes as leaves; adequately cap-
turing and modeling each dimension of granular feedback
(i.e., the leaves), should be sufficient to learn reward mod-
els that accurately predict the target quality score. We em-
phasize that we construct this experiment to explore the im-
pact of feedback granularity where we have direct access to
the target (and know that it is constructed from multiple at-
tributes); this set of experiments are not indicative of which
attributes matter for human aesthetic judgements.

4As in Experiment 1, we predict a single quality score per point,
not a preference rating.

Experimental Setup
Data and Evaluation We consider the same images from
Dutta et al. as in Experiment 1. For simplicity, however, we
consider only the images; our experiments in this Experi-
ment do not depend on the prompt.

Controlled Target We design a controlled and fully in-
tepretable target preference score formed from simulated at-
tributes that enables us to more precisely understand the im-
pact of granular feedback than trying to capture potentially
nebulous real human preference scores. Specifically, we de-
sign a decision tree which takes in an image and at each node
assesses a particular attribute; specifically, it checks whether
it is photorealistic, then visually compelling, then chaotic.
The output is a binary score which we take as representing
whether an image is “good” or “bad”.

We evaluate reward models with ROC-AUC on held-out
decision tree scored examples. We reiterate that the deci-
sion tree is intended to serve as a controlled target where we
know which attributes underlie the final preference score;
we do not claim this decision tree models human preference
judgments nor is generalizable in all contexts.

Figure 4: Comparing reward models trained on varying lev-
els of granularity. As in Figure 3, each point represents a
reward model trained on N images. Models are scored ac-
cording to the contrived decision tree on held-out examples.
We compare a model trained directly on the single scalar
decision tree scores (black) against a suite CBM-based fine-
grained models trained on: 1) the same three attributes which
make up the decision tree (red), 2) the same three attributes
as the decision tree along with the remainder of the full set
of image attributes under consideration (blue), and 3) only
attributes not included in the decision tree (orange).

Models We employ the same model architectures and
training procedures as in our Experiment 1 experiments,
with the exception that we only feed the image embeddings
as input (further explorations of joint text-image modeling
are important next steps). We train a coarse-grained model



on the final output of the controlled decision tree, and com-
pare this model against fine-grained CBMs which have ac-
cess to varying numbers of image attributes (which may or
may not include the attributes used to form the decision
tree).

Results
We start by considering the setting where our fine-grained
CBM has access to the same attributes as in the target deci-
sion tree; i.e., we compare a model trained directly on only
the coarse score from the decision tree versus a CBM trained
over the same attributes that make up the decision tree.
Here, by design of our controlled decision tree, we ought
to achieve the same or better performance to the coarse-
grained setting; indeed, we do find in Figure 4 that we can
achieve better performance by training on fine-grained feed-
back. Of note, adding more attributes beyond those in the
“true” decision tree have little positive impact on reward
quality, and may not be economical to elicit. While these
data indicate that fine-grained feedback can be used to learn
better reward models than those from aggregate preference
judgements alone, one may ask why there is any gap be-
tween our learned reward models and the maximal achiev-
able fit (which should be 100% as the target is formed from
in-distribution feedback). The gap suggests that our reward
model is not as strong as it could be, possibly stemming from
our embeddings (as discussed in the Open Questions). How-
ever, qualitative inspection of the reward models in the Ap-
pendix reveals that the fine-grained attribute models do re-
flect meaningful differences along the attributes, for exam-
ple, distinguishing between images that are photorealistic or
not.

Barring model architecture selection – we make a crucial
assumption – that we know the true attributes. What if we
do not have access to the attributes that form the decision
tree? To begin to explore this question, we consider the set-
ting where there is an attribute mismatch (yellow points in
Fig 4). Here, we see a dramatic drop in performance. These
data point to the importance of incorporating the right at-
tributes if building a fine-grained reward model; here, we
simulated and precisely controlled what attributes matter (by
design of our decision tree). In practice, we may not know
which attributes are “right” to elicit: the precise situation we
found ourselves in for Experiment 1, potentially underly-
ing our null result. One could envision selecting attributes
that are most correlated with the target (see Appendix), but
this requires having access to target annotations. Determin-
ing what attributes to elicit is a key open challenge, as we
discuss next.

Open Challenges
Nicely, we indeed find in Experiment 2 that fine-grained
feedback can be useful to model if we know the attributes.
But crucially, how do we actually find these attributes? Our
work urges further study of what attributes humans consider
when making preference judgments and what is economical
to elicit. Our work exposes key challenges that arise in the
study of the impact of choice of feedback on reward models
for adapting generative models.

