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Abstract

Non-negative matrix factorisation (NMF) is primarily a linear dimensionality reduc-

tion technique that factorizes a non-negative data matrix into two smaller non-negative

matrices: one that represents the basis of the new subspace and the second that holds



the coefficients of all the data-points in that new space. In principle, the non-negativity

constraint forces the representation to be sparse and parts based. Instead of extracting

holistic features from the data, real parts are extracted that should be significantly eas-

ier to interpret and analyse. The size of the new subspace selects how many features

will be extracted from the data. An effective choice should minimise the noise whilst

extracting the key features. We propose a mechanism for selecting the subspace size

by using a minimum description length technique. We demonstrate that our technique

provides plausible estimates for real data as well as accurately predicting the known

size of synthetic data. We provide an implementation of our code in a Matlab format.

1 Introduction

1.1 Non-negative Matrix Factorization

Consider a data matrix V ∈ R
m×n with m dimensions and n data points which has

only non-negative elements. If we define two matrices, also with only non-negative

elements: W ∈ R
m×r and H ∈ R

r×n, then non-negative matrix factorisation (NMF)

can reduce the dimensionality of V through the approximation:

V ≈ WH (1)

where, generally, r < n and r < m.

The columns of W make up the new basis directions of the dimensions we are

projecting onto. Each column of H represents the coefficients of each data point in this

new subspace.
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There has been a considerable increase in interest in NMF since the publication of

a seminal work by Lee and Seung (1999) in part because NMF tends to, naturally,

produce a sparse and parts based representation of the data. This sparse and parts based

representation is in contrast to other dimensionality reduction techniques such as prin-

cipal component analysis which tends to produce a holistic representation. The parts

should represent features of the data, therefore NMF can produce a representation of

the data by the addition of extracted features. This representation may be considerably

more interpretable than more holistic approaches.

There are a range of algorithms to conduct NMF most of them involving minimising

an objective function such as:

min ||V − WH||2Fro subject to Wi,j ≥ 0, Hi,j ≥ 0.

Other objective functions such as the Kullbeck-Leibler divergence are also options. All

the popular algorithms rely on a pre-chosen value of r, the size of the new subspace.

In NMF the size of the subspace has real meaning: it selects the number of features

extracted. If r is chosen too low we are likely to miss features and if r is chosen too

large then we will probably model noise. A good choice of r then reduces the noise in

the data whilst effectively modelling the key features.

1.2 Rank Selection in Non-negative Matrix Factorization

In a recent review Gillis (2014) put forward three main methods for selection of r:

use of expert insight; trial and error; and use of singular value decomposition. Expert

insights are invaluable but suffer for three main reasons: 1) there may be no expert

capable of selecting a good choice of r; 2) the experts may select r incorrectly; 3) even
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if an expert is able to effectively select r then independent confirmation is useful to add

weight to the expert opinion.

Trial and error in this context means trying different values of r and then manual

selection of one that best fits the aim of the researcher for that particular application.

This method suffers as it is hard to know what a “good” solution looks like. Trial and

error can be dangerous in that it allows researchers to tune their results in a manner

which produces the solution best for their work, so that a “good” solution becomes the

solution that confirms their hypothesis.

Singular value decomposition is applied by selecting r when the values of the sin-

gular values becomes “small”. The challenge is that unless there is a clear fall towards

zero the choice of where the values become “small” is very difficult to make.

There are several more involved methods that have been proposed for the selection

of the rank. Examples include the use of cross-validation (Kanagal and Sindhwani ,

2010; Owen and Perry , 2009) and the use of Stein’s unbiased risk estimator (Ulfarsson

and Solo , 2013). Cross-validation, in particular, is a common technique across super-

vised learning for assessing the quality of a model. In NMF, an unsupervised model,

cross-validation essentially requires the imputation of missing data. There are different

techniques for achieving this and Kanagal and Sindhwani (2010) showed that these

different techniques can produce significantly different estimates of r or sometimes no

estimate at all.

There is also an approach to NMF by Blei (2010) using a Bayesian formulation

which offers the benefit of selecting r whilst finding W and H. They impose a prior

belief that the rank should be small and from there find a solution which fulfils this
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prior but this requires domain expertise to determine the choice of a good prior. Our

aim is to offer our approach as an additional method to help to guide a choice of r

for researchers using NMF, in particular when there is little or no domain knowledge

available.

