
Automated and Context-Aware Repair of Color-Related
Accessibility Issues for Android Apps

Yuxin Zhang
College of Intelligence and

Computing, Tianjin University
Tianjin, China

yuxinzhang@tju.edu.cn

Sen Chen∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

senchen@tju.edu.cn

Lingling Fan
College of Cyber Science, Nankai

University
Tianjin, China

linglingfan@nankai.edu.cn

Chunyang Chen
Monash University

Australia
chunyang.chen@monash.edu

Xiaohong Li
College of Intelligence and

Computing, Tianjin University
Tianjin, China

ABSTRACT
Approximately 15% of the world’s population is suffering from

various disabilities or impairments. However, many mobile UX de-
signers and developers disregard the significance of accessibility for
those with disabilities when developing apps. It is unbelievable that
one in seven people might not have the same level of access that
other users have, which actually violates many legal and regulatory
standards. On the contrary, if the apps are developed with accessi-
bility in mind, it will drastically improve the user experience for all
users as well as maximize revenue. Thus, a large number of studies
and some effective tools for detecting accessibility issues have been
conducted and proposed to mitigate such a severe problem.

However, compared with detection, the repair work is obviously
falling behind. Especially for the color-related accessibility issues,
which is one of the top issues in apps with a greatly negative impact
on vision and user experience. Apps with such issues are difficult to
use for people with low vision and the elderly. Unfortunately, such
an issue type cannot be directly fixed by existing repair techniques.
To this end, we propose Iris, an automated and context-aware repair
method to fix the color-related accessibility issues (i.e., the text con-
trast issues and the image contrast issues) for apps. By leveraging a
novel context-aware technique that resolves the optimal colors and
a vital phase of attribute-to-repair localization, Iris not only repairs
the color contrast issues but also guarantees the consistency of the
design style between the original UI page and repaired UI page. Our
experiments unveiled that Iris can achieve a 91.38% repair success
rate with high effectiveness and efficiency. The usefulness of Iris
has also been evaluated by a user study with a high satisfaction
rate as well as developers’ positive feedback. 9 of 40 submitted pull
requests on GitHub repositories have been accepted and merged

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616329

into the projects by app developers, and another 4 developers are ac-
tively discussing with us for further repair. Iris is publicly available
to facilitate this new research direction.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software.

KEYWORDS
Mobile accessibility, Accessibility issue repair, Color-related acces-
sibility issue, Android app

ACM Reference Format:
Yuxin Zhang, Sen Chen, Lingling Fan, Chunyang Chen, and Xiaohong Li.
2023. Automated and Context-Aware Repair of Color-Related Accessibility
Issues for Android Apps. In Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616329

1 INTRODUCTION
Nowadays, mobile applications (apps) are ubiquitous [17, 18,

82, 84]. In addition to providing various functional services for
users, the importance of mobile accessibility has gained increasing
attention from both industry and academia [14, 68, 75, 79]. Mobile
accessibility refers to making apps more accessible to people with
disabilities when they are using mobile phones [76]. Besides its
special significance for the disabled, if the developers design a
mobile app that has more accessible features such as screen readers
(TalkBack for Android [78], VoiceOver for iOS [6]), they will be able
to reach a larger number of audiences. To this end, governments
have established laws to help eliminate barriers in electronic and
information technology for people with disabilities [42, 43] and
leading IT companies (e.g, Google, Apple, Microsoft, Meta, and
IBM) have established their accessibility teams to improve app
accessibility [5, 27, 35, 46, 57].

In recent years, a large number of empirical studies have been
conducted to investigate the characteristics of app accessibility [3,
16, 23, 58, 63, 64, 75, 80]. These studies unveiled that almost all apps
are suffering from accessibility issues [3, 16, 49]. To mitigate such
a severe problem, a series of effective automated approaches for

ar
X

iv
:2

30
8.

