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The techniques of random matrices have played an important role in
many machine learning models. In this letter, we present a new method
to study the tail inequalities for sums of random matrices. Different
from other work (Ahlswede & Winter, 2002; Tropp, 2012; Hsu, Kakade,
& Zhang, 2012), our tail results are based on the largest singular value
(LSV) and independent of the matrix dimension. Since the LSV opera-
tion and the expectation are noncommutative, we introduce a diagonal-
ization method to convert the LSV operation into the trace operation of
an infinitely dimensional diagonal matrix. In this way, we obtain another
version of Laplace-transform bounds and then achieve the LSV-based tail
inequalities for sums of random matrices.

1 Introduction

Eigenproblems play an essential role in many machine learning models—
for example, principal component analysis (PCA), Fisher’s linear discrimant
analysis (LDA), and spectral clustering. There are also some learning mod-
els that are strongly related to nonlinear eigenproblems—for example, 1-
spectral clustering and sparse PCA (Hein & Bühler, 2010), and balanced
graph cuts and RatioDCA-Prox (Hein & Setzer, 2011). We refer to Jost, Set-
zer, and Hein (2014) for details.

In general, since the learning data are assumed to be drawn from prob-
ability distributions, the eigenproblem of random matrices naturally be-
comes one of the most important concerns in the mathematical foundations
of machine learning. For example, Bian and Tao (2014) use random matrix
tools to study generalization bounds of Fisher’s linear discriminant analy-
sis. Ahlswede and Winter (2002) developed the large deviation inequalities
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for sums of random variables taking values in self-adjoint operators. Ver-
shynin (2010) analyzed the lower and the upper bounds of the singular
values of a random matrix Am×n when the dimension m (or n) goes to the
infinity. Tropp (2012) provided a powerful and user-friendly framework
to obtain tail bounds for the extreme eigenvalues of sums of self-adjoint
random matrices. Different from the explicit matrix dimension appearing
in Tropp (2012), Hsu, Kakade, and Zhang (2012) developed exponential tail
inequalities for sums of real, symmetric, random matrices that depend only
on intrinsic dimensions. By the method of exchangeable pairs, Mackey, Jor-
dan, Chen, Farrell, and Tropp (2014) present concentration inequalities for
the extreme eigenvalues of sums of Hermitian random matrices.

1.1 Eigenproblems. For a number λ ∈ C, let F(λ) : C → C
d×d be a

matrix-valued function and x ∈ C
n be a vector. Some kinds of eigenprob-

lems can be derived from the equation

F(λ)x = 0. (1.1)

For example, setting F(λ) = (A − λI) with A ∈ C
d×d makes equation 1.1 the

standard eigenproblem,

Ax = λx, (1.2)

where the vector x ∈ R
d is the eigenvector corresponding to the eigenvalue

λ. The standard eigenproblem, equation 1.2, plays an essential role in PCA
and spectral clustering.

If F(λ) = (A − λB) with A, B ∈ C
d×d, equation 1.1 is the so-called gener-

alized eigenproblem,

Ax = λBx, (1.3)

whose solutions λ are called the generalized eigenvalues of A with regard
to B. Especially if matrix B is nonsingular, the generalized eigenproblem,
equation 2.3, can be transformed into a standard eigenproblem, B−1Ax = λx,
which provides solutions to Fisher’s LDA. Furthermore, when F(λ) is a non-
linear function, equation 1.1 refers to so-called nonlinear eigenproblems,
which are strongly related to some learning models (see Hein & Bühler,
2010; Hein & Setzer, 2011; Jost et al., 2014).

The eigenproblem is also strongly related to many research interests of
dynamic systems. For example, the sign of the largest eigenvalue predicts
persistence or extinction of models in spatial ecology, and its value de-
scribes the dependence of models in spatial ecology on the geometry and
size of the underlying habitat region (Cantrell & Cosner, 2004). In online so-
cial networks, the largest eigenvalue is the bifurcation point of information
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spreading or vanishing, and thus it predicts the distance of information
persistence or extinction (Dai, Ma, Wang, Wang, & Xu, 2015). In the field
of theoretical neuroscience, the synaptic connections of a neuronal network
can be modeled as a random matrix whose entries are the strengths of
synapses between all pairs of neurons and obey the appropriate distribu-
tions (e.g., gaussian). The eigenproblem of the random matrix has been
applied to reveal the relationship between connectivity and dynamics in
neuronal networks (Rajan & Abbott, 2006; Muir & Mrsic-Flogel, 2015).