1.3 Approach and Contribution

Our approach is to utilise a minimum description length (MDL) technique to find the

best trade-off between a low r which misses key features and a high r which models

noise. We suggest a pair of methods for applying MDL to NMF to assess the best choice

of r. Our algorithms, which are available in Matlab format, allow for the estimation of

the best value of r and can produce a range of graphs that can be used to analyse the

quality of the estimation.

In the next section we will introduce the background and theory behind MDL, we

then will propose our solution to find the minimum description length. In Section 3 we

apply our MDL technique to real and synthetic data demonstrating the validity of the

technique. Finally, in Section 4 we discuss the results we obtained and explain why we

believe our technique is a useful addition to the NMF toolbox.

2 Minimum Description Length

2.1 Background and theory

Minimum description length (MDL) is a method for selecting between models of vary-

ing complexity. At its core is the idea that the best model is one that compresses the
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data most effectively. As the best way of compressing the data would also involve the

smallest transmission cost when sending an encoded message, compression of the data

and transmitting the shortest message are essentially equivalent.

In the NMF case the message is the matrix V which is approximated using WH. The

model is simple when r is small and, consequently, W and H have few elements which

are cheap to encode. However, with a small r the approximation WH ≈ V is likely to be

poor, requiring an addition to the message to correct the poor approximation. The MDL

principle is to choose the model that minimises the total message length (Wallace and

Boulton , 1968). By trading off between the complexity and accuracy of the model, we

hope to find the level of complexity which minimises the transmission of noise whilst

maximising the transmission of real features.

There needs to be pre-agreement between the message transmitter and receiver

about the level of precision, δD, that the data, D, should be set to. The message must

be communicated to this agreed precision. This means the message will consist of the

model, H, and corrections to the model to reproduce the original data matrix exactly.

Therefore the message length, L(D,H), consists of two parts (MacKay , 2003):

L(D,H) = L(H) + L(D|H)

where L(H) is the length of the hypothesis, or the complexity of the model, and L(D|H)

encodes the accuracy of the model. More complex models will tend to have a larger

L(H) and a smaller L(D|H).

Two important points should be made here. First we are not interested in how to

actually optimally encode the message, we are only interested in the message length
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itself. Secondly, for model selection we are only interested in the relative length of

each message. Any additional pieces of information required in the message that are

consistent across all the different values of r are irrelevant in MDL because they will

increase the total description length by a constant amount and make no difference to

the location of the minimum. The only terms that matter are those that will be different

across different values of r. In other words, we are not interested in the message itself,

or the absolute cost of encoding the message, but in the relative cost of sending the

message at different values of r.

2.2 Proposed MDL Algorithm

To perform MDL to assess an appropriate subspace size for NMF we first must specify

the components of L(H) and L(D|H). The encoded length of the hypothesis, or the

complexity of the model, L(H) is L(W) + L(H) where L(W) and L(H) are the length

of messages required to encode the matrices W and H respectively. The L(D|H) term

is the length of the correction required to ensure that V can be reproduced exactly

(to pre-specified precision) and is the encoded length of the matrix of errors, L(E),

where E = V − WH. Implementation of MDL then requires the estimation of the

minimum length of code that would allow the three matrices E, W and H to be encoded

into a message. When r is small the matrices W and H are small and so cost relatively

little to encode, but the error matrix, E, is large and therefore expensive to encode.

As we increase r the errors reduce so the cost of transmitting E falls, but the cost of

transmitting the model, W and H, increases. At some point there should be an r value

at which the total length is minimised, this is then the minimum description length and
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gives us a choice for r.

The principle of MDL relies on the use of the best possible encoding of the data,

that is the encoding with the lowest cost. An upper bound on potential encodings can

be estimated by considering the information content of each element. In general, any

value which occurs multiple times is cheap to encode. To understand why, assume that

the values in the error matrix are Gaussian distributed, then many elements will fall into

a range that is close to the mean which can be assigned a short code. Any element far

from the mean will require a longer code and is therefore more expensive to send. The

Shannon information content allows us to estimate this cost using probabilities and is

defined as (MacKay , 2003):

h(x) = − log2 P (x)

where x is the value of an element and P (x) the probability of that value occurring.

