
Enhancing CGRA Efficiency Through Aligned
Compute and Communication Provisioning
Zhaoying Li∗

zhaoying@comp.nus.edu.sg
National University of Singapore

Singapore

Pranav Dangi∗
dangi@comp.nus.edu.sg

National University of Singapore
Singapore

Chenyang Yin
ycy@stu.pku.edu.cn
Peking University

China

Thilini Kaushalya Bandara
thilini@comp.nus.edu.sg

National University of Singapore
Singapore

Rohan Juneja
rohan@comp.nus.edu.sg

National University of Singapore
Singapore

Cheng Tan
chengtan@google.com

Google
United States

Zhenyu Bai†
zhenyu.bai@nus.edu.sg

National University of Singapore
Singapore

Tulika Mitra
tulika@comp.nus.edu.sg

National University of Singapore
Singapore

Abstract
Coarse-grained Reconfigurable Arrays (CGRAs) are domain-
agnostic accelerators that enhance the energy efficiency of
resource-constrained edge devices. The CGRA landscape
is diverse, exhibiting trade-offs between performance, effi-
ciency, and architectural specialization. However, CGRAs
often overprovision communication resources relative to
their modest computing capabilities. This occurs because the
theoretically provisioned programmability for CGRAs often
proves superfluous in practical implementations.
In this paper, we propose Plaid, a novel CGRA architec-

ture and compiler that aligns compute and communication
capabilities, thereby significantly improving energy and area
efficiency while preserving its generality and performance.
We demonstrate that the dataflow graph, representing the
target application, can be decomposed into smaller, recurring
communication patterns calledmotifs. The primary contribu-
tion is the identification of these structural motifs within the
dataflow graphs and the development of an efficient collec-
tive execution and routing strategy tailored to these motifs.
The Plaid architecture employs a novel collective process-
ing unit that can execute multiple operations of a motif and
route related data dependencies together. The Plaid compiler
can hierarchically map the dataflow graph and judiciously

∗Both authors contributed equally to this research
†Corresponding Author

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03.
https://doi.org/10.1145/3669940.3707230

schedule the motifs. Our design achieves a 43% reduction
in power consumption and 46% area savings compared to
the baseline high-performance spatio-temporal CGRA, all
while preserving its generality and performance levels. In
comparison to the baseline energy-efficient spatial CGRA,
Plaid offers a 1.4× performance improvement and a 48% area
savings, with almost the same power.

CCSConcepts: •Computer systems organization→Mul-
ticore architectures; • Reconfigurable computing; • Data
flow architectures;

Keywords: Dataflow computing, Coarse-Grained Reconfig-
urable Array (CGRA), Motifs

ACM Reference Format:
Zhaoying Li, Pranav Dangi, Chenyang Yin, Thilini Kaushalya Ban-
dara, Rohan Juneja, Cheng Tan, Zhenyu Bai, and Tulika Mitra.
2025. Enhancing CGRA Efficiency Through Aligned Compute and
Communication Provisioning. In Proceedings of the 30th ACM In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (ASPLOS ’25), March
30-April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3669940.3707230

1 Introduction
The surge in new applications like Machine Learning has
led to the rapid development of accelerators tailored to spe-
cific domains or frequently used computational kernels [11].
Although these specific accelerators excel in performance
and power efficiency, edge devices cannot accommodate
or utilize many accelerators due to strict power and area
constraints [17, 20]. Coarse-grained Reconfigurable Arrays
(CGRAs) [12, 35] offer a balanced solution for performance,
efficiency, and programmability, making them ideal for edge
acceleration.

ar
X

iv
:2

41
2.

08
13

7v
2

 [
cs

.A
R

]
 1

2
D

ec
 2

02
4

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3669940.3707230
https://doi.org/10.1145/3669940.3707230

CGRA Architecture Performance Energy Efficiency Generality

Spatio-temporal

High Low HighUE-CGRA [63], HyCUBE [30]

ADRES [39], MorphoSys [56]

Spatial
Medium* or High High Medium

SNAFU [22], Riptide [23]

Specialized

High or Ultra-High High LowREVAMP [62], REVEL [69]

VecPac [58], APEX [40]

Ours (Plaid) High High High

* Performance degrades when partitioning complex DFGs to be mapped spatially

Table 1. Reconfigurable architecture landscape

Several academic [8, 18, 23, 30, 34, 36, 39, 40, 47, 55, 57–
59, 61, 63, 66, 69, 71–76] and commercial [19, 21, 31, 52]
CGRA architectures have been proposed over the years. A
typical CGRA consists of an array of Processing Elements
(PEs) connected by an on-chip network (NoC). Each PE com-
prises a computing unit (typically an ALU), registers to store
the temporal data, a router for interconnections, and a config-
uration memory to store the instructions statically generated
by the compiler for the above hardware modules. The com-
piler maps the target application, represented by a Dataflow
Graph (DFG), onto the CGRA. Computing units execute the
DFG nodes, while routers and registers handle the data de-
pendency, i.e., the edges representing communication among
these nodes.

The existing landscape of CGRAs navigates trade-offs be-
tween performance, efficiency, and generality, where gener-
ality refers to the versatility of the scope of target applica-
tions or kernels that can be mapped onto the architecture.
As shown in Table 1, existing CGRAs fall into three main
categories: spatio-temporal CGRAs, spatial CGRAs, and spe-
cialized CGRAs.

A spatio-temporal architecture allows each PE to reconfig-
ure to a new instruction every cycle, offering higher flexibil-
ity. This means that the ALU in each PE can execute a new
operation and send the data to a new neighbour every cycle.
In contrast, a purely spatial architecture relies on spatial
dataflow-based mapping for a code segment, maintaining a
fixed configuration of compute and communication during
the execution of that segment. Theoretically, a higher degree
of reconfigurability enhances flexibility at the cost of higher
power consumption. On the other hand, fully spatial map-
ping ensures extremely low power consumption but with
possibly lower performance. Specialized CGRAs, in contrast
to the prior ones, are optimized or tuned for a particular
application suite or domain. These optimizations are only
suitable for a relatively narrow scope of applications and can

Hierarchical DFG
with motifs

...

Plaid unit for collective
execution and routing

... ...
for (...)
 for (...)
 c[i][j]=b[i]*a[j]

Plaid
compiler

Target kernel

...

... ...

......

... ...

...Optimize
parallelism

Hierarchical
mapping

Flexible
motif schedule

Plaid
architecture

DFG gen

Figure 1. Overview of Plaid co-designed architecture and
compiler

render the CGRA to be less efficient for others, thereby re-
ducing their versatility. An ideal CGRA would achieve good
performance and efficiency while still preserving generality.

Existingworks intrinsically facilitate effective execution at
the granularity of a single DFG node on a PE. However, they
lack insight into the alignment between communication and
computation for the collective execution of the entire DFG.
First, each PE pairs the ALU with a router designed with ad-
equate degrees of freedom to allow each ALU to individually
communicate with any other ALU around it through the NoC.
Such highly powerful routers help PEs handle peak routing
congestion. An unforeseen consequence is that total commu-
nication resources are largely overprovisioned compared to
the compute capabilities of the CGRA. This is because such
congestion is only faced intermittently throughout total exe-
cution. Second, as each PE typically executes one node at a
time, the inherent individuality in execution renders the pro-
grammability less efficient. For example, even simple inter-
PE communication, corresponding to a single edge between
two DFG nodes, necessitates configuring at least two routers.
This bloats the configuration memory, contributing to 48%
of the overall power consumption as shown in Figure 2(a).
With the aforementioned resource over-provisioning, the
programmability becomes extremely costly.
A straightforward approach to the realignment would

be trimming communication resources to a bare minimum.
While this strategy is conceptually simple, it can hinder
reconfigurability in the architecture and degrade the per-
formance. Therefore, a more nuanced solution should hypo-
thetically involve redesigning the fundamental blocks of the
CGRA architecture and the compiler. This redesign should
collectively align compute and communication provisioning
and improve efficiency while maintaining programmability,
considering the inherent characteristics of DFGs and hard-
ware.

Goal and Approach: In this work, we propose a next-gen
CGRA architecture and compiler, named Plaid, with a hier-
archical execution paradigm to address the aforementioned

15%
29%

19%

28%

9%

Routers

Communication
config
Compute
config

Compute

others

(a) Spatio-temporal

43% power reduction ↓

8%

16%14%

49% 12%

(b) Plaid

Figure 2. Power distribution for Plaid and a current state-of-
the-art spatio-temporal CGRA. Plaid’s execution paradigm
reduces CGRA fabric power by 43% while maintaining per-
formance and generality.

limitation. Plaid1 aims to significantly reduce power and
area while maintaining the performance and generality of
current spatio-temporal CGRAs. Figure 1 demonstrates the
end-to-end framework of Plaid that enables this alignment in
computation and communication. Plaid takes a target kernel
as an annotated C code as an input, converts it into a hierar-
chical DFG with recurring patterns of communication, i.e.,
motifs, and maps them onto the proposed CGRA architec-
ture. Below, we delineate the proposed design and highlight
the innovative features of our approach:
First, we introduce a novel hierarchical execution para-

digm that capitalizes on communication patterns inherent
in the DFG structure, termed as "motifs." These motifs, com-
posed of multiple nodes, demonstrate distinctive yet straight-
forward internal connections, enabling the CGRA to execute
these nodes and route related data dependencies collectively
with minimal hardware overhead.

Second, we introduce a novel CGRA architecture Plaid,
aligning the compute and communication resources for both
low-level and high-level execution. This architecture features
a novel hierarchical on-chip network, composed of global
and local routers, and re-organizes the compute units for
collective resource alignment and motif computing.
Third, we develop an end-to-end toolchain consisting of

a compiler that takes annotated loops in C code as input
and maps them onto the Plaid architecture written in RTL.
The compiler automatically identifies motifs within DFGs,
flexibly schedules motifs, and hierarchically maps DFGs onto
the CGRA, ensuring excellent generality and performance.
We make the following contributions:
• Identification of a major limitation prevalent in previous
CGRAs regarding the alignment of compute and commu-
nication resources.
• Insight into DFG’s structural regularity, offering a new
dimension to enhance efficiency beyond current execution.

