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(a) High-quality vector font synthesis/completion. Vector glyphs obtained by vectorizing our synthesized 1024x1024 glyph images are colored in red.
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Fig. 1. Our proposed HFH-Font aims to handle the task of few-shot Chinese font synthesis with higher quality, faster speed, and higher resolution. (a) Taking
a subset of characters in the desired style as inputs, our method outputs high-fidelity, high-resolution glyph images of the remaining characters, which can be
vectorized into high-quality vector fonts. Applications to (b) few-shot personalized font generation and (d) artistic glyph image synthesis can also be fulfilled
with visually pleasing synthesis results. (c) The diffusion-based generation process is further accelerated to 1-step inference, surpassing current state-of-the-art
diffusion model-based font synthesis methods in both generation quality and efficiency. Please zoom in for better inspection.

The challenge of automatically synthesizing high-quality vector fonts, par-
ticularly for writing systems (e.g., Chinese) consisting of huge amounts of
complex glyphs, remains unsolved. Existing font synthesis techniques fall
into two categories: 1) methods that directly generate vector glyphs, and
2) methods that initially synthesize glyph images and then vectorize them.
However, the first category often fails to construct complete and correct
shapes for complex glyphs, while the latter struggles to efficiently synthesize
high-resolution (i.e., 1024 × 1024 or higher) glyph images while preserving
local details. In this paper, we introduce HFH-Font, a few-shot font synthe-
sis method capable of efficiently generating high-resolution glyph images
that can be converted into high-quality vector glyphs. More specifically,
our method employs a diffusion model-based generative framework with
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component-aware conditioning to learn different levels of style information
adaptable to varying input reference sizes. We also design a distillation
module based on Score Distillation Sampling for 1-step fast inference, and a
style-guided super-resolution module to refine and upscale low-resolution
synthesis results. Extensive experiments, including a user study with profes-
sional font designers, have been conducted to demonstrate that our method
significantly outperforms existing font synthesis approaches. Experimental
results show that our method produces high-fidelity, high-resolution raster
images which can be vectorized into high-quality vector fonts. Using our
method, for the first time, large-scale Chinese vector fonts of a quality com-
parable to those manually created by professional font designers can be
automatically generated.

CCS Concepts: • Computing methodologies → Image representations;
Shape modeling.

Additional Key Words and Phrases: Image synthesis, font generation, style
transfer, deep generative models, diffusion models, deep learning
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1 INTRODUCTION
Font synthesis is the task of automatically generating an entire font
library using only limited glyph examples (see Fig. 1). Automatic
font generation alleviates the burden of extensive, time-consuming
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manual design, and therefore has great application potential and has
received increasing attention in recent years. Especially for glyph-
rich writing systems such as Chinese, Japanese, or Korean, which
contain tens of thousands of characters, a fast and effective few-shot
font generation method not only speeds up the design of high-
quality commercial font products, but also allows for applications
in personalized handwriting generation, scene text image editing,
data augmentation for optical character recognition (OCR), etc.

Existing font synthesis methods generally fall into two categories:
directly targeting font generation in the vector modality [Thamizha-
rasan et al. 2023; Wang and Lian 2021; Wang et al. 2023b], or gener-
ating raster images before vectorizing them into vector fonts. This
paper focuses on the investigation of the second category, i.e., we
aim to develop a system that takes glyph images of a subset of
characters in the desired style as inputs and produces glyph im-
ages of the rest of the characters as outputs; using the synthesized
high-resolution glyph images, high-quality vector fonts can be ob-
tained by employing well-studied image vectorization techniques.
Compared to methods that directly target vector font synthesis,
although dealing with high-resolution images involves high compu-
tational complexity and manual interventions are still needed in the
vectorization process for existing approaches, the image modality
that consists of structural information is much easier to process
by many state-of-the-art generative models. On the other hand,
font generation methods that directly process the vector modality
are currently only capable of dealing with simple shapes, limiting
their application in font generation for writing systems containing
glyphs with high topological complexity, e.g., Chinese. As shown in
Fig. 1(a), we can see that, once high-resolution (i.e., 1024 x 1024 or
higher) glyph images with well-preserved local details can be syn-
thesized, it is possible to generate high-quality vector glyphs which
are indistinguishable from those manually produced by professional
font designers.
Despite recent advances, few-shot font generation remains an

unsolved and challenging task due to the complexity of charac-
ter structures and the creative, diverse nature of font design. Most
previous approaches are built upon Generative Adversarial Net-
works (GANs) [Goodfellow et al. 2020] and adopt the style-content
disentanglement scheme in EMD [Zhang et al. 2018] to train an
image-to-image translation network in an adversarial manner. How-
ever, GANs are known to be hard to train, difficult to scale, suffer
from mode collapse, and lack diversity, limiting their potential in
generation quality. Moreover, a deterministic generative network
is unable to generate multiple results given specific inputs, while
an ideal system gives users control over the generation process and
freedom to choose from diverse generated results. On the other
hand, diffusion models have been shown to produce better results
compared to previously state-of-the-art GAN-based methods [Dhari-
wal and Nichol 2021], can be easily scaled to larger datasets, and
are able to generate diverse results given specific conditions. How-
ever, the most prominent drawback of diffusion models is their
iterative inference process that prevents the practical use of such
models. Moreover, properly integrating prior knowledge of glyphs
into diffusion models also requires delicate and specific designs.

In this paper, we propose HFH-Font, a diffusion model-based font
synthesis method that supports high-quality one-step few-shot font

generation as well as generation in high resolution (e.g., 1024 ×
1024). For glyph-rich systems like Chinese, which contains tens of
thousands of characters (eg. 6,763 for the GB2312 standard, 87,887
for the GB18030-2022 standard), extremely few-shot generation is
often ill-posed since hundreds of input references are usually re-
quired to cover all possible components. On the other hand, it is
also desired for the model to learn a global representation and make
assumptions of the missing knowledge when limited references are
available in real-world scenarios. Therefore, to fully exploit the in-
formation of sufficient amount of references (eg., hundreds), which
most extremely few-shot learning methods do not support, moti-
vated by FsFont [Tang et al. 2022], we leverage an attention-based
conditioning module to enable reuse of component-level style infor-
mation, which can learn to effectively transfer diverse and complex
font styles to target glyphs when combined with the strong genera-
tive capability of latent diffusion models. Additionally, to allow for
smaller input reference sizes (eg., less than 10) in real-world scenar-
ios, we introduce a reference selection strategy to equip the model
with the ability to extract both global and local style information.
To tackle the problem of slow inference in the diffusion process, we
incorporate the Score Distillation Sampling technique [Poole et al.
2022] in the text-to-3D generation literature into our framework.
In this manner, we achieve efficient one-step generation with little
loss of quality. To further enable generation in higher resolution, we
design a super-resolution process where the loss of detailed styles in
the lower-resolution regime can be recovered during upscaling, and
the gap between the image and vector domains can be mitigated.
Closely related to our work are Diff-Font [He et al. 2022] and

FontDiffuser [Yang et al. 2023b], which apply pixel-space diffusion
models [Dhariwal andNichol 2021; Ho et al. 2020] to the glyph image
synthesizing task and utilize either stroke vectors or multi-scale
content features to better preserve glyph structures. Our approach
differs in the following aspects: 1) we use a latent-space diffusion
model instead of a pixel-space diffusion model, markedly reducing
both training and inference costs; 2) we conduct component-level
style extraction and transformation, obtaining substantially superior
style accuracy and consistency; 3) we utilize diffusion distillation
and super-resolution techniques for high-resolution, one-step image
generation. Our proposed method significantly improves both the
generative quality and practical feasibility, yielding superior and
impressive results.

To sum up, major contributions of this paper are as follows:

• We propose HFH-Font, a diffusion model-based font genera-
tion framework that supports high-quality font generation
in as few as one step, as well as generation in high resolution
(e.g., 1024 × 1024) which facilitates further vectorization into
high-quality vector fonts.

