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Abstract

We study the computational complexity of computing Bayes-Nash equilibria in first-price

auctions with discrete value distributions and discrete bidding space, under general subjective beliefs.

It is known that such auctions do not always have pure equilibria. In this paper, we prove that the

problem of deciding their existence is NP-complete, even for approximate equilibria. On the other

hand, it can be shown that mixed equilibria are guaranteed to exist; however, their computational

complexity has not been studied before. We establish the PPAD-completeness of computing a mixed

equilibrium and we complement this by an efficient algorithm for finding symmetric approximate

equilibria in the special case of iid priors. En route to these results, we develop a computational

equivalence framework between continuous and discrete first-price auctions, which can be of

independent interest, and which allows us to transfer existing positive and negative results from

one setting to the other. Finally, we show that correlated equilibria of the auction can be computed

in polynomial time.
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1 Introduction

The first-price auction is arguably the simplest and most intuitive auction format: there is one good for

sale, which gets allocated to the highest bidder (breaking ties uniformly at random), for a payment equal

to her submitted bid. In its primitive forms, this type of auction dates back to ancient times [Cas67],

and became quite popular during the 17th century for the sale of paintings and estates. In recent times,

the first-price auction has been central to the sale of online advertising space, known as the multi

billion-dollar industry of “ad impressions” (e.g., see [BDMMZ21])
1
. Indeed, most digital marketplaces,

known as ad exchanges —including Google’s Ad Manager— are currently using first-price auctions

for the sale of their ad impressions [PST20; DRS21; CKSS22]. This mass migration to the first-price

auction from other auction formats, such as the celebrated second-price auction [Vic61], was coined

“the first-price movement” and was mainly attributed to the auction’s simplicity for the users, but also

to increased revenue for the publishers. Indeed, in a survey of 100 publishers in November 2018, 78%

reported an increase in revenue due to migrating to the first-price auction [Dig19].

Contrary to its famous second-price counterpart, the first-price auction provides incentives to the

participants to strategically choose their bids. For example, consider a bidder that is willing to pay

$10 for the good. If the bidder believes that it is unlikely for any other bidder to be willing to bid

an amount equal or close to $10, she would underbid, aiming to win the good at a lower price. This

induces a strategic game, in which the bidders choose their bids aiming to maximize their personal

utilities. Inherent in this game is the notion of a belief of a bidder for the values (the aforementioned

“willingness to buy”) of the other bidders, and hence, in game-theoretic terms, this is a Bayesian game
of incomplete information. These games were formally introduced in the seminal work of Harsanyi

[Har67] and capture situations in which the bidders are uncertain about the type of opponents they are

facing in the game. The stable outcomes of these games, where no bidder wishes to unilaterally change

her strategy, are known as Bayes-Nash equilibria (or simply, equilibria).

In the context of auctions, incomplete information is typically captured by probability distributions

(also known as priors) over the possible values that the other bidders have for the item. Interestingly,

Vickrey, in his seminal paper in 1961, defined and analysed a Bayesian game for the first-price auction,

even before Harsanyi’s formal introduction of the concept. Following his work, a plethora of papers

in the economics literature studied the equilibria of first-price auction; see, e.g., [Vic61; GLS67; MR85;

MR00; MR03; Chw89; Plu92; Leb96; Leb99; Leb06; LP00; Ath01]. The focus of these works is primarily

on showing the existence of equilibria for different variants of the auction, their (non)-uniqueness, and

in relatively few cases how to “find” them, i.e., deriving closed-form solutions that characterize them.

In the computer science community, Filos-Ratsikas et al. [FGHLP23] recently put forward the study

of the computational complexity of finding these equilibria; that is, devising polynomial-time algorithms

to compute them, or proving computational hardness results for appropriate complexity classes. They

studied a setting with (subjective) continuous priors and discrete bids, for which the existence of a

(pure) equilibrium is guaranteed by the work of Athey [Ath01]. Among other results, they showed that

computing an equilibrium of the auction is PPAD-complete in general, but polynomial-time solvable in

special cases. The class PPAD was defined by Papadimitriou [Pap94] and is believed to contain problems

that are computationally hard to solve, including finding a mixed Nash equilibrium in general games

[DGP09; CDT09], among many others. Following up on [FGHLP23], Chen and Peng [CP23] considered

the same setting with common priors and provided a PPAD-completeness result, but under a different

tie-breaking rule, rather than uniform tie-breaking.

A common feature of the aforementioned works is that they assume the priors to be continuous,
meaning that the values are drawn from continuous distributions over an infinite domain. While this

assumption is quite common in the auction literature, considering auctions with discrete values has

1
In fact, the sale of ad impressions accounted for 58% of Google’s revenue in 2022, for an amount of $162.45 billion; see

[Sta24].
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clear merits as well. For example, such priors are often formed based on past bidding behaviour, or can

be interpreted as the prices of reselling the good
2
; in either case, they are inherently of a discrete nature

[EMS09]. Additionally, in experiments designed to evaluate the incentive properties of the auction,

the values are ultimately chosen from a discrete set, e.g., see [CST80; CRS82; CSW83; CSW88; Har89].

Furthermore, cryptographic implementations of the auction, which are based on perturbations of the

values, are contingent on the discreteness in order to reason about equilibria in the perturbed space

[MNT09]. Finally, the setting of discrete values and discrete bids makes the problem more amenable

to computational approaches, as the representation of the inputs (the priors) and the outputs (the

strategies) is straightforward. In contrast, the issue of representation in continuous value spaces is

a rather intricate one, and requires additional monotonicity assumptions on the strategies; see the

discussion in [FGHLP23] for more details. Other works that consider discrete priors in auctions include

[CDW12; FHHK14; PP15; KBP18; ACLS22].

Motivated by the above, we consider the problem of computing equilibria in first-price auctions

with discrete values and discrete bids. We phrase the following general question:

Open Question 1. What is the computational complexity of finding equilibria in first-price auctions

with discrete values and discrete bids?

1.1 Our Results and Discussion

1.1.1 Pure equilibria

Contrary to the case of continuous values, it is known that in a first-price auction with discrete values,

pure Bayes-Nash equilibria may not even exist [MR85; EMS09]. This motivates the computational

question of deciding their existence. To this end, we provide our first main result:

Informal Theorem 1. The problem of deciding the existence of a pure Bayes-Nash equilibrium, in a
first-price auction with discrete subjective priors and discrete bids, is NP-complete.

The term “subjective” in the statement of Informal Theorem 1 refers to the fact that different bidders

may have different beliefs about the values of other bidders. Subjective priors are also present in most

of the results in [FGHLP23], as well as in the definition of general Bayesian games (e.g., see [Har67;

Mye97; JR01]. Related notions of subjectivity have been considered rather widely in the literature, e.g.,

see [Hah73; FL86; BGM92; BG97; KL93; RW94; WP12; FW16]. An interesting special case of subjective

priors is the well-known independent private values (IPV) model, where the prior distribution for every

bidder 𝑖 is the same from the perspective of any other bidder 𝑗 (see, e.g., [MR85]).

𝜀-approximate Equilibria

In the context of game theory, it is often useful to talk about 𝜀-approximate equilibria, i.e., sets of

strategies where any unilateral deviation could improve a player’s utility by at most 𝜀 (here, in the

additive sense). With regard to computational complexity in particular, this might be necessary, as

exact equilibria in certain settings might involve irrational quantities in their description, making them

a priori impossible to represent on a computer; see [FGHLP23] for a discussion related to the first-price

auction, and also [Gol11] for a more general context. In our setting with discrete values and bids, this

is not an issue: all pure equilibria are rational. Still, in light of the aforementioned non-existence and

NP-hardness results, one might wonder: “Could 𝜀-approximate equilibria always exist, and could we

perhaps compute them in polynomial time?”. It turns out that the answer to both of these questions is

“no”, at least when 𝜀 is a reasonably small constant. In fact, the formal version of Informal Theorem 1

2
Experimental works in auctions, e.g. [CST80; CSW88], refer to the values explicitly as “resale values” when communicating

them to the participants.
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is an inapproximability result for 𝜀-approximate equilibria, which we present after we establish a

strengthening of the non-existence results of [MR85; EMS09] to approximate equilibria as well.

1.1.2 Mixed Equilibria

Motivated by the non-existence of pure equilibria for discrete values, we then turn our attention to

mixed Bayes-Nash equilibria of the first-price auction, in which agents are allowed to randomize among

different bids; note that previous works [FGHLP23; CP23] focus exclusively on the complexity of pure

equilibria. The existence of such mixed equilibria is guaranteed, due to known existence results in

general Bayesian games; see also our discussion in Section 6. This renders the (mixed) equilibrium-

finding problem a total search problem; i.e., one that always has a solution, and thus a candidate for

membership in the aforementioned class PPAD. Our second main result establishes that the problem is,

in fact, PPAD-complete.

Informal Theorem 2. The problem of computing a mixed Bayes-Nash equilibrium of a first-price auction
with discrete subjective priors and discrete bids is PPAD-complete.

We remark that, similar to Informal Theorem 1, the PPAD-hardness part of Informal Theorem 2 also

applies even to 𝜀-approximate equilibria, for a constant 𝜀, whereas the PPAD-membership applies to

approximate equilibria for the level of accuracy required by the representation (i.e., inversely-exponential

in the input size).

One could conceivably exploit the nature of the aforementioned general existence proofs, and

combine them with the general membership technique of Daskalakis, Fabrikant, and Papadimitriou

[DFP06], to obtain the PPAD-membership part of our result in Informal Theorem 2. Here we take a

different route, by establishing an interesting connection between the discrete and continuous auction

settings. In particular, we prove a computational equivalence between 𝜀-approximate mixed equilibria

of the discrete first-price auction and 𝜀′-approximate pure equilibria of the continuous variant. This

equivalence could serve as a useful tool in the future: the gist of our framework is that one can effectively

think of pure equilibria in the continuous setting and mixed equilibria in the discrete setting as two

sides of the same coin, allowing for translating results between the two settings.

For example, in this paper we will use this equivalence to derive the aforementioned PPAD-

membership as a corollary of the corresponding result for pure equilibria [FGHLP23], by transforming

the discrete auction into a continuous one, and computing a pure equilibrium there. The other direction

of the equivalence yields a PPAD-hardness result, which is however somewhat unsatisfactory, as it

only applies to monotone equilibria. This is a by-product of the fact that, as mentioned earlier, pure

equilibria of the continuous auction need to be monotone for reasons related to their representation

[FGHLP23]. For that reason, we provide a stand-alone, stronger PPAD-hardness result for all equilibria

(not necessarily monotone) via a direct reduction from the PPAD-complete problem Pure Circuit of

Deligkas et al. [DFHM22]. This allows also our PPAD-hardness to hold even for instances with very

simple bidding spaces.

1.1.3 Positive Results

The NP- and PPAD-hardness results of the aforementioned theorems showcase the computational

challenges in the quest for finding equilibria for general prior distributions. In quest for positive results,

we first consider a natural restriction of these priors, to be independent and identically distributed

(iid), and the question of computing symmetric mixed Bayes-Nash equilibria, i.e., equilibria in which

all the bidders use the same bidding strategy. For this case we provide a PTAS (polynomial-time

approximation scheme); that is, an algorithm that finds an 𝜀-approximate equilibrium for any 𝜀, in time

polynomial in the description of the auction, but possibly exponential in 1/𝜀. In particular, if we aim for

5



an 𝜀-approximate equilibrium with 𝜀 constant, then this yields a polynomial-time algorithm. We state

the corresponding theorem informally below:

Informal Theorem 3. The problem of computing a symmetric 𝜀-approximate mixed Bayes-Nash equilib-
rium of a first-price auction with iid priors admits a PTAS.

Our proof is based on formulating the equilibrium computation problem as a system of polynomial

inequalities, which can be solved within inversely-exponential precision using known results from the

literature (e.g., see [GV88]). To ensure that the running time of our algorithm is polynomial, we need to

make sure that the number of variables in the system is small; in our case, that would correspond to

the value and bidding spaces being of fixed size. For the former, we exploit the nature of monotone

strategies and devise a succinct representation which we refer to as support-representation. For the

latter, we prove a “shrinkage lemma”, which enables us to work on a substantially smaller bidding space

of size 𝑂 (1/𝜀), find an 𝜀′-approximate equilibrium there, and translate it to an (𝜀 + 𝜀′)-equilibrium of

the original auction.

Finally, we consider correlated equilibria, a more general equilibrium notion due to Aumann [Aum74].

In Bayesian games, there are several conceivable definitions of correlated equilibria; see, e.g., [Aum87;

BM13; BM16; For93; For06; For23] and [Mye97, Sec. 6.3]. In this paper we adopt a standard notion,

defined via the type-agent representation,
3

a canonical normal-form game representation of Bayesian

games that preserves the underlying fundamental equilibrium structure of the auction (e.g., see [Mye97,

Sec. 2.8], [JR01, Sec. 7.2.3]), also adopted in [HST15; AB24]. Our contribution here, which is presented

in Section 6, is showing that (exact) correlated equilibria of the first-price auction can be computed in

polynomial time.

1.2 Further Related Work

As we mentioned in the introduction, Filos-Ratsikas et al. [FGHLP23] were the first to study the

complexity of equilibrium computation in first-price auctions with continuous priors and discrete

bids, providing a PPAD-completeness result for the case of subjective priors. In follow-up work, Chen

and Peng [CP23] considered the IPV setting and proved a PPAD-completeness under an alternative,

somewhat involved tie-breaking rule for the possible winners, rather than the standard uniform tie-

breaking rule. Our shrinkage lemma is inspired by a conceptually similar idea in [CP23], but, contrary

to their work, it refers to auctions with discrete values (rather than continuous), subjective priors (rather

than IPV), and mixed equilibria (rather than pure equilibria).

The setting with discrete values (and discrete bids), which we study in the present paper, was first

studied by [EMS09], who provided preliminary results limited mainly to 2 bidders with bivalued iid

distributions. In a conceptually related paper, Wang, Shen, and Zuo [WSZ20] considered the computation

of equilibria in first-price auctions with discrete values and continuous bids under a non-standard tie-

breaking rule, which was used primarily by Maskin and Riley [MR00] as an intermediate step to prove

results for uniform tie-breaking. Other works that study the complexity of equilibrium computation in

Bayesian auctions, and Bayesian games in general, include [GGM07; CS08; PR08; CP14].

2 Preliminaries

In a (discrete, Bayesian) first-price auction (DFPA), there is a set 𝑁 = {1, 2, . . . , 𝑛} of bidders and one item

for sale. Each bidder 𝑖 has a value 𝑣𝑖 ∈ 𝑉𝑖 for the item and submits a bid 𝑏𝑖 ∈ 𝐵. Sets 𝑉1,𝑉2, . . . ,𝑉𝑛, 𝐵 are

finite subsets of [0, 1] and are called the value spaces of the bidders and the bidding space of the auction,

respectively.

3
Some works refer to this representation as the agent normal form representation, e.g., see [HST15; AB24]. We use the term

“type-agent representation” instead, following Myerson [Mye97, Sec. 2.8].
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The item is allocated to the highest bidder, who has to submit a payment equal to her bid. In case of

a tie for the highest bid, the winner is determined according to the uniform tie-breaking rule. That is,

for a bid profile 𝒃 = (𝑏1, . . . , 𝑏𝑛), the ex-post utility of bidder 𝑖 with value 𝑣𝑖 is defined as

𝑢̃𝑖 (𝒃 ; 𝑣𝑖) ≔
{

1

|𝑊 (𝒃 ) | (𝑣𝑖 − 𝑏𝑖), if 𝑖 ∈𝑊 (𝒃),
0, otherwise,

where 𝑊 (𝒃) = argmax

𝑗∈𝑁
𝑏 𝑗 (1)

Bayesian priors. Each bidder 𝑖 ∈ 𝑁 has a subjective belief for the values of each of the other

bidders 𝑗 ∈ 𝑁 \ {𝑖}, in the form of a prior distribution 𝐹𝑖, 𝑗 over 𝑉𝑗 . This induces a product distribution

𝑭−𝑖 ≔ ×𝑗≠𝑖𝐹𝑖, 𝑗 for the values 𝒗−𝑖 = (𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖+1, . . . , 𝑣𝑛) ∈ ×𝑗∈𝑁 \{𝑖 }𝑉𝑗 C 𝑽−𝑖 of the other bidders.

In other words, from the perspective of bidder 𝑖 , the values 𝑣 𝑗 for 𝑗 ≠ 𝑖 are drawn independently from

distributions 𝐹𝑖, 𝑗 .

We will also be interested in special cases of these Bayesian priors, namely:

— Independent Private Values (IPV), where 𝐹𝑖, 𝑗 = 𝐹𝑖′, 𝑗 for all 𝑗 ∈ 𝑁 and 𝑖, 𝑖′ ∈ 𝑁 \ { 𝑗}. In this case,

notation can be simplified by using 𝐹 𝑗 instead of 𝐹𝑖, 𝑗 . This can be interpreted as the value profile

𝒗 ∈ ×𝑖∈𝑁𝑉𝑖 being drawn from the product distribution 𝑭 = ×𝑗∈𝑁 𝐹 𝑗 .

— Identical Independent Values (iid), which is a special case of IPV above where 𝑉𝑖 = 𝑉𝑖′ and 𝐹𝑖 = 𝐹𝑖′

for all 𝑖, 𝑖′ ∈ 𝑁 . In other words, bidder values are iid according to a common distribution 𝐹 .

2.1 The Auction Game

The DFPA described above gives rise to a Bayesian game of incomplete information, where each bidder

𝑖 chooses her bid based on her own (true) value 𝑣𝑖 and her beliefs 𝑭−𝑖 about the other bidders. A (mixed)

strategy of bidder 𝑖 is a function 𝛽𝑖 : 𝑉𝑖 → Δ(𝐵) mapping values to distributions over bids.
4,5 Pure

strategies correspond to the special case where a mixed strategy 𝛽𝑖 always assigns full mass on single

bids; that is, for all 𝑣𝑖 ∈ 𝑉𝑖 there exists a 𝑏𝑖 ∈ 𝐵 such that 𝛽𝑖 (𝑣𝑖) (𝑏𝑖) = 1 and 𝛽𝑖 (𝑣𝑖) (𝑏) = 0 for all 𝑏 ≠ 𝑏𝑖 .

Therefore, for simplicity, we will sometimes represent pure strategies directly as functions
ˆ𝛽𝑖 : 𝑉𝑖 → 𝐵

from values to bids.

Given a strategy profile 𝜷−𝑖 ∈ ×𝑗∈𝑁 \{𝑖 }Δ(𝐵)𝑉𝑗
of the other bidders, the (interim) utility of a bidder 𝑖

with value 𝑣𝑖 , when bidding 𝑏 ∈ 𝐵, is given by

𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) ≔ 𝔼𝒗−𝑖∼𝑭−𝑖
[
𝔼𝒃−𝑖∼𝜷−𝑖 (𝒗−𝑖 ) [𝑢̃𝑖 (𝑏, 𝒃−𝑖 ; 𝑣𝑖)]

]
=

∑︁
𝒗−𝑖 ∈𝑽−𝑖

©­«
∏

𝑗∈𝑁 \{𝑖 }
𝑓𝑖, 𝑗 (𝑣 𝑗 )ª®¬

∑︁
𝒃−𝑖 ∈𝐵𝑁 \{𝑖}

©­«
∏

𝑗∈𝑁 \{𝑖 }
𝛽 𝑗 (𝑣 𝑗 ) (𝑏 𝑗 )ª®¬ 𝑢̃𝑖 (𝑏, 𝒃−𝑖 ; 𝑣𝑖) . (2)

where 𝜷−𝑖 (𝒗−𝑖) is a shorthand for the product distribution×𝑗∈𝑁 \{𝑖 }𝛽 𝑗 (𝑣 𝑗 ), and 𝑓𝑖, 𝑗 denotes the probability

mass function (pmf) of 𝐹𝑖, 𝑗 . Recall that 𝛽 𝑗 (𝑣 𝑗 ) (𝑏 𝑗 ) denotes the probability that bidder 𝑗 ≠ 𝑖 submits bid

𝑏 𝑗 when having value 𝑣 𝑗 . This can be viewed as the bidder computing her utility as follows: (a) she

draws a value 𝑣 𝑗 for each bidder 𝑗 ≠ 𝑖 from her corresponding subjective prior 𝐹𝑖, 𝑗 ; (b) she uses the

strategy “rules” 𝜷−𝑖 of the others to map the values obtained in (a) to actual bid distributions over 𝐵.

4
See, e.g., [Mye97, Sec. 3.9], [JR01, Sec. 7.2.3], [MW85; LB17].

5
Formally, for any finite set 𝑋 we define Δ(𝑋 ) as the simplex

Δ(𝑋 ) ≔
{
𝑝 ∈ [0, 1]𝑋

����� ∑︁
𝑥∈𝑋

𝑝 (𝑥) = 1

}
,

where 𝑝 (𝑥) can be interpreted as the mass that the distribution assigns to element 𝑥 ∈ 𝑋 . We will denote the support of a

distribution 𝑝 ∈ Δ(𝑋 ) with supp (𝑝) B {𝑥 ∈ 𝑋 | 𝑝 (𝑥) > 0 }.
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For convenience, we also extend, in the natural way, the definition above to handle the case where

bidder 𝑖 randomizes over her bids; that is, for 𝜸 ∈ Δ(𝐵) we define:

𝑢𝑖 (𝜸 , 𝜷−𝑖 ; 𝑣𝑖) ≔ 𝔼𝑏∼𝜸 [𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖)] =
∑︁
𝑏∈𝐵

𝜸 (𝑏)𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) . (3)

Equilibria. We proceed to define the two main (exact and approximate) equilibrium notions that we

will study in this paper.

Definition 1 (𝜀-approximate mixed Bayes-Nash equilibrium of the DFPA). Let 𝜀 ≥ 0. A (mixed) strategy

profile 𝜷 = (𝛽1, . . . , 𝛽𝑛) is an (interim) 𝜀-approximate mixed Bayes-Nash equilibrium (MBNE) of the

DFPA if for any bidder 𝑖 ∈ 𝑁 and any value 𝑣𝑖 ∈ 𝑉𝑖 ,

𝑢𝑖 (𝛽𝑖 (𝑣𝑖), 𝜷−𝑖 ; 𝑣𝑖) ≥ 𝑢𝑖 (𝜸 , 𝜷−𝑖 ; 𝑣𝑖) − 𝜀 for all 𝜸 ∈ Δ(𝐵). (4)

We will refer to a 0-approximate MBNE as an exact MBNE.

In the special case where all bidders choose the same strategies, i.e. 𝑉𝑖 = 𝑉 ′𝑖 and 𝛽𝑖 = 𝛽𝑖′ for all

𝑖, 𝑖′ ∈ 𝑁 , the (approximate) equilibrium will be called symmetric.

Remark 1. It is straightforward to check that condition (4) can be equivalently stated to just range

over all pure deviations 𝛾 ∈ 𝐵 (instead of all mixed ones 𝜸 ∈ Δ(𝐵)), without affecting Definition 1.

It is known (see, e.g., [JR01, Theorem 7.3]) that finite Bayesian games (and thus, DFPA as well)

always have at least one exact MBNE. Therefore, existence of 𝜀-approximate MBNE is also guaranteed

for any 𝜀 > 0.

Similarly, one can define the notion of pure equilibria:

Definition 2 (𝜀-approximate pure Bayes-Nash equilibrium of the DFPA). Let 𝜀 ≥ 0. A pure strategy

profile
ˆ𝜷 = ( ˆ𝛽1, . . . , ˆ𝛽𝑛) is an (interim) 𝜀-approximate pure Bayes-Nash equilibrium (PBNE) of the DFPA

if for any bidder 𝑖 ∈ 𝑁 and any value 𝑣𝑖 ∈ 𝑉𝑖 ,

𝑢𝑖 ( ˆ𝛽𝑖 (𝑣𝑖), ˆ𝜷−𝑖 ; 𝑣𝑖) ≥ 𝑢𝑖 (𝑏, ˆ𝜷−𝑖 ; 𝑣𝑖) − 𝜀 for all 𝑏 ∈ 𝐵.

In contrast to mixed equilibria, discrete first-price auctions do not, in general, have exact pure

equilibria [EMS09]. In Theorem 3.1, we extend this nonexistence result to approximate (pure) equilibria.