1Despite the fundamental change in CGRA design, Plaid is still a spatio-
temporal CGRA. When we refer to spatio-temporal CGRA in this paper, we
refer to the typical design of spatio-temporal CGRAs.

PEPE

PEPE

PEPE

PEPE

ALU

N

S

E

W

ALU

N

S

E

W
Router

ALU R
F

C
o

n
fi

g
M

e
m

Router

ALU R
F

C
o

n
fi

g
M

e
m

Figure 3. Spatio-temporal CGRA example

int main () {
pragma Plaid
for (i: 0->N) {
for (j: 0->M) {
c[i][j] = b[i]∗k +a[i]∗ j ;
k[i] = d[i] >> 4;
...
out[i] += c[i][j] +f[j];

}}}

g

ba d

e

n1 n2

n3

Figure 4. Example of a DFG corresponding to an annotated
C code

• The first proposal of a hierarchical on-chip network within
a single CGRA, to the best of our knowledge.
• An effective compiler to map DFG with motifs to achieve
hierarchical execution.
• We demonstrate that we can further improve energy and
area efficiency with domain-specific optimization.

Results: Our design reduces 43% power and saves 46% area
compared to the baseline high-performance spatio-temporal
CGRA, while maintaining the generality and performance.
At the same time, compared to the baseline energy-efficient
spatial CGRA, Plaid delivers 1.4× performance and saves 48%
area while achieving almost the same power. Furthermore,
Plaid can achieve 1.22× energy efficiency and 1.25× area
efficiency even compared to a domain-optimized CGRA.

2 Background And Motivation
In contemporary CGRAs [1, 6, 9, 10, 13, 15, 28, 32, 43–46,
48–51, 54, 64–66], the PE is typically centered around an
ALU as its core component. A PE usually executes one DFG
node at a time and simultaneously routes data to and from
neighbouring PEs. Figure 3 shows a representative CGRA
architecture, detailing the internals of a PE, along with a
router and corresponding registers for data buffering. Each
PE contains a configuration memory to store instructions
that reconfigure the ALU and routers every cycle.
Figure 4 showcases an example DFG corresponding to a

loop, annotated with a pragma in the C code. Each DFG node
signifies a compute or load-store operation. Typically, each
DFG node is mapped to a CGRA PE through a statically com-
piled instruction configuration. This instruction includes the

A
LU

Config
Mem

N

S

E

W

inputs outputs

PE 1 cycle 2

n3

N

S

E

W

A
LU

Config
Mem

N

S

E

W

inputs outputs

PE 2 cycle 1

n2

N

S

E

W

A
LU

Config
Mem

N

S

E

W

inputs outputs

PE 3 cycle 1

n1

N

S

E

W

A
LU

Config
Mem

N

S

E

W

inputs outputs

PE 4 idle

N

S

E

W

Figure 5. Detailed routing example of the highlighted sub-
DFG in Figure 4 on the 2×2 CGRA from Figure 3.

computation to be executed on the ALU and the communica-
tion required with neighbouring PEs. This communication
encoding is crucial for selecting the appropriate datapath via
a series of multiplexers and crossbars in each cycle.
Figure 5 shows the communication, specifically the data

routing between three PEs of a CGRA, for the red-highlighted
portion of the DFG in Figure 4. In the first cycle, nodes n1
and n2 are executed on PE3 and PE2, respectively, as shown
in the figure. The outputs generated are then routed towards
PE1: PE3 sends its output to the north, and PE2 sends its
output to the west. PE1 receives this data and processes it
in the subsequent cycle to produce a new output, which is
then sent to the next neighbouring PE.
This example illustrates two main problems of the tradi-

tional execution paradigm. First, only a small portion of the
network is activated for communication for internal data de-
pendencies of the highlighted sub-DFG. If dependent nodes
are placed on neighbouring PEs, such simple and immediate
routing does not need powerful routers. These routers ben-
efit from distant routing when we cannot place dependent
nodes within such “proximity”. Nevertheless, a significant
portion of the datapath is only fully engaged when there is
extremely high routing congestion at the PE. Overall, in each
cycle, only certain parts of the datapath are actively in use,
while the other parts serve no functionality. For the whole
execution, this overprovisioned communication system does
not provide a first-order benefit to the compute efficiency.
Second, as the PE typically executes one node at a time,

such individual execution comes with a high cost of pro-
grammability. For example, a simple connection in Figure 5

needs to configure two routers. This programmability in-
curs a significant encoding overhead and leads to unnec-
essarily complex solutions for simple problems. As shown
in Figure 2(a), communication configuration memory and
the router consume 29% and 15% of power, respectively. In
summary, traditional CGRA designs often fail to align the
provisioning of communication with the compute capabil-
ities, and individuality in execution leads to a high cost of
programmability, accentuating the inefficiency of resource
misalignment.

Through our work, we gain insights into the DFG behavior
and identify patterns of communication, or motifs, between
collective DFG nodes. We observe that the exhaustive com-
munication possibilities between small groups of DFG nodes
can be effectively implemented together in hardware using
lightweight primitives. This approach enables hierarchical
execution, with the architecture and mapper designed to
exploit these motifs and their communication at two levels
of granularity, and does not compromise the generality.

3 Hierarchical Execution with Motifs
This section first provides insight into harnessing simple
connections in DFGwith collective routing. Then, we discuss
the design trade-off for collective routing and demonstrate
the execution of the structural motifs with collective routing.

3.1 Collective Routing
DFGs are generated from the program by the compiler and
represent the corresponding data dependencies; thereby,
they do not have entirely arbitrary connections. For example,
a single DFG node typically has only two inputs, indicating
a limited degree of connection between multiple such nodes.
Supposing each node takes a maximum of two inputs, a DFG
with 𝑛 nodes has a maximum of 2𝑛 edges. The limited num-
ber of inputs indicates the prevalence of relatively simple
connections among DFG nodes, despite the fact that complex
data dependencies also exist in the partial DFG.

These relatively simple connections raise an opportunity
to handle the routing among multiple nodes together with
a nimble design, instead of using multiple complex routers
among multiple compute units. However, simple data de-
pendencies in these sub-DFGs still have distinct connection
patterns. To maintain versatility and support different pat-
terns, we cannot resort to fixed connections in the hardware.
Figure 6 shows a prototype of the proposed collective

routing scheme: a single router provisions the input/output
for a group of ALUs and connects with other such routers.
Multiple ALUs execute nodes from a sub-DFG, and a router
handles simple data dependencies within the sub-DFG. For
example, for the sub-DFG in Figure 4, we can use three ALUs
to execute and a router to handle related data dependencies.

in/out

ALU

A
LU ROUTER

Figure 6. Prototype of
collective routing

 n1 n2

 n3

 n1 n2

 n3

 n1

 n3 n2

 n1

 n3 n2

 n1

 n2

 n3

fan-out fan-in unicast

Figure 7. Fundamental motifs
for three-node sub-DFGs

Structural motifs refer to a set of sub-DFGs, which have
the same number of DFG nodes and simple internal connec-
tions, such as the sub-DFGs shown in Figure 7. These motifs
are naturally suitable for collective routing: instead of using
multiple routers among multiple functional units, we can use
a single router to route relevant data dependencies among
multiple DFG nodes (functional units). Hence, we can use
minimal hardware to route the data dependencies of a motif
and achieve very high utilization of the router.
There are two challenges to leverage motifs for collec-

tive routing: The first challenge involves determining the
optimal number of ALUs (also the number of nodes in the
motif) connected to one router for designing the architecture.
The hardware cost, including the router and its configura-
tion, escalates significantly as the number of ALUs increases.
Moreover, the complex connections among certain nodes in
larger sub-DFGs make accommodating all connections with
one router impractical.

The second challenge is to design a compiler to effectively
leverage the collective routing to execute the whole DFG. Al-
though it is possible to disregard the fundamental hardware
changes and continue mapping nodes individually, the true
potential of these units is realized through more localized
routing. In other words, we need an effective compiler to
automatically identify motifs and judiciously schedule them
to utilize the hardware unit of collective routing. Therefore,
addressing this issue requires a comprehensive approach
that considers both hardware and software perspectives to
develop an efficient collective routing mechanism.

3.2 Three-node Structural Motif
The selection of an optimal motif size, which can benefit from
local, collective routing, determines the number of ALUs that
should be connected to a single router. A two-node sub-DFG
has a fixed, single communication pattern between the nodes.
Furthermore, as most DFG nodes have two inputs, the two-
node sub-DFG has only one internal connection and needs
more communication with the other routers, rendering it
similar to individual execution and not feasible to be a motif.
Conversely, larger motifs do not appear frequently in

DFGs and can lead to unnecessary fragmentation. Complex

connections in certain DFG nodes complicate the identifi-
cation of large sub-DFGs with straightforward data depen-
dencies. Moreover, these larger motifs tend to fragment the
DFG into smaller pieces if not in the motif, diminishing the
advantages of collective routing. As we mentioned earlier, ac-
commodating larger communication patterns between nodes
escalates hardware costs. Therefore, larger motifs are gener-
ally unsuitable for collective routing.