Which Attributes to Elicit?
Our work points to a key challenge for practitioners in-
terested in collecting fine-grained feedback: what attributes
should you elicit? In Experiment 2, we demonstrate that re-
ward model performance may suffer if the elicited attributes
do not match those that form the target preferences. How
can we know what attributes we should elicit? Such a ques-
tion grows more challenging when we consider individual
differences. Different attributes may matter to different peo-
ple and depend on context (Gordon et al. 2022; Kirk et al.
2024b; Dutta et al. 2024). We do not want reward models to
collapse to a monoculture (Kleinberg and Raghavan 2021;
Bommasani et al. 2022), but also ought to be mindful of the
risks of personalization (Kirk et al. 2024a).

Additionally, it is not enough just to have the “right” at-
tributes. In practice, elicitation needs to balance informativ-
ity and cost. We already see that attributes may take dif-
ferent amounts of time to annotate in Experiment 1 (see
Table 2) and in Experiment 2, we demonstrate that, in
simulation, adding attributes is not always valuable. Inter-
disciplinary works that straddle AI, cognitive science, and
human-computer interaction are already exploring the im-
pact of requiring humans to provide feedback on many at-
tributes, noting that such a practice can overwhelm cog-
nitive load and risk bringing more error into downstream
modeling (Sucholutsky et al. 2023; Ramaswamy et al. 2022;
Barker et al. 2023). Indeed, we do not want to waste annota-
tions on attributes where users are highly unsure (though fu-
ture work can explore the benefits from learning with uncer-
tainty at feedback time (Collins et al. 2023a)). And further,
we already see in our human studies that annotators spend
substantially different time annotating some attributes over
others. Nicely, the CBM model class naturally supports the
implementation and study of cost-aware acquisition strate-
gies for human feedback (Chauhan et al. 2022; Sheth et al.
2022; Shin et al. 2023; Espinosa Zarlenga et al. 2024). We
see promise in the hybridization of elicitation development
for such models and the determination of which attributes to
elicit.

Reward Model Structure
Yet, perhaps CBMs are not the best model structure for fine-
grained feedback. Indeed, recent work has raised questions
about the ability of CBM-based systems to effectively han-
dle rich, soft-labeled feedback if not explicitly trained to do
so Collins et al.. This highlights the importance of consid-
ering the interplay between feedback type and model ar-
chitecture when designing systems for human-in-the-loop
adaptation. We reiterate that our work is a preliminary ex-
ploration of ways to learn reward models from fine-grained
feedback. It is likely that alternate modeling choices induce
different cost-benefit analyses on the value of learning from
fine-grained feedback; we look forward to future works that
explore such possibilities. For instance, several other ap-
proaches have been proposed e.g. (Rame et al. 2024; Liang
et al. 2023). We see the design of model architectures which
incorporate information efficiently from granular feedback,
and can flexibly grow to handle new dimensions (e.g, if we



learn that a new attribute actually matters more to annotators
that we had not previously modeled), as ripe for future work.
Moreover, the image and text embeddings we considered
in our work were always fixed. It is possible that different
choices of embedding, or even jointly learning embeddings,
may improve performance and perhaps salvage the utility of
a CBM-based architecture.

Accessible, Efficient Evaluation
However, rapidly evaluating such modeling choices in the
context of assessing reward models is not easy. The mas-
sive computational overhead of actually training and adapt-
ing large-scale generative models poses a crucial practical
challenge for researchers attempting to study what kind of
feedback yields powerful reward models. In our work, we
attempted to deal with these challenges in two ways: 1)
computational experiments wherein we have direct access
to the target, and 2) simulating the impact of adapting a gen-
erative model downstream through our rejection sampling
paradigm. While we hope our experimental approach illu-
minates one potential workflow that other researchers can
take, more work is needed to characterize how much of a
gap there is between such proxy settings and at-scale gener-
ative model adaptation.

Human vs. Model Feedback
Computational overhead is not the only challenge: we are
also limited by the elicitation of feedback itself. Eliciting
information from humans can be expensive. Here, our gran-
ular feedback was derived from an AI system, not humans.
A natural question is how well our simulated feedback here
actually correlates to human judgments. It is possible that
our null results in Experiment 1 stem from a mismatch be-
tween human and model judgments over the granular at-
tributes, either or both along the image quality and text-
image alignment dimensions. While there is a push to em-
ploy AI-generated feedback rather than humans for scalable
generative evaluation (Wu et al. 2023a; Gilardi, Alizadeh,
and Kubli 2023), it is essential to understand where such
feedback may diverges from human expectations (Collins
et al. 2024).