The aim is to find the probability of a value occurring in the W, H and E matrices then

to convert that value to a cost using the Shannon information content.

To estimate the probabilities we separate the data into bins of width δD, which is the

precision of the data. This value should be assessed from the data itself. We then apply

two methods to estimate the probability of a term occurring in that bin. The first is to use

the frequency of terms in that bin, ni, compared to the total number of terms, N , so that

P (x) = ni

N
where P (x) is the probability of an element x to be in the ith bin. There is

a considerable problem with this method in that while we can estimate the probabilities

of each element in each bin, and hence the bound on the cost of sending the data, we

also would need to send a specification of the histograms themselves, essentially the
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starting and end points of the histograms, along with the code used for each histogram.

The bin width could be assumed to be the precision. The encoding of starting and end

points of the histogram are likely to be fairly similar across r and there should be fairly

inexpensive methods of encoding which bins are assigned to which codes but it is not

a trivial task to complete. It is, however, likely that the parameters of this histogram

model will be dwarfed by the cost of encoding the data itself. In the rest of this report

we will refer to this technique as the histogram method.

The second method of estimating probabilities is more consistent with MDL prin-

ciples but also suffers from a potential problem. Instead of using the frequencies of the

histograms themselves, probability distributions are applied to the binned data, which

allows us to find the probability density, ρi of each bin, i. The probability for an el-

ement, x, in the ith bin is then P (x) = (ρi × δD). The advantage over the previous

method is that the technique required to send the message is quite straightforward. As

long as we use fairly simple distributions we must simply encode the parameters of the

model and send them. The receiver can then recreate the distributions and will there-

fore be able to recreate the message. The only change in the model as r changes will

be in the few parameters of the distribution (for a Gaussian distribution the mean and

standard deviation, for example) which is highly unlikely to have any noticeable effect

on the description lengths for any reasonably large data matrix. The potential problem

with this method is that if the distributions do not fit well with the data, the estimates of

the probabilities will not be accurate. This will then overestimate the description length.

The probability distributions to fit the non-zero terms from W and H should possess

some features: it must be non-negative therefore the probability density should tend
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towards zero or infinity at zero values and the probability density should tend towards

zero as the value becomes large. A simple choice is the gamma distribution which has

a probability density function (PDF) of:

ρ(x) =
βα

Γ(α)
x(α−1)e−βx

where Γ is the gamma function, α and β are parameters. This is quite a flexible family of

distributions that is often able to approximate real world distributions quite accurately.

At this point there is both a challenge and an opportunity. Part of the value of NMF

is that it naturally tends to result in sparse matrices with a relatively high proportion of

zero terms. The opportunity is that these zero terms could be sent very cheaply as sep-

arate matrices and the challenge is that these zero terms may result in highly inaccurate

distributions being set to the W and H terms. The PDF of the gamma distribution either

falls to zero or tends to infinity at zero depending on the parameter α. If the non-zero

data is best fit by a distribution which tends to zero the estimates of the probabilities

will be very poor. Most seriously they might well significantly overestimate the cost of

sending the zero terms. It may be better to split the data up into zero-terms and non-

zero terms. The separation of zero and non-zero terms requires some threshold to be

set. Above the threshold the data is modelled using a gamma distribution and below

the threshold the data is separately encoded, as described below. The Matlab code we

provide allows for the manual choice of the threshold but also for an automatic choice

made by applying MDL techniques themselves.

The automatic threshold is selected by systematically searching through the space

of zero-thresholds for both W and H from zero up to the edge of the first bin. The total
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description length is then calculated and the lowest value is selected. This can result in

different thresholds for W and H and also across different r terms.

The matrices containing the zero terms, W0 and H0, are encoded via the probability

of being a zero which is given by n0/nT where n0 is the number of zero values and nT

is the total number in W or H. This leads to:

L(X0) = −n0 log2
n0

nT

− (nT − n0) log2

(

nT − n0

nT

)

where X0 represents either W0 or H0 and the n terms are the numbers for W0 or H0

respectively. The second term encodes the cost of specifying the terms that are non-

zero. This can be viewed as sending a code specifying a matrix of zeros and ones

followed by the distribution and the codes for the non-zero terms.