The three-node motif represents the smallest possible sub-
DFG that benefits from reconfigurable communication pat-
terns, i.e., using a router instead of a fixed connection. It
aligns perfectly with the two inputs for most DFG nodes. As
the smallest reconfigurable motif, it maximizes the number
of motifs that can be partitioned from a given DFG and min-
imizes the number of standalone nodes. This balance makes
the three-node motifs ideal for leveraging local, collective
routing while maintaining hardware efficiency and reducing
complexity. Prior work on patterns in much more complex
and random real-world graphs and networks, have similar ob-
servations about the recurrence of three-node motifs [41, 70],
affirming our approach.
Here, we formalize the solution to better understand the

three-node motif. We start by examining Directed Acyclic
Graphs (DAGs) with 𝑁 vertices. We will build our under-
standing incrementally by considering the cases where the
number of vertices, |𝑁 |, increases.
Base case |𝑁 | = 2: For |𝑁 | = 2, the only possible DAG is
𝐺2 : {(𝑛1, 𝑛2)}. This represents a DFG where node 𝑛1 sends
data to node 𝑛2, denoted as 𝑛1 → 𝑛2.
|𝑁 | = 3: consider a new vertex 𝑛3 added to 𝐺2. The exhaus-
tive set of possible DAGs, 𝐺3𝑖 , that can be created by incor-
porating the new vertex 𝑛3 can be enumerated as follows
(visualized in Figure 7):

• Node𝑛3 receives the input from𝑛1 , 𝐸 = {(𝑛1, 𝑛2), (𝑛1, 𝑛3)},
called fan-out motif.
• Node 𝑛3 sends its output to 𝑛2, 𝐸 = {(𝑛1, 𝑛2), (𝑛3, 𝑛2)},
called fan-in motif.
• Node 𝑛3 sends its output to 𝑛1, or 𝑛2 sends its output to
𝑛3: both are sequential chains, 𝐸 = {(𝑛1, 𝑛2), (𝑛2, 𝑛3)} or
𝐸 = {(𝑛3, 𝑛1), (𝑛1, 𝑛2)}, called unicast motif.
• Acyclic triangle: 𝑛3 → 𝑛1 → 𝑛2 ← 𝑛3, 𝐸 = {(𝑛3, 𝑛1), (𝑛3,
𝑛2), (𝑛1, 𝑛2)}. The acyclic triangle can be derived from any
of these three basic motifs by introducing a single addi-
tional edge, and thus is not a basic motif.

The first three basic motifs here serve as exhaustive, fun-
damental building blocks from which any other DFG with
|𝑁 | = 3 can be constructed.
Hierarchical composition: For a DAG, given all possi-
ble subgraphs for |𝑁 | = 3, any graph with 3 × 𝑛 nodes
can be constructed using the above subgraphs as intercon-
nected building blocks. This approach leverages the principle
of graph composition, where larger graphs are formed by
combining smaller, well-understood subgraphs [7, 33]. We

in/out

n2

n
1

const

(a) Fan-in motif
in/out

n2

n
1

const

(b) Unicast motif

Figure 8. Collective routing for fan-in and unicast motifs.

can easily prove that, for DFGs 𝐺3𝑛+𝑘 , with 3𝑛 + 𝑘 nodes,
where 0 < 𝑘 < 3, the graph can be constructed by using⌊ 3𝑛+𝑘

3
⌋
= 𝑛 subgraphs of 3 nodes (three basic motifs), supple-

mented with 𝑘 additional standalone helper nodes. Formally,
𝐺3𝑛+𝑘 =

(⋃𝑛
𝑖=1𝐺3𝑖

)
∪𝐻𝑘 ∪𝐸′′, where 𝐻𝑘 represents the stan-

dalone nodes, and 𝐸′′ represents the additional edges that
connect different subgraphs and various standalone nodes
with each other. A DFG can thus be constructed by utilizing
the three motifs and individual standalone nodes wherever
required.
Figure 8 demonstrates the execution of fan-in (which

forms the highlighted section in Figure 4) and unicast motifs
using three ALUs and a single router. The internal data de-
pendencies here are managed within the router. For instance,
communications such as 𝑛1 → 𝑛2 and 𝑛2 → 𝑛3 within the
unicast motif are routed locally. Other non-constant inputs
and outputs, which form the standalone nodes 𝐻𝑘 or addi-
tional edges 𝐸′′, engage the local router to communicate with
other routers. This arrangement ensures high router utiliza-
tion and alleviates the demand for global communication by
routing internal dependencies locally.

For a better understanding of the hierarchical nature, Fig-
ure 9(a) presents a DFG example featuring multiple motifs.
We assume the memory access unit is not connected to the
collective router and explain the execution of memory oper-
ations with a hierarchical on-chip network later. It happens
that some standalone nodes are not included in the motif.
Such a node can still be executed on any ALU, without the
loss of generality. The collective routing mechanism still
applies for such nodes, but the corresponding data depen-
dencies might not be routed locally. These motifs enable
a hierarchical execution on the CGRA. To accommodate
the high efficiency of the hierarchical execution, we first
need to manage the communications among these motifs. As
we collectively route these relatively simple dependencies,
the communications among motifs are substantial. Second,
we need to reorganize the entire CGRA to enhance overall
execution efficiency.

4 Plaid Architecture
The Plaid CGRA is designed with two levels of granularity
in execution as illustrated in Figure 9(b). Each tile executing

a motif is called the Plaid Collective Unit (PCU). A PCU in-
corporates the collective routing circuitry and executes indi-
vidual motifs, i.e., handles simple DFG connections. Multiple
PCUs are interconnected in amesh network and interact with
each other to facilitate overall DFG execution, supporting
the communication between various motifs and standalone
nodes, including the complex connections in the DFG. Hi-
erarchical execution enables the exploiting of patterns in
communication and achieves high efficiency for Plaid.

4.1 Plaid PCU
The Plaid PCU is specifically designed to execute three-node
motifs. The collective routing prototype, as discussed previ-
ously, has been adapted for this PCU’s micro-architecture,
featuring three ALUs (motif compute unit) connected to a lo-
cal router. Figure 9(c) depicts the internal connections within
the PCU. The ALUs, which are 16-bit compute units, support
ADD, MUL, SHIFT, and various bit-wise operations, totalling
15 operations. The local router delivers inputs to each of
the three ALUs per cycle and collects outputs from them,
enabling the execution of all possible three-node motifs.
Although the collective routing prototype can handle

all three node motifs with the identically positioned ALUs
around the router, we add virtual bypass paths between the
ALUs. These bypass paths provide shorter routing paths and
are prioritized by the mapper, which typically favours an
execution sequence from the left-most to the right-most ALU.
However, this execution order is not obligatory. We identify
that adhering strictly to this order for all motifs can lead
to resource under-utilization. To address this, we developed
more flexible scheduling options, which we will detail in Sec-
tion 5. Nevertheless, these bypass paths are still beneficial
as they reduce the routing pressure on the local router.

4.2 Hierarchical Network-on-Chip
The local router connects to a global router, which facilitates
communication between motifs across different PCUs and
links motifs to the data memory. The global router is con-
nected to an Arithmetic-Load-Store Unit (ALSU), which is
integral to the PCUs along the edges interfacing with the data
memory. The ALSU manages load-store operations within
the DFG via a dedicated datapath to the data memory. Addi-
tionally, it facilitates the mapping of predication operations
and standalone nodes facing routing challenges.

The global router has ports facing the N, S, E, and W direc-
tions, enabling inter-motif (inter-PCU) communication. The
architecture creates two distinct datapaths: a global datapath,
which connects all PCUs across the CGRA through the global
router, functioning like a data conveyor belt; a local datapath
within each PCU, managed by the local router, which aims to
handle all communication internally. Yet, when necessary, it
interacts with the global path, either retrieving or depositing
data onto the conveyor belt. This hierarchical organization

GG GG

GG GG

... ...

16 bits

... ...

...

...
Global
Router
(7 x 9)

Local
Router
(8 x 8)

C
O

N
FI

G

ALUALU

N

S

E

W

N

S

E

W

N

S

E

W

Plaid Collective Unit (PCU)

Global
Router
(7 x 9)

Local
Router
(8 x 8)

C
O

N
FI

G

ALU

N

S

E

W

N

S

E

W

Plaid Collective Unit (PCU)

LDLD

ST

LDLD

ST

motifs
(a) (b)

Local router or
bypass path

Three
ALU exec

(c)

Figure 9. (a) Hierarchical DFG with multiple motifs. (b) Plaid architecture overview (c) Plaid Collective Unit

ensures efficient and flexible data management, optimizing
both local and global communication within the system.
Considerations for the Global Datapath: The paths be-
tween the global and local routers include options for tem-
poral data buffering using registers, as shown in Figure 9(c).
Data that continuously cycles from the global router to the
local and back again can potentially get stuck in a loop when
synthesized. To prevent the formation of such hardware
loops, we enforce constraints within the interconnects in the
compiler and the hardware. The compiler constraints are de-
signed to block any configuration that could create a closed
loop. The hardware constraints ensure no such datapath
can be created. These constraints are verified post-synthesis
through the EDA tool, which can report any such violations.

4.3 Configuration
With each PCU now managing three ALUs, one ALSU, two
routers, and multiple registers along the datapath, the con-
figuration memory encoding bits need a comprehensive re-
design. The routers alone consume about half of these en-
coding bits, highlighting their role in the system. The ALUs
connected to the local router require eight-bit constants and
four-bit fields for operation selection per cycle. Each instruc-
tion, or configuration entry, comprises a total of 120 bits,
including the local and global configuration space.

4.4 Efficient Domain-Specialization
Recent advancements in CGRAs have enabled domain-specific
optimizations [40, 58, 62] in the architecture. Plaid’s exe-
cution paradigm, which already exploits communication
patterns, can further enhance efficiency through domain-
specific specialization. We exploit the existence of recurrent
motifs in a domain and specialize a few PEs in architecture
that are domain-optimized for those motifs. Essentially, we
hardwire a fixed motif inside certain PEs to replace the local
router while maintaining the full reconfiguration capability

of the global datapath. This approach reduces the configura-
tion space for these specific PEs, compelling the mapper to
prioritize them for mapping the corresponding motifs they
were specialized for.

5 Plaid Compiler
This section first formulates the mapping problem and then
introduces our algorithm for generating motifs, followed by
the introduction of the mapping algorithm.