• We introduce a component-aware conditioning module and
a reference selection strategy that enable the model to deal
with different levels of style information and adapt to different
reference sizes, allowing for trade-off between style fidelity
and input reference size.

• We conduct extensive experiments, including a user study
with professional font designers, to demonstrate the supe-
riority of our method to the state of the art. According to
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both the quantitative evaluation and user studies, our method
outperforms existing approaches by a considerable margin.
In addition, we showcase our model’s ability to transfer both
shape and texture styles through application to artistic glyph
image synthesis.

2 RELATED WORK

2.1 Font Generation
2.1.1 Font Generation in Vector Modality. Significant work has been
done in generation of vector fonts. Early work such as [Campbell
and Kautz 2014] proposes to learn a font manifold in which new
fonts can be synthesized. Recent methods employ deep generative
models targeting sequential data for the task of vector font gener-
ation. SketchRNN [Ha and Eck 2017] applies bi-directional RNNs
to generate stroke-based drawings. FontRNN [Tang et al. 2019]
utilizes RNNs to synthesize the writing trajectories of Chinese char-
acters. DeepSVG [Carlier et al. 2020] proposes a transformer-based
VAE based on hierarchical representation of SVG for generation of
vector icons. DeepVecFont [Wang and Lian 2021] and DeepVecFont-
v2 [Wang et al. 2023b] adopt techniques in image synthesis and
sequence modeling to fully exploit dual modality information. Du-
alVector [Liu et al. 2023] proposes a dual-part font representation
for unsupervised shape modeling, followed by a contour refinement
procedure for better details. VecFontSDF [Xia et al. 2023] utilizes
the SDF representation to reconstruct and synthesize high-quality
vector fonts. VecFusion [Thamizharasan et al. 2023] uses an image
as well as vector diffusion model in a cascaded manner for the gener-
ation of complex shapes and diverse styles. Due to the limited ability
of dealing with long and complex sequences, these methods are only
capable of handling simple shapes like English characters or simple
Chinese characters with fewer strokes and shorter drawing paths.
The generated styles also lack diversity. Although impressive results
for English font synthesis have been shown in [Thamizharasan et al.
2023], it can not be directly applied to handle Chinese characters
that contain longer sequences and more topological complexity. To
address this problem, EasyFont [Lian et al. 2018] utilizes shallow
neural networks to learn and recover a user’s overall handwriting
styles and detailed handwriting behaviors, and thus automatically
generate large-scale Chinese handwriting fonts in the user’s per-
sonal style; CVFont [Lian and Gao 2022] uses a layout prediction
module to learn the layout of corresponding components of tar-
get glyphs. But they do not generalize to unseen fonts, still require
considerable number of references, and cannot handle diverse styles.

2.1.2 Font Generation in Image Modality. As mentioned above, al-
though glyph image is a much less efficient and lossy representation
of fonts and requires additional vectorizing to obtain vector fonts,
it possesses desirable qualities such as easy management, ability
to handle complex glyphs and styles, and better generation qual-
ity thanks to rapid growth in the field of image generation. Font
generation in the image modality has seen great advances in the
deep learning era. Early approaches such as zi2zi [Tian. 2017] and
DCFont [Jiang et al. 2017] that treat the task as an image translation
problem are built upon the pix2pix [Isola et al. 2017] framework
and require per-font fine-tuning at test time. EMD [Zhang et al.

2018] uses separate style and content encoders to achieve style-
content disentanglement, enabling generalization to unseen fonts.
Subsequent works employ this disentanglement scheme with re-
finements, e.g., ZiGAN [Wen et al. 2021] maps style features to the
Hilbert space and aligns the feature distributions, DG-Font [Xie
et al. 2021] introduces deformation convolution to the generator,
CF-Font [Wang et al. 2023c] proposes a content fusion module to
narrow the gap between the reference and target fonts, etc.
For the generation of highly structured CJK characters specifi-

cally, notable work utilizes prior domain knowledge such as stroke
order [Zeng et al. 2021] or stroke/component decomposition [Jiang
et al. 2019; Tang et al. 2022] to guide the generation process at stroke-
level or component-level. Stroke-GAN [Zeng et al. 2021] conditions
the discriminator on stroke count information to reduce stroke-level
errors. DM-Font [Cha et al. 2020] is the first to utilize the compo-
sitionality of a script by encoding component-wise styles into the
dynamic memory. MX-Font [Park et al. 2021b] employs a multi-
head design and each head is specialized for different local concepts.
CG-GAN [Kong et al. 2022] trains a component predictor to better su-
pervise the generator during adversarial training. FsFont [Tang et al.
2022] constructs a character-reference mapping and utilizes cross-
attention to guide the network to focus on relevant components
in the reference images with each source character. VQ-Font [Pan
et al. 2023] uses a quantization-based variational autoencoder to
automatically extract components and an attention-based module
to transfer local styles.

2.2 Diffusion Models
Diffusion-based generative models [Ho et al. 2020; Sohl-Dickstein
et al. 2015] are a family of generative models that have recently
achieved unparalleled performance in many image synthesis tasks
[Podell et al. 2023] as well as tasks targeting other modalities such
as video [Blattmann et al. 2023], audio [Kong et al. 2020], text [Li
et al. 2022], etc. Latent diffusion models (LDMs) [Rombach et al.
2022] particularly have been widely used in a variety of conditional
generation tasks including image editing [Brooks et al. 2023], text-to-
image generation [Podell et al. 2023], etc, the reduced computational
cost of which makes it possible for diffusion models to be applied
in real-life applications. Cascaded diffusion models [Ho et al. 2022]
are proposed to successively upsample generated images to higher
resolutions through consecutive super-resolution models and has
been successfully used in multiple tasks targeting high-resolution
image generation [Saharia et al. 2022].

Generation of text within images has been a major challenge for
generative models. Efforts have been made in scene text generation
and editing [Ma et al. 2023; Tuo et al. 2023; Yang et al. 2023a] and
handwriting generation [Gui et al. 2023; Luhman and Luhman 2020]
that attempt to utilize the strong generative capability of diffusion
models for text generation within images. We focus on gray-scale
glyph image generation where more complex font styles and finer
character details are dealt with, laying the foundation for further
applications. Recently, Diff-Font [He et al. 2022], FontDiffuser [Yang
et al. 2023b], and QT-Font [Liu and Lian 2024] have attempted to
apply diffusion models to this task and have achieved impressive
results. Although they are able to generate sharp results thanks
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to the generative ability of diffusion models, the pre-trained style
features or style contrastive refinement strategy they use often fail
when facing unseen, complex font styles and the pixel-space multi-
step diffusion they employ limits their methods’ practical use and
scalability to higher resolution. In contrast, we provide support for
one-step as well as high-resolution generation and incorporate prior
knowledge on component decomposition into our system which
significantly benefits the learning and transferring of font style.

2.3 Speeding Up Diffusion Models
The multi-step iterative inference process is a primal issue with
diffusion models and accelerating the inference process has become
amain focus in the field. Accelerating can be done by either reducing
the number of sampling steps or improving network architecture.
We focus on the former and leave the optimization of network
architecture for the task of font generation for future work.
Advanced samplers such as DDIM [Song et al. 2020a], DPM-

Solver [Lu et al. 2022], and DEIS [Zhang and Chen 2022] have
emerged that are able to reduce the number of sampling steps to
around 10-20. Although they do not require additional training,
they fail drastically in the few-step regime, i.e., single or double step.
To accomplish few-step diffusion sampling, distillation methods
are proposed to distill the knowledge of multi-step teacher models
into few-step student models with the minimum quality degrada-
tion. [Luhman and Luhman 2021] proposes to straightforwardly
distill diffusion teachers into one-step student models that learn to
output the deterministic DDIM results sampled by the teacher mod-
els. To circumvent the problem of having to generate large amounts
of synthetic training data offline, progressive distillation [Meng
et al. 2023; Salimans and Ho 2022] is proposed, where the number
of sampling steps is halved at each iteration by training the student
model to match the 2-step output of the teacher model. Alterna-
tively, [Song et al. 2023] introduces consistency models that achieves
single-step generation by enforcing self-consistency between two
adjacent points along the same deterministic diffusion trajectory
and has later been applied to speed up latent diffusion models [Luo
et al. 2023].
Recently, several works turn to borrow from the text-to-3D lit-

erature and have achieved state-of-the-art results in single-step
diffusion generation [Sauer et al. 2023; Yin et al. 2023]. The tech-
niques of utilizing knowledge from pre-trained large-scale diffusion
models to guide 3D models in producing realistic results, e.g., Score
Distillation Sampling [Poole et al. 2022; Sauer et al. 2023] and Vari-
ational Score Distillation [Hoang Nguyen and Tran 2023; Wang
et al. 2023a; Yin et al. 2023], have been found effective for guiding
the learning of a single-step generation network with the aid of an
additional regression or adversarial loss. In this paper, we find that
a simple score distillation loss works sufficiently and effectively for
our font synthesis task.