1.2 Background and Motivation. This section summarizes some con-
cerns in existing work on tail inequalities for sums of random matrices; it
is these concerns that motivate this letter as well.

As shown in proposition 3.1 of Tropp (2012), the Laplace-transform
bound

Pr{λmax(Y) ≥ t} ≤ inf
θ>0

{
e−θt · E tr eθY}

provides a starting point to study tail inequalities for sums of random
matrices. The key to tail inequalities is to bound the term E tr eθY with Y =∑K

k=1 Xk, where X1, · · · , XK are independent, random, Hermitian matrices.
In the literature, there are mainly two types of bounds: one is given by
Ahlswede and Winter (2002),

E tr eθY = tr E eθY ≤ (trI) ·
[∏

k

λmax(EeθXk )

]

= d · exp

(∑
k

λmax

(
log EeθXk

))
, (1.4)

and the other is presented by Tropp (2012):

E tr eθY ≤ d · exp

(
λmax

(∑
k

log EeθXk

))
. (1.5)

As shown above, Ahlswede-Winter’s bound, equation 1.4, and Tropp’s
bound, equation 1.5, are both based on the matrix trace, which brings con-
venience to obtaining tail inequalities.1

1For example, the fact that E tr(A) = tr(E A) makes the final tail inequalities valid
under a milder condition: the expectation of the random terms can be bounded by some
deterministic terms instead of the condition that all the random terms are bounded.
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However, the trace operation inevitably makes the bounds 1.4 and 1.5
loose. More specifically, it is the reason that the two bounds are dependent
on the matrix dimension d. It is noteworthy that for real symmetric matrices,
Hsu et al. (2012) present the bounds dependent on the intrinsic dimension
tr(Y)/λmax(Y) ≤ d in the setting of real symmetric matrices. Since these
results are dependent on the matrix dimension d, they may be more suitable
to a scenario of low-dimensional matrices.

One of main contributions in Tropp’s (2012) framework is to apply Lieb’s
concavity theorem to achieve the right-hand side of equation 1.5:

d · exp

(
λmax

(∑
k

log E eθXk

))

instead of the right-hand side of equation 1.4,

d · exp

(∑
k

λmax

(
log E eθXk

))
,

which is derived from Golden-Thompson trace inequality. Note that the
former is tighter than the latter because of the fact that λmax(

∑
k Xk) ≤∑

k λmax(Xk).

1.3 Overview of Main Results. Being motivated by the concerns we
have noted, this letter presents new tail inequalities for sums of random
matrices, which are based on the LSV operation σ1 and independent of the
matrix dimension d.2

We first present Laplace-transform bounds based on the LSV operation
σ1(X). As addressed in remark 1, since the LSV operation does not hold
the associative law for addition, it is difficult to obtain the results with
the term σ1

(∑
k Xk

)
. To overcome this limitation, we attempt to apply a

diagonalization method (DM) to convert the operation σ1 into the trace of
an infinitely dimensional diagonal matrix. We then develop the DM-based
Laplace-transform bounds and present the relevant tail inequalities for the
spectral radii of sums of random matrices.

Compared with previous work (Ahlswede & Winter, 2002; Tropp, 2012;
Hsu et al., 2012), our resulting inequalities are independent of the matrix
dimension d and thus suitable to the case of high-dimensional matrices. As
addressed in remark 4, however, there are two things to be noted: our tail
inequalities may not be applicable to sums of a large quantity of random
matrices and the results in equations 3.16 and 3.17 are affected by the

2Given a matrix A, the LSV σ1(A) actually is the spectral norm of A, that is, the negative
square root of the maximum eigenvalue of AHA (see Higham, 2008).
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choice of g0 and {Ak}. Therefore, if there are wiser choices of g0 and {Ak},
the relevant tail inequalities may overcome the aforementioned obstacles.