5.1 Mapping Problem Formulation
Given a DFG and a CGRA, application mapping is executed
through modulo scheduling. This technique allows for a new
loop iteration at every initiation interval (II). Initially, we
ascertain the lower bound of II, designated as the Minimum
II (MII). This is determined by taking the greater of two
metrics: the resource minimum II (ResMII) and the recur-
rence minimum II (RecMII) caused by inter-iteration data
dependency. For each prospective II value, a time-extended
resource graph of the CGRA, corresponding to II cycles, is
constructed. This graph is referred to as the Modulo Routing
Resource Graph (MRRG). Owing to the cyclical nature of the
schedule, which repeats every II cycle, there is connectiv-
ity between the resources at cycle II-1 and those at cycle 0
within the MRRG—hence the term “modulo.” The compiler
aims to achieve an optimal mapping of the DFG onto the
MRRG, aiming to minimize the II value.
Given a DFG 𝐷 = (𝑉𝐷 , 𝐸𝐷) and a Plaid CGRA instance,

the problem is to generate a hierarchical DFG with multiple
motifs and standalone nodes,𝐻𝐷 = (𝑀𝐻𝐷 , 𝐸𝐻𝐷) (standalone
node is a special motif where motif node number is one),
and construct a minimally time-extended MRRG of the Plaid
instance 𝑃𝐼 𝐼 = (𝑉𝑃 , 𝐸𝑃) , which has a valid mapping 𝜙 =

(𝜙𝑀,𝜙𝐸) from 𝐻𝐷 .

Algorithm 1:Motif Generation
Input: DFG;
Output: Hierarchical DFG with motifs

1 Generate the initial motifs greedily;
2 while the motif number increases do
3 Randomly break down one motif;
4 Randomly sort standalone nodes;
5 foreach standalone node do
6 if find a motif pattern with this node then
7 Generate the motif and update standalone nodes;

LDLD

ST

LDLD

ST

motifs

LDLD

ST

LDLD

ST

Initial motifs generated by
greedy algo

Standalone
mode

Break a motif
and re-generate

Multiple
iterations

Figure 10. Example with Algorithm 1

5.2 Mapping DFG onto CGRA
Algorithm 1 delineates a systematic approach to identify
motifs (𝑀𝐻𝐷) to generate a hierarchical DFG (𝐻𝐷). This al-
gorithm is easily extendable to the motif with any number of
nodes. Figure 10 shows an example using Algorithm 1. This
process starts with the greedy generation of initial motifs,
leveraging the fundamental set of motif structure patterns to
traverse the DFG and generate motifs (line 1). However, as
shown in Figure 10, the greedy generation is sub-optimal and
there are many standalone nodes in the initial generation.

We adopt an iterative algorithm to improve motif identifi-
cation. The algorithm randomly deconstructs a motif, ran-
domly sorts standalone nodes, and traverses the DFG starting
from standalone nodes to find new motifs as long as they
match the motif pattern (lines 3-7). For example, in Figure 10,
we break the left motif, randomly sort standalone nodes, and
try to find sub-DFGs that match motif patterns to gener-
ate more motifs. We keep running the deconstruction and
re-generation process until the number of motifs does not
increase (lines 2-7), or the number of motifs exceeds stan-
dalone nodes. The latter is to ensure the utilization of the
motif compute unit and ALSU in PCU. The method’s iterative
nature helps refine motif integration within the DFG, aiming
for optimized motif generation.
Algorithm 2 presents the hierarchical mapping to effi-

ciently map DFGs with identified motifs, generated by the
Algorithm 1, onto a Plaid CGRA. Algorithm 2 augments sim-
ulated annealing [3, 73] to hierarchically schedule motifs.
Figure 9 shows the corresponding hardware unit to handle

Algorithm 2: Hierarchical mapping
Input: Hierarchical DFG, CGRA architecture description;
Output:Mapping

1 Sort motifs by data dependency;
2 while Mapping is not valid do
3 foreach motif do
4 Map the motif to a PE with the least routing resource;
5 while not find a valid mapping or exceed time limitation do
6 Unmap one motif ;
7 Randomly select one placement candidate;
8 Generate different motif schedules;
9 foreach motif schedule do
10 Route this motif’s operands and dependencies to

the network using Djkstra’s algorithm;
11 Select the combination yielding the highest

objective;
12 II = II + 1 ;

ALU

cycle 0

cycle 1

cycle 2

cycle 3

cycle 4

ALU ALU

(a) Stringent sequential schedule

ALU

cycle 0

cycle 1

cycle 2

cycle 3

cycle 4

ALU ALU

(b) Flexible Schedule

Figure 11. Schedules for three motifs. The right one has a
higher resource utilization.

motifs, internal data dependencies, and global communica-
tion. We use a cost function to guide the mapping process,
which includes metrics such as the number of unmapped
nodes (𝑉𝐷), congestion levels, and the usage of routing re-
sources.
Initially, motifs within the DFG are sorted according to

the data dependency (line 1), which prioritizes critical paths
for early mapping. The algorithm starts with the MII. If
no valid mapping is found at the current II, it increments
the II by one, continuing this process until it either finds
a valid mapping or exceeds the maximum II determined
by the configuration memory size (lines 2-12). In each II,
initially, sorted motifs are mapped onto the hardware unit
𝑉𝑃 with the least routing resources (lines 3 and 4). If a valid
mapping is not achieved within the initial step, the algorithm
uses an iterative methodology to generate a valid mapping
(lines 4-10). In each iteration, one motif (𝑀𝐻𝐷) is unmapped
(line 6), and we randomly select one motif unit (line 7) as
the placement candidate. We can place a single node (special
𝑀𝐻𝐷) onto any functional unit𝑉𝑃 if it supports the operation.

The motif compute unit’s bypass connection does not
restrict the node placement within a motif from left to right.
For example, in the unicast motif, the first node and the
second node are not required to be placed onto the leftmost
ALU and the middle ALU, respectively. Instead, the first node
can be placed onto the rightmost ALU. Of course, the bypass
connection is not utilized in such case. A stringent placement
can cause motif compute units to be under-utilized if any
ALU is not available.

Figure 11 illustrates two distinct schedules for three motifs
on the motif compute unit. In Figure 11(a), the scheduling
order is strict to the above-mentioned sequential order: the
first node is allocated to the leftmost ALU, the second node
to the middle ALU, and the third node to the rightmost ALU.
However, this stringent scheduling sequence leads to an
under-utilization of resources. In contrast, Figure 11(b) de-
picts a more flexible scheduling approach, where the unicast
motif adopts a ‘reversed’ sequence compared to that in Fig-
ure 11(a), thereby enhancing the utilization of the collective
unit.

To support flexible scheduling, we generate several sched-
ule templates for each motif type. For example, for the fan-
out motif, we have the following schedule templates:
{(𝑛1, 𝑐), (𝑛2, 𝑐 +1), (𝑛3, 𝑐 +1)}, {(𝑛1, 𝑐), (𝑛2, 𝑐 +1), (𝑛3, 𝑐 +2)},
{(𝑛1, 𝑐), (𝑛2, 𝑐 +2), (𝑛3, 𝑐 +1)}, {(𝑛3, 𝑐 +1), (𝑛2, 𝑐 +1), (𝑛1, 𝑐)},
{(𝑛3, 𝑐+2), (𝑛2, 𝑐+1), (𝑛1, 𝑐)}, & {(𝑛3, 𝑐+1), (𝑛2, 𝑐+2), (𝑛1, 𝑐)}.
Each template comprises three tuples representing an ALU
in left-to-right order, with each tuple containing the node
in motif and its scheduled cycle. These templates ensure
sufficient flexibility and obviate exhaustive searches on the
motif compute unit. For the placement candidate, we use
Dijkstra’s algorithm to assess each schedule (line 10). The
schedule that yields the highest objective value (the least
cost) is selected (line 11). Like typical simulated annealing,
we can occasionally accept a "worse" movement to overcome
the local minimum. We repeat this process until we find a
valid mapping or exceed the mapping time limitation.

6 Experimental Methodology
We describe the setup and methodology to evaluate the end-
to-end framework for Plaid in this section.

6.1 Architecture Synthesis
We implement the Plaid architecture using Verilog RTL and
synthesize it with Cadence Genus targeting a 22nm FDSOI
technology node at 100MHz. The power consumption met-
rics are obtained from post-synthesis estimates provided by
the synthesis tool. Plaid features a 2×2 PCU array and four
4KB data memory banks, with each PCU having a 16-entry
configuration memory. As each PCU has four functional
units, the 2×2 Plaid has the same number of functional units
as typical 4×4 CGRA. Moreover, we also evaluate the scaled

domain kernel unroll char1 kernel unroll char
atax 2 15,6,6 atax 4 27,14,11
bicg 2 23,11,10 bicg 4 42,23,19

doitgen 2 18,9,9 doitgen 4 34,21,10
gemm 2 21,12,12 gemm 4 37,24,23
gemver 2 21,11,10 gemver 4 41,23,19

Linear
Algebra

gesumm 2 22,9,8 gesumm 4 38,19,16
conv2x2 1 20,12,10 conv3x3 1 37,26,17
dwconv 1 7,3,2 dwconv 5 31,19,13Machine

Learning fc 1 17,8,7
cholesky 2 14,5,4 cholesky 4 28,11,8
durbin 2 14,7,4 durbin 4 28,15,8
fdtd 2 16,7,6 fdtd 4 32,15,12

gramsc 2 15,5,4 gramsc 4 25,11,8
jacobi 1 16,7,5 jacobi 2 30,15,12
jacobi 4 54,30,27 seidel 1 22,11,9

Image

seidel 2 44,23,21

1. Characteristics contain the number of DFG nodes, the number of compute nodes,
and the number of compute nodes covered by motifs.

Table 2. Evaluated workloads

3×3 Plaid with the same number of functional units as a 6×6
CGRA.

6.2 Compiler and Execution
The Plaid framework processes annotated C code, as shown
in Figure 4, and generates static configurations for the Plaid
CGRA using the Morpher toolchain[73], which includes a
mapper and a cycle-accurate C++ simulator. The compiler
typically maps the kernel in a fewminutes. As typical CGRAs
are statically scheduled, the performance is deterministic
and known at compilation time. With the II and the total
number of loop iterations, we can precisely calculate the
overall performance (cycles). The primary purpose of the
simulation is to verify the mapping and hardware design.
The host processer loads the CGRA configuration bits

generated by the compiler to the CGRA fabric and sends
input data to the SPM. Then, it triggers the CGRA to fetch
the configuration, load the data, perform computations, and
store the results back in the SPM. Spatio-temporal CGRA
can read the configuration memory per cycle in a modulo
way. Ultimately, data from the SPM is moved back to the
main memory for further processing by the host processor.

