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Abstract

The price of anarchy(PoA) is a standard measure to quantify the inefficiency of equilibria in

non-atomic congestion games. Most publications have focused on worst-case bounds for the PoA,

only few have analyzed the sensitivity of the PoA against changes of the demands or cost functions,

although that is crucial for empirical computation of the PoA. We analyze the sensitivity of the PoA

w.r.t. simultaneous changes of demands and cost functions. The key to this analysis is a metric for

the distance between two games that defines a topological metric space consisting of all games with

the same combinatorial structure. The PoA is then a locally pointwise Hölder continuous function

of the demands and cost functions, and we analyze the Hölder exponent for different classes of

cost functions. We also apply our approach to the convergence analysis of the PoA when the total

demand tends to zero or infinity. Our results further develop the recent seminal work by Englert

etal., Takalloo and Kwon, and Cominetti et al., who have considered the sensitivity of the PoA

w.r.t. changes of the demands under special conditions.
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1 Introduction

The Price of Anarchy (PoA) (Koutsoupias and Papadimitriou [1999] and Papadimitriou [2001]) is a

classic notion in algorithmic game theory and has been intensively studied in the last two decades,

see, e.g., the book by Nisan et al. [2007] for an overview. Much of this work has been devoted to

worst-case upper bounds of the PoA in congestion games for cost functions of different types, starting

with the pioneering paper of Roughgarden and Tardos [2002].

Much less attention has been paid to the evolution of the PoA as a “function” of the demands

and the cost functions, although this is quite important for traffic networks. In fact, the real demands

are usually hard to measure accurately since they may fluctuate within a certain range. Also the

actual latency on a street in a traffic network is almost impossible to obtain, and usually modeled

by an idealized flow-dependent cost function that is estimated empirically from real traffic data and

may also include tolls. Thus modeling errors will inevitably occur. This raises the natural question

if and how much such modeling errors will influence the PoA, in particular, if the PoA may differ

largely under small modeling or measuring errors of the demands and cost functions. This is crucial

for applications and asks for a sensitivity analysis of the PoA in a traffic network w.r.t. small changes

of the demands and the cost functions of the network.

First results in this direction have been obtained by Englert et al. [2010], Takalloo and Kwon

[2020], and Cominetti et al. [2020].

Englert et al. [2010] considered a traffic network with a single origin-destination (O/D) pair and

polynomial cost functions of degree at most β. They view the PoA in the network as a function of

the demand of that O/D pair when the cost functions stay unchanged. They showed that the increase

of this PoA function is bounded by a factor of (1 + ǫ)β from above when the demand increases by a

factor of 1 + ǫ.

Takalloo and Kwon [2020] have generalized this result to traffic networks with multiple O/D pairs

and polynomial cost functions of degree at most β. They obtained the same upper bound for the

increase of the PoA when the demands of all O/D pairs increase synchronously by the same factor

1 + ǫ and the cost functions stay unchanged. Moreover, they showed that the increase of the PoA is

bounded from below by a factor 1
(1+ǫ)β

under the same conditions.

Similar to Englert et al. [2010], Cominetti et al. [2020] considered also a traffic network with a

single O/D pair, and viewed the PoA as a function of the demand of that O/D pair when the cost

functions are not varying. For cost functions with strictly positive derivatives, they showed that the

resulting PoA function is differentiable at each demand level of the O/D pair where all the optimal

paths carry a strictly positive flow. For affine linear cost functions, they showed further that the

equilibrium cost is piece-wise linear and differentiable except at so-called E-breakpoints, whose number

is finite, though possibly exponentially large in the size of the network. They then showed that, in
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any interval between two consecutive E-breakpoints, the PoA function is differentiable, and either

monotone or unimodal with a unique minimum on the interior of that interval. So the maximum of

the PoA function is attained at an E-breakpoint. They also presented several examples showing how

these properties fail for general cost functions.

We will come back to their results in more detail in Section 4.

These results undoubtedly indicate that the change of the PoA in a traffic network is within an

acceptable and predictable range w.r.t. small changes of the demands when the cost functions are fixed

and have certain good properties, and the changes of the demands fulfill certain regularity conditions.

They are thus seminal first results for a sensitivity analysis of the PoA in traffic networks, but are still

restricted to special cases. In particular, a sensitivity analysis of the PoA w.r.t. simultaneous changes

of demands and cost functions is still missing.

1.1 Our contribution

This paper continues the studies of Englert et al. [2010], Takalloo and Kwon [2020] and Cominetti

et al. [2020]. We consider a general traffic network that have multiple O/D pairs and general cost

functions that may include tolls. We view the PoA as a real-valued map of the demands and the

cost functions of that network, and then analyze the sensitivity of the resulting map when both the

demands and the cost functions may change.

To that purpose, we need first a well defined measure for simultaneous changes of the demands

and the cost functions in a traffic network with multiple O/D pairs.

We thus fix in our analysis an arbitrary directed network G = (V,A) and an arbitrary finite set K of

O/D pairs in that network, and consider only the cost functions τa(·) of arcs a ∈ A and the demands dk

of O/D pairs k ∈ K as “variables”. Each pair Γ = (τ, d) consisting of a cost function vector τ = (τa)a∈A

and a demand vector d = (dk)k∈K then represents a “state” of the network and corresponds to an

instance of the traffic game (Roughgarden and Tardos [2002]) defined on the network. We then view

the collection of all these states as a game space, and the PoA in the network as a real-valued map

ρ(·) from this space to the unbounded interval [1,∞). Then the value ρ(Γ) at a point Γ = (τ, d) of

the game space is the resulting PoA when the network is at state Γ, i.e., the resulting PoA when the

network has the cost function vector τ and the demand vector d.

By adapting the L∞-norms of functions and vectors, we define a binary operator Dist(·, ·), see
(3.3), on the game space by putting

Dist(Γ,Γ′)=max

{

||d−d′||∞, max
a∈A,x∈[0,min{T (d),T (d′)}]

|τa(x)−σa(x)|, ||τ(T (d))−σ(T (d′))||∞
}

for two arbitrary points Γ = (τ, d) and Γ′ = (σ, d′) of the game space, where T (d) =
∑

k∈K dk and

T (d′) =
∑

k∈K d′k are the total demands of the demand vectors d and d′ respectively, τ(T (d)) =
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(τa(T (d)))a∈A and σ(T (d′)) = (σa(T (d
′)))a∈A.

This binary operator Dist(·, ·) is actually a metric on the game space w.r.t. an equivalence relation

defined in (3.1), see Lemma 4. The game space then becomes ametric space, and a simultaneous change

of the cost functions and the demands is then quantified by the “distance” ||Γ − Γ′|| := Dist(Γ,Γ′)

between two points Γ and Γ′ of the game space.

With this metric, our sensitivity analysis of the PoA in the network then transforms to an analysis

of the pointwise Hölder continuity of the map ρ(·) on the game space, aiming at finding for each point

Γ = (τ, d) a Hölder exponent γΓ > 0 s.t. |ρ(Γ) − ρ(Γ′)| < κΓ · ||Γ− Γ′||γΓ when ||Γ− Γ′|| < ǫΓ for two

positive constants κΓ, ǫΓ > 0 depending only on Γ. Trivially, the larger the Hölder exponent γΓ at a

point Γ = (τ, d), the less sensitive is the PoA at the network state Γ w.r.t. a small change ||Γ− Γ′|| of
the state Γ.

As our first result, we show that both the equilibrium cost and the socially optimal cost are

continuous maps (w.r.t. the metric) on the whole game space. This implies directly that the map ρ(·)
is continuous on the whole game space, see Theorem 6. Hence, the PoA changes only slightly when

the changes of the cost functions and the demands are very small in terms of the metric.

We then show that ρ(·) is not uniformly Hölder continuous on the whole game space, i.e., there

are no constants γ,κ > 0 such that

|ρ(Γ)− ρ(Γ′)|≤κ · ||Γ− Γ′||γ ∀Γ,Γ′ ∈ G(G,K,S),

see Theorem 8a). Moreover, we show that no point Γ of the game space has the whole game space

as its Hölder neighborhood, see Theorem 8b). Here, a Hölder neighborhood of a game Γ refers to an

open subset UΓ of the game space with Γ ∈ UΓ, for which there are constants γΓ,κΓ > 0 depending

only on Γ s.t. |ρ(Γ)− ρ(Γ′)|≤κΓ · ||Γ− Γ′||γΓ for each Γ′ ∈ UΓ.

Hence, ρ(·) may only be pointwise and locally Hölder continuous on the game space. In particular,

Theorem 8a) implies that ρ(·) is not Lipschitz continuous on the whole game space.

Along with Theorem 8, our first Hölder continuity result shows that ρ(·) is pointwise Hölder

continuous with Hölder exponent 1
2 at each point Γ = (τ, d) where the cost functions τa(·) are Lipschitz

continuous on the interval [0, T (d)], see Theorem 9. Hence, the change of the PoA is bounded from

above by κΓ ·
√

||Γ− Γ′|| for a Hölder constant κΓ > 0 when the network undergoes only a small

change ||Γ− Γ′|| at a state Γ = (τ, d) with Lipschitz continuous cost functions τa(·) on [0, T (d)]. Since

the interval [0, T (d)] is compact, this result applies obviously to all continuously differentiable cost

functions. Because of Theorem 8b), however, it may not apply when the network undergoes a large

change of the cost functions and/or the demands in terms of the metric.

To obtain this result, we show first that |ρ(Γ) − ρ(Γ′)|≤κ1,Γ ·
√

||Γ− Γ′|| for a constant κ1,Γ > 0

when Γ = (τ, d) and Γ′ = (σ, d) have the same demand vector d, the change ||Γ − Γ′|| is small and
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the cost functions τa(·) of Γ are Lipschitz continuous on [0, T (d)], see Lemma 10. We then show that

|ρ(Γ)− ρ(Γ′)|≤κ2,Γ ·
√

||Γ− Γ′|| for a constant κ2,Γ > 0 when Γ = (τ, d) and Γ′ = (τ, d′) have the same

cost functions τa(·), the change ||Γ− Γ′|| is small and the cost functions τa(·) are Lipschitz continuous

on [0, T (d)], see Lemma 11.

Lemma 10 and Lemma 11 then imply Theorem 9. In particular, Lemma 11 generalizes the sen-

sitivity results of Englert et al. [2010] and Takalloo and Kwon [2020] by considering more general

cost functions and removing the requirement that the demands of different O/D pairs increase syn-

chronously by the same factor. However, this comes at the cost of a weaker Hölder exponent 1
2 than

that of Englert et al. [2010] and Takalloo and Kwon [2020], who obtain a Hölder exponent of 1.

The above Hölder continuity results build essentially upon Lemma 1c) in Section 2.3, which shows

that the total cost of an ǫ-approximate Wardrop equilibrium (Wardrop [1952]) deviates by at most

O(
√
ǫ) from that of a precise Wardrop equilibrium. This is already a tight upper bound on the cost

deviation for arbitrary Lipschitz continuous cost functions on [0, T (d)], see Example 2, and we are

thus presently unable to improve the Hölder exponent 1
2 in Theorem 9, Lemma 10 and Lemma 11, see

Remark 4.2. Nevertheless, a stronger Hölder exponent is still possible when the cost functions have

special properties similar to those in the work of Englert et al. [2010], Cominetti et al. [2020], and

Takalloo and Kwon [2020].

When the cost functions τa(·) of a point Γ = (τ, d) are constants or have strictly positive derivatives

on the interval [0, T (d)], we obtain the stronger result that ρ(·) is pointwise Hölder continuous with

Hölder exponent 1 at the point Γ, see Theorem 12. Hence, the resulting change of the PoA is bounded

from above by κΓ · ||Γ−Γ′|| for a constant κΓ > 0 when the network undergoes a small change ||Γ−Γ′||
at such a state Γ. Again by Theorem 8, this may not hold when the network undergoes a large change

of the cost functions and/or demands in terms of the metric.

Finally, we demonstrate that our Hölder continuity results also help to analyze the convergence

rate of the PoA in traffic networks, which is an emerging research topic initiated recently by Colini-

Baldeschi et al. [2017, 2020], see Section 1.2 or Section 5.1 for an overview of the related work on this

new topic.

For T (d) → 0, Colini-Baldeschi et al. [2017, 2020] have obtained the first convergence result

stating that the PoA converges to 1 at a rate of O(T (d)) when the cost functions are of the form

τa(x) =
∑

n∈N ξa,n · xn for each a ∈ A and each x ∈ [0,∞), and the demands of all O/D pairs follow a

specific decreasing pattern, i.e., all of them decrease to 0 at the same rate of Θ(T (d)), see Section 1.2

or Section 5.1. With Theorem 12a), we show a stronger result that the PoA converges to 1 at a rate

of O(T (d)) as T (d) → 0 regardless of the decreasing pattern of the demands when the cost functions

are strictly positive and Lipschitz continuous within a small neighborhood around the origin 0, see

Corollary 5.1.

When T (d) → ∞, it has been shown by Colini-Baldeschi et al. [2017, 2020] and Wu et al. [2021]
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that the PoA converges to 1 as T (d) → ∞ for arbitrary regularly varying cost functions. For the

special case of arbitrary polynomials as cost functions, Colini-Baldeschi et al. [2017, 2020] obtained

the first convergence rate of O( 1
T (d) ) for the PoA when the demands of all O/D pairs grow to ∞ at

the same rate of Θ(T (d)). For the more specific case of BPR cost functions (Bureau of Public Roads

[1964]) with degree β ≥ 0, Wu et al. [2021] showed a stronger convergence rate of O( 1
T (d)β

) for the

PoA when the total demand T (d) grows to ∞. See Section 5 for an overview of related results on the

convergence rates of the PoA. With Theorem 9, we show that the PoA converges to 1 at a rate of

O(
√

1/ ln(T (d) + 1)) as T (d) → ∞ for regularly varying (Bingham et al. [1987]) cost functions of the

form ζa · xβ · lnα(x + 1), β > 0, α ≥ 0, see Corollary 5.2. This is the first explicit convergence rate

of the PoA in traffic networks with regularly varying cost functions that are not polynomials for the

case T (d) → ∞.

Altogether, we have considerably enhanced the sensitivity results of Englert et al. [2010], Takalloo

and Kwon [2020] and Cominetti et al. [2020] by considering general traffic networks and simultaneous

changes of demands and cost functions. Our results establish the first sensitivity analysis of the PoA

for simultaneous changes of demands and cost functions in traffic networks with multiple O/D pairs.

These sensitivity results give also new insights into congestion pricing with tolls. Tolls change

the cost functions, and so—due to our sensitivity results—tolls need to be considerable in order to

reduce the PoA significantly. This has, e.g., been observed by Harks et al. [2015]. They consider tolls

on a limited number of streets and use steepest descent methods to reduce the PoA. Their empirical

calculations stabilize quickly with decreasing changes of the tolls, as justified in hindsight by our

results. Furthermore, our results help to analyze the convergence rates of the PoA when the total

demand T (d) tends to zero or infinity.

Although we use the terminology of traffic networks in this paper, our analysis and results do not

depend on this view and carry over naturally to arbitrary non-atomic congestion games.

1.2 Related work

Koutsoupias and Papadimitriou [1999] proposed to quantify the inefficiency of equilibria in arbitrary

congestion games from a worst-case perspective. This then resulted in the concept of the price of

anarchy (PoA) that is usually defined as the ratio of the worst case equilibrium cost over the socially

optimal cost, see Papadimitriou [2001].

1.2.1 Early development

A wave of research has been started with the pioneering paper of Roughgarden and Tardos [2002]

on the PoA in traffic networks with affine linear cost functions. Examples are Roughgarden [2001,

2003]; Roughgarden and Tardos [2004]; Roughgarden [2005, 2015]; Correa et al. [2004, 2005]. They

investigated the worst-case upper bound of the PoA for different types of cost functions τa(·), and
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analyzed the influence of the network topology on this bound. In particular, they showed that this

bound is 4
3 when all τa(·) are affine linear (Roughgarden and Tardos [2002]), and Θ( β

lnβ ) when all

τa(·) are polynomials with maximum degree β > 0 (Roughgarden and Tardos [2004] and Roughgarden

[2015]). Moreover, they proved that this bound is independent of the network topology, see, e.g.,

Roughgarden [2003]. They also developed a (λ, µ)-smooth method by which one can obtain a tight

and robust worst-case upper bound of the PoA for a large class of cost functions, see, e.g., Roughgarden

[2003], Roughgarden and Tardos [2004] and Roughgarden [2015]. This method was reproved by Correa

et al. [2005] from a geometric perspective. Moreover, Perakis [2007] considered worst-case upper

bounds for non-separable cost functions. See Roughgarden and Tardos [2007] for a comprehensive

overview of the early development of that research.

1.2.2 Convergence analysis of the PoA in traffic networks

Recent papers have empirically studied the PoA in traffic networks with BPR cost functions (Bu-

reau of Public Roads [1964]) and real traffic data. Youn et al. [2008] observed that the empirical

PoA in a traffic network depends crucially on the total demand. Starting from 1, it grows with some

oscillations, and ultimately becomes 1 again as the total demand increases. A similar observation was

made by O’Hare et al. [2016]. They even conjectured that the PoA converges to 1 in the power law

1+O
(
T (d)−2·β

)
when the total demand T (d) becomes large. Monnot et al. [2017] showed that traffic

choices of commuting students in Singapore are near-optimal and that the empirical PoA is much

smaller than known worst-case upper bounds. Similar observations have been reported by Jahn et al.

[2005].

These empirical observations have been recently confirmed by Colini-Baldeschi et al. [2016, 2017,

2020] and Wu et al. [2021]. Colini-Baldeschi et al. [2016, 2017, 2020] were the first to theoretically

analyze the convergence of the PoA in traffic networks with growing or decreasing total demand.

As a first step, Colini-Baldeschi et al. [2016] showed the convergence of the PoA to 1 as the total

demand T (d) → ∞ for traffic networks with a single O/D pair and regularly varying cost functions.

This convergence result was then substantially extended by Colini-Baldeschi et al. [2017] to traffic

networks with multiple O/D pairs for both the case T (d) → 0 and the case T (d) → ∞, when the

ratio of the demand of each O/D pair over the total demand T (d) remains positive as T (d) → 0 or ∞.

Finally, Colini-Baldeschi et al. [2020] extended these results to the cases where the demands and the

network together fulfill certain tightness and salience conditions that allow the ratios of demands to

vary in a certain pattern as T (d) → 0 or ∞. Moreover, they illustrated by an example that the PoA

need not converge to 1 as T (d) → ∞ when the cost functions are not regularly varying. In particular,

they obtained the first convergence rates of the PoA in traffic network with polynomial cost functions

when the ratio of the demand of each O/D pair over the total demand T (d) stays positive as T (d) → 0

or ∞. We will come back to these rates in Section 5.
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Wu et al. [2021] extended the work of Colini-Baldeschi et al. [2016, 2017, 2020] for growing total

demand by a new framework. They showed for traffic networks with arbitrary regularly varying

functions that the PoA converges to 1 as the total demand tends to ∞ regardless of the growth

pattern of the demands. In particular, they proved a convergence rate of O(T (d)−β) for BPR cost

functions of degree β and illustrated by examples that the conjecture proposed by O’Hare et al. [2016]

need not hold.