1.4 Organization of the Letter. The rest of this letter is organized as
follows. Section 2 presents the LSV-based Laplace-transform inequalities,
and the DM-based results are given in section 3. The last section concludes
the letter, and some proofs are in the appendix.

2 LSV-Based Laplace-Transform Inequalities

We first give some preliminaries on the largest singular value (LSV):

Lemma 1. Given two matrices A and B, there holds that

i. σ1(A · B) ≤ σ1(A) · σ1(B).
ii. σ1(A + B) ≤ σ1(A) + σ1(B).

Proof. Inequality i is a special case of theorem H.1.c in Marshall, Olkin, and
Arnold (2010). Inequality ii holds because of the triangle inequality of the
spectral norm.

As Tropp (2012) addressed, Laplace-transform bounds provide a starting
point for obtaining the tail inequalities for the sum of random matrices. The
relevant results in existing work are built for the largest eigenvalues (see
Ahlswede & Winter, 2002; Tropp, 2012), while this letter considers LSV-
based Laplace-transform bounds for random matrices.

Theorem 1. Let {X k}K
k=1 be a sequence of independent, square random matrices.

Then there holds that for any t > 0,

Pr

{
σ1

(
K∑

k=1

X k

)
≥ t

}
≤ inf

θ>0

{
e−θ t ·

∏
k

E eσ1(θX k )

}

≤ inf
θ>0

{
e−θ t · exp

(
K · log

(
1
K

∑
k

E eσ1(θX k )

))}
.

(2.1)

Proof. According to Markov’s inequality and lemma 1, we have

Pr
{
σ1

(∑
k

Xk

)
≥ t
} = Pr

{
σ1

(
θ
∑

k

Xk

)
≥ θt

}

= Pr
{
eσ1(θ

∑
k Xk ) ≥ eθt} ≤ e−θt · E eσ1(θ

∑
k Xk ) (*)

≤ e−θt · Ee
∑

k σ1(θXk ) = e−θt ·
∏

k

E eσ1(θXk )
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= e−θt · exp

(∑
k

log E eσ1(θXk )

)

≤ e−θt · exp

(
K · log

(
1
K

∑
k

E eσ1(θXk )

)}
, (2.2)

which holds for any θ > 0 and the step labeled ∗ holds because of the
independence of Xk. Taking an infimum completes the proof.

Remark 1. Compared with the previous results, equations 1.4 and 1.5, the
absence of the trace operation makes the upper bound of Pr

{
σ1(
∑

k Xk) ≥ t
}

independent of the matrix dimension. In contrast with Tropp’s bound, equa-
tion 1.5, since the LSV operation and the expectation are noncommutative, it
is difficult to obtain the Laplace-transform bound with the term σ1

(∑
k Xk

)
.

To handle this issue, section 3 shows the tail inequalities incorporat-
ing the term σ1

(∑
k Ak

)
, where Ak are the fixed matrices dominating the

behaviors of random matrices Xk (1 ≤ k ≤ K).

3 Diagonalization Method and Tail Inequalities

In this section, we introduce the diagonalization method (DM) to convert the
LSV operation to a more convenient form for the discussion that follows.
Then we present the DM-based Laplace-transform bounds for sums of
random matrices, as well as the relevant tail inequalities.

3.1 Diagonalization Method. The trace operation supports the fact
E tr(A) = tr(E A); in contrast, it is followed from Jensen’s inequality that
E σ1(A) ≥ σ1(EA). To overcome this limitation of LSV, we propose a method
to convert the LSV operation into the trace of an infinitely dimensional di-
agonal matrix with the entries being functions of LSV. Compared to the
LSV operation, the trace form has better operational properties; for exam-
ple, Lieb’s concavity theorem becomes valid in this setting, and thus we can
obtain tighter tail inequalities.

The following shows the diagonalization method to realize the LSV op-
eration by using the trace operation.