09
02

9v
1

 [
cs

.S
E

]
 1

7
A

ug
 2

02
3

https://doi.org/10.1145/3611643.3616329
https://doi.org/10.1145/3611643.3616329

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yuxin Zhang, Sen Chen, Lingling Fan, Chunyang Chen, and Xiaohong Li

detecting app accessibility issues have been proposed such as An-
droid Lint [33], Espresso [39], Robolectric [41], Google Accessibility
Scanner [32], Google Accessibility Testing Framework (ATF) [38],
MATE [25], LabelDroid [15], AccessiText [4], Latter [66], Ground-
hog [67], and Xbot [16]. Yet, too many accessibility issues make
it difficult to effectively repair in practice. For example, the result
in [16] shows that there are 40 issues for each app and 6.5 issues
for each page on average. In addition to the bottlenecks from a
large number of issues, the various categories of issues further limit
repair efficiency. In other words, it is unrealistic for app developers
to repair these issues within apps even with substantial human
effort (also proved by the developers’ feedback in § 4.3).

To address this problem, researchers tried to fix these issues
by leveraging automated repair approaches, but such effort is in
its infancy. Specifically, Alotaibi et al. [1] proposed a genetic algo-
rithm guided by a fitness function to automatically repair size-based
accessibility issues in apps. Moreover, the issues related to item
labels (i.e., missing content labels) can be mitigated by different
existing approaches such as social annotation techniques [83], deep
learning algorithms [15, 56], and crowd-sourcing techniques [12].
However, in addition to the above two issue categories with a large
proportion, the issues of text or image contrast are also very serious,
which is one of the most prevalent accessibility issues that affect
mobile apps [3, 13, 16, 64]. As shown in Figure 1, text or image con-
trast, also known as color-related accessibility issues, occurs when
the color contrast between the text/image and the background is
less than the minimum ratio specified by the accessibility guide-
lines [13, 77]. Such issues make the apps difficult to use, not only
for people with low vision but also for all users. Linares-Vásquez et
al. [48] proposed a method to generate a brand-new color scheme
for the UI, intending to reduce the energy consumption of the GUI
in Android apps. Although it also changes the color of the UI page,
it is completely different from its original color scheme, and the
scenario of their work is completely different from this paper.

There are also techniques for repairing accessibility issues of
web pages [50–53, 60]. However, they focused more on Mobile
Friendly Problems, such as Font sizing, Tap target spacing, Con-
tent sizing, Viewport configuration (i.e., sizing issue), and Flash
usage (i.e., rendering issue), which can inspire the repair of size-
related issues, however, cannot benefit color-based accessibility
issues. Moreover, to help meet contrast requirements on web pages,
several works [45, 69] focused on recommending color pairs by sim-
ply adjusting the color values of texts, however, they did not pay
attention to the original design style of the web page. Additionally,
the implementation mechanisms are significantly different for web
apps and Android apps, which directly distinguish repair solutions.

Thus, it is actually a non-trivial task due to the following chal-
lenges: C1: The color-related changes should ensure to maintain
the consistency of the design style between the original UI pages
and repaired UI pages.C2: The UI components with issues and their
corresponding attribute to be modified need to be accurately lo-
cated and determined. Meanwhile, it should be determined whether
the involved image files that are relevant to the image contrast
issues really need to be modified. C3: The repaired results need to
be evaluated and confirmed by real users and developers.

To address these above challenges, we proposed Iris, an auto-
mated and context-aware approach to repairing the color-related

(a) Text contrast (b) Image contrast

Allow Location
Choose a storage to

start benchmarking X

Figure 1: Examples of color-related accessibility issues in
apps.

accessibility issues for Android apps. Specifically, to address C1,
we design a novel context-aware technique that resolves the opti-
mal colors by leveraging the well-designed criteria for color value
resolving and the color reference DB construction. The context-
aware technique can ensure the design style consistency between
the repaired UI pages and original UI pages for apps. For C2, taking
the selected colors as input, we use an attribute-to-repair localiza-
tion method by analyzing the source code of relevant layout files
to determine the component attributes that should be modified.
Meanwhile, the repair constraints parsing step helps to determine
if the image contrast issues need to be really fixed. Based on these
key phases, the issues within the apps can be effectively repaired
and validated before a new repaired APK (Android Application
Package) file is released. Last but not least, to address C3, we carry
out a comprehensive and well-designed user study to help evaluate
our repaired results. We also submit a number of pull requests for
real GitHub projects to help improve the accessibility of their apps.