No overbidding. Following the literature of first-price auctions in economics [MR00; MR03; Leb06],

as well as in computer science [FGHLP23; WSZ20; EMS09; CP23], we will also make the standard

no overbidding assumption. In our context, this translates into strategies never assigning positive

probability to some bid 𝑏𝑖 which is larger than the bidder’s value 𝑣𝑖 . Note that, if we allow the bidders

to abstain from the auction, by adopting what is known as the null bid assumption in the literature

(see [MR85; Ath01]), i.e. that 0 ∈ 𝐵, then any overbidding strategy is weakly dominated by a strategy

that transfers any bidding probability mass from a 𝑏𝑖 > 𝑣𝑖 to the zero bid.

Representation. For our model to be fit for computational purposes, we have to determine how exactly

the inputs and the outputs of the associated computational problems will be represented. Similarly to

[FGHLP23; CP23], we will assume that the bidding space 𝐵 is given explicitly as part of the input in

the form of rational numbers. The value spaces 𝑉𝑖 will also be given explicitly, in the same way. The

value distributions 𝐹𝑖, 𝑗 will be described explicitly via their probability mass functions. That is, we are

given a list of rationals {𝑓𝑖, 𝑗 (𝑣)}𝑣∈𝑉𝑗
representing the probability that bidder 𝑗 has true value 𝑣 , from the

perspective of bidder 𝑖 . The mixed strategies in the output are described explicitly by (rational) numbers

{𝑝𝑖 (𝑣, 𝑏)} ∈ [0, 1] representing the probability that bidder 𝑖 submits bid 𝑏 ∈ 𝐵 when her true value is

𝑣 ∈ 𝑉𝑖 . Note that, for the special case of pure strategies it is {𝑝𝑖 (𝑣, 𝑏)} ∈ {0, 1}.
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2.2 Efficient Computation of Bidder Utilities

We conclude our preliminaries with the following lemma, which will be useful for several of our results

throughout the paper. The lemma establishes that the expected utilities, given mixed bidding strategies

of the bidders, can be computed in polynomial time. We remark that Filos-Ratsikas et al. [FGHLP23,

Lemma 3.2] proved a similar lemma for the case of pure strategies (and continuous value spaces). Our

proof is similar, but extra care is needed in order to handle the case of mixed strategies; we use similar

notation to [FGHLP23], for consistency.

Lemma 2.1. Fix a DFPA. For any bidder 𝑖 ∈ 𝑁 and any true value 𝑣𝑖 ∈ 𝑉𝑖 , the utility6 𝑢𝑖 (𝜸 , 𝜷−𝑖 ; 𝑣𝑖) of 𝑖 ,
given as input any distribution 𝜸 over her bids and any mixed bidding strategy profile 𝜷−𝑖 of the other
bidders, is computable in polynomial time.

Proof. Without loss of generality, we can reorder the bidders such that the one whose utility we are

calculating is the last, i.e., 𝑛 = |𝑁 |. Let 𝐻𝑛 (𝑏, 𝜷−𝑛) denote the probability of bidder 𝑛 winning when

bidding 𝑏 ∈ 𝐵 against the mixed strategies 𝜷−𝑛 of the remaining bidders (based on bidder 𝑛’s subjective

beliefs). We can write bidder 𝑛’s utility when bidding 𝑏 as𝑢𝑛 (𝑏, 𝜷−𝑛 ; 𝑣) = (𝑣 −𝑏)𝐻𝑛 (𝑏, 𝜷−𝑛), so it suffices

to show how to efficiently compute 𝐻𝑛 (𝑏, 𝜷−𝑛). We can express this as:

𝐻𝑛 (𝑏, 𝜷−𝑛) =
𝑛−1∑︁
𝑟=0

1

𝑟 + 1

𝑇𝑛 (𝑏, 𝑛 − 1, 𝑟 ) (5)

where, for 0 ≤ 𝑟 ≤ ℓ ≤ 𝑛 − 1, we use 𝑇𝑛 (𝑏, ℓ, 𝑟 ) to denote the probability that exactly 𝑟 out of the first ℓ

bidders bid 𝑏, and the remaining ℓ − 𝑟 bidders all bid below 𝑏. Once again, this probability is based on

bidder 𝑛’s subjective priors. Next, for a given bidder 𝑗 , let:

𝑔 𝑗,𝑏 := 𝔼
𝑣𝑗∼𝐹𝑛,𝑗

[
Pr

𝜉∼𝛽 𝑗 (𝑣𝑗 )
[𝜉 = 𝑏]

]
=

∑︁
𝑣𝑗 ∈𝑉𝑗

𝛽 𝑗 (𝑣 𝑗 ) (𝑏) 𝑓𝑛,𝑗 (𝑣 𝑗 ) (6)

𝐺 𝑗,𝑏 := 𝔼
𝑣𝑗∼𝐹𝑛,𝑗

[
Pr

𝜉∼𝛽 𝑗 (𝑣𝑗 )
[𝜉 < 𝑏]

]
=

∑︁
𝑏′∈𝐵,
𝑏′<𝑏

𝑔 𝑗,𝑏′ (7)

where 𝑓𝑛,𝑗 is the probability mass function corresponding to bidder 𝑛’s beliefs about bidder 𝑗 ’s value.

What we have defined above is the probability (perceived from the perspective of bidder 𝑛) that bidder

𝑗 bids exactly 𝑏 (denoted as 𝑔 𝑗,𝑏) and below 𝑏 (denoted as 𝐺 𝑗,𝑏). The computation of these takes into

account two sources of randomness; first, we draw a value 𝑣 𝑗 for bidder 𝑗 from the prior distribution

𝐹𝑛,𝑗 , and then we pick a bid 𝜉 , given the distribution over bids that 𝑗 ’s strategy represents at the drawn

value 𝛽 𝑗 (𝑣 𝑗 ). It is easy to see that these quantities can be computed in time 𝑂 ( |𝑉 | |𝐵 |) with access to

the pmf of the prior distributions as well as the distributions over bids corresponding to the mixed

strategies. We can now express the term 𝑇𝑛 (𝑏, 𝑛 − 1, 𝑟 ) from (5) using the newly defined quantities of

Equations (6) and (7):

𝑇𝑛 (𝑏, 𝑛 − 1, 𝑟 ) =
∑︁

𝑆⊆[𝑛−1]
|𝑆 |=𝑟

∏
𝑗∈𝑆

𝑔 𝑗,𝑏 ·
∏
𝑗∉𝑆

𝐺 𝑗,𝑏 (8)

where we have used the notation [𝑛 − 1] to indicate the set of the integers from 1 to 𝑛 − 1 inclusive.

Note that (8) cannot be computed efficiently in any obvious way, since the number of summands

can be exponential in 𝑛. To overcome this issue, we proceed with a dynamic programming algorithm

for computing𝑇𝑛 (𝑏, 𝑛− 1, 𝑟 ), in a similar manner to [FGHLP23, Lemma 3.2]. The probabilities𝑇𝑛 (𝑏, ℓ, 𝑘)
6
See (3) and (2) for the utility definition.
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can be computed from 𝑔 𝑗,𝑏 and 𝐺 𝑗,𝑏 (which were defined in Equations (6) and (7) respectively), via

dynamic programming, conditioning on bidder ℓ’s bid in the following way:

𝑇𝑛 (𝑏, 0, 0) = 1;

𝑇𝑛 (𝑏, ℓ, 𝑘) = 0, for 𝑘 > ℓ ;

𝑇𝑛 (𝑏, ℓ + 1, 0) = 𝑇𝑛 (𝑏, ℓ, 0)𝐺ℓ+1,𝑏 ;

𝑇𝑛 (𝑏, ℓ + 1, 𝑘 + 1) = 𝑇𝑛 (𝑏, ℓ, 𝑘)𝑔ℓ+1,𝑏 +𝑇𝑛 (𝑏, ℓ, 𝑘 + 1)𝐺ℓ+1,𝑏 ; for 𝑘 ≤ ℓ .

Thus, all values of 𝑇𝑛 (𝑏, 𝑛 − 1, 𝑘), for 𝑘 = 0, . . . , 𝑛 − 1, can be computed with a total number of 𝑂 (𝑛2)
recursive calls, so that 𝐻𝑛 (𝑏, 𝜷−𝑛) can be computed in polynomial time. This directly implies that the

expected utility 𝑢𝑛 (𝜷 ; 𝑣) of bidder 𝑛, given as input a mixed strategy profile 𝜷 , is efficiently computable,

by virtue of it being a convex combination of at most |𝐵 | pure strategy utilities. □

3 Pure Equilibria

In this section, we present our results for the pure Bayes-Nash equilibria (PBNE) of first-price auctions.

First, it is already known from [EMS09] that in the case of discrete values, PBNE may not exist, even for

very simple instances of two bidders and iid priors with support size 2. In the following theorem, we

strengthen this impossibility result to 𝜀-approximate PBNE, for a reasonably large constant value of 𝜀.

We delegate the proof of the theorem to Appendix B.

Theorem 3.1. For any 𝜀 < 1

72
, there exist discrete first-price auctions, even with only two bidders and iid

priors with support size 2, that do not have 𝜀-approximate pure equilibria.

Driven by the non-existence result of Theorem 3.1, we consider the computational complexity

of deciding the existence of PBNE in a DFPA. Our main result of this section is that, when the prior

distributions are subjective, the problem is NP-complete, even for approximate equilibria. The following

statement is the formal version of Informal Theorem 1. In the interest of space and the flow of our

presentation, we provide only a high-level sketch here. The full proof of our theorem is delegated to

Appendix C.

Theorem 3.2. Consider any 𝜀 < 1

180
. The problem of deciding the existence of an 𝜀-PBNE of a DFPA is

NP-complete.

Proof sketch. We begin by showing membership in NP, demonstrating that we can verify any positive

certificate in polynomial time. Given a pure strategy profile
ˆ𝜷 , it suffices to efficiently verify that

strategy
ˆ𝛽𝑖 is an 𝜀-best-response for each bidder 𝑖 ∈ 𝑁 and value 𝑣𝑖 ∈ 𝑉𝑖 . To this end, we can quantify

over all, polynomially many in the size of the input, possible values of 𝑖 ∈ 𝑁, 𝑣𝑖 ∈ 𝑉𝑖 , 𝑏 ∈ 𝐵, and compute

the corresponding utilities. By Lemma 2.1, this can be done in polynomial time.

We now turn to the NP-hardness of the problem. We reduce from the well-known NP-complete

Circuit Satisfiability problem (Circuit-SAT) [GJ79]. For ease of notation, our reduction will use the

bidding space 𝐵 = {0, 1, 2, 3} and the value space (common for all bidders) 𝑉 = {0, 9

4
, 10}. With this

setup, we will prove the result for 𝜀 < 1/18. Dividing everything by the largest entry (in this case 10),

we bring the problem back to the desired domain [0, 1], while keeping all comparisons between utilities

in the proof intact. Hence, we obtain the result for our version of the problem for 𝜀 < 1/180.

The proof can be outlined in the following steps:

— We define the set of valid strategies (mapping from values to bids) {𝑠0, 𝑠1} that correspond to the

boolean values false and true, respectively.
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— We introduce 3 gadgets (projection, OR, and NOT ), which are used to simulate the OR and NOT gates

of the circuit, as well as a split node, which is used to copy the value of its input to two outputs.

Note that any boolean circuit can be converted in polynomial time to another one that only uses

these gates. The projection gadget is used in order to correctly map any bidder that plays a strategy

different than 𝑠0 and 𝑠1 back to the set of valid strategies. By introducing bidders with appropriate

subjective prior distributions, we establish that all the induced bidders can play 𝜀-best-responses

simultaneously if and only if the boolean values specified by their strategies satisfy the definitions of

the corresponding gates of the circuit.

— For the simulation step, we assumed that all input bidders played a valid strategy. To ensure this,

we introduce the input gadget. This can be seen as introducing an extra bidder 𝑖′ for each bidder 𝑖

corresponding to an input of the circuit, with subjective priors resembling a projection gate from 𝑖 to

𝑖′ and vice versa. We show in our analysis that this guarantees that 𝑖 and 𝑖′ can simultaneously play

𝜀-best-responses if and only if they both play the same, valid, strategy.

— To finish off the construction, it remains to encompass the notion of the satisfiability of the circuit,

meaning distinguishing the cases where the output can get the value true. To achieve this, we

introduce the final gadget of our reduction, the output gadget. This introduces two new bidders to

the DFPA, 𝑘 and ℓ , which initially only have subjective beliefs that put positive probability mass

to some value greater than 0 for each other. We show that they cannot simultaneously play 𝜀-best-

responses. Then, we describe 𝑘’s prior distribution for the bidder 𝑖 corresponding to the output of

the circuit, such that in the resulting DFPA it is possible for all 3 bidders (𝑖, 𝑘, ℓ) to simultaneously

play 𝜀-best-responses if and only if 𝑖 plays strategy 𝑠1. Therefore, combining this with the previous

steps, the resulting DFPA has an 𝜀-PBNE for 𝜀 < 1

18
if and only if the circuit is satisfiable. □

4 Mixed Equilibria

In this section, we switch our focus to the more general class of mixed equilibria. At first glance, one

might be inclined to believe that since both the value space and the bidding space are discrete, the

existence of MBNE follows immediately by Nash’s Theorem [Nas51]. However, this is not the case,

since the DFPA game is a Bayesian game of incomplete information. MBNE in (general) Bayesian

games have been extensively discussed in the literature (see, e.g., [MW85; Aum61], [JR01, Chapter 7.2.3],

and [Mye97, Chapter 2.8]). A common way to prove their existence is via transforming the Bayesian

game into an appropriately constructed normal form game, and invoking Nash’s Theorem there; see,

e.g., [JR01, Theorem 7.3]. This normal form game formulation is the type-agent representation that we

mentioned in our introduction, and will be critical for our discussion on correlated equilibria later, in

Section 6. However, it is not needed for any of our results of the present section. Note that these general

existence results for mixed equilibria in Bayesian games directly imply the existence of a MBNE in

DFPA as well, rendering the problem of finding a MBNE, a total search problem.

We will also provide the proof of Informal Theorem 2, namely the PPAD-completeness of computing

MBNE of the DFPA. En route to this result, we will present an interesting computational equivalence
theorem between approximate mixed Bayes-Nash equilibria of the DFPA with discrete values and

approximate pure Bayes-Nash equilibria of the DFPA with continuous values, the setting studied

in [FGHLP23; CP23]. This equivalence allows us to translate positive and negative results in either

direction; importantly, for the purpose of this section, it will help us establish the PPAD-membership

of computing a MBNE of the DFPA. In principle, the equivalence theorem could also be used to get a

PPAD-hardness result for the same problem, albeit somewhat weak in nature. Instead, we will provide

a stronger, stand-alone PPAD-hardness result for computing a MBNE, which does not rely on the

equivalence theorem.
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4.1 Further Definitions

Before we present our equivalence theorem, we need to introduce some necessary terminology for

the setting of first-price auctions with continuous priors (and discrete bids), as well as some further

definitions that will be useful for the subsequent results.

Continuous first-price auctions. A continuous first-price auction (CFPA) is defined very similarly

to DFPA, they key difference being that the value spaces 𝑉𝑖 are continuous intervals of real numbers

and the prior distributions 𝐹𝑖, 𝑗 are continuous. The bidding space 𝐵 = {𝑏1, . . . , 𝑏𝑚} is still discrete.

For the purpose of this paper, it is enough to consider distributions with piecewise constant densities,

represented explicitly by the endpoints and the height of the intervals. As we mentioned in the

introduction, the representation of strategies in a CFPA is not as straightforward as in the case of a

DFPA. For this reason, one needs to focus on monotone strategies, meaning that bidders submit higher

bids on higher values. Using this, a strategy can be represented as a sequence of jump points 𝛼1, . . . , 𝛼𝑚−1,

where 𝛼𝑖 ∈ 𝑉𝑖 is the largest value for which bidder 𝑖 bids 𝑏𝑖 or lower. The notion of a pure Bayes-Nash

equilibrium (PBNE) of a CFPA is defined similarly to a DFPA. We refer the reader to [FGHLP23, Sec. 2]

for more details.

It will be useful to define a notion of monotonicity, appropriate for mixed strategies:

Definition 3 (Monotone mixed strategies in a DFPA). Consider a DFPA with value space 𝑉𝑖 for each

bidder 𝑖 . A mixed strategy 𝛽𝑖 ∈ Δ(𝐵)𝑉𝑖 (of bidder 𝑖) will be called monotone if

max supp (𝛽𝑖 (𝑣)) ≤ min supp (𝛽𝑖 (𝑣 ′)) for all 𝑣, 𝑣 ′ ∈ 𝑉𝑖 with 𝑣 < 𝑣 ′.

A strategy profile will be called monotone, if the strategies of all bidders in it are monotone.

Next, we present the notion of 𝜀-well-supported MBNE of a DFPA, a more refined notion of

equilibrium approximation which we will use in the results of this section.

Definition 4 (𝜀-well-supported mixed Bayes-Nash equilibrium of the DFPA). Let 𝜀 ≥ 0. A (mixed)

strategy profile 𝜷 = (𝛽1, . . . , 𝛽𝑛) is an (interim) 𝜀-well-supported mixed Bayes-Nash equilibrium (MBNE)

of the DFPA if for any 𝑖 ∈ 𝑁 , any 𝑣𝑖 ∈ 𝑉𝑖 , and any 𝑏 ∈ supp (𝛽𝑖):

𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) ≥ 𝑢𝑖 (𝜸 , 𝜷−𝑖 ; 𝑣𝑖) − 𝜀 for all 𝜸 ∈ Δ(𝐵) . (9)

Informally, in an 𝜀-well-supported MBNE, the support of a strategy only contains bids that approxi-

mately (within 𝜀) maximize the bidder’s utility.
7

Finally, we define a technical notion, which will be useful for us in the following:

Definition 5 (Interaction degree of a DFPA). A DFPA has interaction degree bounded by𝑑 ∈ {1, . . . , 𝑛−1},
if for any bidder 𝑖 ∈ 𝑁 , there exists a set 𝐽 ⊆ 𝑁 \ {𝑖} of bidders with |𝐽 | ≤ 𝑑 such that for any bidder

𝑗 ∈ 𝑁 \ (𝐽 ∪ {𝑖}) we have 0 ∈ 𝑉𝑗 and 𝑓𝑖, 𝑗 (0) = 1.

Note that any DFPA has interaction degree bounded by 𝑛 − 1. Intuitively, the interaction degree

provides a bound on how many bidders are perceived as always having zero value, from the perspective

of some other bidder. The following lemma shows that, as long as the interaction degree is constant,

𝜀-well-supported MBNE can be obtained in polynomial time from 𝜀′-approximate MBNE of the DFPA,

when both 𝜀 and 𝜀′ are constant.

Lemma 4.1. Consider any DFPA with interaction degree bounded by 𝑑 ∈ {1, . . . , 𝑛 − 1}. Then, for any
𝜀 ∈ [0, 1], a (monotone) 𝜀-well-supported MBNE can be obtained in polynomial time given any (monotone)
𝜀2/(8𝑑)-approximate MBNE. Furthermore, if the auction is iid, then this also holds if we restrict our attention
to symmetric equilibria.

7
Chen and Peng [CP23] use the term “𝜀-well-supported” to refer to interim equilibria, see our Definition 1. To avoid any

misconceptions, we provide a short discussion in Appendix A.
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Proof. Let 𝜷 be a 𝛿-approximate MBNE of the auction, for some 𝛿 > 0. Consider any 𝛾 ≥ 𝛿 , to be fixed

later. For any 𝑖 ∈ 𝑁 and any 𝑣𝑖 ∈ 𝑉𝑖 , let

𝐺 :=
{
𝑏 ∈ 𝐵 : 𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) ≥ max

𝑏′∈𝐵
𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖) − 𝛾

}
be the set of bids that yield optimal utility up to 𝛾 . Then, we must have

𝛽𝑖 (𝑣𝑖) (𝐵 \𝐺) :=
∑︁

𝑏∈𝐵\𝐺
𝛽𝑖 (𝑣𝑖) (𝑏) < 𝛿/𝛾 (10)

Indeed, if we had 𝛽𝑖 (𝑣𝑖) (𝐵 \𝐺) ≥ 𝛿/𝛾 , then

𝑢𝑖 (𝛽𝑖 (𝑣𝑖), 𝜷−𝑖 ; 𝑣𝑖) =
∑︁

𝑏∈𝐵\𝐺
𝛽𝑖 (𝑣𝑖) (𝑏) · 𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) +

∑︁
𝑏∈𝐺

𝛽𝑖 (𝑣𝑖) (𝑏) · 𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖)

< 𝛽𝑖 (𝑣𝑖) (𝐵 \𝐺) ·
(
max

𝑏′∈𝐵
𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖) − 𝛾

)
+ 𝛽𝑖 (𝑣𝑖) (𝐺) ·max

𝑏′∈𝐵
𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖)

= max

𝑏′∈𝐵
𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖) − 𝛾 · 𝛽𝑖 (𝑣𝑖) (𝐵 \𝐺)

≤ max

𝑏′∈𝐵
𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖) − 𝛿

contradicting the fact that 𝜷 is a 𝛿-approximate MBNE.

Next, we construct a strategy profile 𝜷 ′ from 𝜷 . For every 𝑖 ∈ 𝑁 and every 𝑣𝑖 ∈ 𝑉𝑖 we proceed as

follows. For any 𝑏 ∈ 𝐵 \𝐺 we set

𝛽 ′𝑖 (𝑣𝑖) (𝑏) := 0

and for any 𝑏 ∈ 𝐺 we set

𝛽 ′𝑖 (𝑣𝑖) (𝑏) :=
𝛽𝑖 (𝑣𝑖) (𝑏)∑

𝑏′∈𝐺 𝛽𝑖 (𝑣𝑖) (𝑏′)
where the denominator is strictly positive by (10). Thus, 𝛽 ′𝑖 (𝑣𝑖) is a well-defined distribution over 𝐵 that

only puts positive mass on bids in 𝐺 . Since 𝛽𝑖 (𝑣𝑖) is non-overbidding, so is 𝛽 ′𝑖 (𝑣𝑖). Furthermore, we

have supp

(
𝛽 ′𝑖 (𝑣𝑖)

)
⊆ supp (𝛽𝑖 (𝑣𝑖)), and thus 𝜷 ′ is monotone, if 𝜷 is monotone. If the auction is iid and

𝜷 is symmetric, then 𝜷 ′ will also be symmetric.

Now, we have that for all 𝑖 ∈ 𝑁 and 𝑣𝑖 ∈ 𝑉𝑖 , the total variation distance between 𝛽𝑖 (𝑣𝑖) and 𝛽 ′𝑖 (𝑣𝑖)
satisfies

TV

(
𝛽𝑖 (𝑣𝑖), 𝛽 ′𝑖 (𝑣𝑖)

)
:=

1

2

∥𝛽𝑖 (𝑣𝑖) − 𝛽 ′𝑖 (𝑣𝑖)∥1 ≤
1

2

· 2 · 𝛽𝑖 (𝑣𝑖) (𝐵 \𝐺) < 𝛿/𝛾

by (10). Fix some 𝑖 ∈ 𝑁 . Let 𝐷 𝑗 and 𝐷 ′𝑗 denote the distributions over 𝐵 obtained by drawing 𝑣 𝑗 ∈ 𝑉𝑗

according to 𝐹𝑖, 𝑗 , and then 𝑏 according to 𝛽 𝑗 (𝑣 𝑗 ), respectively 𝛽 ′𝑗 (𝑣 𝑗 ). We have

TV(𝐷 𝑗 , 𝐷
′
𝑗 ) =

1

2

∑︁
𝑏∈𝐵

������ ∑︁𝑣𝑗 ∈𝑉𝑗

𝑓𝑖, 𝑗 (𝑣 𝑗 )
(
𝛽 𝑗 (𝑣 𝑗 ) (𝑏) − 𝛽 ′𝑗 (𝑣 𝑗 ) (𝑏)

)������
≤

∑︁
𝑣𝑗 ∈𝑉𝑗

𝑓𝑖, 𝑗 (𝑣 𝑗 )
1

2

∑︁
𝑏∈𝐵

��𝛽 𝑗 (𝑣 𝑗 ) (𝑏) − 𝛽 ′𝑗 (𝑣 𝑗 ) (𝑏)��
≤

∑︁
𝑣𝑗 ∈𝑉𝑗

𝑓𝑖, 𝑗 (𝑣 𝑗 )𝛿/𝛾 = 𝛿/𝛾 .