Conclusion
In this work, we uncover at least one setting where fine-
grained feedback may not help immediately, under partic-
ular caveats (model choice, embedding efficacy, fidelity of
fine-grained feedback, choice of attributes, minimal fine-
tuning). Our work urges practitioners to consider carefully,
particularly under a fixed annotation budget, what kind of
feedback is useful and efficient to collect. It may not al-
ways make sense to collect fine-grained feedback – and even
if it does, some attributes may be more valuable than oth-
ers. We need more interdisciplinary studies to identify what
attributes people are considering and how well they align
with model-derived feedback, and which attributes are worth
encouraging people to consider to inform preference judg-
ments for adapting text-to-image models. We hope our work

inspires further study of efficient and robust ways of inter-
leaving human and machine computation to study and im-
prove generative models in a way that reflects the nuance re-
plete in the world in which such systems are being deployed.
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Appendix
Image and Text Embeddings
Image and text inputs are represented as dense embedding
vectors. We use CLIP to extract embeddings for text cap-
tions (Radford et al. 2021). Through preliminary experi-
mentation, we found the frozen CLIP embeddings has been
shown to poorly capture aesthetic properties of images; as
such, we opted to extract the output of the first layer of the
LAOIN Aeshetics model (Schuhmann et al. 2022) as our
image embeddings. Embeddings are concatenated across
modalities for Experiment 1; only the image embeddings are
fed as used as input for training and inference in Experiment
2. Image and text embeddings are frozen for all models. Fu-
ture work could explore the impact of jointly fine-tuning the
embeddings and predicting granular feedback.

Reward Models
As introduced in Section , we run a two-phased training pro-
cedure for fine-grained reward models. We first train a map-
ping from the input embeddings (described above) to indi-
vidual attributes; this takes the form of a multi-headed MLP.
We then learn a simple linear aggregator over the outputs
of the multi-headed MLP. All stages leverage binary clas-
sifiers for a form of feedback (specifically, multi-class bi-
nary classifiers when we have multiple attributes); the input
to the Stage 2 linear aggregator for all settings is the sig-
moided logit from Stage 1. The coarse-grained baseline only
involves stage one (we directly map from the input embed-
dings to the coarse score); i.e., the coarse-grained model is
not a CBM.

We emphasize that alternate ways of training on coarse-
and fine-grained feedback are feasible; for instance, here, we
only consider point-wise scores, rather than pairwise-based
training.

We use the same model architecture for Stage 1 of all re-
ward models. Models take the form of an MLP with two
256-dimension hidden layers and are trained for 100 epochs,
with a learning rate of 1e-4. We use a batch size of 128.
MLP training is implemented in jax. Linear aggregators are
trained with class-balancing using the Logistic Regression
scikit-learn model; all other sckit-learn defaults were used.

Additional Details on Forms of Fine-Grained
Feedback
Image Quality We query PaLI, a large-scale language-
and-text model(Chen et al. 2023), as to whether a given im-
age meets a particular attribute. Specifically, we ask yes/no
questions of the form: “is the image [attribute]” where at-
tribute is ∈ {blurry, distorted, visually compelling, captivat-
ing, funny, photorealistic, bright, disturbing, chaotic}. We
select these subset of attributes to span a range of axes along
which one may consider eliciting feedback: positive / nega-
tive framing; relevant / irrelevant. We normalize the resulting
scores as a softmax over the “yes” and “no” returned scores.

Prompt Alignment We build on the V Q2 method devel-
oped in (Yarom et al. 2023) to measure the alignment be-
tween a prompt and the image. As discussed, V Q2 takes as
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Figure 5: Estimated similarity between PaLI scores for dif-
ferent attributes. We depict the proportion of images in the
train set for which PaLI marks an image as having the same
attribute (e.g., the cell blurry and malformed highlights that
PaLI marks an image as blurry and malformed, or not blurry
and not malformed for 71% of the examples). Darker red
means higher level of similarity in scores; yellow represents
lower similarity.

input an image and a prompt (e.g., “green dog to the left of
the river”) and generates a series of binary questions that the
image ought to address if fit for the prompt (e.g., “is there
a dog?”, “is the dog green?”, “is the dog running along the
left of the river?”). Each question is then assessed against the
image, wherein the probability that the question can be an-
swered as “Yes” is computed. The mean of the “Yes” prob-
abilities forms the final V Q2 score.