1.2.3 Sensitivity analysis of the PoA in traffic networks

First results on the sensitivity of the PoA in traffic networks have been obtained recently by Englert

et al. [2010], Takalloo and Kwon [2020], and Cominetti et al. [2020].

Englert et al. [2010] considered traffic networks with a single origin-destination (O/D) pair and

polynomial cost functions of degree at most β. They viewed the PoA as a function of the demand of

that O/D pair when the polynomial cost functions do not change. They showed that the increase of

this PoA function is bounded by a factor of (1+ǫ)β from above when the demand increases by a factor

of 1 + ǫ.

Takalloo and Kwon [2020] generalized this result to traffic networks with multiple O/D pairs and

polynomial cost functions of degree at most β. They proved the same upper bound on the increase of

the PoA when the demands of all O/D pairs increase synchronously by the same factor 1 + ǫ and the

polynomial cost functions do not change. They also showed that the increase of the PoA is bounded

by a factor 1
(1+ǫ)β

from below under the same conditions.

Similar to Englert et al. [2010], Cominetti et al. [2020] considered also traffic networks with a single

O/D pair, and viewed the PoA as a function of the demand of that O/D pair for fixed cost functions.

For cost functions with strictly positive derivatives, they showed that the PoA function is differentiable

at each demand level where all the optimal paths carry a strictly positive flow. For affine cost functions,

they showed further that the equilibrium cost is piece-wise linear and differentiable except at so-called

E-breakpoints whose number is finite though possibly exponentially large in the size of the network. In

the interval between any two consecutive E-breakpoints, the PoA function is differentiable, and either

monotone or unimodal with a unique minimum on the interior of that interval. So the maximum of

the PoA function is attained at an E-breakpoint. They also presented several examples showing how

these properties fail for general cost functions.

1.2.4 Sensitivity analysis of equilibria in traffic networks

Related results on the sensitivity of Wardrop equilibria have been obtained by Hall [1978], Patriksson

[2004], Josefsson and Patriksson [2007], Lu [2008], Klimm and Warode [2021] and others. Hall [1978]

proved that the Wardrop equilibrium path cost of an O/D pair is continuous, and even montonically

non-decreasing with the growth of its demand when both the demands of other O/D pairs and the
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cost functions are fixed. Consequently, the total cost of Wardrop equilibria is a continuous function

of the demands. Theorem 6 generalizes this continuity to the whole topological game space.

Patriksson [2004], Josefsson and Patriksson [2007] and Lu [2008] considered the sensitivity of

Wardrop equilibria w.r.t. changes of parameters of the demands and the cost functions when both the

demands and the cost functions are parametric and contain parameters defined on finite dimensional

Euclidean spaces. In this case, the non-atomic congestion game is characterized completely by a

parameter vector µ ∈ Rn for a fixed integer n > 0, and the Wardrop equilibrium arc flows and cost

are then functions of the parameter vector µ ∈ Rn that map µ to “points” on the Euclidean space

RA. When the cost functions are differentiable, Patriksson [2004] characterized the existence of a

directional derivative of the Wardrop equilibrium solution (arc flow and arc cost) in an arbitrary

direction of µ. Josefsson and Patriksson [2007] further improved Patriksson [2004], and showed that

the Wardrop equilibrium arc cost is always directionally differentiable w.r.t. µ, while the Wardrop

equilibrium arc flow may not. Moreover, Lu [2008] derived methods to calculate the semiderivatives

of the Wardrop equilibrium arc flow w.r.t. µ under general conditions, and the derivatives of the

Wardrop equilibrium arc flow w.r.t. µ under more restrictive conditions. Here, the semiderivative of a

function h : Rn → RA at a point µ0 ∈ Rn refers to a continuous and positively homogeneous function

δµ0 : Rn → Rm s.t. h(µ) = h(µ0) + δµ0(µ − µ0) + o(‖µ − µ0‖) for each µ ∈ Rn with sufficiently small

‖µ − µ0‖. The vector δµ0(µ− µ0) is then the directional derivative of h at µ0 w.r.t. direction µ − µ0.

In particular, the derivative of h at µ0 exists and equals δµ0(·) when the semiderivative δµ0(·) at µ0 is

a linear function.

The recent seminal work by Klimm and Warode [2021], see also the conference version Klimm

and Warode [2019], developed a Katzenelson’s homotopy method to compute all Wardrop equilibria

for a non-atomic congestion game with piece-wise linear cost when the demand vector has the form

d = λ · d(0) for a fixed direction d(0) ∈ (0,∞)K and a variable parameter λ ∈ (0.∞). They viewed

the Wardrop equilibrium arc flow as a function of the parameter λ, and proved that this function is

actually piece-wise linear in λ, and, in particular, may have exponentially many breakpoints when the

cost functions are affine linear.

While these parametric sensitivity results of Wardrop equilibira are very interesting, they do

not apply to our sensitivity analysis of the PoA, since neither the demands nor the cost functions

are parametric. In fact, we consider the most general case that both the cost functions and the

demands may vary arbitrarily, and so cannot be parameterized by a finite dimensional Euclidean space.

Nevertheless, they are very inspiring, and pave a feasible way for future work on the differentiability

of the PoA.
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1.3 Outline of the paper

The paper is organized as follows. We develop our approach for general non-atomic congestion games

but with the terminology of traffic networks. These are introduced in Section 2. Section 3 defines

the metric and the topological space for games with the same combinatorial structure. Section 4 then

presents our techniques and sensitivity analysis results. Section 5 demonstrates that our results also

facilitate the analysis of the convergence rate of the PoA when the total demand tends to 0 or ∞. We

conclude with a short summary and discussion in Section 6.

2 Model and preliminaries

2.1 The model

We define an arbitrary non-atomic congestion game with the terminology of traffic games (see, e.g.,

Nisan et al. [2007]; Roughgarden and Tardos [2002]), since this is more intuitive. A non-atomic

congestion game Γ is then associated with a traffic network G = (V,A), and consists of a tuple

(K,S, τ, d) with components defined in G1–G5 below.

G1 K is a finite non-empty set of groups or populations of users. Every group k ∈ K corresponds to

a (transport) origin-destination (O/D) pair in the network G. We will write an O/D pair k ∈ K
as (ok, tk) ∈ V 2 when the origin ok and the destination tk are specified.

G2 S = ∪k∈KSk, where each Sk ⊆ 2A \ ∅ denotes a non-empty collection of (ok, tk)-paths that are

(pure) strategies available only to users of O/D pair k. Here, a (ok, tk)-path is a non-empty

subset of the arc set A that is loop-free and leads from the origin ok to the destination tk. The

sets Sk are then mutually disjoint, i.e., Sk ∩ Sk′ = ∅ for any two distinct O/D pairs k, k′ ∈ K.

G3 τ = (τa)a∈A is a cost function vector, in which each τa : [0,∞) → [0,∞) is a continuous and

non-decreasing latency or cost function of arc a ∈ A that depends on the flow value of arc a and

includes also all other extra cost for using arc a such as tolls.

G4 d = (dk)k∈K is a demand vector whose component dk ≥ 0 denotes the demand to be transported

by (users of) O/D pair k ∈ K using paths in Sk. So Γ has the total (transport) demand T (d) :=
∑

k∈K dk.

G5 Users are non-cooperative. Each user of an arbitrary O/D pair k ∈ K is infinitesimal, i.e., controls

an infinitesimal fraction of the demand dk, and must satisfy that by choosing a path s ∈ Sk.

The demand dk will then be arbitrarily split among paths in Sk for each O/D pair k ∈ K.

A (pure) strategy profile (or simply, profile) over all users is expressed as a multi-commodity (path)

flow f = (fs)s∈S = (fs)s∈Sk,k∈K of the network G with
∑

s′∈Sk
fs′ = dk for each O/D pair k ∈ K.
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Herein, the flow value fs ≥ 0 is just the demand transported along the path s ∈ S. The flow value

fa of an arc a ∈ A is then obtained as fa :=
∑

s∈S:a∈s fs. Hence, an arc a ∈ A has the cost τa(fa),

a path s ∈ S has the cost τs(f) :=
∑

a∈A:a∈s τa(fa), and all users have the total cost C(Γ, f) :=
∑

s∈S fs · τs(f) =
∑

a∈A fa · τa(fa).
We call the triple (G,K,S) the combinatorial structure of Γ, and denote Γ by simply the pair (τ, d)

when its combinatorial structure (G,K,S) is given.
Viewed as a general non-atomic congestion game, the arcs a ∈ A and paths s ∈ S correspond

to resources and (pure) strategies of users, see, e.g., Dafermos and Sparrow [1969], Rosenthal [1973]

and Correa et al. [2005]. Although we chose to use the terminology of traffic games, the analysis and

results are independent of this view and carry over to general non-atomic congestion games.

2.2 Equilibria, optimality and the price of anarchy

A flow f∗ = (f∗
s )s∈S of Γ is called a social optimum (SO) if it has the minimum total cost, i.e.,

C(Γ, f∗) ≤ C(Γ, f) for an arbitrary flow f of Γ.

A flow f̃ = (f̃s)s∈S of Γ is called a Wardrop equilibrium (WE) if it fulfills Wardrop’s first principle

(Wardrop [1952]), i.e.,

∀k ∈ K ∀s, s′ ∈ Sk

(

f̃s > 0 =⇒ τs(f̃) ≤ τs′(f̃)
)

. (2.1)

Clearly, every WE flow f̃ of Γ satisfies condition (2.2):

∀k ∈ K ∀s ∈ Sk : f̃s > 0 =⇒ τs(f̃) = Lk(τ, d) := min
s′∈Sk

τs′(f̃). (2.2)

We call the constant Lk(τ, d) in condition (2.2) the user cost of O/D pair k ∈ K. The total cost of

WE flows f̃ is then expressed equivalently by

C(Γ, f̃) =
∑

s∈S

f̃s · τs(f̃) =
∑

k∈K

Lk(τ, d) · dk. (2.3)

Trivially, a flow f̃ of Γ is a WE if and only if f̃ satisfies the variational inequality

∑

a∈A

τa(f̃a) · (ga − f̃a) =
∑

s∈S

τs(f̃) · (gs − f̃s) > 0 (2.4)

for an arbitrary flow g = (gs)s∈S of Γ, see, e.g., Dafermos [1980].

Since the cost functions τa(·) are non-negative, continuous and non-decreasing, and since the users

are infinitesimal, Γ has essentially unique WE flows, i.e., τa(f̃a) = τa(f̃
′
a) for all a ∈ A for two arbitrary

WE flows f̃ and f̃ ′ of Γ, see, e.g., Schmeidler [1973], Smith [1979] and Roughgarden and Tardos [2002].

In particular, WE flows of Γ coincide with (pure) Nash equilibria (NE) of Γ, see, e.g., Roughgarden
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and Tardos [2002] for a definition of NE flows in non-atomic congestion games.

When all cost functions τa(·) are differentiable, an SO flow f∗ is also a WE flow w.r.t. the marginal

cost functions ca(x) := x · τ ′a(x) + τa(x), and, vice versa, a WE flow is an SO flow w.r.t. the cost

functions
1

x

∫ x

0
τa(ξ)dξ,

see, e.g., Beckmann et al. [1956] or Roughgarden and Tardos [2002]. Hence, SO flows coincide with

WE flows when all cost functions τa(·) are monomials of the same degree β ≥ 0.

In general, SO flows and WE flows differ, see, e.g., Roughgarden and Tardos [2002]. The ratio

of the worst-case total cost of a WE flow over the total cost of an SO flow is known as the Price of

Anarchy (PoA, see Koutsoupias and Papadimitriou [1999] and Papadimitriou [2001]), and measures

the inefficiency of WE flows. Formally, the PoA of Γ is defined as

ρ(Γ) :=
C(Γ, f̃)

C(Γ, f∗)
=

∑

s∈S f̃s · τs(f̃)
∑

s∈S f∗
s · τs(f∗)

, (2.5)

where f̃ and f∗ are an arbitrary WE flow and an arbitrary SO flow of Γ, respectively. Definition (2.5)

is unambiguous since WE flows are essentially unique.

2.3 Potential functions and ǫ-approximate equilibria

A non-atomic congestion game Γ is actually a potential game, see, e.g., Sandholm [2001]. The (Rosen-

thal) potential function of Γ is given by

Φ(Γ, f) =
∑

a∈A

∫ fa

0
τa(x) dx, (2.6)

and reaches its global minimum at its WE flows f̃ , see, e.g., Roughgarden and Tardos [2002].

A flow f is an ǫ-approximate WE flow of Γ for a small constant ǫ > 0, if

∑

a∈A

τa(fa) · (fa − ga) =
∑

s∈S

τs(f) · (fs − gs) =
∑

k∈K

∑

s∈Sk

τs(f) · (fs − gs) ≤ ǫ (2.7)

for an arbitrary flow g = (gs)s∈S of Γ. The variational inequality (2.7) implies that

τs(f) ≤ τs′(f) +
ǫ

mins′′∈S: fs′′>0 fs′′
= τs′(f) + Θ(ǫ) (2.8)

for two arbitrary paths s, s′ ∈ Sk with fs > 0, for every O/D pair k ∈ K. Inequality (2.8) means that a

unilateral change of paths in an ǫ-approximate WE flow f reduces the cost by at most Θ(ǫ), and so f

indeed approximates a WE flow. In principle, we can alternatively define an ǫ-approximate WE flow

directly by inequality (2.8) (as was done, e.g., by Roughgarden and Tardos [2002]). But this does
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not considerably influence our analysis. We thus stick to the variational inequality definition (2.7),

since it, together with the variational inequality (2.4), facilitates the cost comparison between an

ǫ-approximate WE flow and a precise WE flow, see, e.g., Lemma 1b).

Lemma 1 shows some useful properties of ǫ-approximate WE flows. Here, a real-valued function h(·)
is Lipschitz continuous on an interval I ⊆ [0,∞) with Lipschitz constant M if |h(x)−h(y)| ≤ M ·|x−y|
for all x, y ∈ I.

Lemma 1. Consider an arbitrary non-atomic congestion game Γ with cost function vector τ and

demand vector d, and a constant ǫ > 0. Let f be an ǫ-approximate WE flow, and let f̃ be a WE flow.

Then f and f̃ fulfill the following conditions.

a) For each O/D pair k ∈ K, 0 ≤ ∑

s∈Sk
fs · τs(f) − dk ·mins′∈Sk

τs′(f) < ǫ. Moreover,
∑

k∈K dk ·
mins′∈Sk

τs′(f) ≤ C(Γ, f) ≤ ∑

k∈K dk ·mins′∈Sk
τs′(f) + ǫ.

b) 0 ≤ ∑

a∈A τa(f̃a) · (fa − f̃a) ≤ Φ(Γ, f) − Φ(Γ, f̃) ≤ ∑

a∈A τa(fa) · (fa − f̃a) < ǫ, and thus

0 ≤ ∑

a∈A |τa(fa)− τa(f̃a)| · |fa − f̃a| < ǫ.

c) If every τa(·) is Lipschitz continuous on [0, T (d)] with Lipschitz constant M > 0, then |τa(fa)−
τa(f̃a)| <

√
M · ǫ for all arcs a ∈ A, and |Lk(τ, d) −mins′∈Sk

τs′(f)| ≤ |A| ·
√
M · ǫ for all O/D

pairs k ∈ K. Furthermore, |C(Γ, f)− C(Γ, f̃)| ≤ |A| ·
√
M · ǫ · T (d) + ǫ.

Lemma 1a) follows trivially from inequality (2.7). Lemma 1b) follows directly from (2.4), (2.6)–

(2.7) and the fact that

τa(x) · (y − x) ≤
∫ y

x
τa(z) dz ≤ τa(y) · (y − x) ∀a ∈ A ∀x ∈ R≥0 ∀y ∈ R≥0. (2.9)

Herein, R≥0 := [0,∞). Inequality (2.9) holds because every cost function τa(·) is non-decreasing,

non-negative and continuous. Lemma 1c) is a direct consequence of Lemma 1a)–b). It yields an

approximation bound when all cost functions are Lipschitz continuous on the compact interval [0, T (d)],

which plays a pivotal role in the Hölder continuity analysis of the PoA in Section 4.2. Although this

approximation bound is rather trivial, it is tight, see Example 2 below.

Example 2. We illustrate the tightness of Lemma 1c) with Pigou’s game (Pigou [1920]). Pigou’s

game Γ has one unit of total demand and the simple traffic network shown in Figure 1. It thus has

the unique WE flow f̃ = (f̃u, f̃ℓ) = (1, 0), where u and ℓ denote the upper and lower arcs (paths),

respectively. Let ǫ > 0 be an arbitrary small constant, and put f = (fu, fℓ) = (1−√
ǫ,
√
ǫ). Then f is

an ǫ-approximate WE flow, since

τu(fu) · (fu − gu)+τℓ(fℓ) · (fℓ − gℓ) = (1−√
ǫ) · (1−√

ǫ− gu) +
√
ǫ− gℓ

= 1− 2 · √ǫ+ ǫ− gu +
√
ǫ · gu +

√
ǫ− gℓ = ǫ−√

ǫ · (1− gu) ≤ ǫ.
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for an arbitrary flow g = (gu, gℓ). Here, we use that gu + gℓ = 1 for each g. Furthermore, |τu(f̃u) −
τu(fu)| = |f̃u − fu| =

√
ǫ and |C(Γ, f)− C(Γ, f̃)| = √

ǫ− ǫ ∈ Θ(
√
ǫ), which shows that Lemma 1c) is

tight.

o t

x

1

Figure 1: The Pigou’s game

Because of Lemma 1c), we may thus want to find for a given flow f an ǫ > 0 such that f

is an ǫ′-approximate WE flow for all ǫ′ > ǫ, but not for all ǫ′ ∈ [0, ǫ). We call such a constant

ǫ ∈ (0,∞) the approximation threshold of flow f w.r.t. WE flows f̃ of a non-atomic congestion

game Γ = (τ, d), and denote it by ǫ(τ, d, f) to indicate its dependence on τ, d and f . Note that

ǫ(τ, d, f) =
∑

k∈K

∑

s∈Sk
[τs(f)− Lk(τ, d, f)] · fs for each flow f, where Lk(τ, d, f) := mins∈Sk

τs(f) is

the minimum path cost of O/D pair k ∈ K in flow f. This follows since

∑

k∈K

Lk(τ, d, f) · dk = min
g is a flow of Γ

∑

k∈K

∑

s∈Sk

τs(f) · gs.