Next, define the product distributions 𝐷 := ×𝑗∈𝑁 \{𝑖 }𝐷 𝑗 and 𝐷 ′ := ×𝑗∈𝑁 \{𝑖 }𝐷 ′𝑗 over 𝐵𝑛−1
. Since the

auction has interaction degree bounded by 𝑑 , there exists a set 𝐽 ⊆ 𝑁 \ {𝑖} with |𝐽 | ≤ 𝑑 such that for all
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𝑗 ∈ 𝑁 \ (𝐽 ∪ {𝑖}) we have 0 ∈ 𝑉𝑗 and 𝑓𝑖, 𝑗 (0) = 1. By the no-overbidding assumption, it must be that for

all 𝑗 ∈ 𝑁 \ (𝐽 ∪ {𝑖}), 𝛽 𝑗 (0) (0) = 1 = 𝛽 ′𝑗 (0) (0), and thus 𝐷 𝑗 = 𝐷 ′𝑗 . As a result

TV(𝐷, 𝐷 ′) ≤
∑︁

𝑗∈𝑁 \{𝑖 }
TV(𝐷 𝑗 , 𝐷

′
𝑗 ) =

∑︁
𝑗∈ 𝐽

TV(𝐷 𝑗 , 𝐷
′
𝑗 ) ≤ 𝑑 · 𝛿/𝛾 .

Now, fix some bid 𝑏 ∈ 𝐵. For any 𝑘 ∈ {0, 1, . . . , 𝑛 − 1}, let 𝐸𝑘 ⊆ 𝐵𝑛−1
denote the event that exactly 𝑘 bids

are equal to 𝑏 and the rest are strictly smaller. Recall the definition of the 𝐻 functions in Lemma 2.1.

Then, we can write

𝐻𝑖 (𝑏, 𝜷−𝑖) =
𝑛−1∑︁
𝑘=0

1

𝑘 + 1

Pr

𝐷
[𝐸𝑘 ]

=
1

𝑛

𝑛−1∑︁
𝑘=0

Pr

𝐷
[𝐸𝑘 ] +

𝑛−1∑︁
ℓ=1

(
1

ℓ
− 1

ℓ + 1

) ℓ−1∑︁
𝑘=0

Pr

𝐷
[𝐸𝑘 ]

=
1

𝑛
Pr

𝐷

[
𝑛−1⋃
𝑘=0

𝐸𝑘

]
+

𝑛−1∑︁
ℓ=1

(
1

ℓ
− 1

ℓ + 1

)
Pr

𝐷

[
ℓ−1⋃
𝑘=0

𝐸𝑘

]
where we used the fact that the events 𝐸𝑘 are all disjoint. We also obtain the analogous expression for

𝐻𝑖 (𝑏, 𝜷 ′−𝑖) and 𝐷 ′. It follows that

|𝐻𝑖 (𝑏, 𝜷−𝑖) − 𝐻𝑖 (𝑏, 𝜷 ′−𝑖) |

≤ 1

𝑛

�����Pr

𝐷

[
𝑛−1⋃
𝑘=0

𝐸𝑘

]
− Pr

𝐷 ′

[
𝑛−1⋃
𝑘=0

𝐸𝑘

] ����� + 𝑛−1∑︁
ℓ=1

(
1

ℓ
− 1

ℓ + 1

) �����Pr

𝐷

[
ℓ−1⋃
𝑘=0

𝐸𝑘

]
− Pr

𝐷 ′

[
ℓ−1⋃
𝑘=0

𝐸𝑘

] �����
≤ 1

𝑛
𝑑𝛿/𝛾 +

𝑛−1∑︁
ℓ=1

(
1

ℓ
− 1

ℓ + 1

)
𝑑𝛿/𝛾 = 𝑑𝛿/𝛾

where we used TV(𝐷, 𝐷 ′) ≤ 𝑑𝛿/𝛾 .

As a result, for any 𝑖 ∈ 𝑁 , 𝑣𝑖 ∈ 𝑉𝑖 , and 𝑏 ∈ 𝐵 we have��𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣𝑖)�� = ��𝐻𝑖 (𝑏, 𝜷−𝑖) · (𝑣𝑖 − 𝑏) − 𝐻𝑖 (𝑏, 𝜷 ′−𝑖) · (𝑣𝑖 − 𝑏)
�� ≤ 𝑑𝛿/𝛾 .

Finally, for any 𝑖 ∈ 𝑁 , 𝑣𝑖 ∈ 𝑉𝑖 , and 𝑏 ∈ supp

(
𝛽 ′𝑖 (𝑣𝑖)

)
⊆ 𝐺 we have

𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) ≥ max

𝑏′∈𝐵
𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖) − 𝛾

by construction of 𝐺 , and as a result

𝑢𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣𝑖) ≥ max

𝑏′∈𝐵
𝑢𝑖 (𝑏′, 𝜷 ′−𝑖 ; 𝑣𝑖) − 𝛾 − 2𝑑𝛿/𝛾 .

Thus, 𝜷 ′ is a (𝛾 + 2𝑑𝛿/𝛾)-well supported MBNE. Setting 𝛾 :=
√

2𝑑𝛿 and 𝛿 := 𝜀2/(8𝑑) yields the result.

Note that for 𝜀 = 0 the statement trivially holds. □

4.2 Discrete and Continuous Auctions: A Computational Equivalence

We are now ready to prove our computational equivalence result. This is composed of Lemmas 4.2

and 4.3 below.

Lemma 4.2. Given 𝛿 ∈ (0, 1) and a DFPA, we can construct in polynomial time a CFPA (with the same
bidding space) such that for any 𝜀 ≥ 0, we can transform in polynomial time any 𝜀-PBNE of the CFPA into
an (𝜀 + 𝛿)-well-supported monotone MBNE of the DFPA. Furthermore, this reduction maps IPV (resp. iid)
auctions to IPV (resp. iid) auctions, and symmetric equilibria to symmetric equilibria.
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Proof. Let 𝛿 ∈ (0, 1) be given. Consider a DFPA given by the value spaces𝑉1, . . . ,𝑉𝑛 and the distributions

𝐹𝑖, 𝑗 . Without loss of generality, we can assume that 𝛿 satisfies

2𝛿 ≤ min

𝑝,𝑞∈𝑉1∪...𝑉𝑛∪𝐵:𝑝≠𝑞
|𝑝 − 𝑞 |. (11)

Indeed, if this is not the case, we can replace 𝛿 by a smaller value in (0, 1) that satisfies this inequality.

We construct a CFPA with the same bidding space 𝐵 and with distributions 𝐹 ′𝑖, 𝑗 . For every 𝑖 ≠ 𝑗 , the

piecewise constant density function of the distribution 𝐹 ′𝑖, 𝑗 is constructed from 𝐹𝑖, 𝑗 as follows.

— For every 𝑣 𝑗 ∈ 𝑉𝑗 with 𝑣 𝑗 ≠ 0, we let the pdf have value 𝑓𝑖, 𝑗 (𝑣 𝑗 )/𝛿 in interval [𝑣 𝑗 − 𝛿, 𝑣 𝑗 ].

— If 0 ∈ 𝑉𝑗 , we let the pdf have value 𝑓𝑖, 𝑗 (0)/𝛿 in interval [0, 𝛿].

— The pdf has value 0 everywhere else in [0, 1].

For an illustration, see Figure 1. This pdf is well-defined by (11) (also using the fact that 0 ∈ 𝐵), and

in particular the blocks of value do not overlap. Furthermore, any additional structure of the auction

(namely IPV or iid) is kept intact.

Now consider any 𝜀-PBNE 𝜷 ′ of the CFPA. We construct a corresponding strategy profile 𝜷 in the

original DFPA as follows. For any 𝑗 ∈ 𝑁 , 𝛽 𝑗 : 𝑉𝑗 → Δ(𝐵) is given by:

— For every 𝑣 𝑗 ∈ 𝑉𝑗 with 𝑣 𝑗 ≠ 0, let 𝛽 𝑗 (𝑣 𝑗 ) be the distribution of 𝛽 ′𝑗 (𝑢) where 𝑢 is drawn uniformly

at random in [𝑣 𝑗 − 𝛿, 𝑣 𝑗 ]. In other words, for all 𝑏 ∈ 𝐵

𝛽 𝑗 (𝑣 𝑗 ) (𝑏) = 𝜆
(
{𝑢 ∈ [𝑣 𝑗 − 𝛿, 𝑣 𝑗 ] : 𝛽 ′𝑗 (𝑢) = 𝑏}

)
/𝛿

where 𝜆 denotes the Lebesgue measure (in this case just the length of the interval).

— If 0 ∈ 𝑉𝑗 , let 𝛽 𝑗 (0) be the distribution of 𝛽 ′𝑗 (𝑢) where 𝑢 is drawn uniformly at random in [0, 𝛿].

Recall that 𝛽 ′𝑗 : [0, 1] → 𝐵 is a non-overbidding non-decreasing step-function strategy. As a result,

and also by (11), the mixed strategy 𝛽 𝑗 will also be non-overbidding. Furthermore, the fact that 𝛽 ′𝑗
is non-decreasing immediately yields that 𝛽 𝑗 is monotone. Finally, if 𝑉𝑖 = 𝑉𝑖′ for all 𝑖, 𝑖′ and 𝜷 ′ is

symmetric, then so is 𝜷 .

Next, we note that the construction of 𝐹 ′𝑖, 𝑗 from 𝐹𝑖, 𝑗 and the construction of 𝜷 from 𝜷 ′ have been

carefully devised to ensure that for every 𝑖 ≠ 𝑗 the two following distributions over 𝐵 coincide

— Pick 𝑣 𝑗 ∈ 𝑉𝑗 according to 𝐹𝑖, 𝑗 , and then output 𝑏 ∈ 𝐵 according to 𝛽 𝑗 (𝑣 𝑗 ).

— Pick 𝑣 ∈ [0, 1] according to 𝐹 ′𝑖, 𝑗 and output 𝑏 = 𝛽 ′𝑗 (𝑣).

As a result, we have that

𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) = 𝑢′𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣𝑖) (12)

for all 𝑖 ∈ 𝑁 , 𝑏 ∈ 𝐵, and 𝑣𝑖 ∈ 𝑉𝑖 , where 𝑢𝑖 , 𝑢
′
𝑖 denote the utilities in the DFPA and CFPA respectively.

It remains to prove that 𝜷 is an (𝜀 + 𝛿)-well-supported monotone MBNE of the DFPA. For this,

it suffices to show that for any 𝑖 ∈ 𝑁 and 𝑣𝑖 ∈ 𝑉𝑖 , we have that all 𝑏 ∈ 𝐵 with 𝛽𝑖 (𝑣𝑖) (𝑏) > 0 satisfy

𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) ≥ 𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖)−𝜀−𝛿 for all 𝑏′ ∈ 𝐵. Consider any such 𝑖, 𝑣𝑖 , 𝑏 and note that by construction

of 𝛽𝑖 from 𝛽 ′𝑖 there exists 𝑣 ∈ [0, 1] with |𝑣 − 𝑣𝑖 | ≤ 𝛿 such that 𝛽 ′𝑖 (𝑣) = 𝑏. Since 𝜷 ′ is an 𝜀-PBNE 𝜷 ′ of

the CFPA, it follows that for all 𝑏′ ∈ 𝐵

𝑢′𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣) ≥ 𝑢′𝑖 (𝑏′, 𝜷 ′−𝑖 ; 𝑣) − 𝜀
=⇒ 𝐻𝑖 (𝑏, 𝜷 ′−𝑖) · (𝑣 − 𝑏) ≥ 𝐻𝑖 (𝑏′, 𝜷 ′−𝑖) · (𝑣 − 𝑏′) − 𝜀
=⇒ 𝐻𝑖 (𝑏, 𝜷 ′−𝑖) · (𝑣𝑖 − 𝑏) ≥ 𝐻𝑖 (𝑏′, 𝜷 ′−𝑖) · (𝑣𝑖 − 𝑏′) − 𝜀 +

(
𝐻𝑖 (𝑏′, 𝜷 ′−𝑖) − 𝐻𝑖 (𝑏, 𝜷 ′−𝑖)

)
· (𝑣 − 𝑣𝑖)
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𝑣0

𝑓 (𝑣0)
𝛿

𝑓 (𝑣0)𝛿−1

𝑣1

𝑓 (𝑣1)

𝛿

𝑓 (𝑣1)𝛿−1

𝑣2

𝑓 (𝑣2)

𝛿

𝑓 (𝑣2)𝛿−1

𝑣3

𝑓 (𝑣3)

𝛿

𝑓 (𝑣3)𝛿−1

𝑓 (𝑣)

Figure 1: Discrete→ Continuous

𝑣0 1

𝛿

𝑣

𝑓 (𝑣)

Figure 2: Continuous→ Discrete

=⇒ 𝑢′𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣𝑖) ≥ 𝑢′𝑖 (𝑏′, 𝜷 ′−𝑖 ; 𝑣𝑖) − 𝜀 − 𝛿
=⇒ 𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) ≥ 𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖) − 𝜀 − 𝛿

where we used (12), |𝑣 − 𝑣𝑖 | ≤ 𝛿 , and the terms 𝐻𝑖 (𝑏, 𝜷 ′−𝑖) ∈ [0, 1] which denote the probability for

bidder 𝑖 to win the item when bidding 𝑏, while the other bidders follow the strategy profile 𝜷 ′−𝑖 in the

CFPA. This completes the proof. □

Lemma 4.3. Given 𝛿 ∈ (0, 1) (in unary) and a CFPA, we can construct in polynomial time a DFPA (with
the same bidding space) such that for any 𝜀 ≥ 0, we can transform in polynomial time any 𝜀-well-supported
monotone MBNE of the DFPA into an (𝜀 + 𝛿)-PBNE of the CFPA. Furthermore, this reduction maps IPV
(resp. iid) auctions to IPV (resp. iid) auctions, and symmetric equilibria to symmetric equilibria.

Proof. Let 𝛿 ∈ (0, 1) be given in unary. Consider a CFPA given by continuous distributions 𝐹 ′𝑖, 𝑗 with

piecewise constant density functions. Denote by 𝑆𝑖, 𝑗 the smallest set of points in [0, 1] such that

{0, 1} ⊆ 𝑆𝑖, 𝑗 and the density function of 𝐹 ′𝑖, 𝑗 is constant between any two adjacent points in 𝑆𝑖, 𝑗 . Let

𝑆 := ∪𝑖, 𝑗∈𝑁 :𝑖≠𝑗𝑆𝑖, 𝑗 , and note that |𝑆 | is polynomial in the size of the CFPA instance. Now construct a

set 𝑉 ⊂ [0, 1] of polynomial size such that 𝑆 ⊆ 𝑉 and any two adjacent points in 𝑉 are separated by

distance at most 𝛿 . Since 𝛿 ∈ (0, 1) is given in unary, this is easily achieved, e.g., by taking the union of

𝑆 and a 𝛿-grid on [0, 1].
We construct a DFPA with the same bidding space 𝐵 and with value spaces𝑉𝑖 := 𝑉 \ {1} for all 𝑖 ∈ 𝑁 .

For each 𝑖 ≠ 𝑗 , the discrete distribution 𝐹𝑖, 𝑗 over 𝑉𝑗 is constructed from 𝐹 ′𝑖, 𝑗 as follows. For any 𝑣 𝑗 ∈ 𝑉𝑗 ,

let 𝑣+𝑗 ∈ 𝑉 denote the next largest element in 𝑉 . Note that this is well-defined since 𝑉 = 𝑉𝑗 ∪ {1}. Now

we define 𝐹𝑖, 𝑗 to be the distribution that draws 𝑣 𝑗 ∈ 𝑉𝑗 with probability equal to the probability that

𝑣 ∈ [𝑣 𝑗 , 𝑣+𝑗 ] when 𝑣 ∈ [0, 1] is drawn according to 𝐹 ′𝑖, 𝑗 . For an illustration of the induced distributions,

see Figure 2. This indeed defines a valid distribution on 𝑉𝑗 , since 0 ∈ 𝑉𝑗 and 1 ∈ 𝑉 , and so the intervals

[𝑣 𝑗 , 𝑣+𝑗 ], 𝑣 𝑗 ∈ 𝑉𝑗 , form a partition of [0, 1] (ignoring endpoints). Note that the additional structure of the

auction (namely IPV or iid) is kept intact.

Now consider any 𝜀-well-supported monotone MBNE 𝜷 of the DFPA. We construct a corresponding

strategy profile 𝜷 ′ in the original CFPA. For any 𝑗 ∈ 𝑁 , 𝛽 ′𝑗 : [0, 1] → 𝐵 is a step-function constructed as

follows. We describe 𝛽 ′𝑗 separately in each interval [𝑣 𝑗 , 𝑣+𝑗 ], 𝑣 𝑗 ∈ 𝑉𝑗 . For each 𝑏 ∈ supp

(
𝛽 𝑗 (𝑣 𝑗 )

)
, there is

a segment of height 𝑏 and length 𝛽 𝑗 (𝑣 𝑗 ) (𝑏) · |𝑣+𝑗 − 𝑣 𝑗 |. The segments are ordered inside [𝑣 𝑗 , 𝑣+𝑗 ] in order

of increasing 𝑏. This yields a non-decreasing step-function inside [𝑣 𝑗 , 𝑣+𝑗 ]. Since the intervals [𝑣 𝑗 , 𝑣+𝑗 ]
form a partition of [0, 1], this defines 𝛽 ′𝑗 as a step-function

8
over [0, 1]. Since 𝛽 𝑗 was assumed to be

8
In the case where 𝛽′

𝑗
is assigned two different values at a common endpoint between two adjacent intervals, we can just

pick the smallest one.
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monotone, it follows that 𝛽 ′𝑗 is a non-decreasing step-function over all of [0, 1]. Furthermore, since 𝛽 𝑗

is non-overbidding, we have that max supp

(
𝛽 𝑗 (𝑣 𝑗 )

)
≤ 𝑣 𝑗 and thus max 𝛽 ′𝑗 ( [𝑣 𝑗 , 𝑣+𝑗 ]) ≤ 𝑣 𝑗 , which means

that 𝛽 ′𝑗 is also non-overbidding. Finally, note that if 𝜷 is symmetric, then so is 𝜷 ′.
The construction of 𝐹𝑖, 𝑗 from 𝐹 ′𝑖, 𝑗 , and the construction of 𝜷 ′ from 𝜷 have been carefully devised to

ensure that for every 𝑖 ≠ 𝑗 the two following distributions over 𝐵 coincide

— Pick 𝑣 𝑗 ∈ 𝑉𝑗 according to 𝐹𝑖, 𝑗 , and then output 𝑏 ∈ 𝐵 according to 𝛽 𝑗 (𝑣 𝑗 ).

— Pick 𝑣 ∈ [0, 1] according to 𝐹 ′𝑖, 𝑗 and output 𝑏 = 𝛽 ′𝑗 (𝑣).

As a result, we have that

𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) = 𝑢′𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣𝑖) (13)

for all 𝑖 ∈ 𝑁 , 𝑏 ∈ 𝐵, and 𝑣𝑖 ∈ 𝑉𝑖 , where 𝑢𝑖 , 𝑢
′
𝑖 denote the utilities in the DFPA and CFPA respectively.

It remains to prove that 𝜷 ′ is an (𝜀+𝛿)-PBNE of the CFPA. Consider any 𝑖 ∈ 𝑁 and any 𝑣 ∈ [0, 1], and

let 𝑏 = 𝛽 ′𝑖 (𝑣). We wish to show that 𝑢′𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣) ≥ 𝑢′𝑖 (𝑏′, 𝜷 ′−𝑖 ; 𝑣) − 𝜀 −𝛿 for all 𝑏′ ∈ 𝐵. By construction of

𝛽 ′𝑖 from 𝛽𝑖 , there exists 𝑣𝑖 ∈ 𝑉𝑖 such that 𝑣 ∈ [𝑣𝑖 , 𝑣+𝑖 ] and 𝑏 ∈ supp (𝛽𝑖 (𝑣𝑖)). Furthermore, by construction

of 𝑉𝑖 we also have |𝑣 − 𝑣𝑖 | ≤ 𝛿 . Now, since 𝜷 is an 𝜀-well-supported MBNE of the DFPA, we have that

for all 𝑏′ ∈ 𝐵

𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) ≥ 𝑢𝑖 (𝑏′, 𝜷−𝑖 ; 𝑣𝑖) − 𝜀
=⇒ 𝑢′𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣𝑖) ≥ 𝑢′𝑖 (𝑏′, 𝜷 ′−𝑖 ; 𝑣𝑖) − 𝜀
=⇒ 𝐻𝑖 (𝑏, 𝜷 ′−𝑖) · (𝑣𝑖 − 𝑏) ≥ 𝐻𝑖 (𝑏′, 𝜷 ′−𝑖) · (𝑣𝑖 − 𝑏′) − 𝜀
=⇒ 𝐻𝑖 (𝑏, 𝜷 ′−𝑖) · (𝑣 − 𝑏) ≥ 𝐻𝑖 (𝑏′, 𝜷 ′−𝑖) · (𝑣 − 𝑏′) − 𝜀 +

(
𝐻𝑖 (𝑏′, 𝜷 ′−𝑖) − 𝐻𝑖 (𝑏, 𝜷 ′−𝑖)

)
· (𝑣𝑖 − 𝑣)

=⇒ 𝑢′𝑖 (𝑏, 𝜷 ′−𝑖 ; 𝑣) ≥ 𝑢′𝑖 (𝑏′, 𝜷 ′−𝑖 ; 𝑣) − 𝜀 − 𝛿

where we used (13), |𝑣 − 𝑣𝑖 | ≤ 𝛿 , and the terms 𝐻𝑖 (𝑏, 𝜷 ′−𝑖) ∈ [0, 1] which denote the probability for

bidder 𝑖 to win the item when bidding 𝑏, while the other bidders follow the strategy profile 𝜷 ′−𝑖 in the

CFPA. This completes the proof.

□

4.3 PPAD-completeness

Next, we provide the proof of Informal Theorem 2, i.e., the PPAD-completeness of computing approx-

imate MBNE of the DFPA with subjective priors. The PPAD-membership follows directly from our

equivalence result and the PPAD-membership of pure PBNE of the CFPA proven by Filos-Ratsikas et al.

[FGHLP23]. Our result does not only establish that computing 𝜀-approximate equilibria is in PPAD, but

that the membership holds even for 𝜀-well-supported MBNE (Definition 4) which are also monotone

(Definition 3). The formal statement of our membership lemma is below:

Lemma 4.4. The problem of computing a monotone 𝜀-well-supported MBNE of the DFPA with subjective
priors is in PPAD.

Proof. First, we observe that the problem lies in the class TFNP of total search problems that have

efficiently verifiable solutions [MP91]. This is because by Lemma 2.1, we can compute the utility of a

given strategy in polynomial time. Then, it suffices to check if a given strategy is utility-maximizing

against all possible pure deviations, see also Remark 1. For the PPAD-membership, we apply Lemma 4.2,

which reduces the problem of finding a monotone 𝜀-well-supported MBNE of the DFPA to that of

finding a (monotone) 𝜀-approximate PBNE of the CFPA. The latter problem is in PPAD by [FGHLP23,

Theorem 4.4.]. □
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We now turn our attention to the PPAD-hardness of the problem. A first observation is that our

discrete-continuous equivalence result can already yield some PPAD-hardness result for the DFPA:

starting from the PPAD-hardness result of Filos-Ratsikas et al. [FGHLP23, Theorem 5.1.], one could use

Lemma 4.3 to reduce from the continuous to the discrete version. However, that (coupled with Lemma 4.1)

would result in the PPAD-hardness of computing monotone 𝜀-approximate MBNE. Monotonicity is a

desirable property for positive results (as it makes the results stronger), but we would ideally like to

prove hardness for any type of MBNE, monotone or not. Another caveat of the equivalence approach is

that the PPAD-hardness result would require instances with relatively large bidding spaces.

To avoid these shortcomings, we provide a direct PPAD-hardness result for the problem, via a

reduction from the recently proposed PPAD-complete problem PureCircuit [DFHM22]. Our reduction

shows computational hardness for 𝜀-approximate equilibria that need not be monotone, and for instances

with very small bidding spaces, thus making the hardness result stronger. We remark that the proof

of Lemma 4.5 below first establishes PPAD-hardness for 𝜀-well-supported MBNE on instances with

small interaction degree, and then invokes Lemma 4.1 to strengthen the result to the PPAD-hardness of

𝜀-approximate MBNE. The proof is included in Appendix D.

Lemma 4.5. There exists a constant 𝜀 > 0 such that computing an 𝜀-approximate MBNE of the DFPA with
subjective priors is PPAD-hard.