Proposition 1. Given a matrix X ∈ C
d×d , there holds that for any θ > 0,

E eσ1(θX) = e−1 · tr
(
E eD[θ;X]), (3.1)
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where

D[θ; X ] := Λ

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}

(3.2)

+ Λ
{
0, log (θσ1(X ) + 1), 2 log (θσ1(X ) + 1), 3 log (θσ1(X ) + 1), · · · }

and Λ{· · ·} stands for the diagonal matrix.

Note that the result, equation 3.1, is obtained by using Taylor’s expan-
sion of ex to convert the LSV operation σ1(θX) into the trace operation for
an infinitely dimensional diagonal matrix D[θ; X] (see appendix A). Sub-
sequently, we use the digitalization method to obtain an upper bound of
E eθσ1(

∑
k Xk ).

Proposition 2 (subadditivity). Let {X1, · · · , X K } be a sequence of independent
random matrices. Then there holds that for any θ > 0,

E eσ1(θ
∑K

k=1 X k ) ≤ e−K · tr exp

(
K∑

k=1

log E eD[θ;X k ]

)
, (3.3)

where for any 1 ≤ k ≤ K ,

D[θ; X k] := Λ

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}

(3.4)

+ Λ
{
0, log (θsk + 1), 2 log (θsk + 1), 3 log (θsk + 1), · · · }

with sk := σ1(X k).

This result is derived from the subadditivity of the operation D[θ; Xk],
that is,

K∑
k

D[θ; Xk] ≥ D

[
θ;

K∑
k

Xk

]
+ (K − 1) · �

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}

.

Details are referred to the proof of proposition 2 in appendix A.

3.2 DM-Based Laplace-transform Bounds. Next, we develop another
version of Laplace-transform bounds as the starting point for the relevant
tail inequalities.
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Proposition 3. Given a random matrix X ∈ C
d×d , there holds that for any t > 0,

Pr
{
σ1(X ) ≥ t

} ≤ e−1 · inf
θ>0

{
e−θ t · tr

(
E eD[θ; X ]

)}
, (3.5)

where D[θ; X ] is defined in equation 3.2.

Proof. From theorem 2.1, we have

Pr{σ1(X) ≤ t} ≤ inf
θ>0

{
e−θt · Eeσ1(θX)

}
, (3.6)

which is of the case K = 1. Then the combination of equation 3.6 and propo-
sition 1 leads to the result, equation 3.5. This completes the proof.

This bound is suitable only to the scenario of a single random matrix.
Next, we extend the bound, equation 3.5, to the scenario of sums of random
matrices. The following result can be obtained by combining proposition 2
and the second line of equation 2.2.

Theorem 2. Let {X k}K
k=1 be a sequence of independent random matrices. Then

there holds that for any t ∈ R,

Pr

{
σ1

(
K∑

k=1

X k

)
≥ t

}
(3.7)

≤ e−K · inf
θ>0

{
e−θ t · tr exp

(
K∑

k=1

log E eD[θ;X k ]

)}
,

where D[θ; X k] is defined in equation 3.4 for any 1 ≤ k ≤ K .

As shown in theorem 2, we can use the diagonalization method to convert
the LSV-based inequalities given in theorem 1 into the Laplace-transform
bounds based on the trace of an infinitely dimensional diagonal matrix.
However, it could be impossible to directly derive the inequalities incorpo-
rating the term D[θ;∑k Xk] from the inequality 3.7. Therefore, we give the
following scheme to handle this issue.

Theorem 3 (superadditivity). Consider a finite sequence {X k}K
k=1 of independent

square random matrices. Let {Bk}K
k=1 be a sequence of fixed matrices such that for

any 1 ≤ k ≤ K ,

E log
(
σ1(θX k) + 1

) ≤ log
(
σ1(θBk) + 1

)
. (3.8)
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Assume that there exists a function g0(θ ) : (0,∞) → [0,∞] and a sequence
{Ak}K

k=1 of fixed matrices that satisfy the relation: for any θ > 0,

K∑
k=1

D[θ; Bk] 	 D

[
g0(θ );

∑
k

Ak

]
+ (K − 1) · Λ

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}

.