6.3 Baseline CGRAs
Given the significant redesign of the CGRA architecture, we
benchmark our results against several baselines:
Spatio-temporal CGRA, like typical CGRAs [14, 39, 58, 67]
as shown in Figure 3, has a 4×4 PE arraywith amesh network
and the same SPM configuration with 2×2 Plaid. Each PE
has 16-entry configuration memory.
Spatial CGRA follows the state-of-the-art energy-efficient
spatial CGRAs [22, 23, 55] but with a mesh network. The
spatial CGRA has a 4×4 PE array. Mapping complex kernels
(𝐼 𝐼 > 1) onto spatial CGRAs requires partitioning the DFG
into several DFGs. We develop a Python script to partition

atax
_u2
atax

_u4
bicg

_u2
bicg

_u4

chol
ek_u

2
chol

el_u
4
conv

2x2
conv

3x3

doit
gen_

u2

doit
gen_

u4

durb
in_u

2

durb
in_u

4
dwc

onv

dwc
onv

_u5 fc
fdtd

_u2
fdtd

_u4
gem

m_u
2

gem
m_u

4

gem
ver_

u2

gem
ver_

u4
gesu

m_u
2

gesu
m_u

4

gram
sc_u

2

gram
sc_u

4
jaco

bi
jaco

bi_u
2

jaco
bi_u

4
seid

el
seid

el_u
2
aver

age

1

1.5

2

N
or
m
al
iz
ed

#
of

cy
cl
es

Spatio-temporal Spatial Plaid

Figure 12. Performance of Plaid and a spatial CGRA normalized to a spatio-temporal CGRA. u2 :unrolling factor of 2.

DFGs. Additional loads and stores are introduced during
partition to put intermediate data in SPM.
Domain-optimized spatio-temporal CGRA is based on
the spatio-temporal CGRA and optimized for the machine
learning domain [62]. This lowers the performance of the
spatio-temporal CGRA for other domains but improves the
energy and area efficiency of the target domain.
Baselines are implemented using the same technology node
for consistent area and power comparisons. We use two
mappers for these baselines and select the one with higher
performance. The first is PathFinder, adapted from [38, 60,
73], consisting of around 3K lines of C++ code. The second
mapper utilizes simulated annealing, as detailed in [3, 68, 73],
implemented with around 2K lines of C++ code.

6.4 Workloads
To demonstrate that Plaid maintains the versatility of CGRAs,
we benchmark our work using a diverse set of kernels from
various applications and benchmark suites, as detailed in
Table 2. We unroll DFGs to evaluate the capability of Plaid
to handle complex data dependencies, leading to 30 DFGs
in total. We use five kernels from TinyML[2] to represent
typical machine learning workloads. For dwconv, we unroll
with 5 as the trip count is not divisible by other less unrolling
factors. We evaluate the linear algebra benchmark suite and
image process kernels from PolyBench [29], assessing the
performance of kernels from this suite. To ensure a similar
number of kernels from each domain, we use the first six
kernels from the PolyBench linear algebra suite. For each
DFG, Table 2 shows the number of nodes, compute nodes,
and nodes covered by motifs. As motif compute unit does not
provide memory access, all the nodes in motifs are compute
nodes. Moreover, we also execute the two-node motif with
the motif compute unit. As we provide flexible schedules,
this does not affect the schedule of three-node motifs.

Application-level mapping: to evaluate system-level per-
formance, we evaluate three DNN applications adapted from
TinyML [2]. These three DNN applications comprise 10, 13,
and 16 layers, respectively. Most layers are Convolution lay-
ers and DepthWiseConv layers.

0% 20% 40% 60% 80% 100%

Area 9%30%24%21%11%5%

Local Router Global Router Config Compute
Config Communication Compute Others

Figure 13. Area breakdown for Plaid’s CGRA fabric

7 Evaluation
To highlight the overprovisioned communication in CGRAs,
we compare CGRAs with equivalent theoretical throughput
(the same number of functional units) from three perspec-
tives: performance, energy consumption, and performance
per area. Second, we showcase Plaid’s scalability by evaluat-
ing larger architecture versions using a 3×3 PCU array, to
highlight Plaid can maintain efficiency as it scales. Third,
to evaluate the effectiveness of our mapper, we compare it
with popular CGRAmappers on Plaid. Finally, we implement
a domain-optimized Plaid and compare it with a domain-
optimized (specifically machine learning) spatio-temporal
CGRA.

A 2×2 prototype of Plaid reveals that the CGRA fabric oc-
cupies 33,366 𝜇𝑚2 of space, while the scratchpad memories
take up an additional 30,000 𝜇𝑚2. As illustrated in Figure 13,
the breakdown of the CGRA fabric area shows some inter-
esting insights. The communication hardware, including
routers and their configuration elements, makes up about
40% of the area. Meanwhile, the compute hardware and its
configuration take up 50% of the on-chip area. Plaid trims
down a significant portion of the redundant communication
resources and achieves a balance by aligning compute and
communication resources, leading to high utilization of both.
Our evaluation shows that Plaid delivers 1.40× perfor-

mance and saves 48% of the area compared to the energy-
minimal CGRAwhile achieving almost the same power. Com-
pared to high-performance spatio-temporal CGRA, Plaid re-
duces 43% power and saves 46% area without sacrificing
performance and generality. Furthermore, compared to the
domain-optimized spatio-temporal CGRA, Plaid can still sig-
nificantly improve energy and area efficiency.

atax
_u2
atax

_u4
bicg

_u2
bicg

_u4

chol
ek_u

2
chol

el_u
4
conv

2x2
conv

3x3

doit
gen_

u2

doit
gen_

u4

durb
in_u

2

durb
in_u

4
dwc

onv

dwc
onv

_u5 fc
fdtd

_u2
fdtd

_u4
gem

m_u
2

gem
m_u

4

gem
ver_

u2

gem
ver_

u4
gesu

m_u
2

gesu
m_u

4

gram
sc_u

2

gram
sc_u

4
jaco

bi
jaco

bi_u
2

jaco
bi_u

4
seid

el
seid

el_u
2
aver

age
0.4
0.6
0.8
1

1.2

N
or
m
al
iz
ed

to
ta
le
ne
rg
y

Spatio-temporal Spatial Plaid

Figure 14. Energy consumption of Plaid and a spatial CGRA normalized to a spatio-temporal CGRA.

atax
_u2
atax

_u4
bicg

_u2
bicg

_u4

chol
ek_u

2
chol

el_u
4
conv

2x2
conv

3x3

doit
gen_

u2

doit
gen_

u4

durb
in_u

2

durb
in_u

4
dwc

onv

dwc
onv

_u5 fc
fdtd

_u2
fdtd

_u4
gem

m_u
2

gem
m_u

4

gem
ver_

u2

gem
ver_

u4
gesu

m_u
2

gesu
m_u

4

gram
sc_u

2

gram
sc_u

4
jaco

bi
jaco

bi_u
2

jaco
bi_u

4
seid

el
seid

el_u
2

1

2

N
or
m
al
iz
ed

Pe
rf
/A

re
a

Spatio-temporal Spatial Plaid

Figure 15. Performance per area of Plaid and a spatial CGRA normalized to a spatio-temporal CGRA

DNN1 DNN2 DNN3

1.4

1.45

1.5

N
or
m
al
iz
ed

to
ta
le
ne
rg
y

(a) Energy consumption

DNN1 DNN2 DNN3

0.34
0.35
0.36
0.37

N
or
m
al
iz
ed

Pe
rf
/A

re
a

(b) Performance per area

Figure 16. Comparison of a spatial CGRA and Plaid (nor-
malized to Plaid) on three DNN applications adapted from
TinyML [2].

7.1 Plaid Achieves High Performance and High
Efficiency

Performance:We present the performance of each kernel
in terms of the number of cycles it takes for a complete execu-
tion on each architecture. Figure 12 presents the performance
comparison of Plaid and the baselines, all normalized to the
performance of a spatio-temporal CGRA. All three CGRAs
have 16 functional units (ALU and ALSU).

Overall, Plaid achieves almost the same performance com-
pared to a spatio-temporal CGRA. While maintaining the
same performance, it also achieves a 43% reduction in power
and 46% reduction area compared to the spatio-temporal
CGRA, demonstrating the need to the address the over-
provisioning. Moreover, Plaid even outperforms the spatio-
temporal CGRA on durbin_u4 and gemver_u4. The reason
is that the unrolling for these kernels enlarges the DFG but
does not significantly complicate the data dependency. For an
enlarged mapping space of the problem, the spatio-temporal
architecture tries to provide a complex solution to a sim-
ple problem and suffers from it. In contrast, Plaid can still
utilize motifs to generate superior performance. Moreover,
the spatio-temporal CGRA achieves better performance on

atax_u4, gramsc_u2, and sedidel_u2 than Plaid. The reason
is that more complex and long data dependencies are intro-
duced across multiple parts of the DFG during the unrolling
of these kernels, and motifs need more frequent long latency
communication with other nodes. Nevertheless, the aver-
age performance is almost the same between Plaid and the
spatio-temporal CGRA.
Compared to the baseline spatial CGRA, Plaid delivers a

1.40× improvement in performance. The spatial CGRA needs
to partition the DFG to handle complex kernels, introducing
more load and store operations to put intermediate data in
SPM. Spatial CGRA achieves the same performance with
Plaid and spatio-temporal CGRA for a few kernels, such as
fc, durbin_u2, dwconv, gramsc, and jacobi, The reason is that
these kernels have relatively simple data dependency and do
not need a lot of additional loads and stores for partitioning.