5 Symmetric Equilibria in IID Auctions

Motivated by the computational hardness results in the previous sections, we now consider the natural

special case of iid priors, and the computation of symmetric mixed equilibria in such auctions. Interest-

ingly, positive results for this case were not known before, even for continuous auctions. We show that

symmetric MBNE always exist in a DFPA and we provide a PTAS for their computation.

Before we get to this result, we present the following useful lemma. We will make use of the lemma

for iid priors, but it holds more generally for subjective priors. The lemma shows that one can, in

polynomial time, translate an 𝜀-approximate MBNE of the DFPA in a shrunk bidding space (of smaller

size), to an 𝜀′-approximate equilibrium of the auction on the original bidding space. A process similar

in nature was presented in [CP23, Proof of Thm 1.2, Step 1] for the case of the CFPA in the IPV model,

and ex-ante pure equilibria.
9

Our proof holds for subjective priors and interim mixed equilibria, and is

simpler in nature.

Lemma 5.1 (Bidding Space Shrinkage Lemma). Consider a DFPA with bidding space 𝐵 and let 𝑀 be a
positive integer. We can construct a bidding space 𝐵′ ⊆ 𝐵 with cardinality |𝐵′ | ≤ 𝑀 , in time polynomial in
𝑀 and the size of the input such that any 𝜀-approximate MBNE of the auction restricted to the bidding
space 𝐵′ is a

(
𝜀 + 1

𝑀

)
-approximate MBNE in the original auction.

Proof. Given a bidding space 𝐵 and a positive integer 𝑀 , we construct the restricted bidding space as

follows:

𝐵̃ =

𝑀−1⋃
ℓ=0

min

{
𝑏 ∈ 𝐵

���� ℓ 1

𝑀
≤ 𝑏 ≤ (ℓ + 1) 1

𝑀

}
,

where we allow a slight abuse of notation, such that the minimum over an empty set is defined to be

the empty set. To better understand how this smaller bidding space can approximate the original, it is

useful to define the following notion of distance between sets, which is an instantiation of the Hausdorff

distance:

𝑑 (𝐵, 𝐵′) B max

𝑏∈𝐵
min

𝑏′∈𝐵′
|𝑏 − 𝑏′ |

9
See Appendix A for the definition of the notion.

18



By the definition of 𝐵̃, we can see that in our case this is bounded by the size of each interval, hence:

𝑑 (𝐵, 𝐵̃) ≤ 1

𝑀
. (14)

Let A be the original auction (with bidding space 𝐵) and
˜A be the one corresponding to the new

bidding space 𝐵̃. Additionally, let
˜𝛽 be an 𝜀-approximate MBNE of

˜A. First, we show that for any

(mixed) strategy profile
˜𝜷 of 𝐵̃, any bidder 𝑖 with a value 𝑣𝑖 , and any bid 𝑏 ∈ 𝐵, there has to exist a

˜𝑏 ∈ 𝐵̃
such that: ���𝑢𝑖 ( ˜𝑏, ˜𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏;

˜𝜷−𝑖 ; 𝑣𝑖)
��� ≤ 𝑑 (𝐵, 𝐵̃) .

To see why this is true, we will bound the left-hand side in the following way:���𝑢𝑖 ( ˜𝑏, ˜𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏;
˜𝜷−𝑖 ; 𝑣𝑖)

��� = ���(𝑣𝑖 − ˜𝑏)𝐻 ( ˜𝑏, ˜𝜷−𝑖) − (𝑣𝑖 − 𝑏)𝐻 (𝑏, ˜𝜷−𝑖)
���

≤
���𝑏 − ˜𝑏

��� max{𝐻 (𝑏, ˜𝜷−𝑖), 𝐻 ( ˜𝑏, ˜𝜷−𝑖)}

≤
���𝑏 − ˜𝑏

��� ≤ 𝑑 (𝐵, 𝐵̃) (15)

where we have used the definition of the utility function (5) and we have bounded the function 𝐻

trivially by 1 (since it is a probability).

Next, assume that
˜𝜷 is an 𝜀-approximate MBNE of

˜A. Then, by Remark 1, it should be the case that,

for all 𝑖 ∈ 𝑁, 𝑣𝑖 ∈ 𝑉𝑖 , ˜𝑏 ∈ 𝐵̃, the following holds:

𝑢𝑖 ( ˜𝜷 ; 𝑣𝑖) ≥ 𝑢𝑖 ( ˜𝑏, ˜𝜷−𝑖 ; 𝑣𝑖) − 𝜀 (16)

Using the bounds derived in Equations (14) and (15), we can substitute into (16) to obtain:

𝑢𝑖 ( ˜𝜷 ; 𝑣𝑖) ≥ 𝑢𝑖 (𝑏, ˜𝜷−𝑖 ; 𝑣𝑖) − 𝜀 −
1

𝑀
∀𝑖 ∈ 𝑁, ∀𝑣𝑖 ∈ 𝑉𝑖 ,∀𝑏 ∈ 𝐵,

and this is precisely (due to Remark 1) the sufficient condition for
˜𝜷 to be an (𝜀 + 1

𝑀
)-approximate

MBNE of A.

□

We now present our positive results for the DFPA with iid priors and the computation of symmetric

MBNE. We start with the following theorem which establishes the existence of symmetric and monotone

equilibria for the auction in this case.

Theorem 5.2. In every DFPA with iid priors there exists a symmetric and monotone (exact) MBNE.

Our proof will go via the variant of the auction with continuous values, again appealing to our

computational equivalence result in Section 4.2. In particular, we will first show, employing Kakutani’s

fixed point theorem [Kak41], that the CFPA always admits an (exact) monotone PBNE. By Lemma 4.2

this will imply the existence of a monotone 𝜀-approximate MBNE for the DFPA. Finally, taking the limit

of the sequence of approximate equilibria as 𝜀 → 0, we will obtain the existence of an exact monotone

equilibrium.

We remark that, to the best of our knowledge, general existence results for symmetric equilibria

and iid priors have not been proven for either the DFPA or the CFPA. There is a plethora of results for

symmetric equilibria of auctions where both the values and the bids are continuous (e.g., see [RS81;

CH13] and [Kri09, Section 2.3]), but those do not have implications for our setting. For the case of the

CFPA, existence results have only been shown for special cases [Chw89]. The proof of Theorem 5.2 is in

Appendix E.
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We now proceed to present a PTAS (Polynomial-time approximation scheme) for computing sym-

metric 𝜀-approximate MBNE for iid priors; in our setting, this means an algorithm that on input the

description of the DFPA and any 𝜀 > 0, finds an 𝜀-approximate monotone MBNE of the auction in time

polynomial in the description of the auction and possibly exponential in 1/𝜀. For any constant 𝜀 > 0,

this is a polynomial time algorithm for the problem.

Our strategy for constructing this algorithm will be to express the equilibrium computation problem

as a system of polynomial inequalities. By known results in the literature (e.g., see [GV88]), such a

system can be solved to any accuracy 𝛿 > 0 in time polynomial in 1/log(𝛿) and (𝜅𝑑)𝛽2

, where 𝜅 is the

number of polynomials, 𝑑 is their maximum degree, and 𝛽 is the number of variables of the system.

However, if we were to represent our equilibrium computation problem as such a system “naively”, we

would end up with a running time that is exponential in both |𝑉 | (the common value space for all the

bidders) and |𝐵 |. To avoid this, we exploit the monotonicity of the equilibrium to come up with a much

more succinct representation of the strategies, which we refer to as support-representation. This allows

us to remove the exponential dependence on |𝑉 |, but |𝐵 | still appears in the exponent of the running

time. For that, we invoke Lemma 5.1 to obtain a constant-sized bidding space, at the expense of some

accuracy in the efficiency of our computed equilibrium.

Theorem 5.3. In every DFPA with 𝑚 bids and 𝑛 bidders having iid priors over 𝑘 values, a symmetric
𝜀-approximate mixed equilibrium can be computed in time polynomial in log(1/𝜀) and (𝑛𝑘𝑚)𝑚2

.

Proof. Fix a DFPA with 𝑁 = [𝑛] bidders, value space 𝑉𝑖 = 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } (indexed by 𝑗 ∈ [𝑘])
for all bidders 𝑖 ∈ 𝑁 , bidding space 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑚} (indexed by ℓ ∈ [𝑚]), and iid priors with

probability mass function {𝑓 (𝑣𝑖)}𝑖∈[𝑘 ] .
Support-representation ofmonotone strategies. Let 𝛽𝑖 : 𝑉 → Δ(𝐵) be a symmetric (mixed) strategy

of some bidder 𝑖 . Then, 𝛽𝑖 can be represented in the following, more succinct way, which we will call

support-representation.

We maintain a sequence of indices over the bidding set that keeps track of which values have an

“active” support on the given bid. Formally, we define a monotone sequence 𝜉 : [𝑚] → [𝑘], such that

𝜉 (𝑚) = 𝑘 , and helper functions

𝐽mixed B 𝜉 ( [𝑚])
𝐽 pure B [𝑘] \ 𝐽mixed

ℓ− ( 𝑗) B min {ℓ ∈ [𝑚] | 𝜉 ( 𝑗) = ℓ } , for 𝑗 ∈ 𝐽mixed,

ℓ+( 𝑗) B min {max {ℓ ∈ [𝑚] | 𝜉 ( 𝑗) = ℓ } + 1,𝑚} , for 𝑗 ∈ 𝐽mixed,

ℓ− ( 𝑗) = ℓ+( 𝑗) = ℓ ( 𝑗) B min {ℓ ∈ [𝑚] | 𝜉 ( 𝑗) > ℓ } , for 𝑗 ∈ 𝐽 pure,

𝐿( 𝑗) B [ℓ− ( 𝑗), ℓ+( 𝑗)] ∩ ℕ, for 𝑗 ∈ [𝑘] .

The semantics are that strategy 𝛽𝑖 maps value 𝑣 𝑗 to a distribution supported within {𝑏ℓ }ℓ∈𝐿 ( 𝑗 ) . In

particular, under 𝛽𝑖 , bidder 𝑖 bids deterministically 𝑏ℓ ( 𝑗 ) when having a value in {𝑣 𝑗 } 𝑗∈ 𝐽 pure .

Example 1. As an example of our representation, consider the sequence 𝜉 = (1, 1, 1, 4, 5, 5, 9) for a

DFPA auction with 7 bids 𝐵 = {𝑏1, . . . , 𝑏7} and 9 values 𝑉 = {𝑣1, . . . , 𝑣9}. Then, 𝜉 corresponds to a

monotone bidding rule 𝛽 : 𝑉 → Δ(𝐵) such that:

— 𝛽 (𝑣1) is supported within {𝑏1, 𝑏2, 𝑏3, 𝑏4}

— 𝛽 (𝑣2) = 𝛽 (𝑣3) = 𝑏4 deterministically

— 𝛽 (𝑣4) is supported within {𝑏4, 𝑏5}

— 𝛽 (𝑣5) is supported within {𝑏5, 𝑏6, 𝑏7}
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— 𝛽 (𝑣6) = 𝛽 (𝑣7) = 𝛽 (𝑣8) = 𝛽 (𝑣9) = 𝑏7 deterministically.

To complement 𝜉 , which is the “structural” component of our representation, we also maintain

a corresponding vector of probability variables {𝑝 𝑗,ℓ } 𝑗∈ 𝐽 mixed,ℓ∈𝐿 ( 𝑗 ) , with the semantics that 𝑝 𝑗,ℓ is the

probability that value 𝑣 𝑗 assigns to bid 𝑏ℓ (under 𝛽𝑖 ). Notice that, for any given 𝜉 , these variables are at

most 2 |𝐵 | = 2𝑘 since

��𝐽mixed

�� = |𝜉 ( [𝑚]) | ≤ 𝑘 and 𝐿( 𝑗) ∩ 𝐿( 𝑗 ′) ≤ 1 for any 𝑗, 𝑗 ′ ∈ 𝐽mixed
with 𝑗 ≠ 𝑗 ′.

Finally, observe that if we have the aforementioned support-representation of a monotone strategy,

we can easily extend it (in polynomial time) to the canonical representation of mixed strategies by

defining the remaining probabilities (which are 0/1 constants), in the following way

𝑝 𝑗,ℓ =


0, if 𝑗 ∈ 𝐽mixed ∧ ℓ ≠ 𝐿( 𝑗),
1, if 𝑗 ∈ 𝐽 pure ∧ ℓ = ℓ ( 𝑗),
0, if 𝑗 ∈ 𝐽 pure ∧ ℓ ≠ ℓ ( 𝑗) .

(17)

We now continue with describing our algorithm for computing an approximate symmetric equilib-

rium of our auction.

Guessing the support-representation structure. Let 𝜷 = (𝛽, 𝛽, . . . , 𝛽) be an exact MBNE of our

auction, where all bidders employ the same monotone
10

(mixed) strategy 𝛽 . Recall that such an object

is guaranteed to exist, due to Theorem 5.2.

The bidder strategies 𝛽 of such an equilibrium will have the same support-representation 𝜉 . Since 𝜉

is a𝑚-length sequence whose elements belong in [𝑘], we can exhaustively go over all such possible

structural vectors that our equilibria can have in time 𝑂 (𝑘𝑚).

The system of polynomial inequalities. Once such a structure vector 𝜉 for the individual bidder

strategies is fixed, the equilibrium 𝜷 is fully determined by the probabilities {𝑝 𝑗,ℓ } of the support-

representation. More precisely, 𝜷 is an equilibrium if and only if the following constraints are satisfied:

— (Feasibility of strategies) For each 𝑣 𝑗 ∈ 𝑉 , probabilities {𝑝 𝑗,ℓ } should give rise to a valid distribution

over bids 𝑏ℓ , i.e.

𝑝 𝑗,ℓ ≥ 0 ∀𝑗 ∈ [𝑘], ∀ℓ ∈ [𝑚] (18)

𝑚∑︁
ℓ=1

𝑝 𝑗,ℓ = 1 ∀𝑗 ∈ [𝑘] (19)

— (No overbidding) No bidder should bid higher that her true value with strictly positive probability,

under strategy 𝛽 :

𝑝 𝑗,ℓ (𝑣 𝑗 − 𝑏ℓ ) ≥ 0 ∀𝑗 ∈ [𝑘], ∀ℓ ∈ [𝑚] . (20)

— (No improvement) For any possible true value, no bidder should have an incentive to unilater-

ally deviate from the (possibly randomized) bidding strategy dictated by 𝛽 , to any alternative

deterministic bid (see Definition 1 for 𝜀 = 0). As a matter of fact, since 𝜷 is symmetric, it is

enough to consider condition (4) from the perspective of a single (arbitrary) bidder 𝑖 . So, letting

𝑢 (ℓ, 𝑗) B 𝑢𝑖 (𝑏ℓ , 𝜷−𝑖 ; 𝑣 𝑗 ), the equilibrium condition can be written as

𝑚∑︁
ℓ ′=1

𝑝 𝑗,ℓ ′𝑢 (ℓ ′, 𝑗) ≥ 𝑢 (ℓ, 𝑗) ∀𝑗 ∈ [𝑘], ∀ℓ ∈ [𝑚], (21)

10
See Definition 3.
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where, by using Equations (5) to (8) and the fact that the bidders are iid, we can express

𝑢 (ℓ, 𝑗) = (𝑣 𝑗 − 𝑏ℓ )
𝑛−1∑︁
𝑟=0

1

𝑟 + 1

(
𝑛 − 1

𝑟

)
𝑔𝑟ℓ𝐺

𝑛−𝑟−1

ℓ , (22)

with

𝑔ℓ =

𝑘∑︁
𝑗=1

𝑝 𝑗,ℓ 𝑓 (𝑣 𝑗 ) ∀ℓ ∈ [𝑚] (23)

denoting the probability that any given bidder 𝑖′ ≠ 𝑖 bids exactly 𝑏ℓ (see (6)) under profile 𝜷−𝑖 ,
and

𝐺ℓ =

ℓ−1∑︁
ℓ ′=1

𝑔ℓ ′ ∀ℓ ∈ [𝑚] (24)

the probability that she bids strictly less than 𝑏ℓ (see (7)). Observe that in (22) the utility 𝑢 (ℓ, 𝑗) is

expressed as a polynomial, of degree at most 𝑛 − 1, over the variables {𝑔ℓ ,𝐺ℓ }ℓ∈[𝑚] .

Let (P) denote the feasibility program, over variables {𝑝 𝑗,ℓ , 𝑔ℓ ,𝐺ℓ }, defined by putting together

constraints (18), (19), (20), (21) via replacing the utilities by their expression in (22), (23), and (24). Then,

any solution to (P) gives rise, via the support-representation structure 𝜉 , to a symmetric, monotone,

exact MBNE of our auction.

Now observe that (P) is a system of 𝑂 (𝑘𝑚) polynomial inequalities, of maximum degree 𝑛, over

𝑂 (𝑚) variables; for the latter, recall that only (at most) 2𝑚 of the probability variables 𝑝 𝑗,ℓ are “real”

variables in (P), namely {𝑝 𝑗,ℓ } 𝑗∈ 𝐽 mixed,ℓ∈𝐿 ( 𝑗 ) , since all others are constants given by (17). Therefore, an

approximate solution to (P) can be found in time polynomial in 𝑛, 𝑘 and exponential in𝑚. More precisely,

let {𝑝 𝑗,ℓ , 𝑔ℓ , 𝐺̃ℓ } be a set of values for the variables of (P) that are 𝛿-near, with respect to the maximum

norm, to a feasible solution {𝑝∗𝑗,ℓ , 𝑔∗ℓ , 𝐺̃∗ℓ } of (P). Such a solution can be found in time polynomial in

log(1/𝛿) and (𝑛𝑘𝑚)𝑚2

— using, e.g., the results of Grigor’ev and Vorobjov [GV88, Remark, p. 38].

Rounding back the solution. We will now show how we can transform, in polynomial time,

the probabilities 𝒑̃ = {𝑝 𝑗,ℓ } that we derived by (approximately) solving system (P), to another set

of probabilities, let’s denote them by 𝒑̂ = {𝑝 𝑗,ℓ }, so that they give rise to an approximate (mixed)

equilibrium of our auction. That is, 𝒑̂ should satisfy constraints (18), (19) and (20), but we will allow (21)

to be relaxed to

𝑚∑︁
ℓ ′=1

𝑝 𝑗,ℓ ′𝑢 (ℓ ′, 𝑗) ≥ 𝑢 (ℓ, 𝑗) − 𝜀. (25)

To that end, we define

𝑝 𝑗,ℓ :=
𝑇 (𝑝 𝑗,ℓ )∑𝑚

ℓ ′=1
𝑇 (𝑝 𝑗,ℓ ′)

, (26)

where operator 𝑇 is the following:

𝑇 (𝑥) =


0, if 𝑥 ≤ 𝛿,

1, if 𝑥 ≥ 1,

𝑥, otherwise.

(27)

From the fact that 𝑇 (𝑥) ≥ 0 and the normalization in (26), it is immediately apparent that our new

probabilities 𝒑̂ indeed satisfy constraints (18) and (19).
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Additionally, consider how the probabilities𝒑∗ = {𝑝∗𝑗,ℓ } of the exact solution of (P) behave, depending

on the value of (𝑣 𝑗 − 𝑏ℓ ) in (20). If 𝑣 𝑗 − 𝑏ℓ ≥ 0 then, by the fact that all elements of 𝑝 are non-negative,

(20) will be satisfied. Otherwise, if 𝑣 𝑗 − 𝑏ℓ ≥ 0 it should be the case that 𝑝∗𝑗,ℓ = 0, and therefore it must

be that 𝑝 𝑗,ℓ ≤ 𝛿 , since ∥𝒑∗ − 𝒑̃∥∞ ≤ 𝛿 . Therefore, due to (27) it must be that 𝑝 𝑗,ℓ = 0, and (20) is satisfied

in this case as well.

Finally, we need to establish (25). For a value 𝑣 𝑗 ∈ 𝑉 and bid 𝑏ℓ ∈ 𝐵 we will denote

𝑢 𝑗,ℓ (𝒑) = (𝑣 𝑗 − 𝑏ℓ )
𝑛−1∑︁
𝑟=0

1

𝑟 + 1

(
𝑛 − 1

𝑟

)
[𝑔ℓ (𝒑)]𝑟 [𝐺ℓ (𝒑)]𝑛−𝑟−1 , (28)

where

𝑔ℓ (𝒑) B
𝑘∑︁
𝑗=1

𝑝 𝑗,ℓ 𝑓 (𝑣 𝑗 ), for ℓ ∈ [𝑚] and 𝐺ℓ (𝒑) ≔
ℓ−1∑︁
ℓ ′=1

𝑔ℓ (𝒑).

We will show that, for every 𝜀 > 0, we can choose a 𝛿 = Θ
(

𝜀
𝑚𝑛

)
such that��𝑢 𝑗,ℓ (𝒑̂) − 𝑢 𝑗,ℓ (𝒑∗)

�� ≤ 𝜀

2

∀𝑗 ∈ [𝑘], ∀ℓ ∈ [𝑚] . (29)

Note that (29) is enough in order to establish the desired validity of (25), since𝑢 (𝒑) is simply a rewriting

of the utility 𝑢 (ℓ, 𝑗) (see (22)) directly as a function of the probability variables 𝒑 = {𝑝 𝑗 ′,ℓ ′}, and 𝒑∗ is a

solution of (P) and thus satisfies (21).

We first bound the distance between 𝒑̂ and 𝒑∗ in the following lemma:

Lemma 5.4. If 𝛿 ≤ 1

3𝑚
, then ∥𝒑̂ − 𝒑∗∥∞ ≤ 4𝛿 .

Proof. Since 𝑝∗𝑗,ℓ ∈ [0, 1] for all 𝑗 ∈ [𝑘], ℓ ∈ [𝑚], and ∥𝒑̃ − 𝒑∗∥∞ ≤ 𝛿 , we can deduce that

−𝛿 ≤ 𝑝 𝑗,ℓ ≤ 1 + 𝛿 ∀𝑗 ∈ [𝑘], ∀ℓ ∈ [𝑚] .

Therefore, by the definition of operator 𝑇 in (27) we get that��𝑇 (𝑝 𝑗,ℓ ) − 𝑝 𝑗,ℓ

�� ≤ 𝛿 ∀𝑗 ∈ [𝑘], ∀ℓ ∈ [𝑚] . (30)

Therefore ����� 𝑚∑︁
ℓ=1

𝑇 (𝑝 𝑗,ℓ ) − 1

����� =
����� 𝑚∑︁
ℓ=1

𝑇 (𝑝 𝑗,ℓ ) −
𝑚∑︁
ℓ=1

𝑝∗𝑗,ℓ

�����
≤

𝑚∑︁
ℓ=1

��𝑇 (𝑝 𝑗,ℓ ) − 𝑝 𝑗,ℓ

��
≤

𝑚∑︁
ℓ=1

��𝑇 (𝑝 𝑗,ℓ ) − 𝑝 𝑗,ℓ

�� + 𝑚∑︁
ℓ=1

��𝑝∗𝑗,ℓ − 𝑝 𝑗,ℓ

��
≤ 𝑚 · 𝛿 +𝑚 · 𝛿 = 2𝑚𝛿 (31)

Now, for all 𝑗 ∈ [𝑘] and ℓ ∈ [𝑚] we can bound:��𝑝 𝑗,ℓ − 𝑝 𝑗,ℓ

�� (26)

=

���� 𝑇 (𝑝 𝑗,ℓ )∑𝑚
ℓ ′=1

𝑇 (𝑝 𝑗,ℓ ′)
− 𝑝 𝑗,ℓ

���� (32)

≤ max

{
1��∑𝑚

ℓ ′=1
𝑇 (𝑝 𝑗,ℓ ′)

�� , 1
} ��𝑇 (𝑝 𝑗,ℓ ) − 𝑝 𝑗,ℓ

��
(33)
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(30),(31)

≤ max

{
1

|1 − 2𝑚𝛿 | , 1
}
𝛿 (34)

≤ 3𝛿, (35)

where for the last inequality we have used the fact that 0 < 𝛿 ≤ 1

3𝑚
, and for the first one the fact that

|𝜆𝑥 − 𝜇𝑦 | ≤ max{|𝜆 | , |𝜇 |} |𝑥 − 𝑦 | for all reals 𝜆, 𝜇, 𝑥,𝑦.

Finally, we can derive that:

∥𝒑̂ − 𝒑∗∥∞ ≤ ∥𝒑̃ − 𝒑̂∥∞ + ∥𝒑̃ − 𝒑∗∥∞
(35)

≤ 3𝛿 + 𝛿 = 4𝛿.