Here, we construct four scores to reflect different ways
in which an image may be aligned to a prompt. An image
may be aligned in its: 1) representations of objects / nouns
(e.g., “is there a dog?”), 2) attributes / adjectives (“is the
dog green?”), 3) actions / verbs (“is the dog running?”), and
4) relations (“is the dog to the left of the river?”). We cate-
gorize each of the questions generated by V Q2 into one of
these categories using a custom semantic parser built from
spaCy (Honnibal et al. 2020) with hand-crafted rules to
catch exceptions. Two authors from our author team manu-
ally inspected hundreds of the categorizations to affirm their
quality – while the parsing was generally sensible – we note
that it is not perfect and likely could be improved in fu-
ture work. We then average the V Q2 scores for all questions
grouped in a category, which are then thresholded into a bi-
nary aligned/not aligned which we use as feedback. Image-
prompt pairs for which V Q2 does not generate a question for
a particular class are binarized into the positive (i.e., aligned)
class as we care more about cases which are mis-aligned
along an attribute. We encourage future work to improve
both the question generation, classification, and answer cat-
egorization.

Additional Details on Data Processing
We form preference judgements by aggregating over the
contextually-annotated images from (Dutta et al. 2024). We
apply simple averaging, where each annotation is weighted



equally – alternate weighting schemes could be worth ex-
ploring in the future, as well as a breakdown by the context.
We split the data along the prompts, as there are four differ-
ent images per prompt, each annotated with human scores.

The models we consider in this work involve binary clas-
sification; as such, we binarize all scores – for the aggregate
and fine-grained preference judgments. Thresholds are se-
lected manually via a mix of attempting to class-balancing
and manual inspection. Future work can explore more ex-
pansive threshold selection.

Additional Details on Rejection Sampling

Stimuli Generation

We sample images from a generative text-to-image model
similar to Rombach et al., trained on web-scale image data,
using the prompts from the test set of Dutta et al.. To
that end, our stimuli are slightly out-of-distribution (in-
distribution prompts, out-of-distribution generated images).

Reward Model Scoring and Selection

We run two reward models (one coarse-, one fine-) over all
generated prompt-image pairs. We apply our same embed-
ding extraction pipeline and concatenate the text and im-
age embeddings. We extract an aggregate reward score from
each reward model. We select a subset of 194 text-image
pairs where the reward models substantially differ in their
preference judgements.

Human Study: SxS Evals

We conducted a side-by-side evaluation of 194 pairs of im-
ages selected through the reward model scoring, where one
image in the pair is scored highly by the fine-grained model
and the other, scored highly by the coarse-grained model.
The participants were asked to select an image that they
preferred (general preference experiment) or asked to select
and image that was “more X”, where X is one of the fea-
tures used for the fine-grained model (e.g., bright, funny).
Judgments for each feature were collected in separate tasks,
leading to a total of nine tasks (eight fine-grained features
and one general preference judgment task). The participants
had the option to answer “unsure”. We recruited three par-
ticipants per image pair through an internal crowdsourcing
platform. All of the questions and the sides for each question
(left/right) were randomly shuffled.

Visualizing the Learned Aggregators

One of the advantages of the CBM structure of our reward
model is that humans can inspect, and therefore audit, the
attributes that are learned and most contribute to the final
reward preference by inspecting the linear aggregator. We
depict the linear aggregator weights for a sampling of the
models in Experiment 1 (Figure 6) and Experiment 2 (when
the decision tree attributes were included in Figure 7 and
when missing 8).

Samples Scored by Fine-Grained Models
We include some images from our data pool which were
scored as good or bad along a sampling of attributes in Fig-
ure 9.
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Figure 6: Attribute weights learned for the prompt-aware setting; most weight is placed on attributes scoring prompt-image
alignment.
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Figure 7: Attribute weights learned for the decision tree setting. The aggregator appropriately learns the importance and direc-
tion of the attributes which make up the leaves of the tree.
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Figure 8: Attribute weights learned for the decision tree setting. The aggregator learns to focus on attributes semantically related
to those which form the decision tree (e.g., captivating versus visual compelling).
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Figure 9: Images scored by the trained fine-grained reward model. Images in the top row are those which are rated high on
an attribute (noted on the y axis), and in the bottom row, rated low by the reward model in terms of that attribute. Note,
“compelling” here is “visually compelling”.