Energy consumption Figure 14 shows fabric energy con-
sumption comparison normalized to the spatio-temporal
CGRA. Plaid achieves 42.0% and 27.7% energy reduction
compared to spatio-temporal CGRA and spatial CGRA, re-
spectively. The similar performance and Plaid’s significant
reduction in power directly translates to a reduction in en-
ergy consumption over the spatio-temporal CGRA. Further-
more, Plaid improves the energy efficiency compared to spa-
tial CGRA, because it can deliver much better performance
with roughly the same power. A typical spatio-temporal or
spatial CGRA usually only achieves high performance or
high energy efficiency. Plaid demonstrates that through
aligning resource provisioning, a CGRA can be high-
performance, general, and efficient at the same time.

Performance per area Figure 15 presents the performance
per area comparison normalized to the baseline spatio-temporal

atax
_u2
atax

_u4
bicg

_u2
bicg

_u4

chol
ek_u

2
chol

el_u
4
conv

2x2
conv

3x3

doit
gen_

u2

doit
gen_

u4

durb
in_u

2

durb
in_u

4
fdtd

_u2
fdtd

_u4
gem

m_u
2

gem
m_u

4

gem
ver_

u2

gem
ver_

u4
gesu

m_u
2

gesu
m_u

4

gram
sc_u

2

gram
sc_u

4
jaco

bi
jaco

bi_u
2

jaco
bi_u

4
seid

el
seid

el_u
2
aver

age
aver

age
0.4
0.6
0.8
1

N
or
m
al
iz
ed

#
of

cy
cl
es

2×2 (4 PCUs) 3×3 (9 PCUs)

Figure 17. Scalability analysis: Performance of 3×3 Plaid compared to 2×2 Plaid

atax
_u2
atax

_u4
bicg

_u2
bicg

_u4
chol

es_u
2

chol
es_u

4
conv

2x2
conv

3x3

doit
gen_

u2

doit
gen_

u4

durb
in_u

2

durb
in_u

4
dwc

onv

dwc
onv

_u5 fc
fdtd

_u2
fdtd

_u4
gem

m_u
2

gem
m_u

4

gem
ver_

u2

gem
ver_

u4
gesu

m_u
2

gesu
m_u

4

gram
sc_u

2

gram
sc_u

4
jaco

bi
jaco

bi_u
2

jaco
bi_u

4
seid

el
seid

el_u
2
aver

age
0.5
1

1.5
2

N
or
m
al
iz
ed

#
of

cy
cl
es

PathFinder SA Plaid mapper

Figure 18. Performance of Plaid on using Plaid’s mapper compared to using a generic mapper

CGRA. Plaid achieves significant improvement in area effi-
ciency compared to the spatial and spatio-temporal CGRAs.
Spatial CGRA can achieve higher energy efficiency but lower
area efficiency compared to spatio-temporal CGRA. This
is because the spatial CGRAs clock-gate the configuration
memory and enable spatial dataflow-based mapping, directly
reducing the power, while still requiring similar area. Due to
the relatively complex data dependency in linear algebra, spa-
tial CGRA achieves less performance per area than the other
two domains. Plaid achieves a stable improvement compared
to spatio-temporal CGRA across the three domains, demon-
strating the capability to handle various applications.

Application-level comparison Figure 16 presents the en-
ergy consumption and performance per area comparison
between Plaid and spatial CGRA. We do not include spatio-
temporal CGRA as it achieves the same performance with
Plaid on every machine learning kernel. Spatial CGRA con-
sumes 1.42× energy and achieves 36% performance per area
compared to Plaid on average. With application-level com-
parison, we can find Plaid still achieves significant improve-
ment in energy consumption and performance per area.

In summary, Plaid can achieve high performance, high en-
ergy efficiency, and high performance per area, while spatio-
temporal CGRA can only achieve high performance, and
spatial CGRA can achieve high energy efficiency. Neverthe-
less, compared to an energy-efficient spatial CGRA, Plaid
achieves higher energy efficiency. This demonstrates that we
optimally align the computing and communication resource
provisioning with the proposed design.

7.2 Plaid’s Hierarchical Execution is Scalable
Figure 17 shows the performance comparison between 2×2
PCU array and 3×3 PCU array. We exclude DFGs that the 3x3

ST ST-M
L PlaidPlaid

-ML

1
1.2
1.4
1.6
1.8

N
or
m
al
iz
ed

en
er
gy

(a) Energy consumption

ST ST-M
L PlaidPlaid

-ML

0.6
0.8
1

1.2

N
or
m
al
iz
ed

Pe
rf
/A

re
a

(b) Performance per area

Figure 19. Comparison of domain-specialization in Spatio-
Temporal (ST) and Plaid. Numbers are normalized to Plaid.

Plaid cannot enhance the performance due to inter-iteration
data dependencies. 3×3 Plaid can achieve 1.71× performance
compared to 2×2 Plaid, demonstrating the scalability of the
Plaid architecture. The performance increase with the 3x3
Plaid does not reach the theoretical maximum for two rea-
sons. First, the performance might saturate at 2×2 Plaid,
limiting the additional benefits from the larger PCU array.
Secondly, the relationship between the number of nodes
in a DFG and the number of functional units affects perfor-
mance scaling. For instance, if a DFG comprises 40 nodes, the
theoretical minimum resource II for the 2x2 Plaid (with 16
functional units) and the 3x3 Plaid (with 36 functional units)
would be 3 and 2, respectively. If we can achieve minimal II
on both, 3×3 Plaid can only achieve 1.5× performance.
Figure 18 shows the performance comparison on Plaid

CGRA among the aforementioned CGRAmapper PathFinder,
Simulated Annealing (SA), and the Plaid mapper. The Plaid
mapper augments SA to support motif-based hierarchical
mapping. Thus, the main difference between the two map-
pers is motif scheduling. The Plaid mapper can achieve
1.25× and 1.28× performance improvements compared to the
PathFinder and SA mapper, respectively. Despite this, both

generic mappers can still utilize the hardware designed for
collective routing because the routing path is much shorter
via local routers. Plaid, in conjunction with PathFinder and
SA, can achieve comparable performance on several DFGs
with spatio-temporal CGRA, demonstrating the effective-
ness of the hardware design. However, both generic mappers
cannot fully utilize the Plaid architecture for more complex
DFGs, as they lack the capability to recognize and exploit mo-
tifs within DFGs, and are unable to handle the high routing
congestion because of the trimmed-down communication
circuitry. In contrast, our compiler can automatically identify
these motifs and exploit the hierarchical execution paradigm,
thereby maximizing the architectural benefits of Plaid.

7.3 Plaid Enhances Domain-Specialization
Figure 19 presents the comparison for various CGRAs: a
general spatio-temporal CGRA (ST), a machine learning-
optimized spatio-temporal CGRA (ST-ML), general-purpose
Plaid, and Plaid optimized for machine learning (Plaid-ML).
ST-ML is generated by pruning the function and bit width to
achieve higher energy efficiency and higher performance per
area [62]. As mentioned in Section 4.4, for the Plaid-ML, con-
nections for the motif compute units are hardwired instead
of being routed through local routers. We manually check
the machine learning DFGs and design Plaid-ML. Specifically,
Plaid-ML uses 2 hardwired fan-inmotifs, 1 unicast motif, and
1 fan-out motif for four PCUs, effectively accommodating the
motif requirements of our machine learning DFGs. In terms
of performance and energy efficiency, general-purpose Plaid
outperforms the domain-optimized ST-ML by reducing 18%
energy consumption and achieving a 1.26 × performance
per area. When comparing Plaid-ML to domain-optimized
ST-ML, Plaid-ML shows a significant improvement, reduc-
ing energy consumption by 25.5% and achieving a 1.46 ×
performance per area.

8 Related Work
Compute and communication resource provisioning:
HyCUBE [30] designs a single-cycle multi-hop NoC to im-
prove the capability to handle complex data dependencies.
Zhang et al. [77] propose a scalable hybrid network to im-
prove energy efficiency. Marionette [16] enhances network
efficiency by separating the control and data networks. Soft-
brain [47], Tartan [42], and Piperench [25] feature dedicated
PEs for each instruction. Snafu [22], Manic [24], Riptide [23],
Dyser [26], and Plasticine [52] enhance PEs with limited
dataflow semantics. While these designs emphasize resource
provisioning, they fail to check the collective misalignment
between compute and communication provisioning.
Enhancing efficiency: REVAMP [62] offers a framework
that derives low-power heterogeneous CGRAs from homo-
geneous ones based on user workloads. Vecpac [58] presents

a precision-aware CGRA that utilizes multiple 16-bit vec-
tor units to support higher data precision. OpenCGRA [60]
provides a framework for automatically generating hard-
wired processing elements for typically linear operation
“chains” in an application. APEX [40] and BERET [27] auto-
matically design, i.e., hard-wire parts of their circuit for fre-
quent sub-DFGs within a given domain, selecting one block
to process each code section. They potentially suffer from
under-utilization and over-provisioning of resources [53].
ML-CGRA [37] offers high-level compiler optimizations for
machine learning applications on CGRAs. CCA [4, 5] is one
of the early works to identify and accelerate subgraphs. It
features composable rows of functional units to accelerate
commonly observed dataflow semantics. However, its net-
work structure offers less flexibility with varying depths,
corresponding timing constraints, and configurations to ex-
plore depending on the targeted applications.
In contrast to the above architectures, Plaid’s reconfig-

urable network is designed with a more generalized under-
standing of (dataflow) graph structures independent of any
particular application. This allows for flexible and resource-
efficient compositions of functional units, capable of support-
ing any arbitrary range of patterns. Based on compositions
of 3-node motifs within DFGs, Plaid’s approach is inherently
more general, adaptable, and future-proof, as this structural
foundationwill remain consistent even as application kernels
change.

9 Conclusions
We introduce Plaid, a novel CGRA architecture and compiler
that addresses the misalignment of compute and commu-
nication resources. Plaid reduces power by 43% and area
by 46% compared to baseline spatio-temporal CGRAs while
maintaining high performance and generality. Plaid offers
1.40× performance and 48% area savings compared to energy-
efficient spatial CGRAs. Overall, Plaid represents a signif-
icant advancement in CGRA design, providing a balanced
solution thatmeets the demands of edge deviceswhile achiev-
ing high performance, high energy efficiency, and high gen-
erality.