To evaluate the effectiveness, efficiency, and usefulness of Iris,
we designed a series of experiments on 100 real-world apps, includ-
ing both closed-source and open-source apps. The results show that
Iris performs a high repair success rate of 91.38% and costs 2.27
minutes per app on average. Finally, based on the user study re-
sults and the developers’ feedback, we highlight that Iris can really
help developers fix color-related accessibility issues and practically
improve the app accessibility. The user study results also show that
the consistency of the original design style is well maintained from
the perspective of both the UI page and the app level. Till now,
we have submitted 40 pull requests on GitHub repositories and 9
projects have merged our repaired results, and another 4 developers
are actively discussing with us for further repair.

In summary, we make the main contributions as follows.
• To the best of our knowledge, Iris is the first automated
approach proposed to repair color-related accessibility issues
for Android apps. We make the tool and relevant data public
available on GitHub,1 to facilitate new research areas for
improving app accessibility.
• We propose a novel context-aware technique that resolves
the optimal colors to ensure the consistency of design style
between the required UI pages and the original UI pages.
Additionally, a color reference DB collected from 9,978 apps
has been constructed and released to help resolve the optimal
color value for the color selection.

1https://github.com/iris-mobile-accessibility-repair/iris-mobile

https://github.com/iris-mobile-accessibility-repair/iris-mobile

Automated and Context-Aware Repair of Color-Related Accessibility Issues for Android Apps ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

0 20 40 60

Original UI

Repaired UI

#Participants with normal vision

// Implemented by XML code
<TextView android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:textColor="#80ff0000"
android:text="Hello"/>

<Button android:background="#80ff0000"/>

// Implemented by Java code
TextView tv = (TextView)this.findViewById(R.id.tv);
tv.setTextColor(0xff000000);

1
2
3
4
5
6
7
8
9
10

Figure 2: Examples of color-related layout implementation.

• The experiments on 100 real-world apps including both
closed-source apps and open-source apps demonstrate the ef-
fectiveness and efficiency of our approach. A well-designed
user study clearly demonstrates the usefulness of our ap-
proach. Moreover, the positive feedback from real developers
has also highlighted the practicality of Iris.

2 PRELIMINARY
2.1 Color-related Accessibility Issue

As shown in Figure 1, color-related accessibility issue includes
two types: text contrast issue and image contrast issue. The former
corresponds to visible text, where there is a low contrast ratio
between the text color and background color. The latter refers
to images with a low contrast ratio between the foreground and
background colors. The visual presentation of text and text images
has a contrast of at least 4.5:1 (text below 18 point regular or 14 point
bold), while the contrast of large-scale text (18 point and above
regular or 14 point and above bold) and large-scale text image
is at least 3:1 (required by Web Content Accessibility Guidelines
(WCAG) [77] and Google Accessibility Guidelines for Android [37]).
These two types of issues frequently occur in apps [3, 13, 16] and
significantly reduce the app accessibility. Specifically, the examples
shown in Figure 1 have a big visual problem even for all people,
not just for people with disabilities (e.g., people with low vision
and the elderly).

2.2 Color-related Layout Implementation
There are 2 main ways to implement the color setting of UI

components [34]. As shown in Figure 2, we can use XML layout
code to set the color property for different UI components. For
example, we can use “android:textColor” (Line 4) to draw the color
for the text of TextView and “android:background” (Line 6) to config
the color for the background of Button. The same functionalities can
be completely replaced by Java code by using the corresponding
APIs like #setTextColor() (Line 10).