(3.9)

Define η := σ1

(∑
k Ak

)
. Then for all t ∈ R,

Pr

{
σ1

(∑
k

X k

)
≥ t

}
≤ inf

θ>0

{
e−θ t+g0(θ )·η

}
. (3.10)

In theorem 3, we introduce the sequence {Bk} of fixed matrices to control
the expectations of random matrices {Xk} (see equation 3.8). Then we use
the function g0(θ ) and the sequence {Ak} of fixed matrices to realize the
superadditivity of the operation D[· ; ·]. Therefore, the validity of theorem 3
depends on the existence of the function function g0(θ ) and the sequence
{Ak}. Next, we take an example to demonstrate the existence of g0(θ ) and
{Ak}.
Remark 2 [LSV choice of Bk]. From equation 3.8, since σ1(θA) = θσ1(A)

(∀ θ > 0), we have for any 1 ≤ k ≤ K,

σ1(Bk) ≥ 1
θ

exp
(
E log

(
σ1(θXk) + 1

))− 1
θ
. (3.11)

Let X(1)

k , · · · , X(N)

k be the i.i.d. observations of the random matrix Xk, and
then the expectation term E log

(
σ1(θXk) + 1

)
can be approximated by the

empirical quantity

1
N

N∑
n=1

log
(
σ1(θX(n)

k ) + 1
)
. (3.12)

The combination of equations 3.11 and 3.12 leads to

σ1(Bk) ≥ 1
θ

exp

(
1
N

N∑
n=1

log
(
σ1(θX(n)

k ) + 1
))− 1

θ

= N

√√√√ N∏
n=1

(
σ1(X

(n)

k ) + 1
θ

)
− 1

θ
. (3.13)
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It is followed from the fact N
√

x1x2 · · · xN ≤ x1+x2+···+xN
N that

N

√√√√ N∏
n=1

(
σ1(X

(n)

k ) + 1
θ

)
− 1

θ
≤ σ1(X

(1)

k ) + · · · + σ1(X
(N)

k )

N
. (3.14)

Therefore, a reasonable LSV choice of Bk turns out to be

σ1(Bk) = σ1(X
(1)

k ) + · · · + σ1(X
(N)

k )

N
,

when the sample number N is sufficiently large.

Remark 3 (existence of g0(θ) and {Ak}). Let Ak be the matrix with the largest
singular value σ1(Ak) = fK(σ1(Bk)) where

fK(s) =
K−1∑
i=0

(
K−1

i

)
· sK−i

K
.

Note that the function fK actually supports the inequality

log

(
1 +

K∑
k=1

fK(sk)

)
≥

K∑
k=1

log(sk + 1). (3.15)

We then realize the superadditivity of D[· ; ·] as follows:

K∑
k

D[θ; Bk] ≤ D

[
g0(θ );

K∑
k

Ak

]
+ (K − 1) · �

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}

with g0(θ ) ≥ max{θ, θK}. The details and some special cases are given in
appendix B.

In summary, the key to theorem 3 is to develop the function fK such
that inequality 3.15 holds. If such a function fK is found, the fixed ma-
trix sequence {Ak} and the function g0(θ ) should satisfy the inequalities
fK(σ1(Bk)) ≤ σ1(Ak) and fK(θs) ≤ g0(θ ) · fK(s), respectively.

3.3 DM-Based Tail Inequalities. Based on theorem 3, we can obtain
the DM-based tail inequalities for sums of random matrices as follows:

Theorem 4. Assume that {X k}K
k=1 are independent square random matrices. Follow

the notations in remark 3, and let η := σ1

(∑
k Ak

)
. Then, there holds that
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1. For any t > 0,

Pr

{
σ1

(
K∑

k=1

X k

)
≥ t

}
≤ exp

(
−η · h

(
t

Kη

))
(3.16)

with h(x) := x log (x) − x.
2. For any t > η,

Pr

{
σ1

(
K∑

k=1

X k

)
≥ t

}
≤ exp

(
−t
[

1
K

(
t
η

− 1
)] 1

K−1

+ η

([
1
K

(
t
η

− 1
)] 1

K−1

+
[

1
K

(
t
η

− 1
)] K

K−1

))
. (3.17)

Proof. Since max{θ, θK} ≤ eKθ , set g0(θ ) = eKθ and consider the infimum
infθ>0{−θt + g0(θ )η}. When θ = 1

K log(t/Kη), the right-hand side of the
equation 3.10 reaches the minimum. Substituting θ = 1

K log(t/Kη) into
equation 3.10 leads to inequality 3.16. Similarly, letting g0(θ ) = θ + θK can
achieve the result in equation 3.17.