□

We are now ready to bound the distance of the utilities under the two profiles 𝒑̂ and 𝒑∗ in (29).

Using that ∥𝒑̂ − 𝒑∗∥∞ ≤ 4𝛿 from Lemma 5.4, we can now provide the bounds:

|𝑔(𝒑̂) − 𝑔(𝒑∗) | =
����� 𝑘∑︁
𝑗 ′=1

𝑝 𝑗 ′,ℓ 𝑓 (𝑣 𝑗 ′) −
𝑘∑︁

𝑗 ′=1

𝑝∗𝑗 ′,ℓ 𝑓 (𝑣 𝑗 ′)
����� ≤ 𝑘∑︁

𝑗 ′=1

���𝑝 𝑗 ′,ℓ − 𝑝∗𝑗 ′,ℓ
��� 𝑓 (𝑣 𝑗 ′) ≤ 4𝛿, (36)

since

∑𝑘
𝑗 ′=1

𝑓 (𝑣 𝑗 ′) = 1, and so

|𝐺 (𝒑̂) −𝐺 (𝒑∗) | ≤
ℓ−1∑︁
ℓ ′=1

|𝑔(𝒑̂) − 𝑔(𝒑∗) | ≤ 4𝛿 |ℓ − 1| ≤ 4𝛿𝑚. (37)

Also, note that for 𝒑 ∈ {𝒑̂,𝒑∗}, it is

𝐺ℓ (𝒑) =
ℓ−1∑︁
ℓ ′=1

𝑔𝑙 (𝒑) ≤
𝑚∑︁
ℓ ′=1

𝑘∑︁
𝑗=1

𝑝 𝑗,ℓ ′ 𝑓 (𝑣 𝑗 ) =
𝑘∑︁
𝑗=1

(
𝑚∑︁
ℓ ′=1

𝑝 𝑗,ℓ ′

)
𝑓 (𝑣 𝑗 ) =

𝑘∑︁
𝑗=1

𝑓 (𝑣 𝑗 ) = 1,

since both 𝒑̂ and 𝒑∗ satisfy (19).

Next, we rewrite the utilities in (28) as

𝑢 𝑗,ℓ (𝒑) =
𝑣 𝑗 − 𝑏ℓ
𝑛 · 𝑔ℓ (𝒑)

𝑛−1∑︁
𝑟=0

(
𝑛

𝑟 + 1

)
[𝑔ℓ (𝒑)]𝑟+1 [𝐺ℓ (𝒑)]𝑛−𝑟−1

=
𝑣 𝑗 − 𝑏ℓ
𝑛 · 𝑔ℓ (𝒑)

𝑛∑︁
𝑟=1

(
𝑛

𝑟

)
[𝑔ℓ (𝒑)]𝑟 [𝐺ℓ (𝒑)]𝑛−𝑟

=
𝑣 𝑗 − 𝑏ℓ
𝑛 · 𝑔ℓ (𝒑)

[
(𝐺ℓ (𝒑) + 𝑔ℓ (𝒑))𝑛 −𝐺𝑛

ℓ (𝒑)
]

=
𝑣 𝑗 − 𝑏ℓ
𝑛 · 𝑔ℓ (𝒑)

[
𝐺𝑛
ℓ+1(𝒑) −𝐺𝑛

ℓ (𝒑)
]

=
𝑣 𝑗 − 𝑏ℓ

𝑛

𝑛−1∑︁
𝑟=0

𝐺𝑟
ℓ+1(𝒑)𝐺𝑛−1−𝑟

ℓ (𝒑) .

Using this, we can finally bound the distance of the utilities by

��𝑢 𝑗,ℓ (𝒑̂) − 𝑢 𝑗,ℓ (𝒑∗)
�� ≤ 1

𝑛

𝑛−1∑︁
𝑟=0

��𝐺𝑟
ℓ+1(𝒑̂)𝐺𝑛−1−𝑟

ℓ (𝒑̂) −𝐺𝑟
ℓ+1(𝒑∗)𝐺𝑛−1−𝑟

ℓ (𝒑∗)
��

≤ max

𝑟=0,1,...,𝑛−1

��𝐺𝑟
ℓ+1(𝒑̂)𝐺𝑛−1−𝑟

ℓ (𝒑̂) −𝐺𝑟
ℓ+1(𝒑∗)𝐺𝑛−1−𝑟

ℓ (𝒑∗)
��
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≤ max

𝑟=0,1,...,𝑛−1

��𝐺𝑟
ℓ (𝒑̂) −𝐺𝑟

ℓ (𝒑∗)
��

≤ max

𝑟=0,1,...,𝑛−1

𝑟 |𝐺ℓ (𝒑̂) −𝐺ℓ (𝒑∗) |

≤ 4𝛿𝑚𝑛,

where the third and fourth inequalities hold due to the fact that 𝐺ℓ (𝒑̂),𝐺ℓ (𝒑∗) ∈ [0, 1] for all ℓ ∈ [𝑚],
and the last one due to (37). Taking 𝛿 = 𝜀

8𝑚𝑛
we can indeed satisfy (29). □

We can now state our PTAS result.

Theorem 5.5. In every DFPA with iid priors, and any constant 𝜀 > 0, a symmetric and monotone
𝜀-approximate mixed equilibrium can be computed in polynomial time.

Proof. Fix an iid DFPA auction A with 𝑛 bidders, 𝑘 values, and bidding space 𝐵. Let 𝜀 > 0 be an

arbitrary constant. Choose integer 𝑀 B ⌈2/𝜀⌉, so that
1

𝑀
≤ 𝜀

2
. Next, we construct a subspace 𝐵′ ⊆ 𝐵

of our original bidding space 𝐵, with constant cardinality |𝐵′ | = 𝑀 , as dictated in the proof of the

shrinkage Lemma 5.1. Notice that 𝐵′ can be constructed in polynomial time (in the description of A).

Now, let A′ denote the DFPA that results from A if we simply replace bidding space 𝐵 of A by 𝐵′

(everything else, namely bidders, value space and belief distributions, remaining the same). Obviously,

A′ is still an iid auction and thus, if we define 𝜀′ B 𝜀/2, we can deploy the algorithm presented

in Theorem 5.3 in order to compute a symmetric and monotone 𝜀′-approximate MBNE of A′, let’s

denote it by 𝜷∗, in time polynomial in log(1/𝜀′) = 𝑂 (log(1/𝜀)) and in (𝑛𝑘𝑀)𝑀 = poly(𝑛, 𝑘), since 𝑀 is

a constant. Due to Lemma 5.1, again, we know that 𝜷∗ is guaranteed to be an (𝜀′ + 1

𝑀
)-approximate

MBNE of the original auction A. Our proof is concluded by noting that 𝜀′ + 1

𝑀
≤ 𝜀

2
+ 𝜀

2
= 𝜀. □

6 Correlated Equilibria

Another well-studied solution concept in Game Theory is that of Correlated Equilibria (CE), first

introduced by Aumann in his seminal paper [Aum74]. Intuitively, these capture the idea of each player

choosing her action after being given a recommendation from a “mediator”, ensuring that at a CE no

player has an incentive to deviate from their recommended strategy. This is a broader solution concept

which in several cases has proven to be amenable to polynomial-time algorithms, e.g., see [PR08; JL15].

Given our PPAD-completeness result for computing MBNE in Section 4.3, it is natural to explore CE of

the DFPA, in a quest for potential tractability results.

Before we do that however, we have to come up with an appropriate definition: CE are typically

defined in complete information, normal form games, whereas the DFPA is a Bayesian game of in-

complete information. The appropriate extension of the notion of CE to Bayesian games has been

discussed extensively in the literature [Aum87; For93; For06; For23; BM13; BM16], and several natural

notions have been proposed. In this paper, we will adopt the standard notion that defines a CE of the

original DFPA by means of the induced type-agent representation, adopted also by works in computer

science, e.g., see [HST15; AB24]. This representation is a generic way of interpreting any Bayesian

game as a traditional, strategic-form game; see, [Mye97, pp. 73–74, 127–128] and [JR01, Definition 7.11].

Historically, the representation has its roots directly in the seminal paper of [Har67, p. 1814], where it

is referred to as the Selten or posterior-lottery model. Formally, the type-agent representation is defined

as follows:

Definition 6 (Type-agent representation of the DFPA). Fix a DFPA A with: bidders 𝑁 = {1, 2, . . . , 𝑛};
bidding set 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑚}; value sets 𝑉𝑖 = {𝑣𝑖,1, 𝑣𝑖,2, . . . , 𝑣𝑖,𝑘𝑖 }, for 𝑖 ∈ 𝑁 ; and value distributions

𝐹𝑖, 𝑗 with probability density functions

{𝑓𝑖, 𝑗 (𝑣 𝑗,1), 𝑓𝑖, 𝑗 (𝑣 𝑗,2), . . . , 𝑓𝑖, 𝑗 (𝑣 𝑗,𝑘 𝑗
)}, for 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗,
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given explicitly in the input.

Let G be the normal form game with: players 𝑁̃ = {(𝑖, 𝑣) | 𝑖 ∈ 𝑁, 𝑣 ∈ 𝑉𝑖 }; for all players (𝑖, 𝑣) ∈ 𝑁̃ ,

the same set of (pure) strategies 𝑆 (𝑖,𝑣) = 𝐵; and, for all outcomes 𝒔 ∈ 𝐵𝑁̃
and players (𝑖, 𝑣) ∈ 𝑁̃ , a payoff

𝜋 (𝑖,𝑣) (𝒔) = 𝑢𝑖 (𝒔 (𝑖, 𝑣), ˆ𝜷−𝑖 ; 𝑣), (38)

where 𝑢𝑖 ’s are the standard DFPA utilities (as given in (2)) and
ˆ𝜷−𝑖 are pure bidding strategies of A

given by

ˆ𝛽 𝑗 (𝑣 𝑗 ) = 𝒔 ( 𝑗, 𝑣 𝑗 ), (39)

for all 𝑗 ∈ 𝑁 \ 𝑖 and 𝑣 𝑗 ∈ 𝑉𝑗 .

Notice that (39) gives rise to a natural one-to-one correspondence between pure (and, by extension,

mixed as well) equilibria of auction A and the normal-form game G. Furthermore, from (38) it is

apparent that this correspondence preserves the utility/payoffs between games. In particular, this means

that there is a one-to-one correspondence between 𝜀-MBNE of A and 𝜀-approximate (additive) mixed

Nash equilibria of G. In fact, this has been the common approach for showing existence of equilibria of

Bayesian games in general, by applying Nash’s theorem to the type-agent game, which is indeed in

normal form.

Given Definition 6, we can now define the correlated equilibria of the DFPA to be precisely the

correlated equilibria of the corresponding type-agent game.

Definition 7 (Correlated Equilibrium of a DFPA). Given a DFPA A and the corresponding type-agent

representation game G, a correlated equilibrium is a distribution 𝜎 on the set of outcomes 𝐵𝑁̃
such that

for every player 𝑛̃ ∈ 𝑁̃ , strategy 𝑠𝑖 ∈ 𝑆𝑛̃ , and every deviation 𝑠′
𝑛̃
∈ 𝑆𝑛̃ ,

𝔼𝒔∼𝜎 [𝜋𝑛̃ (𝒔) | 𝑠𝑛̃ ] ≥ 𝔼𝒔∼𝜎
[
𝜋𝑛̃ (𝑠′𝑛̃, 𝒔−𝑛̃) | 𝑠𝑛̃

]
One of the most celebrated results on correlated equilibria is due to [PR08], as well as follow-up

work in [JL15], and it states the following:

Theorem 6.1 ([PR08]). In any succinct game of polynomial type for which the players’ utilities can be
computed in polynomial time, one can compute a correlated equilibrium in polynomial time.

Informally, succinct games are games that can be represented without explicitly listing the payoffs

of the players on all possible outcomes (that, in general, may be exponentially many), but rather via

some alternative, efficient way. We refer the reader to [PR08] for a formal definition of the class.

Having established these important notions and results, the main theorem of this section follows

rather straightforwardly, by applying Lemma 2.1.

Theorem 6.2. A correlated equilibrium of a DFPA can be computed in polynomial time.

Proof. Given Theorem 6.1, it suffices to show that (1) the induced game G is succinct and (2) we can

compute the (expected) utilities of the players in polynomial time. First, observe that the number of

players and (pure) strategies of G are polynomial in the description size |A| of the original DFPA and,

furthermore, due to (38) and Lemma 2.1, the payoff functions 𝜋 (𝑖,𝑣) are computable in polynomial (with

respect to |A|) time. Therefore, the class of gamesG that could arise through our reduction are succinctly

representable (of polynomial type). Additionally, Lemma 2.1 guarantees that the (expected) payoffs of G
on mixed strategy profiles are also polynomial-time computable, hence, the second condition is also

satisfied. □
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7 Conclusion and Future Work

In this paper, we considered the computational complexity of equilibrium computation in first-price

auctions with discrete values and discrete bids. We established computational completeness results for

deciding the existence of pure equilibria and for finding mixed equilibria in general. We also provided

positive results for the natural case of iid bidders and symmetric equilibria, as well as for correlated

equilibria. At the heart of several of our results lies a novel equivalence between mixed equilibria of the

discrete auction and pure equilibria of the continuous auction. We believe that this result may prove

to be quite useful in the future, as it allows one to choose which of the two settings to focus on, and

translate results automatically to the other.

Perhaps the most interesting, and seemingly rather challenging avenue for future work is to study

the computational complexity of equilibrium computation in the discrete auction in the IPV setting.

Another interesting question is to explore alternative notions of correlated equilibria defined in the

literature for Bayesian games (e.g., see [For93; For06; For23]) and explore the computational relation

between them in the context of first-price auctions. Finally, one could explore mixed equilibria for

auctions with continuous values, after coming up with an appropriate representation of the bidders’

strategies in this setting.
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Appendix

A A Brief Discussion on Equilibrium Notions

In the literature of the computational complexity of strategic games, the term “𝜀-well-supported equi-

librium” has been used to refer to 𝜀-approximate mixed equilibria in which every pure strategy in the

support of the equilibrium strategy is utility-maximising, exactly like in Definition 4. Recently, Chen

and Peng [CP23] ambiguously used the term “𝜀-well-supported” to refer to pure interim Bayes-Nash

equilibria. An interim equilibrium is one as defined in our Definition 1, in which a player chooses her

strategy given her value 𝑣𝑖 , which is known to her. In the terminology of auction theory, one could also

define an alternative equilibrium notion called ex-ante Bayes-Nash equilibrium. In such an equilibrium,

each bidder also has some uncertainty about her own value, which she draws from a distribution 𝐹𝑖,𝑖 .

We provide the formal definition below.

Definition 8 (𝜀-approximate ex-ante mixed Bayes-Nash equilibrium of the DFPA). Let 𝜀 ≥ 0. A (mixed)

strategy profile 𝜷 = (𝛽1, . . . , 𝛽𝑛) is an (interim) 𝜀-approximate mixed Bayes-Nash equilibrium (MBNE)

of the DFPA if for any bidder 𝑖 ∈ 𝑁 ,

𝔼𝒗𝑖∼𝐹𝑖,𝑖 [𝑢𝑖 (𝛽𝑖 (𝑣𝑖), 𝜷−𝑖 ; 𝑣𝑖)] ≥ 𝔼𝒗𝑖∼𝐹𝑖,𝑖
[
𝑢𝑖 (𝜸 , 𝜷−𝑖 ; 𝑣𝑖)

]
− 𝜀 for all 𝜸 ∈ Δ(𝐵) .

By Definition 4 and Definition 1, it follows that an 𝜀-well-supported equilibrium is also an 𝜀-

approximate Bayes-Nash equilibrium. Additionally, from Definition 8 above and Definition 1, it follows

that an interim Bayes-Nash equilibrium is also an ex-ante Bayes-Nash equilibrium. This implies that

positive results are stronger for interim equilibria. In particular, the PTAS of Chen and Peng [CP23]

for the IPV setting, which is stated for ex-ante equilibria, does not translate to our setting via our

computational equivalence result.

We remark that we find the notion of interim equilibria more natural, and more in line with the

standard definitions (e.g., see [Kri09; Mye97]), and advocate the use of terminology which is consistent

with the auction literature, e.g., see [MR85; MR00; Leb96; Ath01].

B Non-Existence of Approximate Pure Equilibria

In this section we prove Theorem 3.1. We start by establishing a technical lemma that would be useful

in our main proof:

Lemma B.1. For any integer 𝑀 ≥ 10,

𝑞

2

𝑀 ≤ 𝑞(𝑀 − 2) ≤ 𝑞 + 1

2

(𝑀 − 3) ≤ 𝑀 − 4 ≤ 𝑞(𝑀 − 1) ≤ 𝑞 + 1

2

(𝑀 − 2) ≤ 𝑀 − 3 ≤ 𝑞 + 1

2

(𝑀 − 1),

where
𝑞 =

𝑀 − 3

𝑀 − 1

− 2

3𝑀
.

Proof. First, we show that, for 𝑀 ≥ 10, the following holds:

1 − 3

𝑀 − 1

≤ 𝑞 ≤ 1 − 2

𝑀 − 3

. (40)

Indeed, we can see that:

1 − 3

𝑀 − 1

≤ 𝑞 ⇐⇒ 1 − 3

𝑀 − 1

≤ 𝑀 − 3

𝑀 − 1

− 2

3𝑀
⇐⇒ 𝑀 > 1
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and

𝑞 ≤ 1 − 2

𝑀 − 3

⇐⇒ 𝑀 − 3

𝑀 − 1

− 2

3𝑀
≤ 1 − 2

𝑀 − 3

⇐⇒ 𝑀2 − 10𝑀 + 3 ≥ 0,

which holds for 𝑀 ≥
√

22 + 5 ≈ 9.690.

To prove the main chain of inequalities in the statement of our lemma, again by performing basic

algebraic operations, we get:

𝑞

2

𝑀 ≤ 𝑞(𝑀 − 2) ⇐⇒ 𝑀 ≥ 4;

𝑞(𝑀 − 2) ≤ 𝑞 + 1

2

(𝑀 − 3) ⇐⇒ 𝑞 ≤ 𝑀 − 3

𝑀 − 1

which holds since 𝑞 = 𝑀−3

𝑀−1
− 2

3𝑀
;

𝑞 + 1

2

(𝑀 − 3) ≤ 𝑀 − 4 ⇐⇒ 𝑞 ≤ 1 − 2

𝑀 − 3

which holds due to (40);

𝑀 − 4 ≤ 𝑞(𝑀 − 1) ⇐⇒ 𝑞 ≥ 1 − 3

𝑀 − 1

which holds due to (40);

≤ 𝑞(𝑀 − 1) ≤ 𝑞 + 1

2

(𝑀 − 2) ⇐⇒ 𝑞 ≤ 1 − 2

𝑀

which holds since, from (40), we have that 𝑞 ≤ 1 − 2

𝑀−3
< 1 − 2

𝑀
;

𝑞 + 1

2

(𝑀 − 2) ≤ 𝑀 − 3 ⇐⇒ 𝑞 ≤ 1 − 2

𝑀 − 2

which holds since, from (40), we have that 𝑞 ≤ 1 − 2

𝑀−3
< 1 − 2

𝑀−2
;

𝑀 − 3 ≤ 𝑞 + 1

2

(𝑀 − 1) ⇐⇒ 𝑞 ≥ 1 − 4

𝑀 − 1

which holds since, from (40), we have that 𝑞 ≤ 1 − 3

𝑀−1
> 1 − 4

𝑀−1
. □

We are now ready to proceed with the proof of our theorem:

Proof of Theorem 3.1. Let 𝑀 B 12 and fix any 𝜀 such that

0 ≤ 𝜀 <
1

3𝑀
− 2

𝑀2
=

1

72

. (41)

Consider a DFPA with two bidders with value spaces 𝑉1 = 𝑉2 = {0, 1}, bidding space 𝐵 ={
0, 1

𝑀
, 2

𝑀
, . . . , 1

}
, and identical prior distributions with probability mass function

𝑓 (𝑣) =
{
𝑀−3

𝑀−1
− 2

3𝑀
C 𝑞, if 𝑣 = 0,

1 − 𝑞, if 𝑣 = 1.
(42)

Notice that this distribution is well-defined, since 𝑞 ∈ (0, 1) for 𝑀 ≥ 10 (see (40) in the proof

of Lemma B.1).

First, we will show that no profile can be an 𝜀-approximate equilibrium, unless 𝛽1(0) = 𝛽2(0) = 0.

Assume (without loss) that 𝛽1(0) ≥ 𝛽2(0), and let 𝛽1(0) = 𝑏 ≥ 1

𝑀
. We will prove that bidder 1 can get

an 𝜀-improvement by deviating to 𝛽1(0) = 0. Indeed, the probability that bidder 1 gets the item by

reporting 𝑏 is at least

1

2

Pr [𝛽2(𝑣2) ≤ 𝑏] ≥ 1

2

Pr [𝑣2 = 0] = 𝑞

2
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so, keeping everything else fixed and conditioning on the true value of bidder 1 being 𝑣1 = 0, the

improvement in the utility is:

𝑢1 (𝛽1(0) = 0) − 𝑢1 (𝛽1(0) = 𝑏) = 0 − Pr [bidder 1 wins given report 𝑏] · (0 − 𝑏)

≥ 𝑞

2

𝑏 ≥ 𝑞

2

1

𝑀

=

[
𝑀 − 3

2(𝑀 − 1) −
1

3𝑀

]
1

𝑀
, by substituting 𝑞 from (42),

>

[
𝑀 − 3

3𝑀
− 1

3𝑀

]
1

𝑀

=
1

3𝑀
− 4

3

1

𝑀2
>

1

3𝑀
− 2

1

𝑀2
= 𝜀.

Thus, from now on we fix 𝛽1(0) = 𝛽2(0) = 0, and we use the shorthands 𝛽1 = 𝛽1(1), 𝛽2 = 𝛽2(1). We

will now show that, for any bidder 𝑖 = 1, 2:

(a) if 𝛽−𝑖 ∈
{
0, 1

𝑀
, 2

𝑀

}
, then

𝑢𝑖

(
𝛽𝑖 = 𝛽−𝑖 +

1

𝑀
; 𝑣𝑖 = 1

)
− 𝑢𝑖 (𝛽𝑖 = 𝑏𝑖 ; 𝑣𝑖 = 1) > 𝜀 for all 𝑏𝑖 ≠ 𝛽−𝑖 +

1

𝑀

(b) if 𝛽−𝑖 ∈
{

3

𝑀
, 4

𝑀
, . . . , 1

}
, then

𝑢𝑖

(
𝛽𝑖 =

1

𝑀
; 𝑣𝑖 = 1

)
− 𝑢𝑖 (𝛽𝑖 = 𝑏𝑖 ; 𝑣𝑖 = 1) > 𝜀 for all 𝑏𝑖 ≠

1

𝑀
.

This is enough to establish the nonexistence of an 𝜀-approximate equilibrium, since it shows that for

any choice of 𝛽1, 𝛽2 ∈
{
0, 1

𝑀
, 2

𝑀
, . . . , 1

}
there will always exist an 𝜀-improving deviation. To simplify the

notation, we will drop the conditioning on 𝑣𝑖 = 1 for the rest of the proof, and also denote

Δ(𝑧) = Δ(𝑧, 𝛽−𝑖) = 𝑢𝑖 (𝛽𝑖 = 𝑧; 𝑣𝑖 = 1) −max

𝑏𝑖≠𝑧
𝑢𝑖 (𝛽𝑖 = 𝑏𝑖 ; 𝑣𝑖 = 1),

so that cases (a) and (b) above can be expressed simply as

(a) Δ
(
𝛽−𝑖 + 1

𝑀

)
> 𝜀 for 𝛽−𝑖 ∈

{
0, 1

𝑀
, 2

𝑀

}
(b) Δ

(
1

𝑀

)
> 𝜀 for 𝛽−𝑖 ∈

{
3

𝑀
, 4

𝑀
, . . . , 1

}
.

First, observe that

𝑢𝑖 (𝛽𝑖 = 𝑏𝑖) = 1 − 𝑏𝑖 for all 𝑏𝑖 ≥ 𝛽−𝑖 +
1

𝑀

Next, for the first case (a), we perform a case analysis depending on 𝛽−𝑖 = 0, 1

𝑀
, 2

𝑀
:

— if 𝛽−𝑖 = 0, then 𝑢𝑖 (𝛽𝑖 = 0) = 1

2
(1 − 0) = 1

2
and so

Δ

(
1

𝑀

)
= 1 − 1

𝑀
−max

{
1

2

, 1 − 2

𝑀

}
= min

{
1

2

− 1

𝑀
,

1

𝑀

}
=

1

𝑀
> 𝜀.