Beyond its immediate benefit on CGRA design, our motif-
based execution paradigm offers an alternative to current
ad-hoc specialization approaches, where disparate acceler-
ator designs emerge due to the high cost of composition.
The fundamental insight of leveraging structural motifs for
collective execution could inform the design of other non-
CGRA architectures, providing a systematic framework to
improve efficiency while maintaining generality.

Acknowledgments
We would like to thank the anonymous reviewers for their
insightful comments. This research is supported by the Na-
tional Research Foundation, Singapore under its Competitive
Research Program Award NRF-CRP23-2019-0003.

References
[1] Mahesh Balasubramanian and Aviral Shrivastava. 2022. PathSeeker:

A Fast Mapping Algorithm for CGRAs. In 2022 Design, Automation
Test in Europe Conference Exhibition (DATE). 268–273.

[2] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman,
Nat Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian
Ahmed, Danilo Pau, et al. 2021. Mlperf tiny benchmark. arXiv preprint
arXiv:2106.07597 (2021).

[3] S Alexander Chin, Noriaki Sakamoto, Allan Rui, Jim Zhao, Jin Hee Kim,
Yuko Hara-Azumi, and Jason Anderson. 2017. CGRA-ME: A unified
framework for CGRA modelling and exploration. In 2017 IEEE 28th
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). IEEE, 184–189.

[4] Nathan Clark, Jason Blome, Michael Chu, Scott Mahlke, Stuart Biles,
and Krisztian Flautner. 2005. An architecture framework for trans-
parent instruction set customization in embedded processors. In 32nd
International Symposium on Computer Architecture (ISCA’05). IEEE,
272–283.

[5] Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and
Krisztian Flautner. 2004. Application-specific processing on a general-
purpose core via transparent instruction set customization. In 37th
international symposium on microarchitecture (MICRO-37’04). IEEE,
30–40.

[6] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou.
2014. A fully pipelined and dynamically composable architecture of
CGRA. In 2014 IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines. IEEE, 9–16.

[7] Gérard Cornuéjols and William H. Cunningham. 1985. Compositions
for perfect graphs. Discret. Math. 55, 3 (1985), 245–254. https://doi.or
g/10.1016/S0012-365X(85)80001-7

[8] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. 2021. Polygraph: Ex-
posing the value of flexibility for graph processing accelerators. In
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 595–608.

[9] Vidushi Dadu and TonyNowatzki. 2022. Taskstream: Accelerating task-
parallel workloads by recovering program structure. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 1–13.

[10] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. To-
wards general purpose acceleration by exploiting common data-
dependence forms. In Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 924–939.

[11] William J Dally, Yatish Turakhia, and Song Han. 2020. Domain-specific
hardware accelerators. Commun. ACM 63, 7 (2020), 48–57.

[12] Pranav Dangi, Thilini Kaushalya Bandara, Saeideh Sheikhpour, Tulika
Mitra, and Lieven Eeckhout. 2024. Sustainable Hardware Specialization.
arXiv preprint arXiv:2411.09315 (2024).

[13] Satyajit Das, Davide Rossi, Kevin JM Martin, Philippe Coussy, and
Luca Benini. 2017. A 142mops/mw integrated programmable array
accelerator for smart visual processing. In 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 1–4.

[14] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. 2018.
RAMP: Resource-aware mapping for CGRAs. In Proceedings of the 55th
Annual Design Automation Conference. 1–6.

[15] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. 2018.
Ureca: Unified register file for cgras. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1081–1086.

[16] Jinyi Deng, Xinru Tang, Jiahao Zhang, Yuxuan Li, Linyun Zhang,
Boxiao Han, Hongjun He, Fengbin Tu, Leibo Liu, Shaojun Wei, et al.
2023. Towards Efficient Control Flow Handling in Spatial Architecture
via Architecting the Control Flow Plane. In Proceedings of the 56th
Annual IEEE/ACM International Symposium onMicroarchitecture. 1395–
1408.

[17] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. 2011. Dark silicon and the end of multicore
scaling. In 2011 38th Annual International Symposium on Computer
Architecture (ISCA). 365–376.

[18] Kathleen Feng, Taeyoung Kong, Kalhan Koul, Jackson Melchert, Alex
Carsello, Qiaoyi Liu, Gedeon Nyengele, Maxwell Strange, Keyi Zhang,
Ankita Nayak, et al. 2023. Amber: A 16-nm System-on-Chip With
a Coarse-Grained Reconfigurable Array for Flexible Acceleration of
Dense Linear Algebra. IEEE Journal of Solid-State Circuits (2023).

[19] Kermin E Fleming, Kent D Glossop, Simon C Steely Jr, Jinjie Tang,
Alan G Gara, et al. 2020. Processors, methods, and systems with a
configurable spatial accelerator. US Patent 10,558,575.

[20] A. Fuchs and D. Wentzlaff. 2019. The Accelerator Wall: Limits of
Chip Specialization. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE Computer Society,
Los Alamitos, CA, USA, 1–14. https://doi.org/10.1109/HPCA.2019.00
023

[21] Taro Fujii, Takao Toi, Teruhito Tanaka, Katsumi Togawa, Toshiro
Kitaoka, Kengo Nishino, Noritsugu Nakamura, Hiroki Nakahara, and
Masato Motomura. 2018. New generation dynamically reconfigurable
processor technology for accelerating embedded AI applications. In
2018 IEEE symposium on VLSI circuits. IEEE, 41–42.

[22] Graham Gobieski, Ahmet Oguz Atli, Kenneth Mai, Brandon Lucia, and
Nathan Beckmann. 2021. Snafu: an ultra-low-power, energy-minimal
cgra-generation framework and architecture. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE,
1027–1040.

[23] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony
Nowatzki, Nathan Beckmann, and Brandon Lucia. 2022. Riptide: A
programmable, energy-minimal dataflow compiler and architecture.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[24] GrahamGobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc,
Nathan Beckmann, and Brandon Lucia. 2019. Manic: A vector-dataflow
architecture for ultra-low-power embedded systems. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture. 670–684.

[25] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi,
Matthew Moe, and R Reed Taylor. 2000. PipeRench: A reconfigurable
architecture and compiler. Computer 33, 4 (2000), 70–77.

[26] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin
Chhugani, Nadathur Satish, Karthikeyan Sankaralingam, and
Changkyu Kim. 2012. Dyser: Unifying functionality and parallelism
specialization for energy-efficient computing. IEEE Micro 32, 5 (2012),
38–51.

[27] Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and
David August. 2011. Bundled execution of recurring traces for energy-
efficient general purpose processing. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture. 12–23.

[28] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. 2014. Branch-
aware loop mapping on cgras. In Proceedings of the 51st Annual Design
Automation Conference. 1–6.

[29] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2018. Polybench:
The first benchmark for polystores. In Technology Conference on Per-
formance Evaluation and Benchmarking. Springer, 24–41.

https://doi.org/10.1016/S0012-365X(85)80001-7
https://doi.org/10.1016/S0012-365X(85)80001-7
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1109/HPCA.2019.00023

[30] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-
Shiuan Peh. 2017. Hycube: A cgra with reconfigurable single-cycle
multi-hop interconnect. In Proceedings of the 54th Annual Design Au-
tomation Conference 2017. 1–6.

[31] Changmoo Kim, Mookyoung Chung, Yeongon Cho, Mario Konijnen-
burg, Soojung Ryu, and Jeongwook Kim. 2014. Ulp-srp: Ultra low-
power samsung reconfigurable processor for biomedical applications.
ACM Transactions on Reconfigurable Technology and Systems (TRETS)
7, 3 (2014), 1–15.

[32] Yoonjin Kim and Rabi N Mahapatra. 2009. Hierarchical reconfigurable
computing arrays for efficient CGRA-based embedded systems. In
Proceedings of the 46th Annual Design Automation Conference. 826–
831.

[33] Arnold Knopfmacher and M. Mays. 2003. Graph Compositions I: Basic
Enumeration. (03 2003).

[34] Zhaoying Li, DhananjayaWijerathne, Xianzhang Chen, Anuj Pathania,
and Tulika Mitra. 2021. ChordMap: Automated Mapping of Streaming
Applications onto CGRA. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (2021).

[35] Zhaoying Li, Dhananjaya Wijerathne, and Tulika Mitra. 2022. Coarse-
Grained Reconfigurable Array (CGRA). Handbook of Computer Archi-
tecture (2022), 1–41.

[36] Zhaoying Li, DanWu, Dhananjaya Wijerathne, and Tulika Mitra. 2022.
Lisa: Graph neural network based portable mapping on spatial accel-
erators. In 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 444–459.

[37] Yixuan Luo, Cheng Tan, Nicolas Bohm Agostini, Ang Li, Antonino
Tumeo, Nirav Dave, and Tong Geng. 2023. ML-CGRA: an integrated
compilation framework to enable efficient machine learning accelera-
tion on CGRAs. In 2023 60th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1–6.

[38] Larry McMurchie and Carl Ebeling. 1995. PathFinder: A negotiation-
based performance-driven router for FPGAs. In Proceedings of the 1995
ACM third international symposium on Field-programmable gate arrays.
111–117.

[39] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and
Rudy Lauwereins. 2003. ADRES: An architecture with tightly coupled
VLIW processor and coarse-grained reconfigurable matrix. In Field
Programmable Logic and Application: 13th International Conference,
FPL 2003, Lisbon, Portugal, September 1-3, 2003 Proceedings 13. Springer,
61–70.

[40] Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly, Ritvik
Sharma, Clark Barrett, Mark A Horowitz, Pat Hanrahan, and Priyanka
Raina. 2023. Apex: A framework for automated processing element
design space exploration using frequent subgraph analysis. In Proceed-
ings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3. 33–45.

[41] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. 2002. Network motifs: simple building
blocks of complex networks. Science 298, 5594 (2002), 824–827.