Lemma 1c) with this approximation threshold ǫ(τ, d, f) may then yield a tight upper bound of

|C(Γ, f) − C(Γ, f̃)| for arbitrary Lipschitz continuous cost functions on [0, T (d)], see Example 2. We

will obtain a tight upper bound for this approximation threshold in Section 4.2.

3 The topological space of all non-atomic congestion games with the

same combinatorial structure

In the sequel, we fix an arbitrary combinatorial structure (G,K,S) and consider only non-atomic

congestion games with this combinatorial structure. A non-atomic congestion game Γ is then simply

specified by the pair (τ, d).

3.1 Assumptions

To avoid unnecessary discussions, we assume that the fixed combinatorial structure (G,K,S) satisfies
Condition 1 below.

Condition 1 Every arc a ∈ A belongs to some path s ∈ S = ∪k′∈KSk′ , and |Sk| ≥ 2 for each O/D

pair k ∈ K.

Condition 1 can be required w.l.o.g., as arcs a ∈ A with a /∈ s for each s ∈ S play no role in a

non-atomic congestion game Γ = (τ, d), and an O/D pair k ∈ K with a singleton path set Sk = {s}
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can be removed by using τa(x+ dk) instead of τa(x) for each arc a belonging to the unique path s in

Sk.

The PoA ρ(Γ) is obviously 0
0 when the total demand T (d) = 0. In fact, even if T (d) > 0, the

PoA may still be 0
0 when we allow τa(x) = 0 for some a ∈ A and some x ∈ (0,∞). To avoid these

undefined cases of the PoA, we assume that an arbitrary non-atomic congestion game Γ = (τ, d)

satisfies Condition 2 below.

Condition 2 T (d) > 0 and τa(x) > 0 for all a ∈ A and all x ∈ (0, T (d)].

Lemma 3 shows that ρ(Γ) ∈ [1,∞) is well defined for each non-atomic congestion game Γ = (τ, d)

fulfilling Condition 2. The proof of Lemma 3 is trivial, and thus omitted.

Lemma 3. Consider an arbitrary non-atomic congestion game Γ = (τ, d) fulfilling Condition 2. Let

f, f̃ and f∗ be an arbitrary flow, a WE flow and an SO flow of Γ, respectively. Then fa ∈ [0, T (d)] for

all arcs a ∈ A, and

0 <
T (d)

|S| ·min
a∈A

τa

(T (d)

|S|
)

≤ C(Γ, f∗) ≤ C(Γ, f̃) ≤ |A| · T (d) ·max
a∈A

τa
(
T (d)

)
.

So ρ(Γ) ∈ [1, |A|·|S|·maxa∈A τa(T (d))
mina∈A τa(T (d)/|S|) ] ⊆ [1,∞) and is thus well defined.

As the definitions of cost functions τa(x) on the unbounded interval (T (d),∞) play no role in a non-

atomic congestion game Γ = (τ, d), we define an equivalence relation between non-atomic congestion

games as follows.

Equivalence Two non-atomic congestion games Γ = (τ, d) and Γ′ = (σ, d′) are equivalent, denoted

by Γ ≃ Γ′, when

dk = d′k ∀k ∈ K and τa(x) = σa(x) ∀a ∈ A ∀x ∈ [0, T (d)] = [0, T (d′)]. (3.1)

While the cost function values τa(x) and σa(x) might differ largely on the unbounded interval (T (d),∞),

the corresponding non-atomic congestion games Γ = (τ, d) and Γ′ = (σ, d) have the same game-

theoretic properties when Γ ≃ Γ′.

3.2 The game space, the metric and the topology

We now introduce a topology for the space of all non-atomic congestion games defined on the combi-

natorial structure (G,K, S). All topological notions not explicitly defined here are standard, and we

recommend Kelley [1975] as a standard reference for them.

We denote by G(G,K,S) the set of all non-atomic congestion games Γ = (τ, d) that have the fixed

combinatorial structure (G,K,S) and satisfy Condition 2. We call G(G,K,S) the (G,K,S)-game
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space (or, simply, the game space), and call each non-atomic congestion game Γ = (τ, d) ∈ G(G,K,S)
a game, or a point of the game space.

Clearly,

G(G,K,S) ( G(G,K,S) := C↑
+(R≥0)

A × RK
≥0, (3.2)

where C↑
+(R≥0) denotes the set of all non-decreasing, non-negative and continuous functions defined

on R≥0 = [0,∞), C↑
+(R≥0)

A := {(τa)a∈A : τa ∈ C↑
+(R≥0) ∀a ∈ A} and RK

≥0 := {d = (dk)k∈K : dk ∈
R≥0 ∀k ∈ K}. We call the super set G(G,K,S) in (3.2) the generalized game space and each element

Γ̄ = (τ, d) ∈ G(G,K,S) a generalized game. Trivially, G(G,K,S) is the collection of all non-atomic

congestion games with the fixed combinatorial structure (G,K,S). Note that the PoA may be undefined

for some generalized games Γ̄ ∈ G(G,K,S) \ G(G,K,S).
We now define a “distance” on the generalized game space by the binary operator Dist : G(G,K,S)×

G(G,K,S) → [0.∞) with

Dist(Γ̄, Γ̄′) := max

{

||d− d′||∞,max
a∈A

max
x∈[0,min{T (d),T (d′)}]

|τa(x)− σa(x)|, ||τ(T (d)) − σ(T (d′))||∞
}

(3.3)

for two arbitrary generalized games Γ̄ = (τ, d) and Γ̄′ = (σ, d′). Here, ||y||∞ := maxni=1 |yn| is the

L∞-norm for an arbitrary vector y = (y1, . . . , yn) with an arbitrary length n ∈ N, and τ(T (d)) and

σ(T (d)) are the respective vectors (τa(T (d)))a∈A and (σa(T (d)))a∈A. To simplify notation, we denote

by

||τ|T (d) − σ|T (d′)||∞ := max

{

max
a∈A

max
x∈[0,min{T (d),T (d′)}]

|τa(x)− σa(x)|, ||τ(T (d)) − σ(T (d′))||∞
}

(3.4)

the “distance” between τ and σ w.r.t. the restricted domains [0, T (d)] and [0, T (d′)]. Then Dist(Γ̄, Γ̄′)

in (3.3) is expressed equivalently as

Dist(Γ̄, Γ̄′) = max
{
||d− d′||∞, ||τ|T (d) − σ|T (d′)||∞

}
. (3.5)

Note that Dist(·, ·) is consistent with equivalence relation (3.1), i.e., Dist(Γ̄, Γ̄′′) = Dist(Γ̄′, Γ̄′′) for

three arbitrary generalized games Γ̄, Γ̄′, Γ̄′′ ∈ G(G,K,S) with Γ̄ ≃ Γ̄′.

Lemma 4 shows that Dist(·, ·) is actually a metric on G(G,K,S) w.r.t. equivalence relation (3.1).

We thus denote Dist(Γ̄, Γ̄′) symbolically by ||Γ̄ − Γ̄′|| for two arbitrary generalized games Γ̄, Γ̄′ ∈
G(G,K,S), as this is a more intuitive way to denote the metric despite of the undefined operator

Γ̄− Γ̄′.

Lemma 4. Consider now three arbitrary generalized games Γ̄1, Γ̄2, Γ̄3 ∈ G(G,K,S). Then:

a) Dist(Γ̄1, Γ̄2) = Dist(Γ̄2, Γ̄1) ≥ 0.

b) Dist(Γ̄1, Γ̄2) = 0 if and only if Γ̄1 ≃ Γ̄2.
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c) Dist(Γ̄1, Γ̄2) ≤ Dist(Γ̄1, Γ̄3) +Dist(Γ̄3, Γ̄2).

Proof. Proof of Lemma 4 Lemma 4a)–4b) are trivial. We prove only Lemma 4c). Assume, w.l.o.g.,

that Γ̄1 = (τ (1) = (τ
(1)
a )a∈A, d

(1)), Γ̄2 = (τ (2) = (τ
(2)
a )a∈A, d

(2)) and Γ̄3 = (τ (3) = (τ
(3)
a )a∈A, d

(3)). Define

σ(i) := (σ(i)
a )a∈A with σ(i)

a (x) :=







τ
(i)
a (x) if x ≤ T (d(i)),

τ
(i)
a (T (d(i))) if x > T (d(i)),

∀x ∈ R≥0 ∀a ∈ A ∀i = 1, 2, 3.

Let Γ̄′
1 = (σ(1), d(1)), Γ̄′

2 = (σ(2), d(2)) and Γ̄′
3 = (σ(3), d(3)). Then Γ̄i ≃ Γ̄′

i for i = 1, 2, 3.

Let Tmax := max{T (d(1)), T (d(2)), T (d(3))}. Then

||σ(i)

|T (d(i))
− σ

(j)

|T (d(j))
||∞ = max

a∈A
max

x∈[0,Tmax]
|σ(i)

a (x)− σ(j)
a (x)| = ||σ(i)

|Tmax
− σ

(j)
|Tmax

||∞ ∀i, j = 1, 2, 3.

Hence,

Dist(Γ̄′
i, Γ̄

′
j) = max

{

||d(i) − d(j)||∞, ||σ(i)
|Tmax

− σ
(j)
|Tmax

||∞
}

∀i, j = 1, 2, 3.

The triangle inequality Dist(Γ̄′
1, Γ̄

′
2) ≤ Dist(Γ̄′

1, Γ̄
′
3) + Dist(Γ̄′

3, Γ̄
′
2) follows from (3.6).

||d(1) − d(2)||∞ ≤ ||d(1) − d(3)||∞ + ||d(3) − d(2)||∞

||σ(1)
|Tmax

− σ
(2)
|Tmax

||∞ ≤ ||σ(1)
|Tmax

− σ
(3)
|Tmax

||∞ + ||σ(3)
|Tmax

− σ
(2)
|Tmax

||∞
(3.6)

Lemma 4c) then follows since the operator Dist(·, ·) is consistent with equivalence relation (3.1).

�

Remark 3.1. Note that we cannot substitute the cost function distance (3.4) in the metric (3.3)

(equivalently, (3.5)) by the L∞-norm

||τ|Tmax
− σ|Tmax

||∞ := max
a∈A, x∈[0,Tmax]

|τa(x)− σa(x)|, Tmax := max{T (d), T (d′)}, (3.7)

although this is more intuitive and has been applied to the auxiliary cost functions σ(i) in the proof of

Lemma 4c). The reason is that the resulting binary operator

D(Γ̄′, Γ̄) = max{||d − d′||∞, ||τ|Tmax
− σ|Tmax

||∞}, ∀Γ̄, Γ̄′ ∈ G(G,K,S), (3.8)

is inconsistent with equivalence relation (3.1), as D(Γ̄′, Γ̄′′) = D(Γ̄, Γ̄′′) need not hold for three arbitrary

generalized games Γ̄, Γ̄′, and Γ̄′′ with Γ̄ ≃ Γ̄′. Moreover, D(·, ·) does not fulfill the triangle inequality in

Lemma 4c), and is thus neither a metric nor a pseudo-metric and so does not induce a metric space.

To see this, we consider three arbitrary generalized games Γ̄ = (τ, d), Γ̄′ = (σ, d), Γ̄′′ = (σ, d′) ∈
G(G,K,S) such that T (d′) > T (d) > 0, τa(x) = σa(x) for all (a, x) ∈ [0, T (d)], and τb(y) 6= σb(y)

for all (a, y) ∈ (T (d), T (d′)]. Then D(Γ̄, Γ̄′) = 0 and D(Γ̄′, Γ̄′′) = ||d − d′′||∞. When τa(·) and σa(·)
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differ more than ||d − d′||∞ on the non-empty interval (T (d), T (d′)], then D(Γ̄, Γ̄′′) > ||d − d′||∞ =

D(Γ̄, Γ̄′)+D(Γ̄′, Γ̄′′). This follows since the binary operator (3.8) does not distinguish the cost functions

of the two generalized games Γ̄′ = (σ, d) and Γ̄′′ = (σ, d′) when (3.7) is used to quantify the cost function

distance. Hence, the binary operator (3.8) does not fulfill the triangle inequality. Our definition (3.4)

of the distance of cost functions takes also the domains of cost functions into account. So, Γ̄′ and

Γ̄′′ have different cost functions under our definition, and Dist(Γ̄, Γ̄′) + Dist(Γ̄′, Γ̄′′) = Dist(Γ̄′, Γ̄′′) =

max{||d− d′||∞, ||σ(T (d)) − σ(T (d′))||∞} = Dist(Γ̄, Γ̄′′).

Equipped with the metric (3.3), G(G,K,S) becomes a metric space with the topology generated

by open ǫ-balls of the form (3.9),

Bǫ(Γ̄) := {Γ̄′ ∈ G(G,K,S) : ||Γ̄− Γ̄′|| = Dist(Γ̄, Γ̄′) < ǫ}, Γ̄ ∈ G(G,K,S), ǫ > 0. (3.9)

3.3 The PoA is continuous

The metric (3.3) induces the definition of convergence of games and of the continuity of real-valued

maps on G(G,K,S). A sequence (Γ̄n)n∈N ∈ G(G,K,S)N converges to a limit Γ̄ ∈ G(G,K,S), denoted
by limn→∞ Γ̄n = Γ̄, if for each ǫ > 0, there is an N > 0 such that Γ̄n ∈ Bǫ(Γ̄) for all n ≥ N. Trivially,

limn→∞ Γ̄n = Γ̄ if and only if limn→∞ ||Γ̄n − Γ̄|| = 0. Then a real-valued map ϕ̄ : G(G,K,S) →
R is continuous if limn→∞ ϕ̄(Γ̄n) = ϕ̄(Γ̄) for each sequence (Γ̄n)n∈N ∈ G(G,K,S)N and each Γ̄ ∈
G(G,K,S) with limn→∞ Γ̄n = Γ̄. In addition, a real-valued map ϕ : G(G,K,S) → R is continuous

if limn→∞ ϕ(Γn) = ϕ(Γ) for each sequence (Γn)n∈N ∈ G(G,K,S)N and each Γ ∈ G(G,K,S) with

limn→∞ Γn = Γ.

Note that every game Γ = (τ, d) ∈ G(G,K,S) has the unique total cost C(Γ, f∗) for its SO flows f∗.

This defines an SO cost map C∗ : G(G,K,S) → R≥0 with C∗(Γ) := C(Γ, f∗) for each Γ ∈ G(G,K,S).
Similarly, we can define a WE cost map C̃ : G(G,K,S) → R≥0 by putting C̃(Γ) := C(Γ, f̃) for each

Γ ∈ G(G,K,S), where f̃ is an arbitrary WE flow of Γ. Lemma 5b)–c) imply that both C∗(·) and C̃(·)
are continuous maps on G(G,K,S).

Lemma 5. Consider a convergent game sequence (Γn = (τ (n), d(n)))n∈N ∈ G(G,K,S)N with limn→∞ Γn =

Γ for a game Γ = (τ, d) ∈ G(G,K,S).

a) Let f be an arbitrary flow of Γ. Then there is a sequence (fn)n∈N of flows such that each fn,

n ∈ N, is a flow of Γn, and f = limn→∞ f (n).

b) Let (f
∗(n)
n )n∈N be a sequence of SO flows f∗(n) of Γn, and let (ni)i∈N be an infinite subsequence

with limi→∞ f∗(ni) = f∗ for a vector f∗ ∈ RS
≥0. Then f∗ is an SO flow of Γ. Moreover, (f∗

n)n∈N

converges to an SO flow of Γ when Γ has a unique SO flow. In particular, limn→∞ C∗(Γn) =

C∗(Γ).
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c) Let (f̃n)n∈N be a sequence of WE flows f̃ (n) of Γn, and let (ni)i∈N be an infinite subsequence with

limi→∞ f̃ (ni) = f̃ for a vector f̃ ∈ RS
≥0. Then f̃ is a WE flow of Γ. Moreover, (f̃n)n∈N converges

to a WE flow of Γ when Γ has a unique WE flow. In particular, limn→∞ C̃(Γn) = C̃(Γ).

Proof. Proof of Lemma 5

Proof. Proof of Lemma 5a): Define δ := mins∈S:fs>0 fs and sk := argmins∈Sk:fs>0 fs for each k ∈ K.

Then fs ≥ δ > 0 for all s ∈ S with fs > 0, and fs′ ≥ fsk ≥ δ for each s′ ∈ Sk with fs′ > 0 for each

O/D pair k ∈ K. Since limn→∞ Γn = Γ, we have δ > ||Γn − Γ|| ≥ ||d(n) − d||∞ = maxk∈K |d(n)k − dk| for
each n ≥ N for some integer N ∈ N.

Define for each n ≥ N a vector f (n) = (f
(n)
s )s∈S with

f (n)
s :=







fs if s ∈ Sk \ {sk},

fs + d
(n)
k − dk if s = sk,

∀s ∈ Sk ∀k ∈ K.

Then f
(n)
s ≥ 0 for each s ∈ S, since δ+ d

(n)
k − dk ≥ 0 for each O/D pair k ∈ K when n ≥ N. Moreover,

∑

s∈Sk
f
(n)
s =

∑

s∈Sk
fs + d

(n)
k − dk = d

(n)
k for each O/D pair k ∈ K. So f (n) is a flow of Γn for each

n ≥ N.

limn→∞ f (n) = f follows immediately from the definition of f (n) and the fact that limn→∞ Γn = Γ.

Proof. Proof of Lemma 5b): Trivially, f∗ is a flow of Γ. Let f be an arbitrary flow of Γ. Lemma 5a)

implies that f = limn→∞ f (n) for a sequence (f (n))n∈N of flows of games Γn. Then we obtain by the

continuity of cost functions that C(Γ, f∗) = limi→∞C(Γni
, f∗(ni)) ≤ limi→∞C(Γni

, f (ni)) = C(Γ, f).

This shows that f∗ is an SO flow of Γ due to the arbitrary choice of f. The remainder of Lemma 5b)

then follows trivially.

Proof. Proof of Lemma 5c): Similarly, f̃ is a flow of Γ. Consider an arbitrary O/D pair k ∈ K and

arbitrary two paths s, s′ ∈ Sk with f̃s > 0. Then f̃
(ni)
s > 0 when i is large enough. Since f̃ (ni) is a WE

flow of Γni
for each i ∈ N, we have τs(f̃) = limi→∞ τ

(ni)
s (f̃ (ni)) ≤ limi→∞ τ

(ni)
s′ (f̃ (ni)) = τs′(f̃). This

shows that f̃ is a WE flow of Γ due to the arbitrary choice of k, s and s′. The remainder of Lemma 5c)

then follows trivially.

�

Viewed as a real-valued map from G(G,K,S) to R≥0, the PoA ρ(·) is also continuous, since ρ(·) is
the quotient of two continuous maps on G(G,K,S), i.e., ρ(Γ) = C̃(Γ)

C∗(Γ) for each Γ ∈ G(G,K,S). Here,
we recall that the PoA ρ(·) is well defined on the whole game space G(G,K,S).

We summarize all these continuity results in Theorem 6.