— if 𝛽−𝑖 =
1

𝑀
, then

𝑢𝑖 (𝛽𝑖 = 0) = 1

2

𝑞(1 − 0) = 𝑞
1

2

30



and

𝑢𝑖

(
𝛽𝑖 =

1

𝑀

)
=

[
𝑞 + 1

2

(1 − 𝑞)
] (

1 − 1

𝑀

)
=
𝑞 + 1

2

(
1 − 1

𝑀

)
.

So

Δ

(
2

𝑀

)
= 1 − 2

𝑀
− 1

𝑀
max

{
𝑞
𝑀

2

,
𝑞 + 1

2

(𝑀 − 1), 𝑀 − 3

}
= 1 − 2

𝑀
− 1

𝑀

𝑞 + 1

2

(𝑀 − 1), by Lemma B.1,

=
1

3𝑀
− 1

3

1

𝑀2
, by substituting 𝑞 from (42),

>
1

3𝑀
− 2

1

𝑀2
= 𝜀.

— if 𝛽−𝑖 =
2

𝑀
, then

𝑢𝑖 (𝛽𝑖 = 0) = 1

2

𝑞(1 − 0) = 𝑞
1

2

,

𝑢𝑖

(
𝛽𝑖 =

1

𝑀

)
= 𝑞

(
1 − 1

𝑀

)
and

𝑢𝑖

(
𝛽𝑖 =

2

𝑀

)
=
𝑞 + 1

2

(
1 − 2

𝑀

)
.

So

Δ

(
3

𝑀

)
= 1 − 3

𝑀
− 1

𝑀
max

{
𝑞
𝑀

2

, 𝑞(𝑀 − 1), 𝑞 + 1

2

(𝑀 − 2), 𝑀 − 4

}
= 1 − 3

𝑀
− 1

𝑀

𝑞 + 1

2

(𝑀 − 2), by Lemma B.1,

=
𝑀2 − 6𝑀 + 2

3(𝑀 − 1)𝑀2
, by substituting 𝑞 from (42),

>
𝑀2 − 6𝑀

3𝑀3
=

1

3𝑀
− 2

𝑀2
= 𝜀.

For the second case (b), it is

𝑢𝑖 (𝛽𝑖 = 0) = 1

2

𝑞(1 − 0) = 𝑞
1

2

;

𝑢𝑖 (𝛽𝑖 = 𝑏𝑖) = 𝑞(1 − 𝑏𝑖) for all 𝑏𝑖 =
1

𝑀
, . . . , 𝛽−𝑖 −

1

𝑀
;

𝑢𝑖 (𝛽𝑖 = 𝛽−𝑖) =
𝑞 + 1

2

(1 − 𝛽−𝑖) .

Therefore,

Δ

(
1

𝑀

)
= 𝑞

(
1 − 1

𝑀

)
− 1

𝑀
max

{
𝑞
𝑀

2

, 𝑞(𝑀 − 2), 𝑞 + 1

2

(𝑀 −𝑀𝛽−𝑖), 𝑀 −𝑀𝛽−𝑖 − 1

}
≥ 𝑞

(
1 − 1

𝑀

)
− 1

𝑀
max

{
𝑞
𝑀

2

, 𝑞(𝑀 − 2), 𝑞 + 1

2

(𝑀 − 3), 𝑀 − 4

}
, since 𝛽−𝑖 ≥

3

𝑀
,

= 𝑞

(
1 − 1

𝑀

)
− 1

𝑀
(𝑀 − 4), by Lemma B.1,

=
1

3𝑀
+ 2

3𝑀2
>

1

3𝑀
− 2

𝑀2
= 𝜀,

where the penultimate equality follows by substituting 𝑞 from (42). □
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C NP-Hardness of Deciding Approximate Equilibria

In this section, we provide the full proof for the NP-hardness of the problem. In our reduction, we

consider an instance of the problem with bidding space 𝐵 = {0, 1, 2, 3} and a common value space for all

bidders 𝑉 =
{
0, 9

4
, 10

}
. Notice that in this case 𝑉 and 𝐵 do not lie inside [0, 1] as we originally defined.

However, it is trivial to see, by the definition of the utility, that if we divide all elements of both sets by

the maximum (10 in this case), then they are all in [0, 1] as required, and, additionally, the comparisons

between the corresponding utilities in our proof still hold, as they have all been multiplied by 1/10.

This means that the value of 𝜀 that we will compute for the hardness of approximation will also have to

be multiplied by 1/10 at the end of the proof.

Let a DFPA instance with 𝐵 = {0, 1, 2, 3} and a common value space for all bidders, 𝑉 =
{
0, 9

4
, 10

}
.

In this context, the bidding strategy of a bidder 𝑖 can be efficiently represented by one of the 4
3 = 64

functions of type𝑉 → 𝐵. We construct a reduction from the Circuit Satisfiability problem (Circuit-SAT),

which is NP-complete [GJ79].

Definition 9. Given a Boolean circuit 𝐶 , Circuit-SAT is the problem of deciding whether there is an

assignment to its inputs that makes its output true.

Our construction has 3 basic parts. Given an instance of Circuit-SAT, we transform it to an instance

of the problem of calculating a PBNE in a DFPA as follows:

— We map false and true to two specific strategies, which we will denote as 𝑠0 and 𝑠1.

— For each logic gate in the circuit, we introduce new bidders (along with their subjective prior

distributions) to the DFPA, such that the best-response of the bidder corresponding to the gate’s

output given the gate’s input bidder(s) reflects the type of gate (with respect to the mapping of

false and true to 𝑠0 and 𝑠1). This ensures that a PBNE can only exist if the gates are correctly

simulated.

— We introduce two extra bidders such that the conditions of a PBNE are not satisfied between

them unless the bidder corresponding to the output of the circuit represents the value true.

C.1 Simulating Circuit Gates

We know that the NAND gate is functionally complete, i.e. all possible boolean functions can be

represented by circuits using only NAND gates. Since we can construct a NAND from an OR and a

NOT gate, we can transform (in polynomial time) any circuit of an instance of Circuit-SAT to one

that contains only OR and NOT gates. Therefore, it suffices to reduce from these new instances, which

are also hard to solve. To simulate these in our reduction, we will introduce 2 corresponding gadgets,

which will be used in combination with an extra gadget we define, the projection gadget. The projection
gadget has one input and one output bidder, and it is used for appropriately mapping any strategies

different from 𝑠0 and 𝑠1 that might arise as outputs of the OR and NOT gadgets back to either 𝑠0 or 𝑠1.

The values of false and true will be encoded by a bidder’s strategy as follows:

• false is encoded by bidding strategies such that
ˆ𝛽 (0) = 0,

ˆ𝛽
(

9

4

)
= 1, and

ˆ𝛽 (10) = 2;

• true is encoded by bidding strategies such that
ˆ𝛽 (0) = 0,

ˆ𝛽
(

9

4

)
= 2, and

ˆ𝛽 (10) = 3.

To simplify notation, we denote these strategies as 𝑠0 = (0, 1, 2) for false and 𝑠1 = (0, 2, 3) for true.
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C.1.1 Projection gadget

We begin by designing the projection gadget, as we will need it to simulate the OR and NOT gates.

Suppose bidder 𝑖 encodes a boolean value via her strategy
ˆ𝛽𝑖 . Consider a bidder 𝑗 whose subjective prior

is given as follows: 𝐹 𝑗𝑖 is the discrete distribution that assumes value 0 with probability 6/100 and value

9/4 with probability 94/100; for any other 𝑖′ ≠ 𝑖, 𝑗 , 𝐹 𝑗𝑖′ is the discrete distribution that assumes value 0

with probability 1. We will now perform a case analysis to calculate 𝑗 ’s best-response to 𝑖’s strategies.

Whenever 𝑖 plays 𝑠0 or 𝑠1, 𝑗 will have to copy her strategy in order to best-respond. Additionally, all

other strategies would result in 𝑗 ’s utility being at least
1

18
worse. We also provide 𝑗 ’s best-response to

strategies other than 𝑠0 and 𝑠1, as they will be required for the proof of Lemma C.4. As 𝐹 𝑗𝑖 has probability

mass only on 0 and 9/4, we can ignore 𝑖’s strategy when having value 10; we will denote this by 𝑥

below. To begin with, 𝑗 ’s best-response must satisfy
ˆ𝛽 𝑗 (0) = 0 due to the no-overbidding assumption.

In what follows, we allow a slight abuse of notation where 𝑢 𝑗 (𝑏; 𝑣) denotes the expected utility that

bidder 𝑗 receives (from her point of view) when having value 𝑣 and choosing to bid 𝑏 - this is in contrast

to the usual definition where we also include the other bidders’ strategies, however here we explicitly

list their strategies in the description of each different case. We consider the following ones:

1. Suppose bidder 𝑖 plays the strategy (0, 0, 𝑥). We can compute the winning probabilities and

utilities for bidder 𝑗 when bidding 0, 1, 2, or 3, and when having value 9/4 or 10:

𝑏 0 1 2 3

𝐻 𝑗 (𝑏) 1

𝑛
1 1 1

𝑢 𝑗 (𝑏; 9/4) 9

4𝑛
5

4

1

4
−

𝑢 𝑗 (𝑏; 10) 10

𝑛
9 8 7

Since 𝑛 ≥ 2, we have the bounds 𝑢 𝑗 (0; 9/4) ≤ 9

8
, 𝑢 𝑗 (0; 10) ≤ 5. Comparing these values, we

conclude that it is optimal for bidder 𝑗 to bid
ˆ𝛽 𝑗 (9/4) = 1,

ˆ𝛽 𝑗 (10) = 1. Also, we can see that there

is no other 𝜀-best-response for 𝜀 < 1

18
.

2. Suppose bidder 𝑖 plays some strategy of the form (0, 1, 𝑥). We can compute the winning prob-

abilities and utilities for bidder 𝑗 when bidding 0, 1, 2, or 3, and when having value 9/4 or

10:

𝑏 0 1 2 3

𝐻 𝑗 (𝑏) 3

50𝑛
53

100
1 1

𝑢 𝑗 (𝑏; 9/4) 27

200𝑛
53

80

1

4
−

𝑢 𝑗 (𝑏; 10) 3

5𝑛
477

80
8 7

Since 𝑛 ≥ 2, we have the bounds 𝑢 𝑗 (0; 9/4) ≤ 27

400
, 𝑢 𝑗 (0; 10) ≤ 3

10
. Comparing these values, we

conclude that it is optimal for bidder 𝑗 to bid
ˆ𝛽 𝑗 (9/4) = 1,

ˆ𝛽 𝑗 (10) = 2. Also, we can see that there

is no other 𝜀-best-response for 𝜀 < 1

18
.

3. Suppose bidder 𝑖 plays some strategy of the form (0, 2, 𝑥). We can compute the winning prob-

abilities and utilities for bidder 𝑗 when bidding 0, 1, 2, or 3, and when having value 9/4 or

10:

𝑏 0 1 2 3

𝐻 𝑗 (𝑏) 3

50𝑛
3

50

53

100
1

𝑢 𝑗 (𝑏; 9/4) 27

200𝑛
3

40

53

400
−

𝑢 𝑗 (𝑏; 10) 3

5𝑛
27

50

106

25
7
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Since 𝑛 ≥ 2, we have the bounds 𝑢 𝑗 (0; 9/4) ≤ 27

400
, 𝑢 𝑗 (0; 10) ≤ 3

10
. Comparing these values, we

conclude that it is optimal for bidder 𝑗 to bid
ˆ𝛽 𝑗 (9/4) = 2,

ˆ𝛽 𝑗 (10) = 3. Also, we can see that there

is no other 𝜀-best-response for 𝜀 < 1

18
.

4. Suppose bidder 𝑖 plays the strategy (0, 3, 𝑥). We can compute the winning probabilities and

utilities for bidder 𝑗 when bidding 0, 1, 2, or 3, and when having value 9/4 or 10:

𝑏 0 1 2 3

𝐻 𝑗 (𝑏) 3

50𝑛
3

50

3

50

53

100

𝑢 𝑗 (𝑏; 9/4) 27

200𝑛
3

40

3

200
−

𝑢 𝑗 (𝑏; 10) 3

5𝑛
27

50

24

50

371

100

Since 𝑛 ≥ 2, we have the bounds 𝑢 𝑗 (0; 9/4) ≤ 27

400
, 𝑢 𝑗 (0; 10) ≤ 3

10
. Comparing these values, we

conclude that it is optimal for bidder 𝑗 to bid
ˆ𝛽 𝑗 (9/4) = 1,

ˆ𝛽 𝑗 (10) = 3. Also, we can see that there

is no other 𝜀-best-response for 𝜀 < 1

18
.

From the above case analysis, we obtain the following lemma:

Lemma C.1. If the bidder 𝑖 corresponding to the input of a projection gadget plays either 𝑠0 or 𝑠1, then,
in all 𝜀-PBNE of the resulting DFPA (where 𝜀 ∈ [0, 1

18
)), bidder 𝑗 (corresponding to the gadget’s output)

matches 𝑖’s strategy. Additionally, if bidder 𝑖 plays some strategy of the form (0, 1, 𝑥) or (0, 2, 𝑥), bidder 𝑗 ’s
unique 𝜀-best-response for 𝜀 ∈ [0, 1

18
) is 𝑠0 and 𝑠1 respectively.

Using the construction of the projection gadget, we can similarly define a split gadget. Let 𝑖 be the

bidder corresponding to the input of the split, and 𝑗, 𝑘 be the bidders corresponding to its outputs. We

can then define the subjective priors of 𝑗 and 𝑘 as if each of them was the output of a projection gadget

from 𝑖 . It follows directly from our analysis above that in all 𝜀-PBNE of the resulting DFPA, the output

bidders of a split in the circuit have to match the strategy of the input bidder. Additionally, as these

splits are used in order to repeat a value in multiple parts of the circuit, it is important to note that

the number of bidders introduced remains polynomial on the number of gates of the circuit, since all

outputs of a split will end up being inputs to some gate.

C.1.2 OR gadget

Next, we show how to simulate an OR gate. Suppose bidders 𝑖 , 𝑗 encode boolean values via their

strategies
ˆ𝛽𝑖 and

ˆ𝛽 𝑗 . Consider a bidder 𝑘 whose subjective prior is given as follows: 𝐹𝑘𝑖 and 𝐹𝑘 𝑗 are

discrete distributions that assume value 0 with probability 6/100 and value 9/4 with probability 94/100;

for any other 𝑖′ ≠ 𝑖, 𝑗 , 𝐹𝑘𝑖′ is the discrete distribution that assumes value 0 with probability 1. Again, we

assume that bidders other than 𝑘 adopt one of the two strategies (0, 1, 2) or (0, 2, 3). In particular, they

bid 0 at value 0, and either 1 or 2 at value 9/4; for our analysis in this part, what they bid at value 10

does not make a difference, as 𝑘’s subjective prior puts 0 probability mass at value 10. We can show that

bidder 𝑘’s best-response when having value 9/4 is to copy the highest among the strategies of bidders

𝑖 and 𝑗 . Then, we can add an extra projection gadget, mapping 𝑘’s strategy which will be of the form

either (0, 1, 𝑥) or (0, 2, 𝑥 ′) back to 𝑠0 and 𝑠1 respectively. Once again, note that 𝑘’s best-response must

satisfy
ˆ𝛽𝑘 (0) = 0, due to the no-overbidding assumption. In all the following tables we omit the row

corresponding to 𝑢𝑘 (𝑏; 10), as this will be mapped back to one of 𝑠0, 𝑠1 with the use of the projection
gadget.

1. Suppose bidders 𝑖 and 𝑗 both play the strategy (0, 1, 2). We can compute the winning probabilities

and utilities for bidder 𝑘 when bidding 0, 1, 2, or 3, and when having value 9/4 or 10:
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𝑏 0 1 2 3

𝐻𝑘 (𝑏) 9

2500𝑛
2659

7500
1 1

𝑢𝑘 (𝑏; 9/4) 81

10000𝑛
2659

6000

1

4
−

Since 𝑛 ≥ 3, we have the bound 𝑢𝑘 (0; 9/4) ≤ 27

10000
. Comparing these values, we conclude that it

is optimal for bidder 𝑗 to bid
ˆ𝛽𝑘 (9/4) = 1. Also, we can see that there is no other 𝜀-best-response

for 𝜀 < 1

18
.

2. Suppose bidder 𝑖 plays the strategy (0, 1, 2) and bidder 𝑗 plays the strategy (0, 2, 3) (the same

analysis holds if we swap the roles of 𝑖 and 𝑗 ). We can compute the winning probabilities and

utilities for bidder 𝑘 when bidding 0, 1, 2, or 3, and when having value 9/4 or 10:

𝑏 0 1 2 3

𝐻𝑘 (𝑏) 9

2500𝑛
159

5000

53

100
1

𝑢𝑘 (𝑏; 9/4) 81

10000𝑛
159

4000

53

400
−

Since 𝑛 ≥ 3, we have the bound 𝑢𝑘 (0; 9/4) ≤ 27

10000
. Comparing these values, we conclude that it

is optimal for bidder 𝑗 to bid
ˆ𝛽𝑘 (9/4) = 2. Also, we can see that there is no other 𝜀-best-response

for 𝜀 < 1

18
.

3. Suppose bidders 𝑖 and 𝑗 both play the strategy (0, 2, 3). We can compute the winning probabilities

and utilities for bidder 𝑘 when bidding 0, 1, 2, or 3, and when having value 9/4 or 10:

𝑏 0 1 2 3

𝐻𝑘 (𝑏) 9

2500𝑛
9

2500

2659

7500
1

𝑢𝑘 (𝑏; 9/4) 81

10000𝑛
9

2000

2659

30000
−

Since 𝑛 ≥ 3, we have the bound 𝑢𝑘 (0; 9/4) ≤ 27

10000
. Comparing these values, we conclude that it

is optimal for bidder 𝑗 to bid
ˆ𝛽𝑘 (9/4) = 2. Also, we can see that there is no other 𝜀-best-response

for 𝜀 < 1

18
.

Using the construction of the OR gadget followed by a projection gadget, we get the following

lemma:

Lemma C.2. Let 𝑖 and 𝑗 be the bidders corresponding to the inputs of an OR gate and assume each of
them plays either 𝑠0 or 𝑠1. Additionally, let 𝑘 be the bidder introduced in the OR gadget, which we pass
as an input to a projection gadget with corresponding output bidder 𝑘 ′. Then, the only 𝜀-best-response of
bidder 𝑘 ′ (where 𝜀 ∈ [0, 1

18
)) is 𝑠1, if and only if at least one of 𝑖 and 𝑗 plays 𝑠1, else it is 𝑠0.

The above lemma implies that the OR gate is correctly simulated at all PBNE.

C.1.3 Negation gadget

To conclude this section, we show how to simulate a negation gate. Suppose bidder 𝑖 encodes a boolean

value via her strategy
ˆ𝛽𝑖 . Consider a bidder 𝑗 whose subjective prior is given as follows: 𝐹 𝑗𝑖 is the

discrete distribution that assumes value 0 with probability 6/100 and value 10 with probability 94/100;

for any other 𝑖′ ≠ 𝑖, 𝑗 , 𝐹 𝑗𝑖′ is the discrete distribution that assumes value 0 with probability 1. Again,

assuming that every bidder other than 𝑗 adopts one of the two strategies (0, 1, 2) or (0, 2, 3), we can show
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the best-response of bidder 𝑗 , when having value 9/4, is to negate the strategy of bidder 𝑖 . Afterwards,

similarly to what we did for the OR gate, we add a projection gadget, mapping the strategy of 𝑗 (which

will be either of the form (0, 1, 𝑥) or (0, 2, 𝑥)) back to 𝑠0 and 𝑠1 respectively. Similarly to the description

of the OR gadget, it must be the case that 𝑗 ’s best-response satisfies
ˆ𝛽 𝑗 (0) = 0, due to the no-overbidding

assumption. Once again, we omit the row of the table corresponding to 𝑢 𝑗 (𝑏; 10).

1. Suppose bidder 𝑖 plays the strategy (0, 1, 2). We can compute the winning probabilities and

utilities for bidder 𝑗 when bidding 0, 1, 2, or 3, and when having a value of 9/4 or 10:

𝑏 0 1 2 3

𝐻 𝑗 (𝑏) 3

50𝑛
3

50

53

100
1

𝑢 𝑗 (𝑏; 9/4) 27

200𝑛
3

40

53

400
−

Since 𝑛 ≥ 2, we have the bound 𝑢 𝑗 (0; 9/4) ≤ 27

400
. Comparing these values, we conclude that it is

optimal for bidder 𝑗 to bid
ˆ𝛽 𝑗 (9/4) = 2. Also, we can see that there is no other 𝜀-best-response

for 𝜀 < 1

18
.

2. Suppose bidder 𝑖 plays the strategy (0, 2, 3). We can compute the winning probabilities and

utilities for bidder 𝑗 when bidding 0, 1, 2, or 3, and when having a value of 9/4 or 10:

𝑏 0 1 2 3

𝐻 𝑗 (𝑏) 3

50𝑛
3

50

3

50

53

100

𝑢 𝑗 (𝑏; 9/4) 27

200𝑛
3

40

3

200
−

Since 𝑛 ≥ 2, we have the bound 𝑢 𝑗 (0; 9/4) ≤ 27

400
. Comparing these values, we conclude that it is

optimal for bidder 𝑗 to bid
ˆ𝛽 𝑗 (9/4) = 1. Also, we can see that there is no other 𝜀-best-response

for 𝜀 < 1

18
.

Let 𝑗 ′ be the bidder corresponding to the output of a projection gadget, which takes 𝑗 as input. Again,

assuming that every bidder other than 𝑗, 𝑗 ′ adopts one of the two strategies (0, 1, 2) or (0, 2, 3), we can

show the best-response of bidder 𝑗 ′ is to negate the strategy of bidder 𝑖:

Lemma C.3. If the bidder 𝑖 corresponding to the input of a negation gadget plays either 𝑠0 or 𝑠1, then, in all
𝜀-PBNE of the resulting DFPA (where 𝜀 ∈ [0, 1

18
)), bidder 𝑗 ′ (corresponding to the output of the projection

gadget added after the negation gate) plays the opposite of 𝑖’s strategy.

C.2 Input gadget

We can see (and trivially prove by structural induction on the circuit) that, given that the bidders

corresponding to the inputs of the circuit play either 𝑠0 or 𝑠1, all bidders in the DFPA are playing

𝜀-best-responses if and only if the gates are correctly simulated. However, it remains to specify the

subjective priors for these input bidders. To achieve this normalized behaviour, we can introduce a

special gadget, similar to the projection gadget, for each input to the circuit. Essentially, we add two

bidders projecting to each other; our analysis will show that in all 𝜀-PBNE they should both be playing

either 𝑠0 or 𝑠1.

Suppose bidder 𝑖 encodes a boolean value via her strategy
ˆ𝛽𝑖 . Consider a bidder 𝑗 , whose subjective

prior is given as follows: 𝐹 𝑗𝑖 is the discrete distribution that assumes value 0 with probability 6/100

and value 9/4 with probability 94/100; for any other 𝑖′ ≠ 𝑖, 𝑗 , 𝐹 𝑗𝑖′ is the discrete distribution that
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assumes value 0 with probability 1. At the same time, 𝑖’s subjective prior is given by: 𝐹𝑖 𝑗 is the discrete

distribution that assumes value 0 with probability 6/100 and value 9/4 with probability 94/100; for any

other 𝑗 ′ ≠ 𝑖, 𝑗 , 𝐹𝑖 𝑗 ′ is the discrete distribution that assumes value 0 with probability 1.

Using the analysis from Appendix C.1.1, we can list all the best-responses of 𝑗 in a potential PBNE:

𝑖’s strategy 𝑗 ’s best-response

(0, 0, 𝑥) (0, 1, 1)
(0, 1, 𝑥) (0, 1, 2)
(0, 2, 𝑥) (0, 2, 3)
(0, 3, 𝑥) (0, 1, 3)

Table 1: Bidder 𝑗 ’s best-responses given 𝑖’s strategies

Also, from previous sections, we know that there are no other strategies that result in utility within

1/18 of that of the best-responses. It is evident that, due to the symmetric nature of the input gadget,

the best-responses of 𝑖 to the strategies of 𝑗 are symmetrical to the ones in the above table. Therefore,

in all PBNE 𝑖 and 𝑗 would have to play the same strategy, which would be either 𝑠0 or 𝑠1, thus yielding

the intended behaviour of the circuit’s input gates.