This separation of the W and H matrices results in a total description length of:

L(D,H) = L(W0) + L(W+) + L(H0) + L(H+) + L(E) (2)

where L(W0), L(H0) are the description lengths required to encode the zeros in the

W and H matrices respectively; L(W+), L(H+) are the description lengths required

to encode the non-zero terms in the W and H matrices respectively; and L(E) is the

description length to encode the error terms.

The non-zero data is assigned to bins of width δD and a gamma distribution is

separately fitted to the W+ and H+ data. The probabilities, followed by the Shannon

information content and hence the description lengths are then calculated. The W and

H matrices that would be found from the message are calculated followed by the error

matrix E. A Gaussian probability distribution is set to the error matrix to enable the
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extraction of the probabilities and description lengths. The five terms that make up the

description length are summed to give the total description length as in Eq. (2). Our

technique is explained in Algorithm 1.

Algorithm 1 MDL algorithm for each r value with automatic moving zero threshold

Input: V, W, H, δD

Output: Description lengths for each r

1: for zero threshold values of W and H

2: Separate out zero values, calculate L(W0) and L(H0)

3: Apply gamma distributions to W+ and H+, calculate L(W+) and L(H+)

4: Calculate E then L(E)

5: Calculate L(D,H)

6: if L(D,H) is smaller than previous smallest, then store description lengths endif

7: end for

8: Return L(D,H)

3 Application of Minimum Description Length

To demonstrate the application of our MDL technique we have applied it to real and syn-

thetic datasets. The results shown in this paper utilise the NMF method of Hoyer (2004)

without additional sparseness constraints added (but we also tested other methods taken

from (Gillis , 2014) and see no notable differences). It is important to emphasise that

there is no real ground truth in the real data we assess, so we cannot demonstrate be-

yond reasonable doubt that our technique works effectively on real data. However, there

are several criteria we would expect our method to meet if it is capable of selecting an
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appropriate r:

1. That the MDL technique performs in the manner we anticipate, i.e. that L(D|H)

would fall and L(H) should rise as r increases, and there should be a turning

point in L(D,H).

2. That the MDL technique picks a plausible value of r for real data, especially

if this is similar to choices made using other methods, such as use of external

knowledge.

3. That the MDL technique can reasonably estimate r-values from synthetic data

with a known r.

4. That MDL shows clear estimates of r for different types of data.

5. That the choice of r is robust to some variation in the data.

In Figure 1 we demonstrate the success of MDL in achieving the first and second

points and part of the fifth. The left plot shows real data of a set of 2429 images of

faces (see Table 1) with 361 dimensions (pixels) used by Lee and Seung (1999). The

description lengths change exactly as we would expect: the length of the errors falls

with increasing r, at the same time the L(W) and L(H) terms grow larger. The MDL

algorithm produces exactly the pattern that we would expect, fulfilling our first criterion.

This same plot also demonstrates that MDL can meet the second criterion, the straight

line down to r = 80 shows the r-value of the minimum description, but the turning

point is fairly flat and a reasonable choice could be anywhere from r = 50 to r = 100.

Here we should note that when Lee and Seung Lee and Seung (1999) used this data-set
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they chose r = 49 for their subspace size. They do not specify how they chose r but

it may well have been via a trial and error approach choosing that value when it gave

good plots for their paper. Using MDL we have found a result in a similar range with no

parameter tuning or assumptions beyond the choice of precision. This estimated value

of r is certainly a sensible value and the turning point is clear. We have also included

results from re-running the NMF algorithm on the data, which show no difference in

the choice of r and produce virtually identical lengths, in fact the differences in the

results are difficult to spot in the figure. This identical solution to re-runs of the data

is significant as NMF does not necessarily produce one unique solution. Instead all

the re-runs of the algorithm are likely to have produced somewhat different W and H

matrices. Our estimation of r does not change at all implying a level of consistency

across different NMF solutions. A final point to be noted from this plot is that the solid

line shows results from the distributions while the dashed line shows the results from

using the histograms alone. There is no difference in estimation of r and only small

differences in description length values between the two methods. As both methods

have potential, but complementary, flaws, the similarity in output implies that these

flaws do not adversely affect the conclusion.