[42] MahimMishra, Timothy J Callahan, Tiberiu Chelcea, Girish Venkatara-
mani, Seth C Goldstein, and Mihai Budiu. 2006. Tartan: evaluating
spatial computation for whole program execution. ACM SIGARCH
Computer Architecture News 34, 5 (2006), 163–174.

[43] Takashi Miyamori and Kunle Olukotun. 1999. REMARC: Reconfig-
urable multimedia array coprocessor. IEICE Transactions on informa-
tion and systems 82, 2 (1999), 389–397.

[44] QuanMNguyen and Daniel Sanchez. 2021. Fifer: Practical acceleration
of irregular applications on reconfigurable architectures. InMICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture.
1064–1077.

[45] Chris Nicol. 2017. A coarse grain reconfigurable array (CGRA) for
statically scheduled data flow computing. Wave computing white paper
(2017), 1–9.

[46] Tony Nowatzki, Newsha Ardalani, Karthikeyan Sankaralingam, and
Jian Weng. 2018. Hybrid optimization/heuristic instruction sched-
uling for programmable accelerator codesign. In Proceedings of the
27th International Conference on Parallel Architectures and Compilation
Techniques. 1–15.

[47] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan
Sankaralingam. 2017. Stream-dataflow acceleration. In Proceedings of
the 44th Annual International Symposium on Computer Architecture.
416–429.

[48] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam.
2015. Exploring the potential of heterogeneous von neumann/dataflow
execution models. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture. 298–310.

[49] Nobuaki Ozaki, Yoshihiro Yasuda, Mai Izawa, Yoshiki Saito, Daisuke
Ikebuchi, Hideharu Amano, Hiroshi Nakamura, Kimiyoshi Usami, Mi-
taro Namiki, and Masaaki Kondo. 2011. Cool mega-arrays: Ultralow-
power reconfigurable accelerator chips. IEEE Micro 31, 6 (2011), 6–18.

[50] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ah-
san, Neal Crago, Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit
Gambhir, Aamer Jaleel, et al. 2013. Triggered instructions: A control
paradigm for spatially-programmed architectures. ACM SIGARCH
Computer Architecture News 41, 3 (2013), 142–153.

[51] Hyunchul Park, Yongjun Park, and Scott Mahlke. 2009. Polymor-
phic pipeline array: a flexible multicore accelerator with virtualized
execution for mobile multimedia applications. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture.
370–380.

[52] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. 2017. Plasticine: A reconfigurable architecture for parallel
patterns. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 389–402.

[53] MeganWachs Omid Azizi Alex Solomatnikov Benjamin C. Lee Stephen
Richardson Christos Kozyrakis Rehan Hameed, Wajahat Qadeer and
Mark Horowitz. 2023. RETROSPECTIVE: Understanding Sources of In-
efficiency in General-purpose Chips. In ISCA@50 25-Year Retrospective:
1996-2020, José F. Martínez and Lizy K. John (Eds.). ACM SIGARCH
and IEEE TCCA. https://bit.ly/isca50_retrospective

[54] Karu Sankaralingam, Tony Nowatzki, Greg Wright, Poly Palamuttam,
Jitu Khare, Vinay Gangadhar, and Preyas Shah. 2021. Mozart: Design-
ing for software maturity and the next paradigm for chip architectures.
In 2021 IEEE Hot Chips 33 Symposium (HCS). IEEE, 1–20.

[55] Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann,
and Brandon Lucia. 2023. Pipestitch: An energy-minimal dataflow
architecture with lightweight threads. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture. 1409–1422.

[56] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J Kurdahi, Nader
Bagherzadeh, and Eliseu M Chaves Filho. 2000. MorphoSys: an in-
tegrated reconfigurable system for data-parallel and computation-
intensive applications. IEEE transactions on computers 49, 5 (2000),
465–481.

[57] Cheng Tan, Miaomiao Jiang, Deepak Patil, Yanghui Ou, Zhaoying Li,
Lei Ju, Tulika Mitra, Hyunchul Park, Antonino Tumeo, and Jeff Zhang.
2014. ICED: An Integrated CGRA Framework Enabling DVFS-Aware
Acceleration. In Proceedings of the 57th Annual IEEE/ACM International
Symposium on Microarchitecture.

[58] Cheng Tan, Deepak Patil, Antonino Tumeo, Gabriel Weisz, Steve Rein-
hardt, and Jeff Zhang. 2023. VecPAC: A Vectorizable and Precision-
Aware CGRA. In 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD). IEEE, 1–9.

[59] Cheng Tan, Chenhao Xie, Tong Geng, Andres Marquez, Antonino
Tumeo, Kevin Barker, and Ang Li. 2021. ARENA: Asynchronous Recon-
figurable Accelerator Ring to Enable Data-Centric Parallel Computing.

https://bit.ly/isca50_retrospective

IEEE Transactions on Parallel and Distributed Systems 32, 12 (2021),
2880–2892.

[60] Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, and Antonino Tumeo.
2020. OpenCGRA: An open-source unified framework for modeling,
testing, and evaluating CGRAs. In 2020 IEEE 38th International Confer-
ence on Computer Design (ICCD). IEEE, 381–388.

[61] Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, and Antonino Tumeo.
2021. Aurora: Automated refinement of coarse-grained reconfigurable
accelerators. In 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 1388–1393.

[62] Kaushalya Bandara Thilini, Dhananjaya Wijerathne, Tulika Mitra,
and Li-Shiuan Peh. 2022. REVAMP: A Systematic Framework for
Heterogeneous CGRA Realization. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems.

[63] Christopher Torng, Peitian Pan, Yanghui Ou, Cheng Tan, and Christo-
pher Batten. 2021. Ultra-Elastic CGRAs for Irregular Loop Special-
ization. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 412–425.

[64] Matthew Vilim, Alexander Rucker, Yaqi Zhang, Sophia Liu, and Kunle
Olukotun. 2020. Gorgon: Accelerating machine learning from rela-
tional data. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 309–321.

[65] Dani Voitsechov and Yoav Etsion. 2014. Single-graph multiple flows:
Energy efficient design alternative for gpgpus. ACM SIGARCH com-
puter architecture news 42, 3 (2014), 205–216.

[66] Dani Voitsechov, Oron Port, and Yoav Etsion. 2018. Inter-thread com-
munication in multithreaded, reconfigurable coarse-grain arrays. In
2018 51st Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO). IEEE, 42–54.

[67] Bo Wang, Manupa Karunarathne, Aditi Kulkarni, Tulika Mitra, and
Li-Shiuan Peh. 2019. HyCUBE: A 0.9 V 26.4 MOPS/mW, 290 pJ/op,
Power Efficient Accelerator for IoT Applications. In 2019 IEEE Asian
Solid-State Circuits Conference (A-SSCC). IEEE, 133–136.

[68] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah,
and Tony Nowatzki. 2020. Dsagen: Synthesizing programmable spatial
accelerators. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 268–281.

[69] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony
Nowatzki. 2020. A hybrid systolic-dataflow architecture for inductive
matrix algorithms. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 703–716.

[70] Sebastian Wernicke. 2006. Efficient detection of network motifs.
IEEE/ACM transactions on computational biology and bioinformatics 3,
4 (2006), 347–359.

[71] Dhananjaya Wijerathne, Zhaoying Li, Thilini Kaushalya Bandara, and
Tulika Mitra. 2022. PANORAMA: divide-and-conquer approach for
mapping complex loop kernels on CGRA. In Proceedings of the 59th
ACM/IEEE Design Automation Conference. 127–132.

[72] Dhananjaya Wijerathne, Zhaoying Li, Manupa Karunarathne, Anuj
Pathania, and Tulika Mitra. 2019. Cascade: High throughput data
streaming via decoupled access-execute cgra. ACM Transactions on
Embedded Computing Systems (TECS) 18, 5s (2019), 1–26.

[73] DhananjayaWijerathne, Zhaoying Li, Manupa Karunaratne, Li-Shiuan
Peh, and Tulika Mitra. 2022. Morpher: An open-source integrated
compilation and simulation framework for cgra. In Fifth Workshop on
Open-Source EDA Technology (WOSET).

[74] Dhananjaya Wijerathne, Zhaoying Li, and Tulika Mitra. 2023. Acceler-
ating Edge AI with Morpher: An Integrated Design, Compilation and
Simulation Framework for CGRAs. arXiv preprint arXiv:2309.06127
(2023).

[75] DhananiayaWijerathne, Zhaoying Li, Anuj Pathania, TulikaMitra, and
Lothar Thiele. 2021. Himap: Fast and scalable high-quality mapping

on CGRA via hierarchical abstraction. In 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 1192–1197.

[76] Dan Wu, Peng Chen*, Thilini Kaushalya Bandara, Zhaoying Li, and
Tulika Mitra. 2023. Flip: Data-Centric Edge CGRA Accelerator. ACM
Transactions on Design Automation of Electronic Systems 29, 1 (2023),
1–25.

[77] Yaqi Zhang, Alexander Rucker, Matthew Vilim, Raghu Prabhakar,
William Hwang, and Kunle Olukotun. 2019. Scalable interconnects
for reconfigurable spatial architectures. In 2019 ACM/IEEE 46th An-
nual International Symposium on Computer Architecture (ISCA). IEEE,
615–628.

	Abstract
	1 Introduction
	2 Background And Motivation
	3 Hierarchical Execution with Motifs
	3.1 Collective Routing
	3.2 Three-node Structural Motif

	4 Plaid Architecture
	4.1 Plaid PCU
	4.2 Hierarchical Network-on-Chip
	4.3 Configuration
	4.4 Efficient Domain-Specialization

	5 Plaid Compiler
	5.1 Mapping Problem Formulation
	5.2 Mapping DFG onto CGRA

	6 Experimental Methodology
	6.1 Architecture Synthesis
	6.2 Compiler and Execution
	6.3 Baseline CGRAs
	6.4 Workloads

	7 Evaluation
	7.1 Plaid Achieves High Performance and High Efficiency
	7.2 Plaid's Hierarchical Execution is Scalable
	7.3 Plaid Enhances Domain-Specialization

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