3 METHOD
The overall framework of our method is shown in Fig. 2, which
consists of three parts: a conditional latent diffusion model with
component-aware encoders that is used to generate high-fidelity
low-resolution results (i.e., 64 × 64), a diffusion distillation branch

for distilling the trainedmodel into a one-step generationmodel, and
a super-resolution model that is used to generate high-resolution
glyphs in a cascaded manner. The three parts will be illustrated in
detail in Section 3.1, Section 3.2, and Section 3.3, respectively.

3.1 Conditional LDM with Component-aware
Conditioning

3.1.1 Latent diffusion model for font generation. The main idea
of diffusion models is to gradually perturb real data with increas-
ing levels of tractable (e.g., Gaussian) noise until the real signal is
transformed into the pure noise, and learn a denoising function to
gradually denoise the pure noise back to the real data. Specifically,
let 𝑥0 ∼ 𝑞(𝑥0) be a sample from the real data distribution 𝑞(𝑥), at
each noise level 𝑡 ∈ {1, . . . ,𝑇 }, 𝑥0 is perturbed with the Gaussian
noise 𝜖 using the noise schedule {𝛼𝑡 }, {𝜎𝑡 }:

𝑥𝑡 = 𝛼𝑡𝑥0 + 𝜎𝑡𝜖, 𝜖 ∈ N (0, 1), 𝛼2𝑡 + 𝜎2𝑡 = 1, 𝛼𝑡 , 𝜎𝑡 ≥ 0. (1)

We follow the practice in DDPM [Ho et al. 2020] and train a
𝜖-prediction network 𝜖𝜃 (𝑥𝑡 , 𝑡) to predict the noise added to 𝑥0 to
obtain 𝑥𝑡 using the variational bound, which can be simplified to the
loss L = E𝑥0,𝜖,𝑡 [∥ 𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡) ∥22], where the weighting function
is simply discarded. We base our method on latent diffusion mod-
els [Rombach et al. 2022], a variant of the original DDPM where the
perturbing and denoising processes are done in the latent space of
an autoencoder. Let E be the encoder in LDM that compresses the
original data into lower-dimensional representations and D be the
decoder, by substituting 𝑥0 with 𝑧0 = E(𝑥0), we obtain the diffusion
loss in the latent space:

L = E𝑥0,𝜖,𝑡 [∥ 𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡) ∥22], 𝑧𝑡 = 𝛼𝑡𝑧0 + 𝜎𝑡𝜖. (2)
Given a content reference image 𝑥𝑐 rendered in the source font

style (e.g., Heiti) and a set of𝑘 style reference images𝑋𝑠 = {𝑥1𝑠 , . . . , 𝑥𝑘𝑠 }
in the desired font, our goal is to generate a glyph image in the de-
sired font that aligns with the content in 𝑥𝑐 . It is essentially an image-
to-image translation task and a straightforward way to achieve this
is to train a conditional diffusion model conditioned on the input
glyph images. Our method adopts a component-aware module C,
which we will later describe in depth, to encode the information of
input content and style reference glyph images into the conditioning
vector 𝑦 = C(𝑥𝑐 , 𝑋𝑠 ). Thereby, the new loss function is defined as:

L = E𝑧0,𝜖,𝑡 [∥ 𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, C(𝑥𝑐 , 𝑋𝑠 )) ∥22] . (3)
In addition, in themulti-step diffusion sampling scenario, classifier-

free guidance is frequently used to trade diversity for quality by
leading the samples towards higher-density regions given certain
input conditions. We follow the practice in [Brooks et al. 2023] of
conducting classifier-free guidance for multiple conditioning. The
guided score estimate is computed by:

𝜖𝜃 (𝑧𝑡 , 𝑡, C(𝑥𝑐 , 𝑋𝑠 )) = 𝜖𝜃 (𝑧𝑡 , 𝑡, C(∅,∅))
+ 𝑠𝑐 · (𝜖𝜃 (𝑧𝑡 , 𝑡, C(𝑥𝑐 ,∅)) − 𝜖𝜃 (𝑧𝑡 , 𝑡, C(∅,∅)))
+ 𝑠𝑠 · (𝜖𝜃 (𝑧𝑡 , 𝑡, C(𝑥𝑐 , 𝑋𝑠 )) − 𝜖𝜃 (𝑧𝑡 , 𝑡, C(𝑥𝑐 ,∅))),

(4)
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Fig. 2. An overview of our method. The three segments denote three parts of our framework. Weights from the Stage A low-resolution model are used to
initialize the training of Stage B1 and Stage B2, which are parallel to each other. Note that the colored images are only for visualization; only gray-scale glyph
images are input into the network.

{ "澳", "滨", "法", ... }

{ "流", "蔬", "育", ... }

{ "膏", "滑", "脊", ... }

{ "敖", "弊", "改", ... }

Component-level 
references(p=0.9)

{ "逆", "凄", "斟", ... }

{ "耘", "球", "禚", ... }

{ "周", "进", "毋", ... }

{ "饭", "解", "然", ... }

Stroke-level
references(p=0.1)

Randomly selected
style references

Fig. 3. Our reference selecting procedure that enables the model to deal
with different levels of style information.

where the two guidance scales 𝑠𝑐 and 𝑠𝑠 control how strongly the
generated samples correspond to content and style conditions, re-
spectively. Null condition ∅ is done by setting input images to
all-zero vectors. Following [Brooks et al. 2023], we randomly set
only 𝑥𝑐 = ∅ for 5% of the input conditions, only 𝑋𝑠 = ∅ for 5% of
the input conditions, and both for 5% of the input conditions.

3.1.2 Component-aware conditioning. As we know, the style of
a font exists at different structural levels of a glyph image and
different characters share different common style information. To be
specific, global styles (e.g., size, aspect ratio, stroke thickness, overall
spatial layout, etc) are ubiquitous among all characters, stroke-level
styles (e.g., brush details near the end of certain strokes, sloping
of certain strokes, etc) are shared among characters containing
common strokes, and component-level styles (e.g., special designs
of certain radicals) are only shared among characters with mutual
components.