2.3 Reports Collected from Detection Tools
The input required for repair needs to be obtained from the

Google official accessibility testing framework (ATF) [38], a library
collecting variable accessibility-related checks on View objects as
well as AccessibilityNodeInfo objects. Among the existing acces-
sibility issue detection tools using ATF [4, 25, 32, 39–41, 66, 67],
Xbot [16], which is a fully automated approach for detecting all

0 20 40 60

Original UI

Repaired UI

#Participants with normal vision // Details of detection report
Text contrast: "a2dp.Vol:id/pi_tv_name"
The item's text contrast ratio is 1.04. This ratio is based on an estimated
foreground color of #FFFFFF and an estimated background color of #FAFAFA.
Consider increasing this item's text contrast ratio to 3.00 or greater.
// Part of layout file provided by Xbot
<node bounds="[131,362][1080,493]" selected="false"
content-desc="" package="a2dp.Vol" class="android.widget.TextView"
resource-id="a2dp.Vol:id/pi_tv_name"
text="A2DP Volume" index="1"/>

1
2

3
4
5
6
7

Figure 3: The example of report generated by Xbot [16].

types of accessibility issues based on the ATF and Google Acces-
sibility Scanner [32], has the ability to explore the app UI with
high activity coverage, and can effectively and efficiently collect a
relatively comprehensive dataset of accessibility issues. Therefore,
we finally choose Xbot as our issue detection and collection tool,
which takes as input an APK file and outputs its exploration and
detection results. Figure 3 is a partial example of the detection re-
port and layout file provided by Xbot. The detection report prompts
the type of the accessibility issue (i.e., text or image contrast), the
unique identification of the component (i.e., resource-id and node
bounds), and the specific information of the issue. Moreover, Xbot
also provides the rendered UI screenshot for each activity.

2.4 Default Solution in Android
Android OS provides support for addressing color-related acces-

sibility issues [31]. The repair strategy is that the system setting of
“High Contrast Text” will change the UI components of used apps
to black or white according to the original color, trying to make the
text on the device easier for the user to read. However, after this
setting is turned on, the text of all colors in the app will be changed
into white or black, which will completely change the design style
of the UI pages.

3 APPROACH
Figure 4 shows an overview of Iris, which takes as input an APK

file along with the issue reports, and outputs a repaired APK file
without color-related accessibility issues. There are no special re-
strictions on the input APK, while the required reports are provided
by ATF [38]. Iris consists of three main phases: (1) Reference DB con-
struction, which analyzes the UI components without color-related
issues from a large number of detection results, and constructs a
reference database to further help select optimal color. (2) Context-
aware color selection, which is a novel context-aware technique
that resolves the optimal value of the color replacement through
two strategies based on our well-designed criteria for color value
resolving. (3) Attribute-to-repair localization, which is used to locate
the position of relevant UI components and further determine the
attributes of components that need to be modified. After that, Iris
replaces the attributes of the problematic UI component with the
resolved optimal color value and updates the corresponding layout
files or source code to repair the app.

3.1 Reference DB Construction
To provide reference values for selecting the optimal value of

the replacement colors, the goal of this phase is to construct a

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yuxin Zhang, Sen Chen, Lingling Fan, Chunyang Chen, and Xiaohong Li

Figure 4: Overview of Iris.

reference database containing a dataset without color-related issues
(i.e., meet the requirements of standard color contrast).We highlight
the replacement color selected from the database that has been used
in real apps and accepted by the app designers.

Based on our investigation of the detection reports, we notice
that if we only consider the color used by the app itself, it may
be difficult to find a replacement color that can be applied, since
most UI components in an app generally share the same color
value. Therefore, it is essential to construct a database composed
of multiple APKs instead of only relying on an app itself. Mean-
while, we investigated that different types of UI components (e.g.,
Button, EditText, and TextView) have different display styles. There-
fore, the influence of the category of components needs also be
thought about in the reference database construction. Based on
these primary investigations, (1) Owing to a significant number of
accessibility issue reports detected by Xbot [16], we first collect all
UI components without contrast issues for all selected APKs. Mean-
while, we categorize this dataset by the UI component type. (2) In
a similar manner, for each APK, we also collect the UI components
without issues.