Theorem 6. The SO cost map C∗(·), the WE cost map C̃(·) and the PoA map ρ(·) are continuous on

the game space G(G,K,S).
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Note that Hall [1978] has proved that the user cost Lk(τ, d) = mins∈Sk: f̃s>0 τs(f̃) is a continuous

function of the demand vector d when the cost function vector τ is fixed. This then implies directly

that C̃(·) is continuous when τ is fixed. Theorem 6 generalizes this continuity result to the game space

G(G,K,S).
Non-atomic congestion games Γ̄ in the gap G(G,K,S) \ G(G,K,S) may have an undefined PoA

of 0
0 , and are thus not considered in our sequel analysis of the PoA map ρ(·). One may of course

wonder if we could include them in the analysis by constructing an extension ρ̄ : G(G,K,S) → R≥0 of

the PoA map ρ(·) to G(G,K,S). From a topological point of view, such an extension ρ̄(·) should not

only satisfy the condition that ρ̄(Γ) = ρ(Γ) for each Γ ∈ G(G,K,S), but also preserve the continuity

of the PoA map ρ(·). When such a map ρ̄(·) exists, Condition 2 would then no longer be needed,

which would considerably simplify the further analysis. Unfortunately, Example 7 illustrates that the

PoA ρ(·) cannot be continuously extended to the generalized game space G(G,K,S). Thus we need to

exclude generalized games with an undefined PoA of 0
0 and have to accept the existence of this gap.

Example 7. Consider the traffic network G shown in Figure 2(a)–(b). This network has two vertices

o and t with two parallel paths (arcs). Denote by K and S the respective sets of O/D pairs and paths

of G. Let Γ̄ = (τ, d) ∈ G(G,K,S) be a generalized game with total demand T (d) = 1 and the two cost

functions τ1(·) and τ2(·) shown in Figure 2(a). For each n ∈ N, let Γn = (τ (n), d(n)) ∈ G(G,K,S) be a

game again with the same total demand T (d(n)) = 1 but with the two cost functions τ
(n)
1 (·) and τ

(n)
2 (·)

shown in Figure 2(b). The game sequence (Γn)n∈N converges to Γ̄ for every choice of β ∈ [0,∞).

We now illustrate with this convergent sequence that the PoA ρ(·) can not be continuously extended

o

τ1(x) ≡ 0

τ2(x) ≡ 0

t

(a) Game Γ̄ ∈ G(G,K,S) with T (d) = 1

o

τ
(n)
1 (x) ≡ 1

n

τ
(n)
2 (x) = xβ

n

t

(b) Game Γ(n) ∈ G(G,K,S) with T (d(n)) = 1

Figure 2: Non-extensibility of the PoA

to G(G,K,S). We do this by contradiction, and thus assume that there is a continuous extension ρ̄ :

G(G,K,S) → R≥0 of the PoA ρ(·). Then ρ̄(Γn) = ρ(Γn) for each n ∈ N, and ρ̄(Γ̄) = limn→∞ ρ̄(Γn) =

limn→∞ ρ(Γn), since ρ̄ is continuous on G(G,K,S). This means that the sequence (ρ(Γn))n∈N =

(ρ̄(Γn))n∈N has a unique limit ρ̄(Γ̄) that is independent of β. However, the limit of (ρ(Γn))n∈N =

(ρ̄(Γn))n∈N depends crucially on the value β, and yields limn→∞ ρ̄(Γn) = limn→∞ ρ(Γn) = 1 when

β = 0, and limn→∞ ρ̄(Γn) = limn→∞ ρ(Γn) =
4
3 when β = 1. Hence, there is no continuous extension

ρ̄(·) of the PoA ρ(·).
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3.4 Hölder continuous maps

Theorem 6 implies that |ρ(Γ) − ρ(Γ′)| is small when the game Γ′ ∈ G(G,K,S) deviates only slightly

from the game Γ ∈ G(G,K,S). Section 4 below will further quantify the difference |ρ(Γ) − ρ(Γ′)| of
the PoA in terms of the metric ||Γ− Γ′||. To that end, we need the notion of Hölder continuity.

Definition 3.1. Consider a real-valued map ϕ : G(G,K,S) → R.

i) The map ϕ is pointwise Hölder continuous at a game Γ ∈ G(G,K,S) with a Hölder exponent

γΓ > 0 (depending only on Γ), if there are a Hölder constant κΓ > 0 (depending also only on

Γ) and a non-empty open set UΓ ⊆ G(G,K,S), s.t., Γ ∈ UΓ and |ϕ(Γ)−ϕ(Γ′)| ≤ κΓ · ||Γ−Γ′||γΓ

for each Γ′ ∈ UΓ.

ii) The map ϕ is pointwise Hölder continuous on the whole game space G(G,K,S) with a (uniform)

Hölder exponent γ > 0 when it is pointwise Hölder continuous at every Γ ∈ G(G,K,S) with the

Hölder exponent γ.

iii) The map ϕ is uniformly Hölder continuous on the whole game space G(G,K,S) with a (uniform)

Hölder exponent γ > 0 and a (uniform) Hölder constant κ > 0 if |ϕ(Γ)− ϕ(Γ′)| ≤ κ · ||Γ− Γ′||γ

for all Γ′,Γ ∈ G(G,K,S).

iv) The map ϕ is Lipschitz continuous on the whole game space G(G,K,S) with a Lipschitz constant

κ > 0 when ϕ is uniformly Hölder continuous on G(G,K,S) with the Hölder exponent γ = 1

and the Hölder constant κ.

Uniform Hölder continuity implies pointwise Hölder continuity, but the converse need not hold,

since the game space G(G,K,S) is not compact. Moreover, the smaller the Hölder exponent γΓ of the

PoA map ρ(·) at a game Γ ∈ G(G,K,S), the more sensitive is the PoA of the game Γ w.r.t. small

changes in its demands and cost functions. Hence, we can indeed quantify the sensitivity of the PoA

by a Hölder continuity analysis of the map ρ(·).

3.5 ρ-invariant operators

The Hölder continuity analysis in Section 4 also involves the notion of ρ-invariant operators. Formally,

a continuous map Υ : G(G,K,S) → G(G,K,S) is called a ρ-invariant operator, if it is continuous and

does not change the PoA. i.e., ρ(Γ) = ρ
(
Υ(Γ)

)
for each game Γ ∈ G(G,K,S). Examples are the cost

and demand normalizations that have been used by Colini-Baldeschi et al. [2017, 2020] and by Wu

et al. [2021].

A cost normalization is an operator Ψ : G(G,K,S) → G(G,K,S) with Ψ(Γ) = Ψ(τ, d) = ( τυ , d) ∈
G(G,K,S) for each Γ = (τ, d) ∈ G(G,K,S), where υ > 0 is a constant factor and τ

υ := ( τaυ )a∈A. We

employ the notation Ψυ to denote a cost normalization with factor υ. Cost normalizations Ψυ(·) are
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continuous since limn→∞Ψυ(Γn) = Ψυ(Γ) when limn→∞ ||Γn − Γ|| = 0. As the PoA map ρ(·) is the

quotient of the WE cost map C̃(·) over the SO cost map C∗(·), ρ(·) is then invariant w.r.t. arbitrary

cost normalizations Ψυ(·).
However, a cost normalization does not leave the distance invariant. In fact, we have

||Ψυ(Γ)−Ψυ(Γ
′)|| = max

{

||d− d′||∞,
||τ|T (d) − σ|T (d′)||∞

υ

}

=







||d− d′||∞ if ||d− d′||∞ ≥ ||τ|T (d)−σ|T (d′)||∞
υ ,

||τ|T (d)−σ|T (d′)||∞
υ if ||d− d′||∞ <

||τ|T (d)−σ|T (d′)||∞
υ ,

(3.10)

for all Γ = (τ, d),Γ′ = (σ, d′) ∈ G(G,K,S) and all υ > 0, which may be different from ||Γ− Γ′||.
By (3.10), ||Ψυ(Γ)−Ψυ(Γ

′)|| = ||Γ− Γ′|| = ||d− d′||∞ when

||d− d′||∞ ≥ max

{

||τ|T (d) − σ|T (d′)||∞,
||τ|T (d) − σ|T (d′)||∞

υ

}

.

In particular, a cost normalization Ψυ will result in a scaling of the distance when d = d′, i.e.,

||Ψυ(Γ)−Ψυ(Γ
′)|| = ||Γ− Γ′||

υ
∀Γ = (τ, d), Γ′ = (σ, d′) ∈ G(G,K,S) with d = d′. (3.11)

We will see in Section 4 that equation (3.11) implies a rather unpleasant property of the map ρ(·).
A demand normalization is an operator Λ : G(G,K,S) → G(G,K,S) with Λ(Γ) = Λ(τ, d) =

(τ ◦ υ, d
υ ) ∈ G(G,K,S), where υ > 0 is again a constant factor, d

υ := (dkυ )k∈K and τ ◦ υ := (τa ◦ υ)a∈A
with τa ◦ υ(x) := τa(x · υ) for all a ∈ A and all x ∈ [0, T (d)

υ ]. We employ the notation Λυ to denote a

demand normalization with factor υ > 0. Similar to cost normalizations, demand normalizations are

continuous. The PoA ρ(·) is invariant under demand normalizations, since f̃ and f∗ are a WE flow

and an SO flow of Γ if and only if f̃
υ and f∗

υ are a WE flow and an SO flow of Λυ(Γ), respectively, and

since C(Γ, f) = υ · C(Λυ(Γ),
f
υ ) for an arbitrary flow f of Γ.

We will demonstrate in Section 5 that the cost and demand normalizations also help to analyze

the convergence rate of the PoA when the total demand tends to 0 or ∞.

4 Hölder continuity of the PoA

Initial Hölder continuity results have been obtained by Englert et al. [2010]; Takalloo and Kwon

[2020] and Cominetti et al. [2020]. They considered the Hölder continuity of the PoA on subspaces of

G(G,K,S), in which all games have the same cost functions.

Consider now an arbitrary cost function vector τ = (τa)a∈A defined on [0,∞) and satisfying

Condition 2. We call the subspace G(G,K,S)|τ := {Γ′ = (σ, d) ∈ G(G,K,S) : σa(x) = τa(x) ∀a ∈
A ∀x ∈ [0, T (d)]} of G(G,K,S) a cost slice w.r.t. the cost function vector τ. Trivially, two arbitrary
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games Γ1 = (σ(1), d(1)) and Γ2 = (σ(2), d(2)) from the same cost slice G(G,K,S)|τ satisfy that

||Γ1 − Γ2|| = max
{

||d(1) − d(2)||∞, ||σ(1)(T (d(1)))− σ(2)(T (d(2)))||∞
}

. (4.1)

Englert et al. [2010] considered the Hölder continuity of the PoA on a cost slice G(G,K,S)|τ with

polynomial of degree at most β cost functions τa(·) on networks with only one O/D pair. They showed

that

ρ(Γ′)− ρ(Γ) ≤
(
(1 + ǫ)β − 1

)
· ρ(Γ)

for two arbitrary games Γ = (τ, d) and Γ′ = (τ, d′) of the cost slice G(G,K,S)|τ with d′ = (1 + ǫ) · d
for an arbitrary constant ǫ > 0.

Takalloo and Kwon [2020] generalized the results of Englert et al. [2010] and considered the Hölder

continuity of the PoA on a cost slice G(G,K,S)|τ with again polynomial cost functions τa(·) of degree
at most β, but for networks with multiple O/D pairs. They showed for this more general case that

−O(ǫ) =
( 1

(1 + ǫ)β
− 1

)
· ρ(Γ) ≤ ρ(Γ′)− ρ(Γ) ≤

(
(1 + ǫ)β − 1

)
· ρ(Γ) = O(ǫ) (4.2)

for two arbitrary games Γ = (τ, d) and Γ′ = (τ, d′) of the cost slice G(G,K,S)|τ with d′ = (1 + ǫ) · d
for an arbitrary constant ǫ > 0.

Their result implies that |ρ(Γ)− ρ(Γ′)| ∈ O(ρ(Γ) · ǫ) when the cost functions τa(·) are polynomials,

and when Γ = (τ, d) and Γ′ = (τ, (1 + ǫ) · d) for a constant ǫ > 0, see (4.2). This together with (4.1)

then yields that |ρ(Γ) − ρ(Γ′)| < κΓ · ||Γ − Γ′|| for a Hölder constant κΓ > 0 depending on Γ when

Γ = (τ, d) and Γ′ = (τ, (1 + ǫ) · d) for a constant ǫ > 0, so with a Hölder exponent of 1 though at the

cost of the restrictive condition “d′ = (1 + ǫ) · d”. This result is quite inspiring and implies for each

polynomial cost function vector τ and each demand vector d with T (d) > 0 that the PoA map ρ(·) is
pointwise Hölder continuous with Hölder exponent 1 on the resulting one-dimensional affine subspace

{Γ = (τ, d′) ∈ G(G,K,S)|τ : d′ = α · d, α > 0} of the cost slice G(G,K,S)|τ .
Cominetti et al. [2020] also considered the Hölder continuity on a cost slice G(G,K,S)|τ , but on

networks with one O/D pair and with cost functions τa(·) that are affine linear or have strictly positive

derivatives. Unlike Englert et al. [2010], Cominetti et al. [2020] focused on the differentiability of the

resulting PoA map ρ(·) on the cost slice G(G,K,S)|τ . They showed for this case that the PoA map

ρ(·) is differentiable at each demand level except for a finite set of E-breakpoints. This implies that

the PoA map is pointwise Hölder continuous with Hölder exponent 1 on the cost slice G(G,K,S)|τ
except for a finite set of points. This is the first relatively complete result on the Hölder continuity of

the PoA as it needs no longer the condition “d = (1 + ǫ) · d′”. But the restriction to one O/D pair

and cost slice only is still strong.

We now generalize these results by analyzing the Hölder continuity of the PoA map on the whole

23



game space G(G,K,S) and for an arbitrary finite set K of O/D pairs. Our Hölder continuity analysis

is thus not restricted to a cost slice, but quantifies the changes of the PoA when both the cost functions

and the demands change. As we consider the most general case, one cannot expect similar results on

the differentiability of the PoA as in Cominetti et al. [2020].

4.1 The PoA is not uniformly Hölder continuous

We show first that the PoA map ρ(·) is not uniformly Hölder continuous on G(G,K,S). This also

means that the PoA map is not Lipschitz continuous on the whole game space G(G,K,S). We assume

by contradiction that ρ(·) is uniformly Hölder continuous on the whole game space G(G,K,S) with

a uniform Hölder exponent γ > 0 and a uniform Hölder constant κ > 0, i.e., we assume for all

Γ,Γ′ ∈ G(G,K,S) that
|ρ(Γ)− ρ(Γ′)| ≤ κ · ||Γ− Γ′||γ . (4.3)

We now choose two arbitrary games Γ = (τ, d) and Γ′ = (σ, d′) with ρ(Γ) 6= ρ(Γ′) and d = d′. Note that

there are indeed such two games in the demand slice G(G,K,S)|d := {(σ, d′′) ∈ G(G,K,S) : d′′ = d},
as every O/D pair has at least two paths, i.e., |Sk| ≥ 2 for each k ∈ K, see Condition 1. Let υ > 1

be an arbitrary factor. By (4.3), (3.11), and a repeated application of the cost normalization Ψυ, we

obtain for each n ∈ N that

|ρ(Γ)− ρ(Γ′)| = |ρ(Ψυ(Γ))− ρ(Ψυ(Γ
′))| = · · · = |ρ(Ψυ ◦ · · · ◦Ψυ

︸ ︷︷ ︸

n

(Γ))− ρ(Ψυ ◦ · · · ◦Ψυ
︸ ︷︷ ︸

n

(Γ′))|

≤ κ · ||Ψυ ◦ · · · ◦Ψυ(Γ)−Ψυ ◦ · · · ◦Ψυ(Γ
′)||γ = κ · ||Γ− Γ′||γ

υn·γ
,

(4.4)

which implies |ρ(Γ)−ρ(Γ′)| = 0 by letting n → ∞ on both sides, and so contradicts with the fact that

ρ(Γ) 6= ρ(Γ′).

Hence, a uniform Hölder constant κ > 0 and a uniform Hölder exponent γ > 0 cannot exist

simultaneously. The Hölder continuity results of Englert et al. [2010] and Takalloo and Kwon [2020]

seemingly indicate that there is a uniform Hölder exponent but only with a pointwise Hölder constant,

see (4.2). We thus also focus on a uniform Hölder exponent γ with a pointwise Hölder constant κΓ in

our analysis.

Given a game Γ ∈ G(G,K,S) and a Hölder exponent γ > 0, we call an open subset UΓ ⊆ G(G,K,S)
a Hölder (continuity) neighborhood of order γ (in short, a γ-neighborhood) of Γ if Γ ∈ UΓ, and if there

is a (pointwise) Hölder constant κΓ > 0 s.t. |ρ(Γ′)− ρ(Γ)| ≤ κΓ · ||Γ′ − Γ||γ for each Γ′ ∈ UΓ. Here, we

employ the convention that the empty set ∅ is a γ-neighborhood of every game Γ ∈ G(G,K,S). Then
ρ(·) is Hölder continuous at a game Γ ∈ G(G,K,S) if and only if Γ has a non-empty γ-neighborhood

UΓ ⊆ G(G,K,S) for some Hölder exponent γ > 0.

We now show that every γ-neighborhood UΓ is a proper subset of G(G,K,S), i.e., UΓ 6= G(G,K,S).
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This means that the Hölder continuity of the PoA map ρ(·) can hold only locally at a game Γ ∈
G(G,K,S), even when the Hölder constant κΓ is pointwise, i.e., may depend on the game Γ.

We again show this by contradiction, and thus assume that there is a game Γ = (τ, d) ∈ G(G,K,S)
whose γ-neighborhood is the entire space G(G,K,S) for some Hölder exponent γ > 0. Then there is

a Hölder constant κΓ > 0 such that

|ρ(Γ)− ρ(Γ′)| ≤ κΓ · ||Γ− Γ′||γ ∀Γ′ ∈ G(G,K,S). (4.5)

To obtain a contradiction, we consider now an arbitrary game Γ′ = (σ, d) from the same demand

slice G(G,K,S)|d of Γ. Let υ > 0 be an arbitrary factor. Then the cost normalization Ψυ(·) and (4.5)

yield

|ρ(Γ)− ρ(Γ′)| = |ρ(Γ)− ρ(Ψυ(Γ
′))| ≤ κΓ · ||Γ−Ψυ(Γ

′)||γ . (4.6)

Note that

||Γ−Ψυ(Γ
′)|| = ||τ|T (d) −

σ|T (d)

υ
||∞ = max

a∈A,x∈[0,T (d)]

∣
∣
∣
∣
τa(x)−

σa(x)

υ

∣
∣
∣
∣
→ max

a∈A,x∈[0,T (d)]
τa(x) as υ → ∞.