Therefore, ideally, we would like our model to be able to focus on
different relevant parts of the style references at different structural
levels of the input content. Motivated by FsFont [Tang et al. 2022],
we resort to multi-head cross-attention to achieve such intention.
Specifically, our component-aware conditioning module consists
of a style encoder 𝐸𝑠 , a content encoder 𝐸𝑐 , and a cross-attention
module. The style encoder separately encodes all 𝑘 style reference

images 𝑥𝑖𝑠 , 𝑖 = 1, . . . , 𝑘 into style features 𝑓 𝑖𝑠 ∈ R𝑑𝑠×ℎ𝑠×𝑤𝑠 , 𝑖 = 1. . . , 𝑘 ,
and the content encoder encodes the content reference image 𝑥𝑐 into
the content feature 𝑓𝑐 ∈ R𝑑𝑐×ℎ𝑐×𝑤𝑐 . We represent each of the style
feature as ℎ𝑠 ×𝑤𝑠 tokens of dimension 𝑑𝑠 and the content feature
as ℎ𝑐 ×𝑤𝑐 tokens of dimension 𝑑𝑐 , and performs cross-attention:

𝑦 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

) ·𝑉 ,

𝑄 =𝑊
(𝑖 )
𝑄

· 𝑓𝑐 , 𝐾 =𝑊
(𝑖 )
𝐾

· 𝑓𝑠 , 𝑉 =𝑊
(𝑖 )
𝑉

· 𝑓𝑠 ,
(5)

where𝑊 (𝑖 )
𝑄

∈ R𝑑×𝑑𝑐 ,𝑊 (𝑖 )
𝐾
,𝑊

(𝑖 )
𝑉

∈ R𝑑×𝑑𝑠 are projection matrices

for the 𝑖-th head, 𝑓𝑐 is the flattened version of 𝑓𝑐 , and 𝑓𝑠 is the flat-
tened version of the aggregated style feature 𝑓𝑠 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑓 1𝑠 , ..., 𝑓 𝑘𝑠 ).
In this way, through attention mechanism, each fine-grained posi-
tion on the content feature maps learns to attend to relevant posi-
tions on the style feature maps, and the relevant style features are
gathered to form the final conditioning feature of size 𝑑 × ℎ𝑐 × ℎ𝑐 .
To guide such learning process, we explicitly feed our style en-

coder with carefully chosen style references that correspond to the
components and strokes the content character contains. [Lian et al.
2018] defines𝑚 = 1, 032 categories of components and 𝑛 = 339 cate-
gories of fine-grained strokes for Chinese characters, and constructs
several character sets of different sizes that cover different ratios of
components and strokes. We use the OptSet in [Lian et al. 2018] that
consists of 775 commonly used Chinese characters as our full style
reference set since it covers all components that appear in Chinese
characters from the GB2312 official standard. For each character 𝑐
in the training set, suppose 𝑐 consists of𝑚𝑐 components that belong
to the component category 𝑐𝑜𝑚𝑝𝑐,𝑖 ∈ {1, . . . ,𝑚}, 𝑖 = 1. . . ,𝑚𝑐 , and
the 𝑖-th component consists of 𝑛𝑐,𝑖 strokes that belong to the stroke
category 𝑠𝑡𝑟𝑜𝑘𝑒𝑐,𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑗 = 1, . . . , 𝑛𝑐,𝑖 .
Next, we try to establish the selection of style references. The

number of style references 𝑘 is set to 6 since Chinese characters
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are typically decomposed into at most 6 components. We build a
component-level character-reference mapping and a stroke-level
character-referencemapping that assign a sub-reference set𝑋𝑐𝑜𝑚𝑝𝑐,𝑖
to each component 𝑐𝑜𝑚𝑝𝑐,𝑖 in a character 𝑐 . For the former map-
ping, 𝑋𝑐𝑜𝑚𝑝𝑐,𝑖 consists of all characters from the reference set that
contains the component 𝑐𝑜𝑚𝑝𝑐,𝑖 ; for the latter, 𝑋𝑐𝑜𝑚𝑝𝑐,𝑖 consists
of all characters from the reference set that contains any stroke
from the stroke set {𝑠𝑡𝑟𝑜𝑘𝑒𝑐,𝑖, 𝑗 , 𝑗 = 1, . . . , 𝑛𝑐,𝑖 }. During training, we
randomly select one character from each 𝑋𝑐𝑜𝑚𝑝𝑐,𝑖 to form the style
reference set of character 𝑐 and then randomly fill the rest of the 𝑘
positions. The two mappings are used with a probability of 1 − 𝑝
and 𝑝 , respectively. We use OptSet as the style reference set during
training; during testing, new mappings are constructed according to
the given reference set. See Fig. 3 for an illustration of the reference
selection procedure.

Although our style encoder has only seen OptSet during training,
it is able to generalize to reference glyph images outside of OptSet,
meeting the requirements of real-world application scenarios where
arbitrary style references are available. On the other side, although
we leave OptSet out of training images for simplicity, our model is
still capable of generating characters in OptSet. Please refer to our
supplemental materials for synthesized glyph images of Chinese
characters in OptSet using style references outside of OptSet.

3.2 One-step Generation via Score Distillation Sampling
An image diffusion model usually requires tens of sampling steps
in order to produce valid, high-quality outputs. We empirically find
that for our model, sampling 10 steps using a simple DDPM sampler
(i.e., 1-order SDE sampler) gives sufficiently good results. This is
likely due to the reduced complexity of our target glyph image
domain compared to the regular image domain; nevertheless, 10-
step inference is still far from fast, real-time generation. In this
section, we propose to distill the above trained model into a one-
step generation model using a strategy based on Score Distillation
Sampling [Poole et al. 2022].
Score Distillation Sampling (SDS) is originally proposed for the

task of text-to-3D generation, where the knowledge of a pre-trained
2D text-to-image diffusion model is utilized to guide a 3D model to
render plausible 2D images from random angles, in turn achieving
effective learning of the 3D model. We find that this distillation
process can also be employed to reduce the sampling steps of our
model, without the need for an additional auxiliary regression [Yin
et al. 2023] or the adversarial loss [Sauer et al. 2023].
The distillation procedure is shown as Stage B1 in Fig. 2. It in-

volves a frozen trained teacher model 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑦) and a one-step
generation student model with weights initialized from the teacher
model as 𝜖𝜙 (𝑧𝑇 , 𝑦) = 𝜖𝜃 (𝑧𝑇 ,𝑇 ,𝑦). The conditioned time step in the
student model is fixed to𝑇 to ensure that the model starts from pure
noise during inference [Lin et al. 2024; Sauer et al. 2023]. During
training, the student model produces samples 𝑧𝜙 from the input
𝑧𝑇 = 𝛼𝑇 𝑧0 + 𝜎𝑇 𝜖 and the condition 𝑦. Similar to how the original
SDS method treats 2D images rendered from a 3D model, we aim to
optimize the parameter 𝜙 so that 𝑧𝜙 looks like a plausible sample
from the teacher model. This is achieved by moving the sample
towards the high-density region, which is implicitly defined by the

teacher model at each time step 𝑡 . The distillation is equivalent to
optimizing the following objective:

L𝑆𝐷𝑆 = E𝑡,𝑦 [
𝜎𝑡

𝛼𝑡
𝑤 (𝑡)𝐷𝐾𝐿 (𝑞(𝑧𝑡 |𝑧𝜙 ;𝑦, 𝑡) ∥ 𝑝𝜃 (𝑧𝑡 |𝑦, 𝑡))], (6)

where 𝑞(𝑧𝑡 |𝑧𝜙 ;𝑦, 𝑡) is the marginal distribution defined in the for-
ward process (i.e., 𝑧𝑡 = 𝛼𝑡𝑧𝜙 + 𝜎𝑡𝜖) and 𝑝𝜃 (𝑧𝑡 |𝑦, 𝑡) is the marginal
distribution at time step 𝑡 implicitly described by the teacher model.
Since estimating noise added to a data sample is equivalent to

estimating the score of the perturbed data distribution up to some
constant factors [Song et al. 2020b], the gradient of the above object
can be approximated by:

∇𝜙L𝑆𝐷𝑆 = E𝑡,𝑦 [
𝜎𝑡

𝛼𝑡
𝑤 (𝑡)∇𝜙𝐷𝐾𝐿 (𝑞(𝑧𝑡 |𝑧𝜙 ;𝑦, 𝑡) ∥ 𝑝𝜃 (𝑧𝑡 |𝑦, 𝑡))]

= E𝑡,𝜖,𝑦 [𝑤 (𝑡) (𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑦) − 𝜖)
𝜕𝑧𝜙

𝜕𝜙
],

(7)

where the noise estimation can be substituted by the classifier-
free guided version. We only update diffusion weights, i.e., the
conditioning weights are fixed during training. 𝑤 (𝑡) is set to be
uniform across all 𝑡 in our experiment. Note that unlike the method
proposed in [Sauer et al. 2023] where the distillation loss is computed
in the pixel space, our method operates in the latent space.