The purpose of building the database is to obtain the color pairs
composed of the foreground color and background color of each UI
component. For the component dataset without issues, the reports
do not involve the specific value of the color pair of UI components,
so we need to make further efforts to compute the value of the color
pairs. In this process, we extract the values of the key foreground
and background colors from the screenshot of each UI component.
The color composition of a single component is relatively simple
and usually consists of only the background color and the color of
the text or image on it. Therefore, we use #getcolors() [61] in the
image module to return the two most used colors in the screenshot.
After judging that the result meets the required contrast, the color
pair is returned as a replacement value for reference.

3.2 Context-aware Color Selection
Given a component with color-related accessibility issues, the

goal of this phase is to determine the optimal replacement color for
components, which do not violate the standard color contrast on
the premise of maintaining the style of the original design as much
as possible (i.e., context-aware). This is also the innovation of our
approach, that is, to ensure style consistency at all design levels.When
resolving the optimal replacement color, two aspects need to be
considered: (1) For a component with low contrast, how to decide
whether to change the foreground color or background color, or
both? (2) What is the strategy of color selection and what are the
criteria for color value resolving under the selection strategy?

For question (1), many UI components usually share an area
with the same background color or call the same resource defining
the background color, on one page of an app. Therefore, choosing

Color from app itself

+
Color from

Similar
Activity

Color from
Same Type of

UI Component

Selected
Colors

Complementary Strategy

Optimal Color Selection
Criteria for Color
Value Resolving

Standard for consistent
color saturation

Hue consistency
standard of the UI page Color from app itself

Color from same type of
UI components

② Complementary strategy

Context-aware Color Selection
Criteria for Color
Value Resolving

Consistency of UI
component design

Consistency of UI
page design

①

Figure 5: The workflow of context-aware color selection.

to modify the value of the background color is too easy to have a
chain reaction, which may change the color contrast between the
foreground and background of other UI components, or even lower
than the standard value, and introduce new accessibility issues.
The risk caused by this modification is high. Compared with the
background color, the foreground color is relatively independent,
usually expressed as the color of the text in the component or the
main color of a picture. When the foreground color changes, it
would probably not trigger changes in other parts of the UI page.
Therefore, our approach takes priority to modifying the foreground
color of the problematic component with the goal of obtaining the
optimal solution for the replacement color.

After determining the target to be modified, the next problem to
be solved is to find the replacement color required for modification.
The most important thing is to keep the original UI style unchanged.
Therefore, for question (2), as shown in Figure 5, we propose two
strategies of color selection.

3.2.1 Color Selection Strategy. Two situations: ① the color replace-
ment based on the reference DB. Through this strategy, we can get
the replacement color from the app itself or the dataset filtered by
the same component types in other apps. Specifically, if we can find
alternative colors from the app itself, we can directly use the colors
defined and used by this app itself for replacement, which is more
in line with the color selection intention of the app designers. If no
suitable replacement color can be found in the app itself, we will
consider the same component types collected from other apps. Be-
cause the same types of components probably share similar design
styles. ② Complementary strategy will be applied if we cannot find
a replacement color from the reference DB. This strategy chooses
the replacement color by directly modifying the original foreground
color for the problematic component while maintaining the design
style of the UI component and the coordination of the UI page.

3.2.2 Criteria for Color Value Resolving (Context-aware). Note that
the replacement color matched from the reference DB by using the
background color of the problematic component is a set of color
candidates. Meanwhile, a reference is also required to directly mod-
ify the value of the original color when using the complementary
strategy. Thus, to maintain the original design style of the app as
much as possible, we define two criteria for color value resolving.
① Consistency of UI component design: the hue and saturation
level are consistent with the original color of UI component. ②

Consistency of UI page design: the hue is more harmonious with
the overall hue of the UI page.
Consistency of UI component design. From the perspective of
component design, the color matching of components represents