Remark 4. Note that the superadditivity 3.9 is not quite the ideal result,
because Ak will become much larger than Bk (1 ≤ k ≤ K) when K is large.
It implies that our results, equations 3.16 and 3.17, are not suitable to the
case of a large quantity of random matrices. Moreover, the choices of g0(θ )

and {Ak} are essential to the effectiveness of the tail inequalities given in
theorem 3. If we can find wiser choices of g0(θ ) and {Ak}, that obstacle may
be overcome.

4 Conclusion

In this letter, we present LSV-based tail inequalities for sums of random
matrices. Unlike previous work (Hsu et al., 2012; Tropp, 2012; Ahlswede
and Winter, 2002), our results are independent of the matrix-dimension and
thus are more applicable to the eigenproblems for sums of high-dimensional
random matrices. However, it is noteworthy that they are not suitable to
the scenario of quantities of summands as discussed in remark 4. In future
work, we will find some wiser choices of g0(θ ) and {Ak} to overcome the
obstacle and use the resulting tail inequalities to analyze the dynamics of
neuronal networks.

Appendix A: Proofs of Some Results

Here, we prove propositions 1 and 2.
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Proof of Proposition 1. Given a matrix X and θ > 0, briefly denote
s := σ1(X). Then the term D[θ; X] defined in equation 3.4 can be equivalently
written as

D[θ; X] = log �

{
1, θs + 1,

(θs + 1)2

2!
,
(θs + 1)3

3!
, · · ·

}
. (A.1)

It follows from Taylor’s expansion ex = 1 +∑k
xk

k! that

eθs+1 = tr
(

�

{
1, θs + 1,

(θs + 1)2

2!
,
(θs + 1)3

3!
, · · ·

})
. (A.2)

The combination of equations A.1 and A.2 leads to

eσ1(θX) = eθσ1(X) = e−1 · eθσ1(X)+1 = e−1 · tr
(
eD[θ;X]).

Proof of Proposition 2. Set Y =∑K
k=1 Xk, and there holds that

σ1(θY) = σ1

(
θ
∑

k

Xk

)
≤
∑

k

σ1(θXk). (A.3)

Thus, we have

D[θ; Y] =�
{
0, log

(
σ1(θY) + 1

)
, 2 log

(
σ1(θY) + 1

)
, · · ·}

+ �

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}

≤
K∑

k=1

�
{
0, log

(
σ1(θXk) + 1

)
, 2 log

(
σ1(θXk) + 1

)
, · · ·}

+ �

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}

=
(

K∑
k=1

D[θ; Xk]

)
− (K − 1) · �

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}
, (A.4)

where the inequality is also followed from the fact that

log(x + y + 1) ≤ log(x + 1) + log(y + 1), ∀ x, y > 0.
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It is noteworthy that if A and B are both diagonal matrices, then eA+B =
eA · eB (see Higham, 2008, theorem 10.2). By equation A.4, we then have

tr eD[θ;Y] ≤ tr

(
exp

(
(1 − K) · �

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}

+
K∑

k=1

D[θ; Xk]

))

= tr

((
�
{
1, 1,

1
2!

,
1
3!

, · · · })1−K

· exp

(
K∑

k=1

D[θ; Xk]

))

≤
(

tr �
{
1, 1,

1
2!

,
1
3!