3.3 Towards Higher Resolution
The motivation of moving the generation process towards higher
resolution is two-fold: 1) a lot of information, such as style details
or densely placed strokes, is lost at low resolution (e.g., 64 × 64, see
Fig. 9), therefore an upsampling procedure is needed to recover such
lost information; 2) the gap between raster images and vector fonts
can be narrowed through upsampling, i.e., if we can generate sharp,
correct, and high-quality images at the resolution 1024 × 1024 or
higher, vectorizing can be done with negligible losses (see Fig. 10 for
some vectorization results of our generated glyph images compared
to the corresponding ground-truth vector glyphs).
We achieve the generation of high-resolution glyph images by

consecutively upsampling low-resolution results to higher reso-
lutions using a cascade of conditional super-resolution diffusion
models, i.e., from 64 × 64 to 256 × 256, and then from 256 × 256
to 1024 × 1024. Cascaded diffusion models [Ho et al. 2022] have
been used in the generation of high-resolution images with great
success [Saharia et al. 2022]. The noise conditioning augmentation
procedure is crucial for correcting artifacts generated by lower-
resolution models. Instead of directly applying other existing image
super-resolution models, we use the same framework adopted in
Stage A, i.e., a latent diffusion model coupled with the component-
aware conditioning module, for our super-resolution modules with
two modifications: 1) we insert the given low-resolution image into
the model by replacing the content reference image with the low-
resolution image as well as concatenating it with input noisy latents
𝑧𝑡 ; in this way, similar to what cross-attention in the conditioning
module is intended to do for the low-resolution model, we guide the
attention at each position of the low-resolution image to relevant
positions in style references in order to recover the lost details; 2)
to perform noise conditioning augmentation, we encode the low-
resolution images to the latent space, corrupt them with Gaussian
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noise, and then decode them back to the image space to serve as
noise-augmented low-resolution image inputs; in addition, we add
an extra condition 𝑠 , the level of noise added during noise condition-
ing augmentation, to the diffusion U-Net model; 3) to deal with the
increase of memory usage that comes with higher resolution, we add
extra downsampling layers to our style and content encoders; the
detailed network configurations are provided in the supplemental
materials.
It should be pointed out that we use the weights from the low-

resolution generation model to initialize our super-resolution mod-
els. This is because the style and content encoders there already
possess knowledge of extracting and transferring desired styles.

4 EXPERIMENTS

4.1 Experimental Setup
4.1.1 Datasets. To test our model and the compared methods’ abili-
ties to model and scale to larger datasets, we construct a small-scale
dataset and a large-scale dataset, the former consisting of 6,763
Chinese characters from the full GB2312 standard rendered in 438
fonts, and the latter consisting of 6,763 Chinese characters rendered
in 3,538 fonts. The small dataset is a subset of the large one. We
randomly extract the same 38 test fonts out of both datasets and
leave the rest 400 fonts and 3,500 fonts for training. We leave Opt-
Set out of both training and testing character sets. During training,
we randomly select 5,500 characters as the training character set.
For testing, we only test on unseen fonts to showcase the models’
abilities to generalize to unseen fonts. Specifically, we use randomly
selected 640 characters out of the training character set for testing
generation quality on seen characters, and use the rest 488 charac-
ters for testing generation quality on unseen characters. The same
applies for the other compared models as well unless otherwise
noted. For quantitative evaluation of our super-resolution models,
we report results on a randomly selected subset of the 640 seen
characters of size 160 for faster evaluation.

4.1.2 Evaluation Metrics. We use RMSE, SSIM, and LPIPS to eval-
uate pairwise generation quality, i.e., how similar each generated
glyph image is with the corresponding ground truth, and FID to
evaluate the distribution-wise similarity between real and generated
glyph images. Additionally, following [Park et al. 2021a], we train
a character classifier and a font classifier to classify 6,763 classes
of characters and 3,538 classes of fonts up to accuracy 99.82% and
93.52%, respectively, and test their accuracy on generated images
as content accuracy (Acc(C)) and style accuracy (Acc(S)). It should
be noted that these two metrics do not precisely represent content
and style accuracy. All generated glyph images are resized to a
resolution of 64 × 64 for fair quantitative comparison.

4.1.3 Implementation Details. For low-resolution model, we train
our model for 50 epochs on the small dataset with a batch size of 64,
and 20 epochs on the large dataset with a batch size of 128. To further
facilitate generation in scenarios where only very few references are
available, in the last 10% of the training iterations, we replace the
style references with 𝑘 identical glyph images randomly selected
from the reference set with a probability of 𝑝 , intending to encourage
learning of one-shot generation. In this way, the probability of

using component-level character-reference mappings becomes 1 −
𝑝 − 𝑝 , where 𝑝 is the probability of using stroke-level character-
reference mappings. We set both 𝑝 and 𝑝 to 0.1. By default, we
use a DDPM [Ho et al. 2020] sampler to sample for 10 steps, a
classifier-free guidance scale of 𝑠𝑐 = 2.0 and 𝑠𝑠 = 2.0, and we
use the trailing strategy specified in [Lin et al. 2024] for time step
selection. To train the methods being compared, we utilize their
default settings on the small dataset. For the larger dataset, we
double the number of iterations used for the small one. If further
training does not lead to better metric scores, we report metric
scores using the default number of training iterations. For one-
step distillation, we use our model trained on the large dataset as
the teacher model, set classifier-free guidance scales to 𝑠𝑐 = 2.0
and 𝑠𝑠 = 2.0, train for 2 epochs, and adopt a uniform weighting
function. For the super-resolution models, we train them using
weights initialized from the low-resolution model and use the same
sampling settings as those in the low-resolution model. After getting
the high-resolution (i.e., 1024 × 1024) glyph images, we apply the
Image Trace tool in Adobe Illustrator to convert them into high-
quality vector glyphs (see Fig. 1 and Fig. 10).
In addition, we utilize three types of data augmentations specif-

ically designed for glyph images: zooming in or out, widening or
narrowing either horizontally or vertically, and applying italic styles.
The above-mentioned operations have proven to greatly enhance
our method’s effectiveness.

4.2 Comparison with State-of-the-art Methods
We first compare our Stage A low-resolution model with 8 state-of-
the-art methods, including 6 GAN-based models: MX-Font [Park
et al. 2021b], DG-Font [Xie et al. 2021], FsFont [Tang et al. 2022], CG-
GAN [Kong et al. 2022], CF-Font [Wang et al. 2023c], VQ-Font [Pan
et al. 2023], and 2 diffusion-based models: Diff-Font [He et al. 2022]
and FontDiffuser [Yang et al. 2023b]. We use the default settings in
their papers and source codes, including training hyper-parameters,
number of references, image resolution, sampling steps, etc. We
train each model on both the small and large datasets, then report
test results for both the seen and unseen character sets. However,
three exceptions exist: 1) CG-GAN [Kong et al. 2022] fails completely
when trained on the large dataset, demonstrating the inferiority of
GANs in terms of scaling to large datasets; 2) Diff-Font [He et al.
2022] is not generalizable to unseen characters, so we test it on seen
characters only; aside from that, we expand their training character
set with OptSet to enable applications in Section 4.5. Since our total
number of training iterations (millions) are larger compared to the
default setting of the compared methods (hundreds of thousands),
we also provide results of the compared methods trained for the
same number of iterations as ours in the supplemental materials to
avoid possible unfairness brought by different training settings.
Quantitative results are shown in Table 1. For our model using

the reference size (denoted n_ref) of 𝑛 = 1, 10, 100, we use a size 𝑛
subset of OptSet as the reference set and reconstruct new mappings
accordingly. Except for Acc(C), where the top performing methods
all perform similarly, we surpass previous methods across all metrics
by a large margin. Notably, using the full OptSet as the reference set,
our model achieves a FID of 1.305 on seen characters and a FID of
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Table 1. Quantitative evaluation on unseen fonts.