Lemma C.4. If 𝑖 and 𝑗 are the bidders corresponding to some input of the circuit (as described in the
construction of the input gadget), then, in all 𝜀-PBNE for 𝜀 ∈ [0, 1/18), 𝑖 and 𝑗 both play the same strategy,
which can be either 𝑠0 or 𝑠1.

Combining Lemmas C.1 to C.4, we deduce the following:

Corollary C.5. Using the above mapping from a circuit to a DFPA, all induced bidders are simultaneously
𝜀-best-responding (for 𝜀 ∈ [0, 1/18)) to each other if and only if the values that their strategies map to
satisfy the gates of the circuit.

C.3 Output Gadget

Thus far, our construction ensures that at an 𝜀-PBNE it is necessary that all the gates are correctly

simulated. As we are reducing from the Circuit-SAT problem, we want an 𝜀-PBNE to exist only in

cases where the output of the circuit can take true as a value. This leads us to the last gadget of our

construction - the output gadget. This introduces two new bidders to the auction, 𝑘 and ℓ , which (given

their subjective priors, which assume value 0 with probability 1 for every bidder other than each other)

cannot play best-responses simultaneously. Then, we also add 𝑘’s prior distribution for bidder 𝑖 (the

bidder corresponding to the output of the circuit), such that now the bidders can simultaneously play

𝜀-best-responses if and only if bidder 𝑖’s strategy represents the value true.

Next, we provide the details of the construction of the output gadget. We introduce the two

new bidders 𝑘 and ℓ with the following prior distributions: 𝐹𝑘ℓ and 𝐹ℓ𝑘 are discrete distributions that

assume value 0 with probability 8/11 and value 10 with probability 3/11. Bidder 𝑘’s prior for bidder

𝑖 (corresponding to the circuit’s output) is 𝐹𝑘𝑖 , the discrete distribution that assumes value 0 with

probability 1/2 and value 9/4 with probability 1/2. For any other 𝑘 ′ ≠ 𝑘, ℓ and ℓ ′ ≠ 𝑘, ℓ, 𝑖 , 𝐹ℓ𝑘 ′ and 𝐹𝑘ℓ ′

are discrete distributions that assume value 0 with probability 1.

We will begin our analysis by calculating bidder ℓ’s best-responses depending on 𝑘’s strategies.

Note that, since 𝐹ℓ𝑘 only has mass at 0 and 10, it doesn’t matter what
ˆ𝛽𝑘 (9/4) is for strategy

ˆ𝛽𝑘 , hence

we will denote this as 𝑥 in our analysis. As our aim is to compare how 𝑘 and ℓ best-respond to each

other, and the subjective prior of each puts positive probability only on 0 and 10, we will only analyse

what 𝑢ℓ (𝑏; 10) will be. We begin by noting that all of ℓ’s best-responses must satisfy
ˆ𝛽ℓ (0) = 0, due to

the no-overbidding assumption. Then:
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1. Suppose bidder 𝑘 plays some strategy of the form (0, 𝑥, 0). We can compute the winning proba-

bilities and utilities for bidder ℓ when bidding 0, 1, 2, or 3 and having value 10:

𝑏 0 1 2 3

𝐻ℓ (𝑏) 1

𝑛
1 1 1

𝑢ℓ (𝑏; 10) 10

𝑛
9 8 7

Since 𝑛 ≥ 2, we have the bound𝑢ℓ (0; 10) ≤ 5. Comparing the values in the table, we conclude that

it is optimal for bidder ℓ to bid
ˆ𝛽ℓ (10) = 1. Also, we can see that there is no other 𝜀-best-response

for 𝜀 < 1

18
.

2. Suppose bidder 𝑘 plays some strategy of the form (0, 𝑥, 1). We can compute the winning proba-

bilities and utilities for bidder ℓ when bidding 0, 1, 2, or 3 and having value 10:

𝑏 0 1 2 3

𝐻ℓ (𝑏) 8

11𝑛
19

22
1 1

𝑢ℓ (𝑏; 10) 80

11𝑛
171

22
8 7

Since𝑛 ≥ 2, we have the bound𝑢ℓ (0; 10) ≤ 40

11
. Comparing the values in the table, we conclude that

it is optimal for bidder ℓ to bid
ˆ𝛽ℓ (10) = 2. Also, we can see that there is no other 𝜀-best-response

for 𝜀 < 1

18
.

3. Suppose bidder 𝑘 plays some strategy of the form (0, 𝑥, 2). We can compute the winning proba-

bilities and utilities for bidder ℓ when bidding 0, 1, 2, or 3 and having value 10:

𝑏 0 1 2 3

𝐻ℓ (𝑏) 8

11𝑛
8

11

19

22
1

𝑢ℓ (𝑏; 10) 80

11𝑛
72

11

76

11
7

Since 𝑛 ≥ 2, we have the bound 𝑢ℓ (0; 10) ≤ 40

11
. Comparing these values, we conclude that it

is optimal for bidder 𝑙 to bid
ˆ𝛽𝑙 (9/4) = 1,

ˆ𝛽𝑙 (10) = 3. Also, we can see that there is no other

𝜀-best-response for 𝜀 < 1

18
.

4. Suppose bidder 𝑘 plays some strategy of the form (0, 𝑥, 3). We can compute the winning proba-

bilities and utilities for bidder ℓ when bidding 0, 1, 2, or 3 and having value 10:

𝑏 0 1 2 3

𝐻ℓ (𝑏) 8

11𝑛
8

11

8

11

19

22

𝑢ℓ (𝑏; 10) 80

11𝑛
72

11

64

11

133

22

Since 𝑛 ≥ 2, we have the bound 𝑢ℓ (0; 10) ≤ 40

11
. Comparing these values, we conclude that it is

optimal for bidder ℓ to bid
ˆ𝛽ℓ (10) = 1. Also, we can see that there is no other 𝜀-best-response for

𝜀 < 1

18
.

We can note that 𝑘’s strategy at an equilibrium (from ℓ’s point of view) can be represented by just

ˆ𝛽𝑘 (10), since
ˆ𝛽𝑘 (0) = 0 at all PBNE due to the no-overbidding assumption. We can do the same thing

for ℓ , since 𝑘’s prior for her has mass at a point other than 0, and that is at 10, so we get the following

table representing ℓ’s best-responses to 𝑘 :
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ˆ𝛽𝑘 (10) 0 1 2 3

ˆ𝛽ℓ (10) 1 2 3 1

Table 2: Bidder ℓ’s best-responses to bidder 𝑘’s strategies

We will now look at 𝑘’s best-response. Since 𝑘 has a non-zero prior for both 𝑖 and ℓ , her best-

response will depend on two other bidders, resulting in more cases. We begin our analysis with the

ones where 𝑖 plays (0, 1, 2). Our goal is to show that none of them can lead to a PBNE of the DFPA.

It is also safe to assume that, at all PBNE, 𝑖 plays either (0, 1, 2) or (0, 2, 3), using the analysis of the

simulation of the circuit’s gates, as 𝑖 corresponds to the output of the circuit. Start by fixing 𝑖’s strategy

to 𝑠0 = (0, 1, 2). By the no-overbidding assumption, 𝑘’s best-response must satisfy
ˆ𝛽𝑘 (0) = 0. Then, we

consider the following cases:

1. Suppose bidder ℓ plays some strategy of the form (0, 𝑥, 0). We can compute the winning probabil-

ities and utilities for bidder 𝑘 when bidding 0, 1, 2, or 3 and having value 10:

𝑏 0 1 2 3

𝐻𝑘 (𝑏) 1

2𝑛
3

4
1 1

𝑢𝑘 (𝑏; 10) 5

𝑛
27

4
8 7

Since𝑛 ≥ 3, we have the bound𝑢𝑘 (0; 10) ≤ 5

3
. Comparing the values in the table, we conclude that

it is optimal for bidder 𝑘 to bid
ˆ𝛽𝑘 (10) = 2. Also, we can see that there is no other 𝜀-best-response

for 𝜀 < 1

18
.

2. Suppose bidder ℓ plays some strategy of the form (0, 𝑥, 1). We can compute the winning probabil-

ities and utilities for bidder 𝑘 when bidding 0, 1, 2, or 3 and having value 10:

𝑏 0 1 2 3

𝐻𝑘 (𝑏) 4

11𝑛
29

44
1 1

𝑢𝑘 (𝑏; 10) 40

11𝑛
261

44
8 7

Since 𝑛 ≥ 3, we have the bound 𝑢𝑘 (0; 10) ≤ 40

33
. Comparing the values in the table, we conclude

that it is optimal for bidder 𝑘 to bid
ˆ𝛽𝑘 (10) = 2. Also, we can see that there is no other 𝜀-best-

response for 𝜀 < 1

18
.

3. Suppose bidder ℓ plays some strategy of the form (0, 𝑥, 2). We can compute the winning probabil-

ities and utilities for bidder 𝑘 when bidding 0, 1, 2, or 3 and having value 10:

𝑏 0 1 2 3

𝐻𝑘 (𝑏) 4

11𝑛
6

11

19

22
1

𝑢𝑘 (𝑏; 10) 40

11𝑛
72

11

76

11
7

Since 𝑛 ≥ 3, we have the bound 𝑢𝑘 (0; 10) ≤ 40

33
. Comparing the values in the table, we conclude

that it is optimal for bidder 𝑘 to bid
ˆ𝛽𝑘 (10) = 3. Also, we can see that there is no other 𝜀-best-

response for 𝜀 < 1

18
.

4. Suppose bidder ℓ plays some strategy of the form (0, 𝑥, 3). We can compute the winning probabil-

ities and utilities for bidder 𝑘 when bidding 0, 1, 2, or 3 and having value 10:
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𝑏 0 1 2 3

𝐻𝑘 (𝑏) 4

11𝑛
6

11

8

11

19

22

𝑢𝑘 (𝑏; 10) 40

11𝑛
54

11

64

11

133

22

Since 𝑛 ≥ 3, we have the bound 𝑢𝑘 (0; 10) ≤ 65

33
. Comparing the values in the table, we conclude

that it is optimal for bidder 𝑘 to bid
ˆ𝛽𝑘 (10) = 3. Also, we can see that there is no other 𝜀-best-

response for 𝜀 < 1

18
.

Hence, 𝑘’s unique (𝜀-) best-responses for 𝜀 < 1

18
to ℓ’s strategies when 𝑖 plays (0, 1, 2) are the ones

demonstrated in the following table:

ˆ𝛽ℓ (10) 0 1 2 3

ˆ𝛽𝑘 (10) 2 2 3 3

Table 3: Bidder 𝑘’s best-responses given ℓ’s strategies when 𝑖 plays (0, 1, 2)

Comparing this table with the one describing ℓ’s best-responses, we can easily see that there is

no equilibrium when 𝑖 plays (0, 1, 2). We now examine the case where 𝑖 plays (0, 2, 3). It suffices to

show that there is some strategy of ℓ for which 𝑘’s best-response leads to both playing best-responses

simultaneously. To this end, we consider the case where ℓ plays some strategy (0, 𝑥, 1). Then, 𝑘’s utility

for each possible bid is the following:

𝑏 0 1 2 3

𝐻𝑘 (𝑏) 4

11𝑛
19

44

3

4
1

𝑢𝑘 (𝑏; 10) 40

11𝑛
171

44
6 7

Since 𝑛 ≥ 3, we have the bound 𝑢𝑘 (0; 10) ≤ 40

33
. Comparing the values in the table, we conclude that

it is optimal for bidder 𝑘 to bid
ˆ𝛽𝑘 (10) = 3. Also, we can see that there is no other 𝜀-best-response for

𝜀 < 1

18
. Consequently, there is a strategy profile with 𝑘 and ℓ simultaneously playing best-responses,

where ℓ plays some strategy (0, 𝑥, 1) and 𝑘 plays some strategy (0, 𝑥 ′, 3). This concludes our proof of

the following lemma:

LemmaC.6. Given the construction of the output gadget, agents 𝑘 and ℓ can simultaneously 𝜀-best-respond
to every agent (for 𝜀 ∈ [0, 1/18)) if and only if the bidder corresponding to the output of the circuit plays
the strategy 𝑠1 = (0, 2, 3).

Combining the results of Appendices C.1 to C.3, we complete the proof of the NP-hardness result.

Note that this will hold for 1/10 of the value of 𝜀 we used in the reduction, due to the scaling argument

that we mentioned in the beginning of Appendix C. We will demonstrate that there is a satisfying

assignment to the circuit’s inputs if and only if there is a PBNE in the resulting DFPA.

Assume the circuit is satisfiable and let 𝜶 be a satisfying assignment to it inputs. Then, using

Corollary C.5 and Lemma C.6, the resulting DFPA has an exact PBNE where for each input 𝛼𝑖 to

the circuit, the corresponding bidders 𝑖 and 𝑗 (as described in Appendix C.2) both play strategy 𝑠0 if

𝛼𝑖 = false, and 𝑠1 otherwise.

If on the other hand the circuit is unsatisfiable, then the output bidder would always play 𝑠0 in order

to best-respond to the previous bidders while satisfying the circuit’s gates, so there can be no 𝜀-PBNE

in the resulting DFPA, due to Lemma C.6. This concludes our proof of NP-hardness in the auction we

introduced for 𝜀 < 1

18
, thus yielding NP-hardness for 𝜀 < 1

180
in the original auction.
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D PPAD-Hardness of Finding Mixed Equilibria

In this section, we prove the following result:

Theorem D.1. For any 𝜀 < 1/36, it is PPAD-hard to compute an 𝜀-well-supported MBNE in a DFPA, even
when the auction has interaction degree bounded by 𝑑 = 2.

By Lemma 4.1 we also obtain the following.

Corollary D.2. For any 𝜀 < 1/(34 · 28), it is PPAD-hard to compute an 𝜀-approximate MBNE in a DFPA.

D.1 The Pure-Circuit Problem

An instance of the Pure-Circuit problem is given by a node set 𝑋 and a set𝐺 of gates. Each gate 𝑔 ∈ 𝐺
is of the form 𝑔 = (𝑇, 𝑥,𝑦, 𝑧) where 𝑥,𝑦, 𝑧 ∈ 𝑋 are distinct nodes, and 𝑇 ∈ {NOT,AND, PURIFY} is the

type of the gate, with the following interpretation.

— If 𝑇 = NOT, then 𝑥 is the input of the gate, and 𝑦 is its output. (𝑧 is unused)

— If 𝑇 = AND, then 𝑥 and 𝑦 are the inputs of the gate, and 𝑧 is its output.

— If 𝑇 = PURIFY, then 𝑥 is the input of the gate, and 𝑦 and 𝑧 are its outputs.

We require that each node is the output of exactly one gate.

A solution to instance (𝑋,𝐺) is an assignment A : 𝑋 → {0, 1,⊥} that satisfies all the gates, i.e., for

each gate 𝑔 = (𝑇, 𝑥,𝑦, 𝑧) ∈ 𝐺 we have the following.

— If 𝑇 = NOT in 𝑔 = (𝑇, 𝑥,𝑦), then A satisfies

A[𝑥] = 0 =⇒ A[𝑦] = 1

A[𝑥] = 1 =⇒ A[𝑦] = 0.

— If 𝑇 = AND in 𝑔 = (𝑇, 𝑥,𝑦, 𝑧), then A satisfies

A[𝑥] = A[𝑦] = 1 =⇒ A[𝑧] = 1

A[𝑥] = 0 ∨ A[𝑦] = 0 =⇒ A[𝑧] = 0.

— If 𝑇 = PURIFY, then A satisfies

{A[𝑦],A[𝑧]} ∩ {0, 1} ≠ ∅
A[𝑥] ∈ {0, 1} =⇒ A[𝑦] = A[𝑧] = A[𝑥] .

Theorem D.3 ([DFHM22]). The Pure-Circuit problem is PPAD-complete.

D.2 Construction of the Auction

Consider an instance (𝑋,𝐺) of Pure-Circuit. We now describe how to construct an instance of the

discrete FPA that encodes the Pure-Circuit instance. In the next section, we will then argue that any

approximate equilibrium of the auction must yield a solution to (𝑋,𝐺).
The auction consists of one bidder for each of the variables in 𝑋 , along with a number of additional

auxiliary bidders. Each bidder 𝑖 has a value space consisting of two values,𝑉𝑖 = {0, 𝑣𝑖}, where 𝑣𝑖 ∈ (0, 1]
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depends on 𝑖 . The bidding space is 𝐵 = {𝑏0, 𝑏1, 𝑏2, 𝑏3} = {0, 1/4, 1/2, 3/4}. We now describe the bidders

in the auction.

Constant bidders. The purpose of this part of the construction is to have a bidder const who bids

𝑏2 with probability 1 when its value is 𝑣const in any approximate equilibrium. In order to achieve

this, we introduce a set 𝐶 of two additional bidders and ensure that they always bid 𝑏1 when their

value is non-zero. In more detail, each bidder 𝑖 ∈ 𝐶 has value space 𝑉𝑖 = {0, 𝑣𝑖} with 𝑣𝑖 = 1/2,

and we set 𝑓𝑖, 𝑗 (0) = 1, 𝑓𝑖, 𝑗 (𝑣 𝑗 ) = 0 for all other bidders 𝑗 in the auction. The bidder const has value

space 𝑉const = {0, 𝑣const} with 𝑣const = 1, and we set 𝑓const, 𝑗 (0) = 0, 𝑓const, 𝑗 (𝑣 𝑗 ) = 1 for all 𝑗 ∈ 𝐶 , and

𝑓𝑖, 𝑗 (0) = 1, 𝑓𝑖, 𝑗 (𝑣 𝑗 ) = 0 for all other bidders 𝑗 in the auction. We show that this construction indeed

satisfies the desired properties in the next section.

Variable bidders. For every variable 𝑥 ∈ 𝑋 of the Pure-Circuit instance, we introduce a correspond-

ing bidder 𝑥 in the auction. The value space 𝑉𝑥 and distributions 𝑓𝑥,𝑗 depend on the type of gate that

uses 𝑥 as output.

AND gate. For every variable 𝑧 ∈ 𝑋 that is the output of an AND gate with inputs 𝑥 and 𝑦, we set

the value space to be 𝑉𝑧 = {0, 𝑣𝑧}, where 𝑣𝑧 = 7/12. The distributions are 𝑓𝑧,𝑗 (0) = 0, 𝑓𝑧,𝑗 (𝑣 𝑗 ) = 1 for

𝑗 ∈ {𝑥,𝑦}, and 𝑓𝑧,𝑗 (0) = 1, 𝑓𝑧,𝑗 (𝑣 𝑗 ) = 0 for all other bidders 𝑗 in the auction.

PURIFY gate. For every variable 𝑦 ∈ 𝑋 that is the first output of a PURIFY gate with input 𝑥 , we set

the value space to be 𝑉𝑦 = {0, 𝑣𝑦}, where 𝑣𝑦 = 9/16. The distributions are 𝑓𝑦,𝑥 (0) = 0, 𝑓𝑦,𝑥 (𝑣𝑥 ) = 1, and

𝑓𝑦,𝑗 (0) = 1, 𝑓𝑦,𝑗 (𝑣 𝑗 ) = 0 for all other bidders 𝑗 in the auction.

For every variable 𝑧 ∈ 𝑋 that is the second output of a PURIFY gate with input 𝑥 , we set the

value space to be 𝑉𝑧 = {0, 𝑣𝑧}, where 𝑣𝑧 = 11/16. The distributions are 𝑓𝑧,𝑥 (0) = 0, 𝑓𝑧,𝑥 (𝑣𝑥 ) = 1, and

𝑓𝑧,𝑗 (0) = 1, 𝑓𝑧,𝑗 (𝑣 𝑗 ) = 0 for all other bidders 𝑗 in the auction.

NOT gate. For every variable 𝑦 ∈ 𝑋 that is the output of a NOT gate with input 𝑥 , we introduce an

additional auxiliary bidder 𝑦′ to help with the implementation of the gate. The value space of bidder

𝑦′ is 𝑉𝑦′ = {0, 𝑣𝑦′}, where 𝑣𝑦′ = 13/14. The distributions are 𝑓𝑦′,𝑥 (0) = 0, 𝑓𝑦′,𝑥 (𝑣𝑥 ) = 1, 𝑓𝑦′,const(0) =
0, 𝑓𝑦′,const(𝑣const) = 1, and 𝑓𝑦′, 𝑗 (0) = 1, 𝑓𝑦′, 𝑗 (𝑣 𝑗 ) = 0 for all other bidders 𝑗 in the auction.

The value space of bidder 𝑦 is 𝑉𝑦 = {0, 𝑣𝑦}, where 𝑣𝑦 = 5/8. The distributions are 𝑓𝑦,𝑦′ (0) =
1/9, 𝑓𝑦,𝑦′ (𝑣𝑦′) = 8/9, and 𝑓𝑦,𝑗 (0) = 1, 𝑓𝑦,𝑗 (𝑣 𝑗 ) = 0 for all other bidders 𝑗 in the auction.

Properties. This instance of the auction problem can clearly be constructed in polynomial time given

an instance (𝑋,𝐺) of Pure-Circuit. Furthermore, by construction the auction has interaction degree

bounded by 𝑑 = 2.

D.3 Analysis

Fix any constant 𝜀 < 1/36. Without loss of generality, we can assume that |𝑋 | is sufficiently large so

that the number of bidders in the auction, denoted by 𝑛, satisfies 𝑛 ≥ max{1000, 1/(1/36 − 𝜀)}.
Consider any 𝜀-well-supported equilibrium 𝜷 of the auction. In this section, we show how to extract

a solution to the Pure-Circuit instance (𝑋,𝐺) from 𝜷 in polynomial time.

Extraction. We construct an assignment A : 𝑋 → {0, 1,⊥} to the variables of Pure-Circuit by letting

— A[𝑥] = 1 if 𝛽𝑥 (𝑣𝑥 ) (𝑏1) = 1,

— A[𝑥] = 0 if 𝛽𝑥 (𝑣𝑥 ) (𝑏1) = 0,

— A[𝑥] = ⊥ otherwise.

In the remainder of this section, we argue that this assignment satisfies all the gates of the Pure-Circuit

instance (𝑋,𝐺). Note that by construction we have 𝑣𝑥 < 𝑏3 for all 𝑥 ∈ 𝑋 , so we will necessarily have
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𝛽𝑥 (𝑣𝑥 ) (𝑏3) = 0. For a bidder 𝑥 ∈ 𝑋 , we say that 𝑥 is valid, if, in addition, 𝛽𝑥 (𝑣𝑥 ) (𝑏0) = 0, or, in other

words,

𝛽𝑥 (𝑣𝑥 ) (𝑏1) + 𝛽𝑥 (𝑣𝑥 ) (𝑏2) = 1.

Ultimately, we will argue that all bidders 𝑥 ∈ 𝑋 must be valid.

Constant bidders. We start by showing that the constant bidders have the desired behaviour.

Lemma D.4. We have 𝛽const(𝑣const) (𝑏2) = 1.

Proof. We first analyse the behaviour of the bidders in set 𝐶 . Consider any bidder 𝑖 ∈ 𝐶 and note that

since 𝑓𝑖, 𝑗 (0) = 1 for all 𝑗 ≠ 𝑖 , bidder 𝑖 believes that all other bidders have value 0. As a result, by the

no-overbidding assumption, bidder 𝑖 believes that all other bidders will bid 𝑏0 = 0. This yields the

following utilities for bidder 𝑖 at value 𝑣𝑖 = 1/2:

𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏0) · 𝐻𝑖 (𝑏0, 𝜷−𝑖) =
1

2

· 1

𝑛

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏1) · 𝐻𝑖 (𝑏1, 𝜷−𝑖) =
1

4

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏2) · 𝐻𝑖 (𝑏2, 𝜷−𝑖) = 0

and bid 𝑏3 is not playable because 𝑏3 > 𝑣𝑖 . Since 𝑛 ≥ 1000, we have 1/4 > 1/2𝑛 + 𝜀, and thus 𝑏1 is the

only 𝜀-best-response, i.e., 𝛽𝑖 (𝑣𝑖) (𝑏1) = 1.