, · · · })1−K

· tr

(
exp

(
K∑

k=1

D[θ; Xk]

))

= e1−K · tr

(
exp

(
K∑

k=1

D[θ; Xk]

))
, (A.5)

where the second inequality is followed from the fact that tr(A · B) ≤ tr(A) ·
tr(B) if A and B are positive definite diagonal matrices. According to lemma
3.4 of Tropp (2012), it holds that

E tr

(
exp

(
K∑

k=1

D[θ; Xk]

))
≤ tr

(
exp

(
K∑

k=1

log E eD[θ;Xk]

))
. (A.6)

By combining equations A.5 and A.6 and proposition 1, we finally obtain

E eσ1(θ
∑

k Xk ) = e−1 · E eσ1(θ
∑

k Xk )+1

= e−1 · E tr eD[θ;∑k Xk]

≤ e−K · tr exp

(
K∑

k=1

log E eD[θ;Xk]

)
.

Appendix B: An Example of Choosing g0(θ) and Ak

When K = 2, since s1 · s2 ≤ (s2
1 + s2

2)/2,

log(1 + s1) + log(1 + s2) = log(1 + s1)(1 + s2)

= log(1 + s1 + s2 + s1 · s2)

≤ log
(

1 + s1 + s2 + (s2
1 + s2

2)

2

)

= log
(

1 +
(

s1 + s2
1

2

)
+
(

s2 + s2
2

2

))
,
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which implies that f2(s) = s + s2

2 .
When K = 3, since s1 · s2 · s3 ≤ (s3

1 + s3
2 + s3

3)/3,

log(1 + s1) + log(1 + s2) + log(1 + s3)

= log(1 + s1)(1 + s2)(1 + s2)

= log
(
1 + s1 + s2 + s3 + s1s2 + s1s3 + s2s3 + s1s2s3

)
≤ log

(
1 + s1 + s2 + s3 + (s2

1 + s2
2)

2
+ (s2

1 + s2
3)

2

+ (s2
2 + s2

3)

2
+ (s3

1 + s3
2 + s3

3)

3

)

= log

(
1 +

(
s1 + s2

1 + s3
1

3

)
+
(

s2 + s2
2 + s3

2

3

)
+
(

s3 + s2
3 + s3

3

3

))
,

which implies that f3(s) = s + s2 + s3

3 .
For the general case K, denote �k as a set of cardinality k. Since

∏K
k=1 sk ≤∑K

k=1 sK
k

K , we have

K∑
k=1

log(1 + sk) = log

(
K∏

k=1

(1 + sk)

)

= log

⎛
⎝1 +

K∑
k=1

⎛
⎝ ∑

�k⊂{1,···,K}

∏
i∈�k

si

⎞
⎠
⎞
⎠

≤ log

⎛
⎝1 +

K∑
k=1

⎛
⎝ ∑

�k⊂{1,···,K}

⎛
⎝∑

i∈�k

sk
i

k

⎞
⎠
⎞
⎠
⎞
⎠

≤ log

⎛
⎝1 +

K∑
k=1

⎛
⎝K−1∑

i=0

(
K−1

K−1−i

)
· sK−i

k

K

⎞
⎠
⎞
⎠

= log

(
1 +

K∑
k=1

fK(sk)

)

with

fK(s) =
K−1∑
i=0

(
K−1

K−1−i

)
· sK−i

K
=

K−1∑
i=0

(
K−1

i

)
· sK−i

K
.
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On the other hand, the expression of fK can also lead to

fK(θs) =
K−1∑
i=0

(
K−1

i

)
· (θs)K−i

K
≤
{

θ · fK(s), if 0 < θ ≤ 1;

θK · fK(s), if θ > 1,

which implies that fK(θs) ≤ g0(θ ) · fK(s) if the function g0(θ ) ≥ max{θ, θK}
when θ > 0. Furthermore, given two matrices A, B such that fK

(
σ1(B)

) ≤
σ1(A), we then have for any θ > 0,

fK

(
σ1(θ B)

) = fK

(
θ σ1(B)

) ≤ g0(θ ) · fK

(
σ1(B)

) ≤ g0(θ ) · σ1(A).

By equation 3.4, we finally arrive at

K∑
k

D[θ; Bk] ≤ D

[
g0(θ );

K∑
k

Ak

]
+ (K − 1) · �

{
0, 0, log

1
2!

, log
1
3!

, · · ·
}
,

where Ak (1 ≤ k ≤ K) are the fixed matrices such that fK

(
σ1(Bk)

) ≤ σ1(Ak),
respectively.
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