Inequality (4.6) then implies that

|ρ(Γ)− ρ(Γ′)| ≤ κΓ · max
a∈A,x∈[0,T (d)]

τa(x)
γ =: κΓ · ||τ|T (d)||γ∞.

Since Γ′ is an arbitrary game of the demand slice G(G,K,S)|d = {Γ′ = (σ, d′) ∈ G(G,K,S) : d′ =

d}, the PoA map ρ(·) has a uniform finite upper bound ρ(Γ) + κΓ · ||τ|T (d)||γ∞ on the demand slice

G(G,K,S)|d.
However, the demand slice G(G,K,S)|d contains games with polynomial cost functions of degree

at most β for arbitrary β > 0. The PoA map ρ(·) is then unbounded on the demand slice G(G,K,S)|d,
since these games have a tight upper bound Θ(β/ ln β) tending to ∞ as β → ∞, see Roughgarden

[2015]. Here, we notice that |Sk| ≥ 2 for each O/D pair k ∈ K, see Condition 1, and thus there is

a game Γ′
β = (σ, d) ∈ G(G,K,S)|d for each β > 0, who performs similarly to Pigou’s game (Pigou

[1920]) with cost functions xβ and 1, and whose PoA reaches the upper bound Θ(β/ ln β).

We summarize this in Theorem 8.

Theorem 8. a) There are no constants γ > 0 and κ > 0 s.t. the PoA map ρ(·) is uniformly

Hölder continuous with Hölder exponent γ and Hölder constant κ.

b) For every open subset U ⊆ G(G,K,S) and every arbitrary Hölder exponent γ > 0, if U is a

γ-neighborhood of a game Γ ∈ G(G,K,S), then U 6= G(G,K,S).

Remark 4.1. We actually have proved that ρ(·) is neither uniformly Hölder continuous on a demand

slice, nor has a γ-neighborhood including a demand slice G(G,K,S)|d as a subspace. However, the PoA
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map ρ(·) may be Lipschitz continuous on a cost slice G(G,K,S)|τ . To see this, we consider a vector

τ = (τa)a∈A of cost functions with τa(x) ≡ ca for some constant ca > 0 and all (a, x) ∈ A × [0,∞).

Then ρ(Γ) ≡ 1 for all Γ = (τ, d) ∈ G(G,K,S)|τ , and so ρ(·) is Lipschitz continuous on G(G,K,S)|τ
when we restrict the map ρ(·) onto G(G,K,S)|τ . In fact, there is even a 1-neighborhood including the

cost slice G(G,K,S)|τ as a subspace. To show this, pick an arbitrary Γ = (τ, d) ∈ G(G,K,S)|τ and an

arbitrary constant κ > 0. Then

G(G,K,S)|τ \ {Γ} ⊆ VΓ(κ) := {Γ′ ∈ G(G,K,S) : |ρ(Γ′)− ρ(Γ)| − κ · ||Γ− Γ′|| < 0},

and VΓ(κ) is open since ρ(·) is continuous. Theorem 12a) in Section 4.3 shows that there are a Hölder

constant κΓ > 0 and a nonempty 1-neighborhood UΓ with |ρ(Γ′)−ρ(Γ)| ≤ κΓ ·||Γ−Γ′|| for each Γ′ ∈ UΓ.

Thus

|ρ(Γ′)− ρ(Γ)| ≤ max{κ,κΓ} · ||Γ′ − Γ|| ∀Γ′ ∈ UΓ ∪ VΓ(κ).

Clearly, UΓ∪VΓ(κ) is a 1-neighborhood of Γ that includes the whole cost slice G(G,K,S)|τ as a subspace.

Hence, the Hölder continuity of the PoA may differ largely on the two types of slices. We thus need

separate discussions for them when we analyze the pointwise Hölder continuity of the PoA.

4.2 Pointwise Hölder continuity of the PoA

Because of Theorem 8, we now consider Hölder continuity of the PoA map ρ(·) pointwise and locally

at each game Γ ∈ G(G,K,S).
Theorem 9 shows that the PoA is Hölder continuous with Hölder exponent γ = 1

2 at every game

Γ = (τ, d) ∈ G(G,K,S) whose cost functions τa(·) are Lipschitz continuous on the compact interval

[0, T (d)]. Note that games satisfying these assumptions are dense in G(G,K,S), i.e., every game

Γ′ ∈ G(G,K,S) is the limit of a convergent sequence of such games. Thus every non-empty open

subset U of G(G,K,S) contains a non-empty 1
2 -neighborhood, although Theorem 8b) implies that this

neighborhood might not be large.

Theorem 9. Consider an arbitrary game Γ = (τ, d) ∈ G(G,K,S) whose cost functions τa(·) are

Lipschitz continuous on the compact interval [0, T (d)]. Then the PoA map ρ(·) is Hölder continuous

at game Γ with Hölder exponent γ = 1
2 within a γ-neighborhood BǫΓ(Γ) for a small constant ǫΓ > 0

depending only on the game Γ.

Theorem 9 presents the first pointwise Hölder continuity result of the PoA map ρ(·) on the whole

game space G(G,K,S). It applies to the most general case that the cost functions and the demands

change simultaneously.

To prove Theorem 9, we will now analyze the Hölder continuity of the PoA on cost and demand

slices separately, since it may differ on cost and demand slices, see Remark 4.1. Theorem 9 then
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follows by combining the results appropriately.

4.2.1 Hölder continuity of the PoA on demand slices

Lemma 10 presents the first results about Hölder continuity of the PoA on a demand slice G(G,K,S)|w
for an arbitrary demand vector w = (wk)k∈K with T (w) =

∑

k∈Kwk > 0. Lemma 10a) shows that

the SO map C∗(·) is Lipschitz continuous with Lipschitz constant |A| · T (w) on the demand slice

G(G,K,S)|w . Lemma 10b) shows a similar continuity result for the potential function values of WE

flows of games in G(G,K,S)|w . Lemma 10c) shows that the WE flows of two arbitrary games Γ1 and

Γ2 in G(G,K,S)|w are mutually |A| · T (w) · ||Γ1 − Γ2||-approximate WE flows of each other. Finally,

with Lemma 1c) and Lemma 10c), Lemma 10d) shows that, when restricted to the demand slice

G(G,K,S)|w , both the WE cost map C̃(·) and the PoA map ρ(·) are pointwise Hölder continuous with
Hölder exponent 1

2 at each game Γ1 ∈ G(G,K,S)|w whose cost functions are Lipschitz continuous on

the compact interval [0, T (w)].

Lemma 10. Consider an arbitrary demand vector w = (wk)k∈K with T (w) > 0, and two arbitrary

games Γ1 = (π(1), w) and Γ2 = (π(2), w) of the demand slice G(G,K,S)|w . Let f̃ and g̃ be WE flows

of Γ1 and Γ2, respectively. Then, the following statements hold.

a) |C∗(Γ1)− C∗(Γ2)| ≤ |A| · T (w) · ||Γ1 − Γ2||.

b) |Φ(Γ1, f)−Φ(Γ2, f)| ≤ |A| · T (w) · ||Γ1 − Γ2|| for every flow f. Moreover, |Φ(Γ1, f̃)−Φ(Γ2, g̃)| ≤
|A|·T (w)·||Γ1−Γ2||, 0 ≤ Φ(Γ1, g̃)−Φ(Γ1, f̃) ≤ 2·|A|·T (w)·||Γ1−Γ2||, and 0 ≤ Φ(Γ2, f̃)−Φ(Γ2, g̃) ≤
2 · |A| · T (w) · ||Γ1 − Γ2||.

c) f̃ is an |A|·T (w)·||Γ1−Γ2||-approximate WE flow of the game Γ2, and g̃ is an |A|·T (w)·||Γ1−Γ2||-
approximate WE flow of the game Γ1.

d) If π
(1)
a (·) is Lipschitz continuous on [0, T (w)] with Lipschitz constant M > 0 for each a ∈ A,

then |C̃(Γ1)− C̃(Γ2)| ≤ (
√

M · |A| · T (w) + 2) · |A| · T (w) ·max{
√

||Γ1 − Γ2||, ||Γ1 − Γ2||}, and so

|ρ(Γ1)− ρ(Γ2)| ≤ νΓ1 ·max{
√

||Γ1 − Γ2||, ||Γ1 − Γ2||} with

νΓ1 := 2 · ρ(Γ1) +
√

M · |A| · T (w) + 2

C∗(Γ1)
· |A| · T (w)

when ||Γ1 − Γ2|| ≤ C∗(Γ1)
2·|A|·T (w) .

Proof. Proof of Lemma 10 Let f∗ and g∗ be an SO flow of Γ1 and an SO flow of Γ2, respectively. Note

that Γ1 and Γ2 have the same set of flows, since both belong to the demand slice G(G,K,S)|w . So g̃

and g∗ are also flows of Γ1, and f̃ and f∗ are also flows of Γ2.
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Proof. Proof of Lemma 10a): Note that

C∗(Γ1) = C(Γ1, f
∗) ≤ C(Γ1, g

∗) =
∑

a∈A

π(1)
a (g∗a) · g∗a ≤

∑

a∈A

π(2)
a (g∗a) · g∗a +

∑

a∈A

g∗a · ||Γ1 − Γ2||

= C∗(Γ2) +
∑

a∈A

g∗a · ||Γ1 − Γ2|| ≤ C∗(Γ2) + |A| · T (w) · ||Γ1 − Γ2||.

Here, we have used that g∗a ≤ T (w) for each a ∈ A, and that

|π(1)
a (x)− π(2)

a (x)| ≤ ||Γ1 − Γ2|| = max
b∈A,y∈[0,T (w)]

|π(1)
b (y)− π

(2)
b (y)| ∀a ∈ A ∀x ∈ [0, T (w)].

Similarly, we have C∗(Γ2) ≤ C∗(Γ1) + |A| · T (w) · ||Γ1 − Γ2||. Then Lemma 10a) follows.

Proof. Proof of Lemma 10b): Consider an arbitrary flow f for the demand vector w. Definition (2.6)

of the potential function Φ(·, ·) implies that

Φ(Γ1, f) =
∑

a∈A

∫ fa

0
π(1)
a (x)dx ≤

∑

a∈A

∫ fa

0
π(2)
a (x)dx+

∑

a∈A

fa · ||Γ1−Γ2|| ≤ Φ(Γ2, f)+ |A| ·T (w) · ||Γ1−Γ2||,

and, similarly that Φ(Γ2, f) ≤ Φ(Γ1, f) + |A| · T (w) · ||Γ1 − Γ2||. Thus we have |Φ(Γ1, f)−Φ(Γ2, f)| ≤
|A| · T (w) · ||Γ1 − Γ2|| for an arbitrary flow f.

Hence

Φ(Γ1, f̃) ≤ Φ(Γ1, g̃) ≤ Φ(Γ2, g̃) + |A| · T (w) · ||Γ1 − Γ2||,

and, similarly, Φ(Γ2, g̃) ≤ Φ(Γ1, f̃)+ |A| ·T (w) · ||Γ1−Γ2||. Here, we have used the fact that WE flows of

a game minimize the potential function of that game. So |Φ(Γ1, f̃)−Φ(Γ2, g̃)| ≤ |A| ·T (w) · ||Γ1 −Γ2||.
Hence

0 ≤ Φ(Γ1, g̃)− Φ(Γ1, f̃) = Φ(Γ1, g̃)− Φ(Γ2, g̃) + Φ(Γ2, g̃)− Φ(Γ1, f̃) ≤ 2 · |A| · T (w) · ||Γ1 − Γ2||,

0 ≤ Φ(Γ2, f̃)− Φ(Γ2, g̃) ≤ Φ(Γ2, f̃)− Φ(Γ1, f̃) + Φ(Γ1, f̃)− Φ(Γ2, g̃) ≤ 2 · |A| · T (w) · ||Γ1 − Γ2||.

This completes the proof of Lemma 10b).

Proof. Proof of Lemma 10c): Consider again an arbitrary flow f for the demand vector w. Since f̃ is

a WE flow of Γ1 = (π(1), w), we have

∑

a∈A

π(2)
a (f̃a) · (f̃a − fa) =

∑

a∈A

π(1)
a (f̃a) · (f̃a − fa) +

∑

a∈A

(π(2)
a (f̃a)− π(1)

a (f̃a)) · (f̃a − fa)

≤
∑

a∈A

(π(2)
a (f̃a)− π(1)

a (f̃a)) · (f̃a − fa) ≤ |A| · T (w) · ||Γ1 − Γ2||.
(4.7)
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Similarly,

∑

a∈A

π(1)
a (g̃a) · (g̃a − fa) ≤

∑

a∈A

(π(1)
a (g̃a)− π(2)

a (g̃a)) · (g̃a − fa) ≤ |A| · T (w) · ||Γ1 − Γ2||. (4.8)

Then Lemma 10c) follows from (4.7)–(4.8) and the definition of ǫ-approximate WE flows.

Proof. Proof of Lemma 10d): Lemma 1c) and Lemma 10c) together imply that

|C̃(Γ1)− C(Γ1, g̃)| = |C(Γ1, f̃)− C(Γ1, g̃)|

≤ |A| · T (w) ·
√

M · |A| · T (w) · ||Γ1 − Γ2||+ |A| · T (w) · ||Γ1 − Γ2||.
(4.9)

Trivially,

|C̃(Γ2)− C(Γ1, g̃)| = |C(Γ2, g̃)− C(Γ1, g̃)| ≤
∑

a∈A

|π(2)
a (g̃a)− π(1)

a (g̃a)| · g̃a

≤ |A| · T (w) · ||Γ1 − Γ2||.
(4.10)

Hence

|C̃(Γ1)− C̃(Γ2)| ≤ |A| · T (w) ·
√

M · |A| · T (w) · ||Γ1 − Γ2||+ 2 · |A| · T (w) · ||Γ1 − Γ2||

≤







(
√

M · |A| · T (w) + 2) · |A| · T (w) ·
√

||Γ1 − Γ2|| if ||Γ1 − Γ2|| ≤ 1,

(
√

M · |A| · T (w) + 2) · |A| · T (w) · ||Γ1 − Γ2|| if ||Γ1 − Γ2|| > 1.

(4.11)

This together with Lemma 10a) implies that

ρ(Γ1)− ρ(Γ2) ≤
C̃(Γ1)

C∗(Γ1)
− C̃(Γ1)− (

√

M · |A| · T (w) + 2) · |A| · T (w) ·max{√Γ1 − Γ2, ||Γ1 − Γ2||}
C∗(Γ1) + |A| · T (w) · ||Γ1 − Γ2||

=
ρ(Γ1) · |A| · T (w) · ||Γ1 − Γ2||+ (

√

M · |A| · T (w) + 2) · |A| · T (w) ·max{√Γ1 − Γ2, ||Γ1 − Γ2||}
C∗(Γ1) + |A| · T (w) · ||Γ1 − Γ2||

≤ ρ(Γ1) +
√

M · |A| · T (w) + 2

C∗(Γ1) + |A| · T (w) · ||Γ1 − Γ2||
· |A| · T (w) ·max{

√

Γ1 − Γ2, ||Γ1 − Γ2||},

and that

ρ(Γ2)− ρ(Γ1) ≤
C̃(Γ1) + (

√

M · |A| · T (w) + 2) · |A| · T (w) ·max{
√

||Γ1 − Γ2||, ||Γ1 − Γ2||}
C∗(Γ1)− |A| · T (w) · ||Γ1 − Γ2||

− C̃(Γ1)

C∗(Γ1)

≤ ρ(Γ1) +
√

M · |A| · T (w) + 2

C∗(Γ1)− |A| · T (w) · ||Γ1 − Γ2||
· |A| · T (w) ·max{

√

Γ1 − Γ2, ||Γ1 − Γ2||} (4.12)

when ||Γ1 − Γ2|| ≤ C∗(Γ1)
|A|·T (w) . Therefore, |ρ(Γ1)− ρ(Γ2)| ≤ νΓ1 ·max{

√

||Γ1 − Γ2||, ||Γ1 − Γ2||} with

νΓ1 := 2 · ρ(Γ1) +
√

M · |A| · T (w) + 2

C∗(Γ1)
· |A| · T (w)
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when ||Γ1 − Γ2|| ≤ C∗(Γ1)
2·|A|·T (w) . This completes the proof of Lemma 10d).

�

Remark 4.2. In the proof of Lemma 10d), we have used Lemma 1c) to bound |C(Γ1, f̃)− C(Γ1, g̃)|,
see (4.9), since Lemma 10c) has shown that g̃ is an |A| ·T (w) · ||Γ1 −Γ2||-approximate WE flow of Γ1.

Note that |A| · T (w) · ||Γ1 − Γ2|| ∈ Θ(||Γ1 − Γ2||) is already a tight upper bound on the approximation

threshold ǫ(π(1), w, g̃) of the flow g̃ for Lipschitz continuous cost functions on [0, T (w)]. We illustrate

this with the two games Γ1 and Γ2 shown in Figure 3(a)–(b). Clearly, ||Γ1 − Γ2|| = ǫ since Γ1 and Γ2

have the same demand vector w = (1). When viewed as a flow of Γ1, the WE flow g̃ = (0.5, 0.5) of Γ2

has the approximation threshold ǫ(π(1), w, g̃) = g̃ℓ · [π(1)
ℓ (g̃ℓ)− π

(1)
u (g̃u)] = 0.5 · ǫ ∈ Θ(||Γ1 − Γ2||), which

shows that the upper bound |A| · T (w) · ||Γ1 − Γ2|| is tight (w.r.t. the magnitude and the exponent of

||Γ1−Γ2||). This means that the exponent 1
2 in the right-hand of the inequality (4.9) cannot be improved

when the cost functions are Lipschitz continuous on the interval [0, T (w)], and when we use Lemma 1c)

to bound |C(Γ1, f̃)−C(Γ1, g̃)|, since Example 2 has also shown the tightness of Lemma 1c). Hence, to

improve the Hölder exponent, we need a finer analysis, which we will develop for cost functions with

special properties in Section 4.3.

o t

π
(1)
u (x) = x

π
(1)
ℓ (x) = x+ ǫ

(a) Γ1 with f̃ = (1+ǫ

2 , 1−ǫ

2 )

o t

π
(2)
u (x) = x

π
(2)
ℓ (x) = x

(b) Γ2 with g̃ = (0.5, 0.5)

Figure 3: Games with total demand of 1

4.2.2 Hölder continuity of the PoA on cost slices

Lemma 11 shows results similar to Lemma 10 for two arbitrary games Γ1 = (π,w) and Γ2 = (π,w′)

from the same cost slice G(G,K,S)|π for a cost function vector π defined on [0,∞) and satisfying

Condition 2. Using Lemma 10d), Lemma 11a) shows that |C̃(Γ1) − C̃(Γ2)| ≤ ν̃Γ1 ·
√

||Γ1 − Γ2|| for a

constant ν̃Γ1 > 0 depending only on Γ1, when the cost functions πa(·) are Lipschitz continuous on the

compact interval [0, T (w)], T (w′) < T (w) and ||Γ1 − Γ2|| is small. Using Lemma 10a), Lemma 11b)

shows with similar assumptions that |C∗(Γ1)−C∗(Γ2)| ≤ ν∗Γ1
·||Γ1−Γ2|| for a constant ν∗Γ1

> 0 depending

only on Γ1. Lemma 11c) then presents an upper bound for |ρ(Γ1) − ρ(Γ2)|. Note that the Lipschitz

constant MΓ1 is required to be at least 1 in Lemma 11. However, this is not an additional restriction,

as every Lipschitz continuous function always has a Lipschitz constant of at least 1.