Automated and Context-Aware Repair of Color-Related Accessibility Issues for Android Apps ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

the designer’s intention. UI designers usually first consider the hue
of components when setting colors for them, such as the color of
red or blue. In addition, colors with the same hue but different
saturations also have great visual differences. Actually, various
saturations produce a variety of visual impacts and attractions. For
example, a color with high saturation is bright, which can make the
main body stand out from the background, while a low saturation
color can give people a low-key and subtle feeling. Therefore, when
considering the designer’s intention to the greatest extent and
ensuring that the replacement color is relatively consistent with
the original color, it is crucial that the hue and saturation level of
the replacement color and the original color should be consistent.
We use HSV (hue-saturation-value) [59] to meet such a criterion
since the HSV color model is consistent with the way humans
describe colors, and allows independent control of hue, saturation,
and intensity (value). The HSV values of colors can be calculated
using their RGB values by formulas (1)∼(3) [71].

𝐻 =

0, 𝑀𝑎𝑥 = 𝑀𝑖𝑛

60 × 𝐺−𝐵
𝑀𝑎𝑥−𝑀𝑖𝑛

, 𝑀𝑎𝑥 = 𝑅

60 × 𝐵−𝑅
𝑀𝑎𝑥−𝑀𝑖𝑛

+ 120, 𝑀𝑎𝑥 = 𝐺

60 × 𝑅−𝐺
𝑀𝑎𝑥−𝑀𝑖𝑛

+ 240, 𝑀𝑎𝑥 = 𝐵

(1)

𝑆 =

{
0, 𝑀𝑎𝑥 = 0
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀𝑎𝑥
, 𝑀𝑎𝑥 ≠ 0 (2)

𝑉 = 𝑀𝑎𝑥 (3)
where R, G, and B represent red, green, and blue values of the
RGB of one color, and “Max” and “Min” represent the maximum
and minimum values between R, G, and B values. These formu-
las operate on values in the form of decimal numbers. Based on
this standard, according to the Practical color coordinate system
(PCCS) [44, 65], we divide the calculated saturation value from 0
to 1 into three saturation levels: low (0∼0.33), medium (0.34∼0.67),
and high (0.68∼1). When filtering the replacement color values, we
only retain the candidate values with the same hue and saturation
level as the original color.
Consistency of UI page design. As shown in Figure 6, when
considering the color coordination degree of the whole UI page,
we leverage eight harmonic types defined on the hue channel of
the HSV color wheel as the second criterion [22]. Each type shows
the hue color distribution in the harmonic template (the size of the
gray area is fixed, but the position is not fixed, and it can rotate
around the center of the circle). In other words, if all the hues of a
UI page fall in the gray area of a certain harmonic type, the color
replacement of the page is considered to be harmonic.

Using the two strategies with two criteria defined in Figure 5,
we can get the final optimal color for replacement. As shown in
Algorithm 1, before calculating the optimal replacement color value,
Iris will obtain the set of colors available for replacement from the
reference DB (𝐶𝑜𝑙𝑜𝑟𝑆𝑒𝑡𝑟𝑒 𝑓) and calculate the optimal harmonic
type and deflection angle corresponding to the UI page (𝑏𝑒𝑠𝑡𝑇 and
𝑏𝑒𝑠𝑡𝐴𝑙𝑝ℎ𝑎). After obtaining the inputs, we calculate the HSV value
of the original color first (Line 1). Then, by judging whether the
hue and saturation level of the replaceable candidate color is con-
sistent with the original color (Consistency of UI component design),
a ColorSet (Line 2∼Line 5) that meets the consistent color hue and
saturation standard is selected from the set of replaceable candidate

T type N type i type I type

V type X type L type Y type

Figure 6: Eight harmonic types for color value resolving.

colors. If the ColorSet is not empty, the distance between each color
in the ColorSet and the shadow part of the optimal harmonic type is
calculated (Line 8). The smaller the distance is, the more consistent
the hue consistency standard of the UI page is (Consistency of UI
page design). The color with the smallest distance is selected from
the ColorSet as the optimal replacement color (Line 10).