Method Train
Set

Unseen Fonts Seen Characters Unseen Fonts Unseen Characters
RMSE↓ SSIM↑ LPIPS↓ FID↓ Acc(C)↑ Acc(S)↑ RMSE↓ SSIM↑ LPIPS↓ FID↓ Acc(C)↑ Acc(S)↑

MX-Font Small 0.364 0.387 0.251 21.955 0.984 0.082 0.365 0.378 0.248 21.261 0.991 0.089
Large 0.333 0.465 0.217 24.306 0.999 0.109 0.335 0.455 0.216 23.770 0.998 0.113

DG-Font Small 0.295 0.546 0.197 23.383 0.955 0.067 0.301 0.530 0.198 22.689 0.973 0.040
Large 0.301 0.540 0.199 9.914 0.921 0.061 0.306 0.532 0.196 9.819 0.954 0.039

FsFont Small 0.306 0.493 0.235 19.129 0.946 0.010 0.305 0.501 0.222 15.594 0.950 0.024
Large 0.318 0.462 0.261 33.084 0.276 0.067 0.327 0.426 0.284 38.676 0.193 0.035

CG-GAN Small 0.314 0.521 0.201 18.929 0.968 0.170 0.317 0.513 0.202 19.210 0.968 0.166
Large - - - - - - - - - - - -

CF-Font Small 0.275 0.582 0.183 21.834 0.965 0.111 0.275 0.580 0.181 21.551 0.960 0.121
Large 0.269 0.577 0.193 15.829 0.910 0.060 0.271 0.570 0.192 15.270 0.914 0.061

VQ-Font Small 0.274 0.574 0.215 24.552 0.900 0.017 0.278 0.562 0.215 24.563 0.892 0.019
Large 0.270 0.584 0.213 19.130 0.880 0.028 0.274 0.572 0.213 19.313 0.872 0.028

Diff-Font Small 0.322 0.515 0.212 7.665 0.868 0.078 - - - - - -
Large 0.296 0.566 0.178 3.799 0.990 0.194 - - - - - -

FontDiffuser Small 0.326 0.479 0.213 12.513 0.991 0.136 0.329 0.469 0.214 12.929 0.990 0.136
Large 0.309 0.522 0.189 14.264 0.992 0.243 0.313 0.511 0.190 14.625 0.991 0.246

Ours
(n_ref=1)

Small 0.279 0.599 0.161 3.438 0.995 0.314 0.286 0.583 0.164 3.541 0.994 0.317
Large 0.274 0.610 0.153 2.437 0.990 0.547 0.281 0.594 0.157 2.604 0.990 0.545

Ours
(n_ref=10)

Small 0.273 0.612 0.153 3.034 0.993 0.375 0.281 0.595 0.157 3.115 0.993 0.377
Large 0.266 0.627 0.142 1.780 0.989 0.642 0.273 0.611 0.147 1.964 0.989 0.634

Ours
(n_ref=100)

Small 0.258 0.643 0.134 2.340 0.997 0.452 0.267 0.623 0.139 2.472 0.996 0.448
Large 0.250 0.658 0.125 1.392 0.993 0.676 0.259 0.639 0.130 1.581 0.991 0.667

Ours
(n_ref=775)

Small 0.243 0.672 0.118 1.836 0.998 0.530 0.252 0.654 0.122 1.967 0.997 0.528
Large 0.234 0.690 0.109 1.209 0.997 0.705 0.243 0.672 0.113 1.400 0.996 0.694

1.440 on unseen characters. Even using as few as 10 references, our
model achieves state-of-the-art results. While Diff-Font [He et al.
2022] achieves a relatively low FID of 3.799, it underperforms in
other metrics. From their synthesis results, it is evident that despite
producing sharp and plausible glyph images, Diff-Font fails to learn
a consistent and accurate style (see Fig. 4).
Qualitative results from models trained on the large dataset are

visualized in Fig. 4 and Fig. 5. Please refer to our supplemental
materials for synthesis results obtained from various models trained
on the small dataset. It can be seen from the generated results that
our model produces samples with fine and sharp details while being
consistent with the reference images for a variety of styles. Using
different sizes of input inferences, it is able to extract different levels
of style information from the reference set, e.g., stroke thickness,
spatial layout, etc. from a smaller reference set, and delicate brush
details, specially designed components, etc. from a larger reference
set. The GAN-based methods often exhibit blurriness and artifacts,
while the two diffusion-based models produce visually pleasing
glyph images thanks to the generative ability of diffusion models
but fail to effectively transfer style from input references.

We show extra generated results from our model trained on the
large dataset on more difficult cases in Fig. 6, i.e., unseen fonts
with complicated styles, special designs, etc. Our model displays
remarkable style-wise diversity and consistency as well as impres-
sive content-wise accuracy. In the rest of the paper, if not pointed
out particularly, we conduct experiments and present results using
our model trained on the large dataset with the full OptSet as the
reference set by default.

4.3 One-step Generation Results
In this section, we evaluate the effectiveness of our distillation
method by comparing our one-step distilled model with the teacher
model both quantitatively and qualitatively. We use the same met-
rics mentioned above to evaluate font generation quality; for the
evaluation of generation speed and efficiency, we set the batch size
to 64, the image resolution to 64 × 64, and record the average run-
ning time needed to generate the entire seen character test set on a
single NVIDIA A40 for all relevant methods.
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MX-Font

DG-Font

FsFont

CF-Font

VQ-Font

Diff-Font

FontDiffuser

Ours(n_ref=1)

Ours(n_ref=10)

Ours(n_ref=100)

Ours(n_ref=775)

Target

Fig. 4. Comparison of generated results from models trained on the large dataset on unseen fonts seen characters. n_ref denotes the number of style references.

MX-Font

DG-Font

FsFont

CF-Font

VQ-Font

FontDiffuser

Ours(n_ref=1)

Ours(n_ref=10)

Ours(n_ref=100)

Ours(n_ref=775)

Target

Fig. 5. Comparison of generated results from models trained on the large dataset on unseen fonts unseen characters. n_ref denotes the number of style
references.

Ours(n_ref=10)

Ours(n_ref=100)

Ours(n_ref=775)

Target

Fig. 6. Extra generated results from our model trained on the large dataset. n_ref denotes the number of style references.

Table 2 presents the quantitative results of our one-step distilled
model and the teacher model. Our distilled model achieves even bet-
ter RMSE, SSIM and LPIPS results compared to its teacher model, in
the meantime achieving decent FID, Acc(C) and Acc(S) scores. Fig. 7
presents some generation results of relevant models. We can see
that our one-step distilled model faithfully mimics the output of the

multi-step teacher model, while the teacher model does not produce
valid results in the one-step setting, proving the effectiveness of our
design.

Fig. 8 compares the generation efficiency of our model with other
GAN-based and diffusion-based models. It can be observed that our
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Original(10 steps)

Original(1 step)

Distilled(1 step)

Target

Fig. 7. Comparison of generated results from our one-step distilled model and its multi-step teacher model. The full OptSet is used as the reference set.

Table 2. Quantitative evaluation of our one-step distilled model and the teacher model on unseen fonts. The full OptSet is used as the reference set.

Method #Steps Unseen Fonts Seen Characters Unseen Fonts Unseen Characters
RMSE↓ SSIM↑ LPIPS↓ FID↓ Acc(C)↑ Acc(S)↑ RMSE↓ SSIM↑ LPIPS↓ FID↓ Acc(C)↑ Acc(S)↑

Teacher 10 0.234 0.690 0.109 1.209 0.997 0.705 0.243 0.672 0.113 1.400 0.996 0.694

Teacher 1 0.230 0.678 0.186 50.882 0.719 0.054 0.238 0.660 0.190 50.497 0.717 0.052

Distilled 1 0.229 0.699 0.105 1.683 0.996 0.675 0.237 0.684 0.109 1.871 0.996 0.669

Fig. 8. Comparison of the performance of different font synthesis methods.
Our models maintain an optimal balance between generation quality and
efficiency, markedly outperforming other diffusion-based approaches in
both two aspects.