Lemma 11. Consider an arbitrary game Γ1 = (π,w) ∈ G(G,K,S) such that the cost functions πa(·)
are Lipschitz continuous on the compact interval [0, T (w)] with a Lipschitz constant MΓ1 ≥ 1. Then
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the following statements hold.

a) For each game Γ2 = (π,w′) ∈ G(G,K,S) with T (w′) ≤ T (w),

|C̃(Γ2)− C̃(Γ1)| ≤ 2 ·
(

(
√

MΓ1 · |A| · T (w) + 2) · |A| · T (w)

+ |A| · πmax(T (w)) · |K|
)

·
√

MΓ1 ·max{
√

||Γ1 − Γ2||,
√

MΓ1 · ||Γ1 − Γ2||}

=: ν̃Γ1 ·max{
√

||Γ1 − Γ2||,
√

MΓ1 · ||Γ1 − Γ2||}

when ||Γ1−Γ2||< T (w)
|K| , where ν̃Γ1 := 2·

((√

MΓ1 ·|A|·T (w)+2
)
·|A|·T (w)+|A|·|K|·πmax(T (w))

)
·
√

MΓ1

and πmax(T (w)) :=maxa∈A πa(T (w)).

b) For each game Γ2 = (π,w′) ∈ G(G,K,S) with T (w′) ≤ T (w),

|C∗(Γ1)− C∗(Γ2)| ≤ 2 ·
(
|A| · |K| · πmax(T (w)) + |A| · T (w) ·MΓ1

)
· ||Γ1 − Γ2|| =: ν∗Γ1

· ||Γ1 − Γ2||

when ||Γ1 − Γ2|| < T (w)
|K| , where ν∗Γ1

:= 2 ·
(
|A| · |K| · πmax(T (w)) + |A| · T (w) ·MΓ1

)
.

c) For each game Γ2 = (π,w′) ∈ G(G,K,S) with T (w′) ≤ T (w), it holds that |ρ(Γ1)−ρ(Γ2)| < ν ′Γ1
·

max{
√

||Γ1 − Γ2||,
√

MΓ1 ·||Γ1−Γ2||} when ν ′Γ1
:=

2·ρ(Γ1)·ν∗Γ1
+2·ν̃Γ2

C∗(Γ1)
and ||Γ1−Γ2|| ≤ min{T (w)

|K| ,
C∗(Γ1)
2·ν∗Γ1

}.

Proof. Proof of Lemma 11 Define an auxiliary demand vector ŵ = (ŵk)k∈K with ŵk = min{wk, w
′
k} ≥

0 for each k ∈ K. Denote by Γ̂ the pair Γ̂ = (π, ŵ). Since T (w) > 0, T (ŵ) ≥ T (w)− |K| · ||Γ1 −Γ2|| > 0

and Γ̂ is a game, when the condition ||Γ1 − Γ2|| < T (w)
|K| is fulfilled. Here, we use that

||Γ1 − Γ2|| = max{||w − w′||∞, ||π(T (w)) − π(T (w′))||∞} ≥ ||w − w′||∞ = max
k∈K

|wk − w′
k|,

and so 0 ≤ T (w)−T (ŵ) ≤ |K| · ||Γ1−Γ2||, 0 ≤ T (w′)−T (ŵ) ≤ |K| · ||Γ1−Γ2||, 0 ≤ wk− ŵk ≤ ||Γ1−Γ2||
and 0 ≤ w′

k − ŵk ≤ ||Γ1 − Γ2|| for each k ∈ K.

We assume now that Γ̂ is a game, i.e., ||Γ1 − Γ2|| < T (w)
|K| .

Since the cost functions πa(·) are Lipschitz continuous on the compact interval [0, T (w)] with Lip-

schitz constant MΓ1 , they are also Lipschitz continuous on the compact interval [0, T (ŵ)] ⊆ [0, T (w)]

with the same Lipschitz constant MΓ1 . Then Lemma 10a) and d) yield, respectively, that

|C∗(Γ̂)− C∗(Γ3)| ≤ |A| · T (ŵ) · ||Γ3 − Γ̂|| ∀Γ3 = (π̂, ŵ) ∈ G(G,K,S)|ŵ , (4.13)

and that

|C̃(Γ̂)− C̃(Γ3)| ≤ (
√

MΓ1 · |A| · T (ŵ) + 2) · |A| · T (ŵ) ·max{
√

||Γ3 − Γ̂||, ||Γ3 − Γ̂||} (4.14)

for every game Γ3 = (π̂, ŵ) ∈ G(G,K,S)|ŵ .

31



We now prove Lemma 11 with inequalities (4.13) and (4.14).

Proof. Proof of Lemma 11a):

Consider an arbitrary WE flow f̃ of the game Γ1 = (π,w). Since ŵk ≤ wk for each k ∈ K, there

is a vector µ = (µs)s∈Sk
such that 0 ≤ µs ≤ f̃s for all s ∈ S, and ∑

s′∈Sk
(f̃s′ − µs′) = ŵk for each

k ∈ K. Then f̃ − µ = (f̃s − µs)s∈Sk
is a WE flow of the game Γ′

1 := (π|µ, ŵ) ∈ G(G,K,S)|ŵ , where
π|µ := (πa|µ)a∈A with πa|µ(x) := πa(x + µa) and µa :=

∑

s∈S:a∈s µs for each (a, x) ∈ A × [0, T (ŵ)].

This follows since the cost πs|µ(f̃ − µ) :=
∑

a∈A:a∈s πa|µ(f̃a − µa) =
∑

a∈A:a∈s πa(f̃a) = πs(f̃) remains

unchanged for each path s ∈ S.
Inequality (4.14) then yields that

|C̃(Γ̂)− C̃(Γ′
1)| ≤ (

√

MΓ1 · |A| · T (ŵ) + 2) · |A| · T (ŵ) ·max{
√

||Γ′
1 − Γ̂||, ||Γ′

1 − Γ̂||}. (4.15)

Note that

|C̃(Γ′
1)− C̃(Γ1)| = |C(Γ′

1, f̃ − µ)−C(Γ1, f̃)| =
∑

k∈K

Lk(Γ1) · (wk − ŵk)

≤ Lmax(Γ1) · |K| · ||Γ1 − Γ2|| ≤ Lmax(Γ1) · |K| ·max{
√

||Γ1 − Γ2||, ||Γ1 − Γ2||}

≤ |A| · πmax(T (w)) · |K| ·max{
√

||Γ1 − Γ2||, ||Γ1 − Γ2||},

(4.16)

where we recall that Lk(Γ1) is the user cost of O/D pair k ∈ K of Γ1 in the WE flow f̃ , and Lmax(Γ1) :=

maxk∈K Lk(Γ1) ≤ |A| ·maxa∈A πa(T (w)) = |A| · πmax(T (w)). Note that

||Γ′
1 − Γ̂|| = max

a∈A,x∈[0,T (ŵ)]
|πa(x)− πa(x+ µa)| ≤ MΓ1 ·max

a∈A
µa ≤ MΓ1 · ||w − w′||∞ ≤ MΓ1 · ||Γ1 − Γ2||.

This together with (4.15) and (4.16) yields that

|C̃(Γ̂)− C̃(Γ1)| ≤
(

(
√

MΓ1 · |A| · T (w) + 2) · |A| · T (w)

+ |A| · πmax(T (w)) · |K|
)

·
√

MΓ1 ·max{
√

||Γ1 − Γ2||,
√

MΓ1 · ||Γ1 − Γ2||},
(4.17)

since T (ŵ) ≤ T (w). Here, we observe that MΓ1 ≥ 1.

Similarly, we have

|C̃(Γ̂)− C̃(Γ2)| ≤
(

(
√

MΓ1 · |A| · T (w) + 2) · |A| · T (w)

+ |A| · πmax(T (w)) · |K|
)

·
√

MΓ1 ·max{
√

||Γ2 − Γ1||,
√

MΓ1 · ||Γ2 − Γ1||},
(4.18)
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since T (w′) ≤ T (w). Inequalities (4.17)–(4.18) then yield

|C̃(Γ2)− C̃(Γ1)| ≤ 2 ·
(

(
√

MΓ1 · |A| · T (w) + 2) · |A| · T (w)

+ |A| · πmax(T (w)) · |K|
)

·
√

MΓ1 ·max{
√

||Γ1 − Γ2||,
√

MΓ1 · ||Γ1 − Γ2||}.

Proof. Proof of Lemma 11b):

Consider an arbitrary SO flow f∗ of Γ1. Similar to the proof of Lemma 11a), there is a vector

λ = (λs)s∈S such that 0 ≤ λs ≤ f∗
s for each s ∈ S, and ∑

s′∈Sk
(f∗

s′ − λs′) = ŵk for each k ∈ K.

Redefine Γ′
1 := (π|λ, ŵ) with π|λ := (πa|λ)a∈A, πa|λ(x) := πa(x + λa) and λa :=

∑

s∈S:a∈s λs for each

(a, x) ∈ A× [0, T (ŵ)].

Then Γ′
1 is a game when ||Γ1 −Γ2|| < T (w)

|K| , and f∗ −λ = (f∗
s −λs)s∈S is a flow of Γ′

1, but need not

be an SO flow of Γ′
1.

Let f be a flow of Γ1 such that f − λ is an SO flow of Γ′
1. Such a flow f exists since f∗′ + λ is a

flow of Γ1 when f∗′ is an SO flow of Γ′
1. Then

C∗(Γ1) ≤ C(Γ1, f) =
∑

a∈A

fa · πa(fa) =
∑

a∈A

λa · πa(fa) +
∑

a∈A

(fa − λa) · πa(fa)

≤ |A| · |K| · πmax(T (w)) · ||Γ1 − Γ2||+
∑

a∈A

(fa − λa) · πa(fa)

= |A| · |K| · πmax(T (w)) · ||Γ1 − Γ2||+
∑

a∈A

(fa − λa) · πa|λ(fa − λa)

= |A| · |K| · πmax(T (w)) · ||Γ1 − Γ2||+ C∗(Γ′
1)

≤ |A| · |K| · πmax(T (w)) · ||Γ1 − Γ2||+ C(Γ′
1, f

∗ − λa)

≤ |A| · |K| · πmax(T (w)) · ||Γ1 − Γ2||+ C(Γ1, f
∗)

= |A| · |K| · πmax(T (w)) · ||Γ1 − Γ2||+ C∗(Γ1).

Here, we have used λa =
∑

k∈K

∑

s∈Sk:a∈s
λs ≤

∑

k∈K

∑

s∈Sk
λs =

∑

k∈K(wk − ŵk) ≤ |K| · ||w− ŵ||∞ ≤
|K| · ||w − w′||∞ ≤ |K| · ||Γ1 − Γ2||. Then we obtain

0 ≤ C∗(Γ1)− C∗(Γ′
1) ≤ |A| · |K| · πmax(T (w)) · ||Γ1 − Γ2||. (4.19)

Inequality (4.13) yields

|C∗(Γ′
1)− C∗(Γ̂)| < |A| · T (w) ·MΓ1 · ||Γ1 − Γ2||, (4.20)

where we observe that T (ŵ) ≤ T (w) and ||Γ′
1 − Γ̂|| ≤ MΓ1 · ||Γ1 − Γ2||. Inequalities (4.19) and (4.20)

together imply

|C∗(Γ̂− C∗(Γ1)| ≤
(
|A| · |K| · πmax(T (w)) + |A| · T (w) ·MΓ1

)
· ||Γ1 − Γ2||. (4.21)
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Similar to the proof of Lemma 11a), we have

|C∗(Γ̂)− C∗(Γ2)| ≤
(
|A| · |K| · πmax(T (w)) + |A| · T (w) ·MΓ1

)
· ||Γ1 − Γ2||, (4.22)

since T (w′) ≤ T (w). Lemma 11b) then follows immediately from (4.21) and (4.22).

Proof. Proof of Lemma 11c): Lemma 11a)–b) imply that

|ρ(Γ1)− ρ(Γ2)| ≤
C̃(Γ1) + ν̃Γ1 ·max{

√

||Γ1 − Γ2||,
√

MΓ1 · ||Γ1 − Γ2||}
C∗(Γ1)− ν∗Γ1

· ||Γ1 − Γ2||
− C̃(Γ1)

C∗(Γ1)

=
ρ(Γ1) · ν∗Γ1

· ||Γ1 − Γ2||+ ν̃Γ1 ·max{
√

||Γ1 − Γ2||,
√

MΓ1 · ||Γ1 − Γ2||}
C∗(Γ1)− ν∗Γ1

· ||Γ1 − Γ2||

≤
2 · ρ(Γ1) · ν∗Γ1

+ 2 · ν̃Γ1

C∗(Γ1)
·max{

√

||Γ1 − Γ2||,
√

MΓ1 · ||Γ1 − Γ2||}

when ν∗Γ1
· ||Γ1 − Γ2|| ≤ C∗(Γ1)

2 and ||Γ1 − Γ2|| < T (w)
|K| .

This completes the proof of Lemma 11.

�

While Lemma 11 shows a weaker Hölder exponent 1
2 than the exponent 1 of Englert et al. [2010] and

Takalloo and Kwon [2020], it applies to more general cases. On the one hand, two games Γ1 = (π,w)

and Γ2 = (π,w′) from the same cost slice G(G,K,S)|π need only satisfy the weaker condition T (w) ≥
T (w′) instead of the stronger condition “w = (1 + ǫ) · w′”. On the other hand, Lemma 11 applies to

a cost slice G(G,K,S)|π with arbitrary continuously differentiable cost functions, as it assumes only

Lipschitz continuity of the cost functions on the compact interval [0, T (w)], but not on the whole

unbounded interval [0,∞).

The proof of Lemma 11 essentially builds on Lemma 10. Since we cannot improve the Hölder

exponent 1
2 of Lemma 10 for demand slices (see Remark 4.2), we are presently also unable to do

that for cost slices in Lemma 11, although the PoA might have stronger Hölder continuity properties

on cost slices than demand slices (see Remark 4.1). While Englert et al. [2010], Takalloo and Kwon

[2020] and Cominetti et al. [2020] have already proposed independent techniques to analyze the Hölder

continuity of the PoA on cost slices for some inspiring cases, we are still eager for a general technique

to independently analyze the Hölder continuity of the PoA on cost slices with arbitrary Lipschitz

continuous cost functions on [0, T (d)]. Nonetheless, we will see in Section 4.3 that the current technical

framework used in the proof of Lemma 11 yields a stronger Hölder exponent of 1 for cost slices when

the cost functions have good properties similar to those in Englert et al. [2010], Englert et al. [2010]

and Cominetti et al. [2020].

4.2.3 Proof of Theorem 9

We now combine Lemma 10 and Lemma 11 to prove Theorem 9. Consider an arbitrary game Γ =
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(τ, d) ∈ G(G,K,S) whose cost functions τa(x) are Lipschitz continuous on [0, T (d)] with a Lipschitz

constant MΓ > 0.

For an arbitrary game Γ′ = (σ, d′) ∈ G(G,K,S), we define an auxiliary game Γ′′ = (τ̂ , d′) with

τ̂a(x) =







τa(x) if x ≤ Tmin := min{T (d), T (d′)}

τa(Tmin) if x > Tmin.

∀a ∈ A. (4.23)

Trivially, each auxiliary cost function τ̂a(x) is Lipschitz continuous on [0, T (d′)] with the same Lipschitz

constant MΓ, since τa(·) is non-decreasing. Moreover, we obtain by (3.3) and (3.5) that

||Γ− Γ′′|| = max
{
||d− d′||∞, ||τ(Tmin)− τ(T (d))||∞

}

||Γ′′ − Γ′|| = max

{

max
a∈A,x∈[0,Tmin]

|τa(x)− σa(x)|, ||τ(Tmin)− σ(T (d′))||∞
}

.
(4.24)

Again by (3.3) and (3.5), we have ||τ(Tmin)− τ(T (d))||∞ ≤ MΓ · |T (d′)−T (d)| ≤ MΓ · |K| · ||d− d′||∞ ≤
MΓ · |K| · ||Γ− Γ′||, and

||τ(Tmin)− σ(T (d′))||∞ ≤ ||τ(Tmin)− τ(T (d))||∞ + ||τ(T (d)) − σ(T (d′))||∞ ≤ (MΓ · |K|+ 1) · ||Γ− Γ′||.

This together with (4.24) yields

||Γ− Γ′′|| ≤ max{MΓ · |K|, 1} · ||Γ− Γ′|| and ||Γ′ − Γ′′|| ≤ (MΓ · |K|+ 1) · ||Γ− Γ′||. (4.25)

So both ||Γ− Γ′′|| and ||Γ′ − Γ′′|| converge to 0 as ||Γ− Γ′|| tends to 0.

Since Γ′ = (σ, d′) and Γ′′ = (τ̂ , d′) belong the same demand slice G(G,K,S)|d′ , and since the aux-

iliary cost functions τ̂ are Lipschitz continuous on [0, T (d′)] with Lipschitz constant MΓ, Lemma 10d)

implies that

|ρ(Γ′′)− ρ(Γ′)| ≤ νΓ′′ ·max{
√

||Γ′′ − Γ′||, ||Γ′′ − Γ′||} (4.26)

with a constant νΓ′′ > 0 depending only on Γ′′, when ||Γ′−Γ′′|| is small enough. Moreover, Lemma 10d)

and Theorem 6 together imply that the constant νΓ′′ converges to a constant ν ′Γ > 0 depending only

on Γ as Γ′ → Γ (which implies Γ′′ → Γ by (4.25)), since the constant νΓ′′ depends only on MΓ, T (d
′),

C∗(Γ′′), and ρ(Γ′′), and since the Lipschitz constant MΓ does not change in the limit. This together

with (4.25) implies that there is a small constant ǫ1,Γ > 0 such that

|ρ(Γ′)− ρ(Γ′′)| < 2 · ν ′Γ ·
√

(MΓ · |K|+ 1) · ||Γ− Γ′|| (4.27)

when ||Γ− Γ′|| < ǫ1,Γ.