The right plot in Figure 1 shows MDL applied to synthetic data with m = 1000 and

n = 2000. This simple synthetic data is created by creating two matrices W ∈ R
m×r

and H ∈ R
r×n with random locations of random non-zero terms. These are multiplied

together and additional noise added. The size of the subspace r is 150 and is estimated

correctly by the MDL approach. Clearly this data is simple and the selection of an

appropriate r from here does not prove our approach is effective but it does show that
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Table 1: Data-sets names, the type of data, the number of dimensions, m, and number

of data-points, n.

Name Type m n Source

Faces Image 361 2429 http://cbcl.mit.edu/software-datasets

/FaceData2.html

Genes Biological 5000 38 http://www.broadinstitute.org/cgi-bin

/cancer/datasets.cgi

FTSE 100 Financial 1305 94 University of Southampton Bloomberg

information terminal

MDL can find the appropriate value of r for some datasets. Again there is no difference

in the conclusions drawn from the histograms and the distributions. We thus claim that

our MDL algorithms can fulfil the third criteria we set out.

The left plot in Figure 2 shows the total description lengths for several different data

types (see Table 1) and allows us to meet our second and fourth criteria. There is no real

ground-truth to these datasets so it is not possible to confirm that MDL is picking a good

choice of r. It is, though, selecting an r that seems to be reasonable for each of the plots

and also different from each other. If we were seeing all the turning points at similar

values we might suspect that it was a feature of the algorithm rather than the data, the

different locations of the turning points suggests that it is extracting information from

the data itself. The Genes dataset has been extensively used, often with an implied r

of 2 or 3 (Devarajan , 2008) which is similar to our estimate of between 2 and 5. Our

estimate of the FTSE 100 dataset r-value is around r = 8, where the value of r could

15



0 50 100 150 200 250
r

0

1

2

3

4

5

6

D
es

cr
ip

tio
n 

Le
ng

th

×106 Images dataset

L
tot

L
E

L
W+

L
W0

L
H+

L
H0

0 100 200 300 400 500
r

0

2

4

6

8

10

12

14

D
es

cr
ip

tio
n 

Le
ng

th

×106 Synthetic dataset

L
tot

L
E

L
W+

L
W0

L
H+

L
H0

Figure 1: Left) The description lengths for the Faces dataset, showing a minimum of

the total description length at around r = 80, with a reasonable range from r = 50 to

r = 100. The solid line is for the description lengths found using the distributions and

the dashed line from the histograms, the choice of r is the same. Right) The description

lengths for synthetic data with a real r of 150. MDL shows a clear minimum at r = 150,

perfectly estimating the correct value.

be considered as the number of economic sectors, such as energy, telecommunications,

IT etc. An estimate of the number of these sectors of around ten would be reasonable,

and is close to our evaluation.

The right plot of Figure 2 shows a range of results for synthetic data created as

discussed earlier but with r values of 25, 50, 80, 120 and 150. The black vertical lines

show the actual location of the real r value. For all results except for r = 25 the MDL

estimation is identical to the actual value. Our algorithm is correctly estimating the real

value of r.

The final aspect of our technique we will consider is the robustness of our technique

to certain changes. We have already demonstrated that our technique is robust to re-runs
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Figure 2: Left) The total description length for a range of datasets showing where turn-

ing points occur, potentially signalling an effective choice of r. While no ground truth is

known the plots show minima at sensible locations, which correspond reasonably well

with estimates from other sources. Right) The total description length for a range of

synthetic data, MDL correctly identifies the r term for each dataset except for r = 25

which is still very close (the red vertical line) to the correct value (the black line).