Ours 
(64 × 64)

Real-ESRGAN 
(256 × 256)

Ours 
(256 × 256)

Ours 
(1024 × 1024)

GT 
(1024 × 1024)

Ours (distilled) 
(256 × 256)

Fig. 9. Visualization of detailed styles recovered by our super-resolution
module.

distilled model is significantly faster than the compared diffusion-
based models, and comparable with GAN-based methods while

Table 3. Quantitative evaluation of our SR model compared to an off-the-
shelf SR model Real-ESRGAN (denoted as RE). 256 and 1024 denote images
in the resolutions of 256 × 256 and 1024 × 1024, respectively.

Method RMSE↓ SSIM↑ LPIPS↓ FID↓ Acc(C)↑ Acc(S)↑
RE
(256) 0.263 0.674 0.123 18.732 0.997 0.637

Ours
(256) 0.265 0.676 0.122 14.861 0.996 0.766

RE
(1024) 0.285 0.657 0.129 15.315 0.997 0.634

Ours
(1024) 0.286 0.663 0.127 5.996 0.996 0.742

achieving much better FID score. As the number of sampling steps
drops to as few as 1, the main overhead of the model becomes the
decoder part of the autoencoder. Further optimization can be done
to improve the efficiency of the autoencoder, which we leave to
future work.

4.4 High-resolution Generation and Vectorization Results
In this section, we present high-resolution synthesis results obtained
by our super-resolution models. We first compare our model with
an off-the-shelf super-resolution model Real-ESRGAN [Wang et al.
2021] in Fig. 9 and Table 3 to showcase our model’s capability to
recover lost style details in low-resolution results. It can be seen
clearly from the zoom-in images in Fig. 9 that our model is able to ex-
tract and recover style details from high-resolution style references.
This is also reflected in the increased value of Acc(S).

We have performed the distillation procedure on the super-resolution
models and the super-resolution results of the distilled models are
shown alongside their multi-step teacher models in Fig. 9.
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DG-Font CF-Font Diff-Font FontDiffuser Ours(64x64) Ground TruthOurs(1024x1024)Ref. Examples

爱氨
岸盎
爱氨
岸盎
爱氨
岸盎
爱氨
岸盎
爱氨
岸盎
爱氨
岸盎
爱氨
岸盎
爱氨
岸盎
爱氨
岸盎
爱氨
岸盎

Fig. 10. Examples of vector glyphs obtained by vectorizing glyph images synthesized by different methods. Four samples of input style references in each font
are shown in the first column. The resolution of the original raster images generated by our method is indicated in the figure. Please zoom in for better clarity.

Generating high-quality glyph images at such high resolution (i.e.,
1024 × 1024) allows us to convert them into vector fonts through
a vectorization process with negligible quality loss to narrow the
gap between the image modality and the vector modality. We use

the Image Trace tool in Adobe Illustrator as an off-the-shelf vec-
torizer to transform low-resolution glyph images synthesized by
our model and several compared models, as well as high-resolution
glyph images produced by our model into vector glyphs. Vectoriza-
tion results of glyph images synthesized by different methods are
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AGIS-Net

Diff-Font

Ours

Target

Fig. 11. Comparison of artistic glyph image synthesis results.

shown in Fig. 10. Directly applying vectorization to glyph images
generated by current state-of-the-art methods does not yield satis-
factory outcomes, as their raster images lack both style accuracy and
high-resolution details. On the other hand, our component-aware
low-resolution generation model coupled with a style-recovering
super-resolution module can successfully produce samples that are
of sufficient quality for a vectorizer to produce satisfactory vec-
tor glyphs with precise control point positions. To the best of our
knowledge, until now, no method directly targeting the automatic
generation of high-quality vector fonts has been reported capa-
ble of handling glyphs at such level of structural complexity and
style diversity. In this paper, we choose an alternative strategy to
generate vector fonts by vectorizing high-quality, high-resolution
synthesized glyph images, achieving impressive results.

4.5 Application to Artistic Glyph Image Synthesis
Artistic glyph image synthesis aims to generate the color and tex-
ture of an artistic font in the meantime of generating the shape. It is
mostly done with a fine-tuning step, since there are limited training
datasets available for the model to learn a representation that can
be generalized to unseen patterns, and the possibilities for artistic
designs are extensive (e.g., one can replace strokes with some real-
world objects, etc.). To equip our model with the ability to deal with
colored images, following [Gao et al. 2019], we first pre-train our
model with a synthesized colored and textured glyph image dataset.
It is constructed by applying common artistic text effects such as out-
lining, shadowing, and coloring to the foreground and background
of glyph images (see Fig. 12 for some examples). We randomly apply
these operations during training as a form of augmentation instead
of generating a large-scale dataset beforehand.

Fig. 12. Examples of our synthetic colored and textured glyph images.

We compare ourmodel with two existingmethods: AGIS-Net [Gao
et al. 2019], a GAN-based method targeting few-shot artistic glyph
image synthesis, and Diff-Font [He et al. 2022]. The test artistic
fonts come from three datasets: synthetic Chinese character dataset

in [Gao et al. 2019], TE141K-C in [Yang et al. 2020], and our syn-
thetic dataset. Since each style in TE141K-C only contains 775 char-
acters from OptSet, we fine-tune each style using randomly selected
100 characters and test on the remaining characters. Regarding im-
plementation details, we train our model on the color-augmented
dataset with weights initialized from the model trained on black and
white glyph images; during testing, for each given style, we fine-
tune our autoencoder for 80 epochs and our LDM for 240 epochs. For
the compared methods, we adopt the default settings in AGIS-Net
to fine-tune their model for 500 epochs and we fine-tune 320 epochs
for Diff-Font to match our total fine-tuning epochs. Note that our
model does have a slight advantage over the compared methods
since we pre-train on glyph images with augmented colors for both
the foreground and background.
Results are shown in Fig. 11. AGIS-Net produces blurry results

containing the most visible artifacts. Diff-Font works well on some
styles while fails completely on some other styles; also, it sometimes
yields incorrect contents likely due to overfitting of the reference
images. In contrast, our method performs stably better in terms of
both content preservation and style consistency for all test styles.
Additionally, our method is the only one demonstrating capability
in transferring special effects, e.g., design of leaves and bamboos for
the first style in Fig. 11, owing to the component-aware conditioning
we construct.

4.6 Ablation Studies
In this section, we ablate several design choices in our method,
including the reference selection strategy in Section 3.1.2, data aug-
mentation described in Section 4.1.3, and the inclusion of different
levels of references in Section 3.1.2.
We first print out the loss curves evaluated on the validation

set during training for each variant in Fig. 13. For the variant that
excludes reference selection, we use randomly selected 𝑘 samples
as style references. As we can see from the loss curves, the ref-
erence selection strategy we use and the data augmentation we
incorporate are validated to be beneficial to our model. The more
notable improvement is brought by the use of reference selection
strategy, indicating its effectiveness in guiding the learning of style
transferring.

For evaluation of the effect of using different levels of references,
i.e., selecting from both stroke-related and component-related refer-
ences, we show generated results from the model trained using only
component-related references in Fig. 14. The effect becomes more
visible as the reference size decreases, where themodel demonstrates
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Fig. 13. The loss curves evaluated on the validation set for different variants
of our model.

a behavior of transferring wrong components to target characters
instead of generating results adhering to given contents. We hy-
pothesize that the model only learns a component transfer function
during training, and does not learn to adhere to the input character
structure, as it is provided with all the necessary components to re-
construct the target glyph. By weakening the input style references,
we force the model to adjust to different levels of style information,
learn different levels of style representations, and actively stay faith-
ful to the given content. For qualitative results of other variants, we
provide them in the supplemental materials.

w/o stroke
(n_ref=10)
with stroke
(n_ref=10)
w/o stroke
(n_ref=100)
with stroke
(n_ref=100)
Target

Fig. 14. Our models, without the guidance of stroke-level references, tend
to generate incorrect character contents and overlook stylistic details.