When T (d′) ≥ T (d), we obtain by the definition (4.23) of the auxiliary cost functions τ̂a that
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Γ = (τ, d) = (τ̂ , d) w.r.t. equivalence relation (3.1). Then Γ and Γ′′ are from the same cost slice

G(G,K,S)|τ̂ with T (d) ≤ T (d′). Lemma 11c) then yields

|ρ(Γ)− ρ(Γ′′)| ≤ ν ′Γ′′ ·max{
√

||Γ− Γ′′||, ||Γ− Γ′′||} (4.28)

for a constant ν ′Γ′′ > 0 depending on Γ′′, when ||Γ − Γ′′|| is small enough. Similar to the previous

arguments, we obtain by Theorem 6 and Lemma 11c) that this constant ν ′Γ′′ converges also to a

constant ν ′′Γ as Γ′ → Γ, and so

|ρ(Γ)− ρ(Γ′′)| ≤ 2 · ν ′′Γ ·
√

max{MΓ · |K|, 1} · ||Γ− Γ′|| (4.29)

when ||Γ− Γ′|| < ǫ2,Γ for a small constant ǫ2,Γ > 0.

When T (d′) < T (d), then Γ′′ = (τ̂ , d′) = (τ, d′) by equivalence relation (3.1). Then Γ and Γ′′ are

from the same cost slice G(G,K,S)|τ with T (d′) < T (d). Lemma 11c) then yields

|ρ(Γ)− ρ(Γ′′)| ≤ ν ′′′Γ ·max{
√

||Γ− Γ′′||, ||Γ− Γ′′||} ≤ ν ′′′Γ ·
√

max{MΓ · |K|, 1} · ||Γ− Γ′|| (4.30)

for a constant ν ′′′Γ > 0 depending only on Γ, when ||Γ− Γ′|| < ǫ3,Γ for a small constant ǫ3,Γ > 0.

Inequalities (4.27), (4.29) and (4.30) together then imply Theorem 9, since |ρ(Γ)−ρ(Γ′)| ≤ |ρ(Γ)−
ρ(Γ′′)|+ |ρ(Γ′′)− ρ(Γ′)| and the arbitrary choice of Γ′.

This completes the proof of Theorem 9.

�

4.3 Hölder continuity of the PoA for special cost functions

Although Theorem 8 shows that the PoA map ρ(·) is not Lipschitz continuous on the whole game

space G(G,K,S), the differentiability results of Cominetti et al. [2020] seemingly suggest that the map

ρ(·) might be pointwise Lipschitz continuous (i.e., pointwise Hölder continuous with Hölder exponent

1) at each game Γ = (τ, d) whose cost functions τa(·) have strictly positive derivatives on the compact

interval [0, T (d)]. Theorem 12 confirms this.

Theorem 12. Consider an arbitrary game Γ = (τ, d) ∈ G(G,K,S).

a) If τa(x) is constant for all a ∈ A and x ∈ [0, T (d)], then there are a small ǫΓ > 0 and a Hölder

constant κΓ > 0 depending only on Γ such that |ρ(Γ) − ρ(Γ′)| < κΓ · ||Γ − Γ′|| for every game

Γ′ ∈ G(G,K,S) with ||Γ− Γ′|| < ǫΓ.

b) If τa(·) is continuously differentiable on [0, T (d)] and τ ′a(x) ≥ mΓ for all a ∈ A and x ∈ [0, T (d)]

for a constant mΓ > 0 depending only on Γ, then there are a small ǫΓ > 0 and a Hölder constant
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κΓ > 0 depending only on Γ such that |ρ(Γ)−ρ(Γ′)| < κΓ ·||Γ−Γ′|| for every game Γ′ ∈ G(G,K,S)
with ||Γ− Γ′|| < ǫΓ.

Proof. Proof of Theorem 12

Proof. Proof of Theorem 12a): Assume that τa(x) ≡ τa(0) for all a ∈ A and x ∈ [0, T (d)]. Trivially,

the cost functions τa(·) are Lipschitz continuous on [0, T (d)] with Lipschitz constant MΓ = 1.

Let Γ′ = (σ, d′) ∈ G(G,K,S) be an arbitrary game. Define an auxiliary cost function vector

τ̂ = (τ̂a)a∈A with τ̂a(x) := τa(0) for all a ∈ A and x ∈ [0,∞). Let Γ′′ = (τ̂ , d′) be the corresponding

auxiliary game. Then ρ(Γ) = ρ(Γ′′) = 1, inequality (4.25) holds and Γ′′ → Γ as ||Γ− Γ′|| → 0.

Lemma 10a) and (4.25) yield that

|C∗(Γ′′)− C∗(Γ′)| < |A| · T (d′) · (|K| + 1) · ||Γ− Γ′|| ≤ 2 · |A| · T (d) · (|K| + 1) · ||Γ− Γ′|| (4.31)

when T (d′) ≤ 2 · T (d).
Let f̃ and g̃ be a WE flow of Γ′′ = (τ̂ , d′) and a WE flow of Γ′ = (σ, d′), respectively. We then have

C̃(Γ′)− C̃(Γ′′) = C(Γ′, g̃)− C(Γ′′, f̃) =
∑

a∈A

σa(g̃a) · g̃a −
∑

a∈A

τa(0) · f̃a

≤
∑

a∈A

(
σa(g̃a)− τa(0)

)
· f̃a ≤ |A| · T (d′) · ||Γ′ − Γ|| < 2 · |A| · T (d) · (|K|+ 1) · ||Γ− Γ′||

(4.32)

when T (d′) ≤ 2 · T (d). Inequalities (4.31) and (4.32) together imply that

0 ≤ ρ(Γ′)− ρ(Γ) = ρ(Γ′)− ρ(Γ′′) =
C̃(Γ′)

C∗(Γ′)
− C̃(Γ′′)

C∗(Γ′′)

≤ C̃(Γ′′) + 2 · |A| · T (d) · (|K| + 1) · ||Γ− Γ′||
C∗(Γ′′)− 2 · |A| · T (d) · (|K| + 1) · ||Γ− Γ′|| −

C̃(Γ′′)

C∗(Γ′′)

<
8 · |A| · T (d) · (|K| + 1)

C∗(Γ)
· ||Γ− Γ′||

(4.33)

when ||Γ − Γ′|| is small. Here, we notice that T (d′) < 2 · T (d) holds when ||Γ − Γ′|| is small. This

completes the proof of Theorem 12a).

Proof. Proof of Theorem 12b): Assume now that τa(·) is continuously differentiable on [0, T (d)] and

τ ′a(x) ≥ mΓ for all a ∈ A and x ∈ [0, T (d)] for a constant mΓ > 0 depending only on Γ. Trivially, τa(·)
is Lipschitz continuous on [0, T (d)] with Lipschitz constant MΓ := maxb∈Amaxx∈[0,1] τ ′b(x) ≥ mΓ > 0

for each arc a ∈ A.

Let Γ′ = (σ, d′) ∈ G(G,K,S) be an arbitrary game. Define an auxiliary cost function vector τ̂ with

τ̂a(x) := τa(x) ∀a ∈ A ∀x ∈ [0, T (d′)] (4.34)
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when T (d) ≥ T (d′), and

τ̂a(x) :=







τa(x) if x ≤ T (d)

τa(T (d)) + τ ′a(T (d)) · (x− T (d)) if x ∈ (T (d), T (d′)]

∀a ∈ A ∀x ∈ [0, T (d′)] (4.35)

when T (d′) > T (d). Denote by Γ′′ the game (τ̂ , d′). Then the cost functions τ̂a are continuously

differentiable on [0, T (d′)], and 0 < mΓ ≤ mina∈A,x∈[0,T (d′)] τ̂
′
a(x) ≤ maxa∈A,x∈[0,T (d′)] τ̂

′
a(x) ≤ MΓ.

Similar to (4.25), we have

||Γ′′ − Γ′|| = ||σ|T (d′) − τ̂|T (d′)||∞ ≤ ||Γ− Γ′||+MΓ · |T (d′)− T (d)| ≤ (1 +MΓ · |K|) · ||Γ− Γ′||

||Γ− Γ′′|| = max{||d − d′||∞, ||τ|T (d) − τ̂|T (d′)||∞} ≤ ||Γ− Γ′||+MΓ · |T (d′)− T (d)|

≤ (1 +MΓ · |K|) · ||Γ− Γ′||.

(4.36)

Lemma 10a) and inequality (4.36) then yield

|C∗(Γ′′)−C∗(Γ′)| < |A| · T (d′) · (MΓ · |K|+1) · ||Γ−Γ′|| ≤ 2 · |A| · T (d) · (MΓ · |K|+1) · ||Γ−Γ′||, (4.37)

when ||Γ−Γ′|| is small, since the cost functions τ̂a are Lipschitz continuous on [0, T (d′)] with Lipschitz

constant MΓ, and since both Γ′ = (σ, d′) and Γ′′ = (τ̂ , d′) are from the same demand slice G(G,K,S)|d′ .
Let f̃ and g̃ be a WE flow of Γ′′ and a WE flow of Γ′, respectively. Lemma 10c) and Lemma 1b)

together yield that

0 ≤
∑

a∈A

τ̂a(f̃a) · (g̃a − f̃a) ≤
∑

a∈A

τ̂a(g̃a) · (g̃a − f̃a) ≤ |A| · T (d′) · ||Γ′ − Γ′′||,

0 ≤
∑

a∈A

σa(g̃a) · (f̃a − g̃a) ≤
∑

a∈A

σa(f̃a) · (f̃a − g̃a) ≤ |A| · T (d′) · ||Γ′ − Γ′′||,
(4.38)

which in turn implies that

0 ≤
∑

a∈A

(τ̂a(f̃a)−σa(g̃a)) · (g̃a − f̃a) ≤
∑

a∈A

(τ̂a(g̃a)−σa(f̃a)) · (g̃a − f̃a) ≤ 2 · |A| ·T (d′) · ||Γ′ −Γ′′||. (4.39)

Inequalities (4.39) and (4.36) imply that

0 ≤ mΓ ·
∑

a∈A

|g̃a − f̃a|2 ≤
∑

a∈A

(
τ̂a(g̃a)− τ̂a(f̃a)

)
·
(
g̃a − f̃a

)

≤
∑

a∈A

(τ̂a(g̃a)− σa(g̃a)) · (g̃a − f̃a) ≤ ||Γ′ − Γ′′|| ·
∑

a∈A

|g̃a − f̃a|

≤ (1 + |K| ·MΓ) · ||Γ′ − Γ|| ·
∑

a∈A

|g̃a − f̃a|

≤ (1 + |K| ·MΓ) · ||Γ′ − Γ|| ·
√

∑

a∈A

|g̃a − f̃a|2.

(4.40)
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Inequality (4.40) yields immediately that

|τ̂a(f̃a)− τ̂a(g̃a)| ≤
MΓ · (1 + |K| ·MΓ)

mΓ
· ||Γ′ − Γ|| ∀a ∈ A. (4.41)

We then obtain by (4.36), (4.38) and (4.41) that

∣
∣C̃(Γ′)−C̃(Γ′′)

∣
∣ =

∣
∣
∑

a∈A

(
σa(g̃a) · g̃a − τ̂a(f̃a) · f̃a

)∣
∣

=
∣
∣
∑

a∈A

(
σa(g̃a)− τ̂a(g̃a)

)
· g̃a +

∑

a∈A

(
τ̂a(g̃a) · g̃a − τ̂a(f̃a) · f̃a

)∣
∣

=
∑

a∈A

∣
∣σa(g̃a)− τ̂a(g̃a)

∣
∣ · g̃a +

∑

a∈A

∣
∣τ̂a(g̃a)− τ̂a(f̃a)

∣
∣ · g̃a +

∑

a∈A

τ̂a(f̃a) ·
(
g̃a − f̃a

)

≤ 2 · |A| · T (d′) · ||Γ′ − Γ′′||+ |A| · T (d′) · MΓ · (1 + |K| ·MΓ)

mΓ
· ||Γ′ − Γ||

< 2 ·
(

2 +
MΓ

mΓ

)

· |A| · T (d) · (1 + |K| ·MΓ) · ||Γ′ − Γ||

(4.42)

when ||Γ− Γ′|| is small.

Inequalities (4.37) and (4.42) together then give

|ρ(Γ′)− ρ(Γ′′)| <
4 + 4 ·

(
2 + MΓ

mΓ

)
· ρ(Γ)

C∗(Γ)
· |A| · T (d) · (1 + |K| ·MΓ) · ||Γ′ − Γ|| (4.43)

when ||Γ− Γ′|| is small.

By an argument similar with that for Lemma 11, we obtain that

|C̃(Γ)− C̃(Γ′′)| ≤ 2 ·
(

2 +
MΓ

mΓ

)

· |A| · T (d) · (1 + |K| ·MΓ) · ||Γ′ − Γ||

+ 2 · |A| · τmax(T (d)) · |K| · (1 + |K| ·MΓ) · ||Γ′ − Γ||,
(4.44)

when ||Γ − Γ′|| is small, where τmax(T (d)) := maxa τa(T (d)). Here, we use (4.42) instead of (4.15).

Moreover, Lemma 11b) yields that

|C∗(Γ)− C∗(Γ′′)| < 4 ·
(
|A| · |K| · τmax(T (d)) + |A| · T (d) ·MΓ1

)
· (1 + |K| ·MΓ) · ||Γ′ − Γ|| (4.45)

when ||Γ− Γ′|| is small. Inequalities (4.44) and (4.45) imply that

|ρ(Γ)− ρ(Γ′′)| < νΓ(MΓ,mΓ, T (d), τmax(T (d))) · ||Γ− Γ′|| (4.46)

when ||Γ− Γ′|| is small. Here νΓ(MΓ,mΓ, T (d), τmax(T (d))) > 0 is a constant depending only on MΓ,

mΓ, T (d), and τmax(T (d)) of Γ.

Inequalities (4.43) and (4.46) together imply Theorem 12b).

This completes the proof of Theorem 12.
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We have been able to obtain a stronger Hölder exponent in Theorem 12a)–b) since we no longer

need Lemma 1c) in the Hölder continuity analysis of the PoA on demand slices when the cost functions

are constants or have strictly positive first-order derivatives. For constant cost functions, we have used

inequality (4.32) instead of Lemma 1c). For cost functions with strictly positive first-order derivatives,

we have used inequalities (4.39)–(4.42) instead. Unfortunately, these inequalities do not hold for

arbitrary Lipschitz continuous cost functions on [0, T (d)]. So far, we are still lack a unified technique

to replace Lemma 1c) in the Hölder analysis of the PoA on demand slices with arbitrary Lipschtiz

continuous cost functions on [0, T (d)].

4.4 Open questions

We have shown for Lipschitz continuous cost functions on [0, T (w)] that the PoA is pointwise Hölder

continuous with Hölder exponent 1
2 on a demand slice G(G,K,S)|w , see Lemma 10d). At present, we

are unable to improve this exponent, since we need Lemma 1c) to bound |C(Γ1, f̃)−C(Γ2, g̃)| for two
games Γ1 = (π(1), w) and Γ2 = (π(2), w) from the same demand slice G(G,K,S)|w , see (4.9), and since

both Lemma 1c) and the upper bound on the approximation threshold in Lemma 10c) are tight, see

Example 2 and Remark 4.2. Hence, it is unclear to us if the exponent 1
2 is tight for arbitrary Lipschitz

continuous cost functions on [0, T (w)]. We leave this as an open question.

Open Question 4.1. Is the Hölder exponent 1
2 in Lemma 10d) tight for Lipschitz continuous cost

functions on [0, T (w)]?

Although we can neither affirm nor negate this question, there is some evidence for a negative

answer. Both Example 2 and Remark 4.2 have only used constant cost functions or polynomial

cost functions with strictly positive first-order derivatives, for which we have shown an improved

Hölder exponent in Theorem 12. Hence, cost functions making Lemma 1c) tight need not make the

approximation threshold upper bound in Lemma 10c) tight, and vice versa. Nonetheless, it will be

challenging to show an improved Hölder exponent for arbitrary Lipschitz continuous cost functions

on [0, T (w)]. This will require an alternative approach to bound |C(Γ1, f̃) − C(Γ2, g̃)|, even different

from our special approaches for cost functions that are constants or have strictly positive first-order

derivatives in Section 4.3.

Theorem 12 implies directly that the upper derivative

Dρ(Γ) := limΓ′→Γ
|ρ(Γ′)− ρ(Γ)|

||Γ′ − Γ|| (4.47)

of the PoA map ρ(·) at a game Γ = (τ, d) exists and is bounded from above by a finite Hölder constant

κΓ > 0 when the cost functions τa(·) have strictly positive derivatives on the compact interval [0, T (d)].

While Cominetti et al. [2020] obtained a stronger differentiability result of the resulting PoA function
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on a cost slice G(G,K,S)|τ for networks with one O/D pair, we are unable to generalize their result to

the whole game space G(G,K,S) on networks with multiple O/D pairs, as our PoA map ρ(·) is not an
ordinary real-valued function, but a functional on the game space G(G,K,S). In particular, it is also

unclear to us under which conditions the upper derivative Dρ(Γ) coincides with the lower derivative

Dρ(Γ) := limΓ′→Γ

|ρ(Γ′)− ρ(Γ)|
||Γ′ − Γ|| , (4.48)

although it is clear that 0 ≤ Dρ(Γ) ≤ Dρ(Γ). We leave this also as an open question.

Open Question 4.2. Which condition on Γ = (τ, d) implies that Dρ(Γ) = Dρ(Γ)?

Addressing Open Question 4.2 on the game space G(G,K,S) might be too ambitious due to

the extremely complicated structure of its topology. Inspired by Patriksson [2004], Josefsson and

Patriksson [2007], Lu [2008], and Klimm and Warode [2021], a promising first step is to consider the

differentiability of the PoA on a particular subspace of G(G,K,S) that can be parameterized and is

homomorphic to some finite dimensional Euclidean space. Then classic Calculus techniques for finite

dimensional Euclidean spaces apply. This may facilitate the differentiability analysis of the PoA.

Nevertheless, we will not continue this direction in the current paper, and would like to leave it for

future work.

5 An application to the convergence rate of the PoA

As an application of our Hölder continuity results, we now demonstrate that they help to analyze

the convergence rate of the PoA in non-atomic congestion games for both growing and decreasing

demands.

The convergence analysis of the PoA investigates the limit of the PoA sequence
(
ρ(Γn)

)

n∈N
of

a sequence (Γn)n∈N of games when all components Γn = (τ, d(n)) belong to the same cost slice

G(G,K,S)|τ and the total demand T (d(n)) tends to zero or infinity, i.e., limn→∞ T (d(n)) = 0 or ∞.

When limn→∞ ρ(Γn) = 1 for an arbitrary sequence (Γn)n∈N ∈ G(G,K,S)N|τ with limn→∞ T (d(n)) = ∞,

then we say that the cost slice G(G,K,S)|τ behaves well for growing demands. Notice that this notion

has been introduced by Colini-Baldeschi et al. [2016] and corresponds to the notion of asymptotically

well designed introduced by Wu et al. [2021].