of the NMF algorithm which can produce significantly different W and H matrices. To

further attempt to get an impression of the uncertainty in our technique we applied

bootstrapping to the faces dataset to produce five different variations of the original,

in addition to the non-bootstrapped variant. NMF was then used to find the W and H

matrices and our MDL technique applied. In the left plot of Figure 3 we see the results

from applying the MDL techniques to this dataset. The solid line shows the results of

applying MDL using the distributions for the images of faces dataset. The dotted line

shows the same but for bootstrapped data, this is hard to see as the results are almost

identical. The dashed line shows the same but for MDL applied using the histograms

and the dash-dot line for the equivalent bootstrapped results. The differences are very
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marginal and the choice of r is similar for both. There is almost no difference seen in

results when bootstrapping the data, we therefore consider the method to be reasonably

robust to this type of alteration of the data.
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Figure 3: Left) The solid line shows the results of applying MDL using the distributions

for the images of faces dataset. The dotted line shows the same but for bootstrapped

data, these are hard to see as the results are almost identical. The dashed line shows the

same but for MDL applied using the histograms and the dash-dot line for the equivalent

bootstrapped results. Again there is almost no difference, our results show no significant

variation under bootstrapping. Right) The results of Ltot for varying reduced size of n

for the images of faces dataset. We see a clear reduction in the optimal r value as

n is reduced. The dashed line is for the histogram plots and the solid line for the

distributions.

The right hand plot of Figure 3 shows how the location of the MDL selection of r

changes with the number of samples from n = 500 up to n = 2429 (the full dataset).

The vertical lines record the value of the minimum for each sample size. It is apparent

that the choice of r decreases with a smaller sample size. The final two terms with
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n = 2000 and n = 2429 are similar, but there is a considerable fall in the selected

r-value with smaller n. We offer an explanation of why we see such a fall in the best

choice of r consistent with these results. If we consider the data to be made up of

features with a range of importance, in the case of a set of images of faces important

features might be eyes, noses, ears or mouths. These features, and variants of them, will

be required for almost all faces. On the other hand features such as moustaches are far

less common. With lower numbers of samples it may be better to assume a moustache

feature, which may be used by a small number of images, is not worth considering

as a feature, instead a moustache can be considered as noise and accepted as part of

the corrections made by the E matrix. As the number of samples increases it becomes

possible to recognise that the extra feature is not noise and so the number of features

expand, the capacity of the model increases with more data. We can, potentially, see

the features that appear at low n as the more important features and as n increases we

gain the features that are either less important to much of the data or important to only

a small subset of the data. In reality this analysis of the data may be overly simplistic,

in that the smaller number of features are likely to partially include the less important

features, we may well then see combined features rather than the less relevant features

being completely absent. Either way, as the number of data points increases so does the

capacity of the model.
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4 Conclusion

Our novel technique is to apply an MDL technique to selection of r. Before considering

the results there are several attractive features of MDL. First, all the data is used in

MDL, there is no need to keep hold-out folds so no need to average out the results

from the different folds or to consider the variance in the results when drawing your

conclusions, as there is in techniques such as cross-validation. Second, MDL is an

elegant technique with intuitive appeal which gives a natural trade-off between errors

and model size. Third, the only potentially arbitrary parameter is precision, δD, but this

has only a minor influence on the relative description length of different models and, in

any case, may not be arbitrary if the precision of the data itself can be used.

We have applied our MDL technique to a range of real and synthetic data. MDL is

able to accurately estimate r in synthetic data as well as providing reasonable estimates

of the best r in real data. Our technique is robust to re-runs of the NMF algorithm and

to bootstrapping the data, producing the same predictions of the best r.

Our technique has been tested on a range of data and is likely to work better on

some data than others. If the distributions of the matrices W, H and E match our set

distributions well then we would expect to make good predictions. Conversely if the

distributions do not match the data well our estimates may be inaccurate. In particular,

if V is highly sparse, most of the errors will probably be zero and our algorithm may

require some alteration. An advantage of our algorithms is that problems should be

observed in differences in results from the histogram and gamma distribution methods.

Our algorithms also allow for the production of a range of graphs to test the similarity of

distributions to the actual data, which should highlight potential problems. Extensions
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to this work would likely be to investigate whether other distributions do a better job

than our Gaussian and gamma choices.

There are a range of techniques for assessing an appropriate value of r in the lit-

erature. The best method is likely to utilise several techniques to select an appropriate

r. We would suggest our technique adds to the potential toolbox that NMF researchers

utilise to form judgements about the choice of r.
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