Now we turn our attention to the bidder const. Recall that 𝑓const, 𝑗 (0) = 0, 𝑓const, 𝑗 (𝑣 𝑗 ) = 1 for all

𝑗 ∈ 𝐶 , and 𝑓𝑖, 𝑗 (0) = 1, 𝑓𝑖, 𝑗 (𝑣 𝑗 ) = 0 for all other bidders 𝑗 in the auction. As a result, since 𝛽 𝑗 (𝑣 𝑗 ) (𝑏1) = 1

for all 𝑗 ∈ 𝐶 , bidder const believes that all bidders 𝑗 ∈ 𝐶 bid 𝑏1. Furthermore, by the same argument

as above, bidder const believes that all other bidders outside 𝐶 bid 𝑏0 = 0. This yields the following

utilities for bidder 𝑖 = const at value 𝑣𝑖 = 𝑣const = 1:

𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏0) · 𝐻𝑖 (𝑏0, 𝜷−𝑖) = 0

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏1) · 𝐻𝑖 (𝑏1, 𝜷−𝑖) =
3

4

· 1

|𝐶 | + 1

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏2) · 𝐻𝑖 (𝑏2, 𝜷−𝑖) =
1

2

𝑢𝑖 (𝑏3, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏3) · 𝐻𝑖 (𝑏3, 𝜷−𝑖) =
1

4

Recalling that |𝐶 | = 2, we see that 𝑏2 is the only 𝜀-best-response, since 𝜀 < 1/4. □

AND gate. Next, we consider bidders corresponding to an AND gate.

Lemma D.5. For any AND gate with inputs 𝑥 and 𝑦, and output 𝑧, we have that

— 𝑧 is valid,

— if 𝑥 and 𝑦 are valid, then A satisfies the conditions of the AND gate.

Proof. Let us first show that 𝑧 is valid. By construction, bidder 𝑧 believes that all other bidders, except

𝑥 and 𝑦, will bid 𝑏0. Furthermore, 𝑧 believes that 𝑥 and 𝑦 will bid according to 𝛽𝑥 (𝑣𝑥 ) and 𝛽𝑦 (𝑣𝑦),
respectively. Recalling that 𝛽𝑥 (𝑣𝑥 ) (𝑏3) = 𝛽𝑦 (𝑣𝑦) (𝑏3) = 0, and using the notation 𝑝 𝑗 = 𝛽𝑥 (𝑣𝑥 ) (𝑏 𝑗 ),
𝑞 𝑗 = 𝛽𝑦 (𝑣𝑦) (𝑏 𝑗 ), for 𝑗 ∈ {0, 1, 2}, we can write the utilities of bidder 𝑖 = 𝑧 at value 𝑣𝑖 = 𝑣𝑧 = 7/12:

𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏0) · 𝐻𝑖 (𝑏0, 𝜷−𝑖) =
7

12

𝑝0𝑞0/𝑛

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏1) · 𝐻𝑖 (𝑏1, 𝜷−𝑖) =
(

7

12

− 1

4

)
(𝑝0𝑞0 + 𝑝1𝑞0/2 + 𝑝0𝑞1/2 + 𝑝1𝑞1/3)

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
(

7

12

− 1

2

)
((1 − 𝑝2) (1 − 𝑞2) + (1 − 𝑝2)𝑞2/2 + 𝑝2(1 − 𝑞2)/2 + 𝑝2𝑞2/3)
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and bid 𝑏3 is not playable because 𝑏3 > 𝑣𝑖 . Note that we always have 𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) ≥ (7/12 − 1/2)/3 =

1/36, because (1−𝑝2) (1−𝑞2) + (1−𝑝2)𝑞2/2+𝑝2(1−𝑞2)/2+𝑝2𝑞2/3 ≥ 1/3. Furthermore, 𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) ≤
7/12𝑛 < 1/𝑛 ≤ 1/36 − 𝜀, since 𝑛 ≥ 1/(1/36 − 𝜀). As a result, 𝑏0 can never be an 𝜀-best-response for 𝑧,

and thus 𝑧 is valid.

Now consider the case where 𝑥 and 𝑦 are valid, i.e., 𝑝0 = 𝑞0 = 0. In that case, the utilities can be

simplified to

𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) = 0

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) =
(

7

12

− 1

4

)
𝑝1𝑞1/3

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
(

7

12

− 1

2

)
(𝑝1𝑞1 + 𝑝1(1 − 𝑞1)/2 + (1 − 𝑝1)𝑞1/2 + (1 − 𝑝1) (1 − 𝑞1)/3)

If A[𝑥] = A[𝑦] = 1, i.e., 𝑝1 = 𝑞1 = 1, then

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
(

7

12

− 1

4

)
1

3

−
(

7

12

− 1

2

)
=

1

36

> 𝜀

and so 𝑏1 is the only 𝜀-best-response, i.e., A[𝑧] = 1.

Finally, consider the case where A[𝑥] = 0 or A[𝑦] = 0. Without loss of generality, given the

symmetry of the construction, assume that A[𝑥] = 0, i.e., 𝑝1 = 0. In that case, we have

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) =
1

12

(𝑞1/2 + (1 − 𝑞1)/3) − 0 ≥ 1

36

> 𝜀

and so 𝑏2 is the only 𝜀-best-response, i.e., A[𝑧] = 0. □

PURIFY gate. Next, we consider bidders corresponding to a PURIFY gate.

Lemma D.6. For any PURIFY gate with input 𝑥 and outputs 𝑦 and 𝑧, we have that

— 𝑦 and 𝑧 are valid,

— if 𝑥 is valid, then A satisfies the conditions of the PURIFY gate.

Proof. Let us first show that 𝑦 and 𝑧 are valid. By construction, bidder 𝑦 believes that all other bidders

except 𝑥 will bid 𝑏0. Furthermore, 𝑦 believes that 𝑥 will bid according to 𝛽𝑥 (𝑣𝑥 ). Recalling that

𝛽𝑥 (𝑣𝑥 ) (𝑏3) = 0, and using the notation 𝑝 𝑗 = 𝛽𝑥 (𝑣𝑥 ) (𝑏 𝑗 ) for 𝑗 ∈ {0, 1, 2}, we can write the utilities of

bidder 𝑖 = 𝑦 at value 𝑣𝑖 = 𝑣𝑦 = 9/16:

𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏0) · 𝐻𝑖 (𝑏0, 𝜷−𝑖) =
9

16

𝑝0/𝑛

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏1) · 𝐻𝑖 (𝑏1, 𝜷−𝑖) =
(

9

16

− 1

4

)
(𝑝0 + 𝑝1/2)

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) = (𝑣𝑖 − 𝑏2) · 𝐻𝑖 (𝑏2, 𝜷−𝑖) =
(

9

16

− 1

2

)
(𝑝0 + 𝑝1 + 𝑝2/2)

and bid 𝑏3 is not playable because 𝑏3 > 𝑣𝑖 . Since 𝑝0 + 𝑝1 + 𝑝2/2 ≥ 1/2, we can write

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) ≥
(

9

16

− 1

2

)
1

2

− 9

16

𝑝0/𝑛 =
1

32

− 9

16

𝑝0/𝑛 > 𝜀
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because 𝑛 ≥ 1000. As a result, 𝑏0 can never be an 𝜀-best-response for 𝑦, and thus 𝑦 is valid. The same

reasoning for 𝑖 = 𝑧, with 𝑣𝑖 = 𝑣𝑧 = 11/16, yields

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) ≥
(
11

16

− 1

2

)
1

2

− 11

16

𝑝0/𝑛 =
3

32

− 11

16

𝑝0/𝑛 > 𝜀

because 𝑛 ≥ 1000. Thus, 𝑏0 can never be an 𝜀-best-response for 𝑧, and 𝑧 is also valid.

Now consider the case where 𝑥 is valid, i.e., 𝑝0 = 0. In that case, the utilities for 𝑖 ∈ {𝑦, 𝑧} at value 𝑣𝑖
can be simplified to

𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) = 0

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) =
(
𝑣𝑖 −

1

4

)
𝑝1/2

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
(
𝑣𝑖 −

1

2

)
(1/2 + 𝑝1/2)

We can write

Δ := 𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
(
𝑣𝑖 −

1

4

)
𝑝1/2 −

(
𝑣𝑖 −

1

2

)
(1/2 + 𝑝1/2) = 𝑝1/8 − 𝑣𝑖/2 + 1/4.

Now for 𝑖 = 𝑦, and thus 𝑣𝑖 = 9/16, we obtain that

— if A[𝑥] = 0, i.e., 𝑝1 = 0, then Δ = 𝑝1/8 − 1/32 = −1/32 < −𝜀, and 𝑏2 is the only 𝜀-best-response,

i.e., A[𝑦] = 0.

— if A[𝑥] ≥ 1/2, i.e., 𝑝1 ≥ 1/2, then Δ = 𝑝1/8 − 1/32 ≥ 1/32 > 𝜀, and 𝑏1 is the only 𝜀-best-response,

i.e., A[𝑦] = 1.

Similarly, for 𝑖 = 𝑧, and thus 𝑣𝑖 = 11/16, we obtain that

— if A[𝑥] ≤ 1/2, i.e., 𝑝1 ≤ 1/2, then Δ = 𝑝1/8 − 3/32 ≤ −1/32 < −𝜀, and 𝑏2 is the only 𝜀-best-

response, i.e., A[𝑧] = 0.

— if A[𝑥] = 1, i.e., 𝑝1 = 1, then Δ = 𝑝1/8 − 3/32 = 1/32 > 𝜀, and 𝑏1 is the only 𝜀-best-response, i.e.,

A[𝑧] = 1.

As a result, the conditions of the PURIFY gate are indeed satisfied. In particular, we always have that at

least one of A[𝑦] or A[𝑧] lies in {0, 1}. □

NOT gate. Finally, we consider bidders corresponding to a NOT gate.

Lemma D.7. For any NOT gate with input 𝑥 and output 𝑦, we have that

— 𝑦 is valid,

— if 𝑥 is valid, then A satisfies the conditions of the NOT gate.

Proof. We first show that 𝑦 is valid. By construction, bidder 𝑦 believes that all other bidders except 𝑦′

will bid 𝑏0. Furthermore, 𝑦 believes that 𝑦′ will bid according to 𝛽𝑦′ (0) with probability 1/9 (namely

when 𝑦′ has value 0), and according to 𝛽𝑦′ (𝑣𝑦′) with probability 8/9 (namely when 𝑦′ has value 𝑣𝑦′ ).
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By the no-overbidding assumption, 𝛽𝑦′ (0) is the distribution with 𝛽𝑦′ (0) (𝑏0) = 1. Using the notation

𝑞 𝑗 = 𝛽𝑦′ (𝑣𝑦′) (𝑏 𝑗 ) for 𝑗 = 0, 1, 2, 3, we can write the utilities of bidder 𝑖 = 𝑦 at value 𝑣𝑖 = 𝑣𝑦 = 5/8:

𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) =
5

8

(
1

9

· 1

𝑛
+ 8

9

· 𝑞0

𝑛

)
𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) =

(
5

8

− 1

4

) (
1

9

+ 8

9

(𝑞0 + 𝑞1/2)
)

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
(
5

8

− 1

2

) (
1

9

+ 8

9

(𝑞0 + 𝑞1 + 𝑞2/2)
)

and bid 𝑏3 is not playable because 𝑏3 > 𝑣𝑖 . We always have

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) ≥
3

8

· 1

9

− 5

8

·
(
1

9

· 1

𝑛
+ 8

9

· 1

𝑛

)
=

3

72

− 5

8𝑛
> 𝜀

because 𝑛 ≥ 1000. As a result, 𝑏0 is never an 𝜀-best-response for 𝑦 at value 𝑣𝑦 , and thus 𝑦 is valid.

Furthermore, we note the following, which will be useful below

— if 𝛽𝑦′ (𝑣𝑦′) (𝑏2) = 1, i.e., 𝑞2 = 1, then

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) =
1

8

(
1

9

+ 8

9

· 1

2

)
− 3

8

· 1

9

=
1

36

> 𝜀

and thus 𝑏2 is the only 𝜀-best-response, i.e., A[𝑦] = 0.

— if 𝛽𝑦′ (𝑣𝑦′) (𝑏3) = 1, i.e., 𝑞3 = 1, then

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
3

8

· 1

9

− 1

8

· 1

9

=
1

36

> 𝜀

and thus 𝑏1 is the only 𝜀-best-response, i.e., A[𝑦] = 1.

From now on, we assume that 𝑥 is valid, and aim to show that the constraints of the NOT gate are

satisfied. By construction, bidder 𝑦′ believes that all other bidders except 𝑥 and const will bid 𝑏0. By

Lemma D.4 we know that bidder 𝑦′ believes that bidder const will bid 𝑏2. Finally, bidder 𝑦′ believes

that 𝑥 will bid according to 𝛽𝑥 (𝑣𝑥 ), where 𝛽𝑥 (𝑣𝑥 ) (𝑏0) = 𝛽𝑥 (𝑣𝑥 ) (𝑏3) = 0, since 𝑥 is valid. Using the

notation 𝑝1 = 𝛽𝑥 (𝑣𝑥 ) (𝑏1), and thus 1 − 𝑝1 = 𝛽𝑥 (𝑣𝑥 ) (𝑏2), we can write the utilities of bidder 𝑖 = 𝑦′ at

value 𝑣𝑖 = 𝑣𝑦′ = 13/14:

𝑢𝑖 (𝑏0, 𝜷−𝑖 ; 𝑣𝑖) =
13

14

· 0 = 0

𝑢𝑖 (𝑏1, 𝜷−𝑖 ; 𝑣𝑖) =
(
13

14

− 1

4

)
· 0 = 0

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
(
13

14

− 1

2

)
(𝑝1/2 + (1 − 𝑝1)/3)

𝑢𝑖 (𝑏3, 𝜷−𝑖 ; 𝑣𝑖) =
(
13

14

− 3

4

)
· 1

Now, we have

— if A[𝑥] = 0, i.e., 𝑝1 = 0, then

𝑢𝑖 (𝑏3, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) =
5

28

− 3

7

· 1

3

=
1

28

> 𝜀

and thus 𝑏3 is the only 𝜀-best-response, i.e., 𝛽𝑦′ (𝑣𝑦′) (𝑏3) = 1. As proved above in the analysis of

bidder 𝑦, this implies A[𝑦] = 1.
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— if A[𝑥] = 1, i.e., 𝑝1 = 1, then

𝑢𝑖 (𝑏2, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝑏3, 𝜷−𝑖 ; 𝑣𝑖) =
3

7

· 1

2

− 5

28

=
1

28

> 𝜀

and thus 𝑏2 is the only 𝜀-best-response, i.e., 𝛽𝑦′ (𝑣𝑦′) (𝑏2) = 1. As proved above in the analysis of

bidder 𝑦, this implies A[𝑦] = 0.

As a result, the conditions of the NOT gate are indeed satisfied. □

To complete the proof, note that by Lemmas D.5 to D.7 all bidders 𝑥 ∈ 𝑋 are valid, and thus, again

by these lemmas, the constructed assignment A satisfies all the gates of the Pure-Circuit instance

(𝑋,𝐺).

E Existence of Symmetric Equilibria in IID Auctions

This section is dedicated to proving Theorem 5.2. En route, we establish two results that could

be of independent interest, namely that (a) symmetric continuous first-price auctions (with discrete

bidding space) always have pure symmetric equilibria (see Theorem E.1), and (b) the structure and

approximability of (mixed) equilibria is preserved, in the limit, in discrete auctions (see Lemma E.2).

Theorem E.1. Any first-price auction with continuous iid priors and discrete bids has a symmetric and
monotone pure equilibrium.

Proof. Our proof follows closely that of Athey [Ath01] for the existence of (pure) equilibria in continuous

auctions for general (i.e., not necessarily symmetric) priors. We need to take care in handling correctly

the symmetry of the underlying strategies, but this turns out to be straightforward.

Fix a CFPA A with iid priors over [0, 1] and discrete bidding space 𝐵 = {𝑏1 ≤ 𝑏2 ≤ · · · ≤ 𝑏𝑚}. It

is known that, in this continuous setting, any monotone strategy 𝛽 : [0, 1] → 𝐵 can be represented

by a non-decreasing sequence of break points 𝛼 = 𝛼 (𝛽) = (𝛼1, 𝛼2, . . . , 𝛼𝑚) such that 𝛼ℓ = sup{𝑣 ∈
[0, 1] | 𝛽 (𝑣) ≤ 𝑏ℓ }, for ℓ ∈ [𝑚] (for a more detailed discussion, see [FGHLP23, Sec. 2]). For simplicity, in

the following we will slightly abuse notation, and sometimes use directly the jump-point representation

𝛼 = 𝛼 (𝛽) instead of a bidding strategy 𝛽 .

Then, let us also denote the corresponding space of all feasible, no-overbidding (jump-point repre-

sentation) strategies by

Ω = {𝛼 ∈ [0, 1]𝑚 | 𝛼ℓ ≤ 𝛼ℓ+1 ∀ℓ ∈ [𝑚 − 1] ∧ 𝑏ℓ ≤ 𝛼ℓ ∀ℓ ∈ [𝑚] } .

Notice that the linearity of the inequalities defining Ω imply that it is a polytope, and thus Ω is convex

and compact subspace of the Euclidean space ℝ𝑚
. Also, it is easy to see that Ω is nonempty, since

(1, 1, . . . , 1) ∈ Ω (corresponding to the strategy of always bidding min𝐵 = 𝑏1).

Next, given a symmetric and monotone strategy profile 𝜶 = (𝛼, 𝛼, . . . , 𝛼), we define (the set of) its

best-responses by

BR(𝛼) B
{
𝛼 ′ ∈ Ω

���� 𝑢𝑖 (𝛼 ′(𝑣𝑖),𝜶−𝑖 ; 𝑣𝑖) ≥ max

𝑏∈𝐵
𝑢𝑖 (𝑏,𝜶−𝑖 ; 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉

}
Notice that, since auction A has iid priors, the specific choice of the bidder 𝑖 in the above definition is

irrelevant. This gives rise to a correspondence BR : Ω → 2
Ω

with the property that: a symmetric and

monotone strategy profile, where all bidders play a strategy 𝛼 , is an (exact) PBNE of A, if and only if

𝛼 ∈ BR(𝛼).
Using this property, we can establish the existence of a symmetric PBNE by means of Kakutani’s

fixed-point theorem (see, e.g., [AB06, p. 583]). Towards that end, we need to establish the following

properties:
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— BR(𝛼) ≠ ∅ for all 𝛼 ∈ Ω.

— BR(𝛼) is a convex set, for all 𝛼 ∈ Ω.

— BR has a closed graph.

The above properties can be proved in an identical way to that of the existing results for general priors,

and we refer the interested reader to [Ath01, Lemma 3] or [Kri09, p. 302]. □

Lemma E.2 (Convergence Lemma). Consider a DFPAA with iid priors. Assume thatA has a symmetric
monotone 𝜀-approximate MBNE, for all 𝜀 > 0. Then, A has an exact, symmetric and monotone, MBNE.

Proof. Fix a DFPA A with iid priors over a common value space 𝑉 , and bidding space 𝐵. By the

assumptions of our lemma, there exists a sequence of strategy profiles {𝜷𝑛 = (𝛽𝑛, 𝛽𝑛, . . . , 𝛽𝑛)}, 𝑛 ∈ ℕ,

where each bidder plays according to the same, monotone, strategy 𝛽𝑛 : 𝑉 → Δ(𝐵), such that 𝜷𝑛 is a

1

𝑛
-approximate MBNE of A for all positive integers 𝑛. For our proof, we will show that

(a) there exists a subsequence { ¯𝛽𝑛} of {𝛽𝑛}, such that
¯𝛽𝑛 → 𝛽∗ (as 𝑛 →∞), where 𝛽∗ is a monotone

strategy.

(b) 𝜷∗ = (𝛽∗, 𝛽∗, . . . , 𝛽∗) is an exact MBNE.

Starting on (a), first observe that since we are at a discrete auction, there are finitely many

different supports that a bidding strategy can have. Formally, since sets 𝑉 , 𝐵 are finite, the set

{×𝑣∈𝑉 supp (𝛽 (𝑣))}𝛽∈Δ(𝐵)𝑉 is also finite. Therefore, there has to exist a subsequence { ˜𝛽𝑛} of {𝛽𝑛}
such that all its elements have exactly the same support.

Let 𝑝𝑛 = (𝑝𝑛 (𝑣, 𝑏))𝑣∈𝑉 ,𝑏∈𝐵 denote the canonical representation of strategy
˜𝛽𝑛 ; that is, 𝑝𝑛 (𝑣, 𝑏) is the

probability of submitting bid 𝑏 when having true value 𝑣 , under strategy
˜𝛽𝑛 (see Section 2.1), for all

𝑛 ∈ ℕ. Observe that all these probabilities must satisfy the feasibility constraints

𝑝𝑛 (𝑣, 𝑏) ≥ 0,
∑︁
𝑏′∈𝐵

𝑝𝑛 (𝑣, 𝑏′) = 1, and 𝑝𝑛 (𝑣, 𝑏) (𝑣 − 𝑏) ≥ 0 ∀𝑣 ∈ 𝑉 ,𝑏 ∈ 𝐵,

which define a polytope, and thus a compact subspace, of the Euclidean metric space ℝ𝑉 ×𝐵
. Therefore,

there has to exist a subsequence {𝑝𝑛} of {𝑝𝑛} that converges to a feasible representation 𝑝∗ of bidding

strategy 𝛽∗ ∈ Δ(𝐵)𝑉 .

The only thing remaining in order to establish point (a) is the monotonicity of 𝛽∗. Indeed, since

all strategies of { ˜𝛽𝑛} has the same support, it must be that all elements of the sequence {𝑝𝑛} have

exactly the same zero components. Therefore, due to compactness, the only way in which the supports

of limiting strategy 𝛽∗ may differ from the supports of all strategies in { ¯𝛽𝑛} is if for a probability

component it is 𝑝∗(𝑣, 𝑏) = 0 but 𝑝𝑛 (𝑣, 𝑏) ≠ 0 (for all 𝑛 ∈ ℕ). But then, this implies that the supports

may only shrink in the limit; that is, supp (𝛽∗(𝑣)) ⊆ supp

(
¯𝛽𝑛 (𝑣)

)
for all 𝑛 ∈ ℕ. So, given that

¯𝛽𝑛’s are

monotone, 𝛽∗ must also be monotone; see Definition 3.

Moving now to point (b), for a symmetric strategy profile 𝜷 = (𝛽, 𝛽, . . . , 𝛽), let

𝑍 (𝛽) B max

𝑣∈𝑉 ,𝑏∈𝐵
𝑢𝑖 (𝑏, 𝜷−𝑖 ; 𝑣𝑖) − 𝑢𝑖 (𝛽 (𝑣𝑖), 𝜷−𝑖 ; 𝑣𝑖) (43)

denote the maximum utility improvement that a bidder 𝑖 can achieve by unilaterally deviating, from the

bid 𝛽 (𝑣𝑖) dictated by 𝛽 , to any other bid, while all other bidders play according to the symmetric profile

𝜷 = (𝛽, 𝛽, . . . , 𝛽), across all possible true values 𝑣𝑖 . Note that, due to symmetry, the specific choice of

the bidder 𝑖 in the above definition (43) is irrelevant. Then, 𝜷 is an 𝜀-approximate MBNE of A, if and

only if 𝑍 (𝛽) ≤ 𝜀; see Definition 1 Obviously, 𝑍 (𝛽) ≥ 0 for any strategy profile 𝜷 .
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Observe that, as defined by (43), 𝑍 : Δ(𝐵)𝑉 → [0, 1] is a continuous function: bidder utilities are

continuous (see (2)) and (finitely many) max-operators preserve continuity. So,

𝑍 (𝛽∗) = lim

𝑛→∞
𝑍 ( ¯𝛽𝑛) ≤ lim

𝑛→∞
1

𝑛
= 0,

meaning that indeed 𝜷∗ is an exact MBNE of A. □

Now we have all the necessary machinery in order to prove Theorem 5.2:

Proof of Theorem 5.2. Fix a DFPA A with iid priors and choose an arbitrary 𝜀 ∈ (0, 1). Then, by making

use of our computational equivalence
11

between discrete and continuous auctions from Section 4.2,

we can construct a CFPA A′ with iid priors (and the same, discrete, bidding space as A) such that,

any 𝜀-approximate symmetric (and monotone) PBNE of A′ can be translated back to a symmetric and

monotone 𝜀-approximate MBNE of A.

Thus, given that such 𝜀-approximate symmetric PBNE are guaranteed to exist, due to Theorem E.1,

we also get guaranteed existence of an 𝜀-approximate, symmetric and monotone MBNE in our original

discrete auction A. Since we chose 𝜀 > 0 arbitrarily, our Convergence Lemma E.2 gives us the desired

existence of a monotone exact MBNE in A. □
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