Similarly, when limn→∞ ρ(Γn) = 1 for an arbitrary sequence (Γn)n∈N ∈ G(G,K,S)N|τ with limn→∞ T (d(n)) =

0, then we say that the cost slice G(G,K,S)|τ behaves well for decreasing demands. In particular, the

cost slice G(G,K,S)|τ is said to behave well in limits when it behaves well for both decreasing and

growing demands. When a cost slice G(G,K,S)|τ behaves well in limits, then the PoA map ρ(·) has
a tight and finite upper bound on G(G,K,S)|τ , although the cost slice G(G,K,S)|τ is not compact

w.r.t. the topology from Section 3. This follows since the PoA is continuous and thus has a tight and
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finite upper bound on each compact subspace {Γ′ = (τ, d) ∈ G(G,K,S)|τ : N1 ≤ ||d||∞ ≤ N2} of the

cost slice G(G,K,S)|τ for two arbitrary positive reals N1 and N2 with N1 < N2.

5.1 The state of the art

Recent results by Colini-Baldeschi et al. [2017, 2020] and Wu et al. [2021] have already shown that

every cost slice G(G,K,S)|τ with regularly varying (Bingham et al. [1987]) cost functions behaves well

for growing demands. This applies directly to cost slices G(G,K,S)|τ with cost functions τa(·) that

are arbitrary polynomials, arbitrary logarithms, or products of polynomials and logarithms, and thus

confirms the earlier observed convergence of the empirical PoA for growing demands by Youn et al.

[2008]; Harks et al. [2015]; O’Hare et al. [2016] and Monnot et al. [2017].

When the cost functions τa(·) are of the form τa(x) =
∑

n∈N ξa,n · xn for each a ∈ A and each

x ∈ [0,∞), then Colini-Baldeschi et al. [2017, 2020] have shown that limn→∞ ρ(Γn) = 1 for each

sequence (Γn)n∈N ∈ G(G,K,S)N|τ with a demand sequence (d(n))n∈N satisfying limn→∞ T (d(n)) = 0

and the condition that

lim
n→∞

d
(n)
k

T (d(n))
> 0 ∀k ∈ K. (5.1)

This is presently the only known convergence result for decreasing demands.

For polynomial cost functions τa(·) and a sequence (Γn)n∈N of games Γn = (τ = (τa)a∈A, d
(n))

satisfying the condition that

d
(n)
k

T (d(n))
=: dk > 0 ∀k ∈ K ∀n ∈ N, (5.2)

Colini-Baldeschi et al. [2017, 2020] have shown further that ρ(Γn) = 1+O( 1
T (d(n))

) when limn→∞ T (d(n)) =

∞, and that ρ(Γn) = 1+O(T (d(n))) when limn→∞ T (d(n)) = 0. Here, the rate dk in (5.2) is a constant

independent of n for each O/D pair k ∈ K.

With a different technique, Wu et al. [2021] have shown that condition (5.2) can be removed when

the cost functions possess certain good properties. In particular, they proved that ρ(Γ) = 1+ o( 1
T (d)β

)

for each game Γ = (τ, d) ∈ G(G,K,S)|τ when the total demand T (d) of the game Γ is large and the cost

functions τa(·) are of the BPR type (Bureau of Public Roads [1964]) and have the same degree β > 0.

Moreover, Wu et al. [2021] have illustrated on an example game Γ = (τ, d) with BPR cost functions

that the rate at which ρ(Γ) converges to 1 depends crucially on the growth pattern of the demands.

For each constant exponent θ ∈< β +1, 2 · β >, there is a game sequence (Γn)n∈N ∈ G(G,K,S)N|τ such

that limn→∞ T (d(n)) = ∞ and ρ(Γn) = 1+Θ( 1
T (d(n))θ

) for large n. Here, < v1, v2 > denotes the closed

interval [min{v1, v2},max{v1, v2}] for arbitrary two real numbers v1 and v2. This negates a conjecture

proposed by O’Hare et al. [2016].
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5.2 Convergence rates of the PoA for decreasing demands

Consider now a vector τ = (τa)a∈A of cost functions τa(·) that are defined on the unbounded interval

[0,∞), strictly positive and Lipschitz continuous on a compact interval [0, b] with Lipschitz constant

Mτ > 0 for a constant b ∈ (0,∞). We now show with Theorem 12a) that the cost slice G(G,K,S)|τ of

τ behaves well for decreasing demands.

Let σa(x) ≡ τa(0) > 0 for each a ∈ A and x ∈ [0,∞). For each game Γ = (τ, d) ∈ G(G,K,S)|τ ,
we define an auxiliary game Γ′ := (σ, d

T (d)) ∈ G(G,K,S). Clearly, ρ(Γ′) ≡ 1 for an arbitrary demand

vector d, since the cost functions σa(·) are constant. By (3.3), we obtain that

||Γ′ − ΛT (d)(Γ)|| = max
a∈A,x∈[0,1]

|τa(T (d) · x)− σa(x)| = max
a∈A

|τa(T (d)) − τa(0)| ≤ Mτ · T (d)

when T (d) ≤ b. Here, we use that ΛT (d)(Γ) ∈ G(G,K,S) is the game resulting from the demand

normalization to Γ with factor T (d), and that both ΛT (d)(Γ) and Γ′ are from the same demand slice

G(G,K,S)| d
T (d)

and so have the same total demand T ( d
T (d)) = 1.

Let τmin(0) := mina∈A τa(0) > 0. Then C∗(Γ′) ≥ τmin(0) for every demand vector d of Γ, since Γ′

has the total demand T ( d
T (d)) = 1. Inequality (4.33) then applies and yields

|ρ(Γ′)− ρ(Γ)| = |ρ(ΛT (d)(Γ))− ρ(Γ′)| = ρ(ΛT (d)(Γ))− 1 ≤ 8 · |A| · (|K| + 1)

τmin(0)
·Mτ · T (d)

when T (d) is small, which tends to 0 as T (d) → 0. Here, we use that both the lower bound τmin(0) of

the SO cost C∗(Γ′) and the total demand T ( d
T (d)) (≡ 1) of the game Γ′ do not depend on the demand

vector d of Γ though the game Γ′ does, and that the pointwise Hölder constant in (4.33) depends only

on the SO cost and the total demand, and is thus bounded from above by the constant 8·|A|·(|K|+1)
τmin(0)

independent of the demand vector d of Γ.

Hence, G(G,K,S)|τ behaves well for decreasing demands. We summarize in Corollary 5.1.

Corollary 5.1. Consider an arbitrary vector τ = (τa)a∈A of cost functions τa(·) that are defined on the

unbounded interval [0,∞), strictly positive and Lipschitz continuous on a compact interval [0, b] with

Lipschitz constant Mτ > 0 for a constant b ∈ (0,∞). Then ρ(Γ) ≤ 1+ 8·Mτ ·|A|·(|K|+1)
τmin(0)

·Mτ ·T (d) for every
game Γ = (τ, d) ∈ G(G,K,S)|τ when the total demand T (d) is small and τmin(0) := mina∈A τa(0) > 0.

In particular, the cost slice G(G,K,S)|τ behaves well for decreasing demands.

Corollary 5.1 and the convergence results in Wu et al. [2021] imply immediately for every slice

G(G,K,S)|τ whose cost functions τa(·) are strictly positive, differentiable and regularly varying that

the PoA behaves well in limits. Theorem 6 then implies that the PoA has a finite and tight upper

bound on each of these cost slices G(G,K,S)|τ . In particular, Corollary 5.1 and Wu et al. [2021]

together confirm the observed behavior of the empirical PoA for Beijing traffic data, which starts at
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1, then increases at a relatively mild rate with growing total demand, and eventually decays rapidly

to 1 after the total demand reaches a certain threshold, see Wu et al. [2021].

5.3 Convergence rates of the PoA for growing demands

Colini-Baldeschi et al. [2017, 2020] have demonstrated that the PoA may diverge for growing total

demand when the cost functions are not regularly varying. Wu et al. [2021] showed the convergence

of the PoA to 1 for growing total demand for arbitrary regularly varying cost functions, but concrete

convergence rates of the PoA for arbitrary regularly varying cost functions (other than polynomials)

are still missing. Our Hölder continuity results prove to be very helpful here and yield the first

convergence rate for growing total demand for certain regularly varying cost functions that are not

polynomials.

Consider a vector τ = (τa)a∈A of regularly varying cost functions τa(·) that have the same regular

variation index β > 0 and satisfy the condition

lim
T→∞

τa(T )

τb(T )
=: λa,b ∈ (0,∞) ∀a, b ∈ A. (5.3)

Karamata’s Characterization Theorem (Bingham et al. [1987]) yields that these cost functions τa(·)
have the form τa(x) = Qa(x) · xβ for a (slowly varying) function Qa(x) satisfying the condition that

limT→∞
Qa(T ·x)
Qa(T ) = 1 for all x > 0. Condition (5.3) then implies that limT→∞

Q(T )
Qb(T ) = λa,b for all

a, b ∈ A.

Consider now an arbitrary game Γ = (τ, d) from the cost slice G(G,K,S)|τ of τ, and an arbitrary

arc b ∈ A. Then ρ(Γ) = ρ(Γ̂) when Γ̂ := (τ̂ , d
T (d)) with τ̂a(x) :=

τa(T (d)·x)
τb(T (d)) for all a ∈ A and all x ∈ [0, 1].

This holds since Γ̂ = Ψτb(T (d)) ◦ ΛT (d)(Γ).

Consider the auxiliary cost function vector σ = (σa)a∈A with

σa(x) := λa,b · xβ ∀(a, x) ∈ A× [0, 1],

and put Γ′ := (σ, d
T (d) ). Then ρ(Γ′) ≡ 1, as the cost functions of Γ′ are monomials of the same degree

β, see, e.g., Wu et al. [2021] and Roughgarden and Tardos [2002].

Both Γ′ and Γ̂ belong to the same cost slice G(G,K,S)| d
T (d)

and have the same total demand

T ( d
T (d) ) ≡ 1. Moreover, C∗(Γ′) ≥ mina∈A λa,b > 0 and σa′(x) is Lipschitz continuous on the compact

interval [0, 1] with Lipschitz constant β ·maxa∈A λa,b for all a
′ ∈ A.
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Lemma 10d) then applies and yields that

|ρ(Γ)−ρ(Γ′)| = |ρ(Γ̂)− ρ(Γ′)|

≤ 2 ·
ρ(Γ′) +

√

|A| · T ( d
T (d)) · β ·maxa∈A λa,b + 2

C∗(Γ′)
· |A| · T ( d

T (d)
) ·

√

||Γ̂− Γ′||

≤ 2 · 1 +
√
|A| · β ·maxa∈A λa,b + 2

mina∈A λa,b
· |A| ·

√

||Γ̂− Γ′||

(5.4)

when ||Γ̂− Γ′|| ≤ C∗(Γ′)
2·|A| . Here, we have used that

||Γ̂− Γ′|| = ||τ̂|1 − σ|1||∞ = max
a∈A,x∈[0,1]

|τ̂a(x)− σa(x)|

= max
a∈A,x∈[0,1]

∣
∣
Qa(T (d) · x)
Qb(T (d))

· xβ − λa,b · xβ
∣
∣ =: w(T (d)) (5.5)

= max
a∈A,x∈[0,1]

∣
∣
Qa(T (d))

Qb(T (d))
· Qa(T (d) · x)

Qa(T (d))
− λa,b

∣
∣ · xβ

≤ max
a∈A,x∈[0,1]

∣
∣
Qa(T (d))

Qb(T (d))
− λa,b

∣
∣ · Qa(T (d) · x)

Qa(T (d))
· xβ + max

a∈A,x∈[0,1]

∣
∣
Qa(T (d) · x)
Qa(T (d))

− 1
∣
∣ · λa,b · xβ,

which tends to 0 as T (d) → ∞. Hence, ρ(Γ) → 1 as T (d) → ∞, since ρ(Γ′) ≡ 1.

Inequalities (5.4) and (5.5) show that the convergence rate of ρ(Γ) depends heavily on the properties

of the functions Qa(x). As an example, we assume now that these factors Qa(x) are of the form

ζa · lnα(x+ 1), ζa > 0, α ≥ 0. (5.6)

Then we obtain by (5.4) that

||Γ′ − Γ̂|| = w(T (d)) = max
a∈A,x∈[0,1]

∣
∣
Qa(T (d) · x)
Qb(T (d))

· xβ − λa,b · xβ
∣
∣

= max
a∈A,x∈[0,1]

λa,b ·
(

xβ −
( ln(T (d) · x+ 1)

ln(T (d) + 1)

)α · xβ
)

≤ max
a∈A,x∈[0,1]

λa,b ·
α

β
· T (d) · x

β+1

T (d) · x+ 1
· ln

α−1(T (d) · x+ 1)

lnα(T (d) + 1)

≤ α

β
· T (d)

T (d) + 1
· 1

ln(T (d) + 1)
·max
a∈A

λa,b

and thus ρ(Γ) = 1 +O(
√

1
ln(T (d)+1) ). This follows since β > 0 and the function

xβ −
( ln(T (d) · x+ 1)

ln(T (d) + 1)

)α
· xβ, x ∈ [0, 1],

reaches its maximum at a point x ∈ [0, 1] satisfying the equation

lnα(T (d) + 1)− lnα(T (d) · x+ 1) =
α

β
· T (d) · x
T (d) · x+ 1

· lnα−1(T (d) · x+ 1).
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We summarize this in Corollary 5.2.

Corollary 5.2. Consider an arbitrary cost function vector τ = (τa)a∈A s.t. all cost functions τa(·)
are regularly varying with the same regular variation index β > 0 and satisfy the condition in equation

(5.3).

a) The resulting cost slice G(G,K,S)|τ behaves well for growing demands, and ρ(Γ) = 1+O(
√

w(T (d)))

with the upper bound w(T (d)) defined in (5.5) for each game Γ = (τ, d) ∈ G(G,K,S)|τ with a

large total demand T (d).

b) For cost functions τa(x) = ζa · xβ · lnα(x+ 1), a ∈ A, the PoA is ρ(Γ) = 1 +O(
√

1
ln(T (d)+1) ) for

each game Γ = (τ, d) ∈ G(G,K,S)|τ with a large total demand T (d). Here, α > 0 and ζa > 0 are

arbitrary constants independent of the demand vector d.

Condition (5.5) actually means that both the regularly varying cost functions τa(·) and the slowly

varying functions Qa(·) are mutually comparable, i.e., both limT→∞
τa(T )
τb(T ) and limT→∞

Qa(T )
Qb(T ) exist for

any two a, b ∈ A. These cost functions in Corollary 5.2 can then be thought of as a generalization of

the BPR cost functions qa · xβ + pa, when we substitute the positive constant factors qa by mutually

comparable and slowing varying functions Qa(·). However, this generalization comes at the price of a

weaker convergence rate of the PoA.

6 Summary and future work

This paper presents the first sensitivity analysis for the PoA in non-atomic congestion games when

both the demands and cost functions may change. To achieve this, we have introduced a topology and

a metric on the class of games with the same combinatorial structure, which may also be of use for

other research purposes. The PoA, the SO cost, and the WE cost turned out to be continuous maps

w.r.t. that topology, see Theorem 6. Their dependence on a small variation of the demands and/or

Lipschitz continuous cost functions is thus small. With the metric, we have quantified the variation

of the PoA when demands and cost functions change simultaneously.

This has led to an analysis of the Hölder continuity of the PoA map ρ(·) on the game space. We

have shown first that the map ρ(·) is not uniformly Hölder continuous on the whole game space, and

that the Hölder neighborhood of each game is a proper subset of the game space, see Theorem 8. So

the PoA can in general only be pointwise and locally Hölder continuous. For each game Γ = (τ, d) with

cost functions τa(·) that are Lipschitz continuous on the compact interval [0, T (d)], we have shown in

Theorem 9 that the PoA map ρ(·) is pointwise Hölder continuous at Γ with Hölder exponent 1
2 , i.e.,

there are constants κΓ, ǫΓ > 0 depending only on Γ such that |ρ(Γ′)− ρ(Γ)| < κΓ ·
√

||Γ′ − Γ|| for each
game Γ′ with ||Γ′ − Γ|| < ǫΓ. When the cost functions τa(·) have stronger properties, e.g., when they

are constant or have strictly positive derivatives on the compact interval [0, T (d)], we have shown in
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Theorem 12a)–b) that the PoA map ρ(·) then has the stronger Hölder exponent 1 at the game Γ,

which is of the same order as in the recent results by Englert et al. [2010], Takalloo and Kwon [2020]

and Cominetti et al. [2020] for demand changes.

Finally, we have applied our results to analyze the convergence behavior of the PoA when the

total demand T (d) tends to 0 or ∞. We showed that the PoA tends to 1 at a rate of O(T (d)) for

decreasing total demand T (d) when the cost functions are strictly positive and Lipschitz continuous

within a small neighborhood around the origin 0, and identified a class of non-polynomial regularly

varying cost functions for which the PoA tends to 1 at a rate of O(
√

1/ ln(T (d) + 1)) for growing total

demand. These complement recent results on the convergence rate by Colini-Baldeschi et al. [2017,

2020] and Wu et al. [2021].

Theorem 9 yields the Hölder exponent 1
2 for the PoA at games Γ = (τ, d) whose cost functions

are Lipschitz continuous on the compact interval [0, T (d)]. We conjecture that this exponent should

be 1, but could only confirm this in Theorem 12 for games Γ = (τ, d) with cost functions τa(·) that

are constant or have strictly positive derivatives on [0, T (d)]. We have neither been able to confirm

this, nor to provide a counterexample for games Γ = (τ, d) with cost functions τa(·) that are Lipschitz
continuous on [0, T (d)].

This is closely related to Open Question 4.1, which concerns the tightness of the Hölder exponent

1
2 for Lemma 10d). We guess that the exponent 1

2 is not tight for Lemma 10d). However, we cannot

confirm this at present, and thus leave it as a topic for future research.

Open Question 4.2 is another interesting topic for future work, which may further develop the

results obtained by Cominetti et al. [2020], Patriksson [2004]; Josefsson and Patriksson [2007], Lu

[2008] and Klimm and Warode [2021] for the differentiability of the PoA and Wardrop equilibria in

non-atomic congestion games.
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Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors, Algorithmic game theory, pages 443–459.

Cambridge University Press, Cambridge, 2007.

W. H. Sandholm. Potential games with continuous player sets. Journal of Economic Theory, 97:

81–108, 2001.

David Schmeidler. Equilibrium points of nonatomic games. Journal of Statistical Physics, 7(4):295–

300, 1973.

M. J. Smith. The existence, uniqueness and stability of traffic equilibria. Transportation Research

Part B Methodological, 13(4):295–304, 1979.

Mahdi Takalloo and Changhyun Kwon. Sensitivity of wardrop equilibria: Revisited. Optimization

Letters, 14(3):781–796, 2020.

J. G. Wardrop. Some theoretical aspects of road traffic research. Proceedings of the Institution of

Civil Engineers, Part II, 1:325–378, 1952.
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