4.7 User Studies
Since quantitative indicators do not strictly align with human per-
ception, we also conduct user studies to further evaluate ourmethod’s
effectiveness, which comprises two parts: 1) we perform a Turing
test with non-expert participants using our low-resolution synthe-
sis results to find out if our generated glyph images are indistin-
guishable from ground truths to common users; 2) to evaluate the
performance of our method in the real-world font design scenario,
we recruit several professional font designers to assess the quality of
our generated vector glyphs from an expert point of view. Both user

studies are conducted with our model trained on the large dataset
with the full OptSet as the reference set.

In the first part of our user studies, the participants are first
shown 10 examples from the input reference set, then presented
with 25 generated results mixed with 25 ground-truth samples and
asked to choose which ones are computer-generated (see Fig. 15 for
examples). The experiment is conducted on 10 fonts from our test set
mentioned in Section 4.1.1 and all characters are randomly selected
with no duplication. We collect a total of 211 data points from 93
participants. The average accuracy across all participants and all font
styles is 51.07%, which is close to a 50/50 random guess, indicating
that our generated results are practically indistinguishable from
references to common users.

In the second part of our user studies, professional font designers
are shown the 10 groups of vector glyphs in Fig. 10, each containing
4 generated vector glyphs and 1 ground-truth vector glyph placed
in random order. We use vector glyphs vectorized from our high-
resolution synthesis results to represent our model. Then, given sev-
eral corresponding reference vector glyphs, participants are asked
to rank the 5 vector glyphs (including the ground truth) from best
to worst quality. In total, 11 font designers have participated in our
experiment. We assess each font style individually; each generated
vector glyph ranked as first to last is assigned a score of 4 to 0, and
we calculate the total score for each generated vector glyph across all
participants. Results for each font style are compared in Fig. 16. Our
model reaches the highest score for 4 out of the 10 fonts and reaches
the second highest score for 6 of the fonts, led by the ground-truth
vector glyphs only. This suggests that our generated vector fonts
are significantly better than those from the compared methods and
are even comparable to designer-created ground-truth vector fonts,
demonstrating the great potential of our model in automatically
fulfilling the task of professional vector font design.

5 FAILURE CASES AND LIMITATIONS
In this section, we present the failure cases of our model and discuss
corresponding limitations.
Firstly, our model does not have explicit control over character

structure, impairing its robustness in terms of content accuracy,
especially with fewer input references or for complicated characters.
As we can see from Table 1 and Fig. 18 (a), the content accuracy
drops as the number of references decreases. Even when using the
full OptSet as the reference set, as depicted in Fig. 18 (b), for a few
Chinese characters with complicated shapes, our model sometimes
generates glyphs with duplicated or missing strokes, or synthesizes
blurry results with densely placed strokes, which cannot be fixed
by our super-resolution models. Efforts can be put into equipping
our super-resolution models with prior knowledge on character
structures to recover lost contents that are difficult to generate in
low-resolution images. Apart from that, incorporating advanced
content preserving techniques [Yang et al. 2023b] into our model
may also be helpful .
Secondly, although our model demonstrates impressive style

learning and transferring capability, there are still corner cases that
our model cannot handle. Cases of imperfect style transferring are
shown in Fig. 18 (c). Our model sometimes confuses the shadow or
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(a) Answer sheet (b) Test sheet #1 (c) Test sheet #2 (d) Test sheet #3 (e) Test sheet #4

Example test sheets shown to participants for the first part of our user study. 
Characters generated by our system are marked in blue and the rest are 

ground truth images.

Fig. 15. Example test sheets (b-e) shown to participants for the first part of our user studies. As shown in the answer sheet (a), glyphs generated by our system
are marked in blue and the rest are ground-truth glyph images.

Fig. 16. Calculated scores for each relevant vector glyph from each font in the second part of our user studies. Higher score denotes higher quality of the
corresponding vector glyph (see Section 4.7 for details regarding the collection and calculation of scores). We can see that even professional font designers
struggle to distinguish ground-truth vector glyphs from those generated by our method, which significantly outperforms other existing approaches.

the outline parts with the actual glyph. Conducting augmentations
of adding shadows or outlines to glyphs may be helpful.
Also, our method is based on the structural decomposition of

Chinese characters and does not generalize well to other languages,
especially for shapes that do not exist in the GB2312 Chinese charac-
ter set, e.g., the shape of a circle. See Fig. 19 for examples of English
and Korean characters. In order to achieve cross-language general-
ization, methods to better grasp a global style to transfer to glyphs

from other languages can be added upon our framework. Never-
theless, our model still possesses valuable knowledge of extracting
and transferring styles in glyph images and can serve as a strong
initialization for the generation of other languages. We directly ap-
ply our Chinese generation framework on Korean characters using
our Chinese generation model as weight initialization and present
several generated results in Fig. 17, where the strong ability of learn-
ing multi-level designs are shown to transfer to the generation of
Korean characters. Please refer to the supplementary materials for
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Ours(n_ref=1)

Ours(n_ref=10)

Ours(n_ref=36) 

Target

Fig. 17. Korean glyphs synthesized by models fine-tuned from our Chinese generation model on unseen fonts seen characters. n_ref denotes the number of
style references.

Ours 
(n_ref=1)Ours(n_ref=1)

Ours(n_ref=10)

Ours(n_ref=100)

Ours(n_ref=775)

Target Ours
(64)

Ours
(256)

Target

(a) (b)

Ours 
(n_ref=775)

(c)

Target

Ours 
(n_ref=775)

Target

Ours 
(n_ref=775)

Target

Ours 
(n_ref=100)

Ours 
(n_ref=10)

Failure cases of our method. Incorrect character structures are marked out 
with red circles. (a) Content accuracy drops steadily as number of references 
decreases. (b) Blurry, duplicated or missing strokes, which cannot be fixed by 

our SR models. (c) Failed styles.

Ours Target Ours Target

Fig. 18. Failure cases of our method. Incorrect character structures are
marked out with red circles. (a) Content accuracy drops as the number of
references decreases. (b) Blurry, duplicated or missing strokes, which cannot
be fixed by our SR model. (c) Imperfect style transfer.

Content
Style

Fig. 19. Cross-language font generation results of our Chinese font synthesis
model without fine-tuning on other languages.

Our vectorization 
results Ground Truth

Our 1024x1024 
image results

霜
醚

Fig. 20. Some less satisfactory vectorization results.

detailed description and discussion of our method’s extension to
other languages.

Lastly, we discuss the limitation of our vectorization process. The
off-the-shelf vectorizer we use is a well-developed commercial tool
that we empirically find to perform fairly robustly. However, we
did observe some less satisfactory cases. As presented in Fig. 20, the
vectorizer sometimes fails to binarize our generated glyph images
properly, connecting components that are supposed to be separated
(first row), and sometimes produces overly smoothed results that
fail to perfectly preserve the original font style (second row).

6 CONCLUSIONS
This paper proposed HFH-Font, a few-shot Chinese font synthesis
framework capable of generating high-fidelity and high-resolution
glyph images that can be vectorized into high-quality vector fonts.
Our component-aware encoders and reference selection strategy
bring the flexibility of varying reference sizes into our system. Our
proposed distillation method and detail-recovering super-resolution
module are proven to be effective in improving the efficiency and
generation quality of our system. Extensive experiments including
user studies have been conducted to show that results produced by
our system not only surpass existing state-of-the-art methods, but
are even comparable to designer-created ones, raising the possibility
of automatic generation of large-scale Chinese vector fonts.
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