If the ColorSet is empty, it means no appropriate color can be
selected for replacement from the existing reference DB. To find a
suitable replacement color, we use the complementary strategy to
directly modify the HSV value of the original color. If the original
color is black, white, gray, and other achromatic system colors (neu-
tral colors), since there is only a difference in brightness between
them, it is only necessary to adjust the brightness (V) value of the
original color up and down until the changed color meets the stan-
dard color contrast (Line 13). At this time, since the changed color
is still neutral, the hue (H) channel of the HSV color wheel of the
whole UI page will not be affected (Consistency of UI page design).
The saturation (S) value of the original color is also not changed.
But if the original color belongs to the color system (not neutral
colors), adjust the value of H and S on the premise that the hue and
saturation level is consistent with the original color (Consistency
of UI component design): (1) Adjust the value of H first, and then
adjust the value of S to obtain the replaceable value 𝑐𝑜𝑙𝑜𝑟𝐻𝑆 (Line
15). (2) Adjust the value of S first, and then adjust the value of H to
obtain 𝑐𝑜𝑙𝑜𝑟𝑆𝐻 (Line 16). Finally, the color closest to the original
color is selected as the optimal replacement color among the two
replaceable colors (Line 17).

3.3 Attribute-to-repair Localization
After obtaining the optimal color for repairing UI components,

this phase aims to localize the components and determine the at-
tributes to be repaired. Although the input detection report contains
specific information about accessibility issues, the specific location
and the attributes that need to be modified cannot be directly de-
termined. There are several challenges. (1) First of all, color-related
accessibility issues include two types of problems. These two types
are different in repair objects and repair methods. For example, for
text contrast issues, we need to repair the color attribute of the text
in the UI components. For the issues of image contrast, we need to
replace or modify the involved images. (2) Secondly, even for the
same type of issues, the attributes and the repair conditions to be
modified will be different. (3) In addition, how to decide the location
of the layout code (or source code) of the relevant components in

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yuxin Zhang, Sen Chen, Lingling Fan, Chunyang Chen, and Xiaohong Li

Algorithm 1: Context-aware Color Selection Algorithm
Input:𝐶𝑜𝑙𝑜𝑟𝑜𝑟𝑔 : The problematic color with contrast issue
𝐶𝑜𝑙𝑜𝑟𝑆𝑒𝑡𝑟𝑒𝑓 : The color candidates selected from reference DB
𝑏𝑒𝑠𝑡𝑇 : The optimal harmonic type of the corresponding UI page
𝑏𝑒𝑠𝑡𝐴𝑙𝑝ℎ𝑎 : The deflection angle of the optimal harmonic type
Output:𝐶𝑜𝑙𝑜𝑟𝑜𝑝𝑡 : The selected optimal color

1 𝐻0 ,𝑆0 ,𝑉0 ← 𝑔𝑒𝑡𝐻𝑆𝑉 (𝐶𝑜𝑙𝑜𝑟𝑜𝑟𝑔)
2 foreach 𝑐 ∈ 𝐶𝑜𝑙𝑜𝑟𝑆𝑒𝑡𝑟𝑒𝑓 do
3 𝐻 ,𝑆 ,𝑉 ← 𝑔𝑒𝑡𝐻𝑆𝑉 (𝑐)
4 if 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝐻𝑢𝑒(𝐻0 , 𝐻) and 𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆0 , 𝑆)

then
5 𝐶𝑜𝑙𝑜𝑟𝑆𝑒𝑡 .append(𝑐)

6 if 𝐶𝑜𝑙𝑜𝑟𝑆𝑒𝑡 is not null then
7 foreach 𝑐 ∈ 𝐶𝑜𝑙𝑜𝑟𝑆𝑒𝑡 do
8 𝑑 ← 𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏𝑒𝑠𝑡𝑇 , 𝑏𝑒𝑠𝑡𝐴𝑙𝑝ℎ𝑎 , 𝑐)
9 𝐷𝑖𝑠𝑆𝑒𝑡 [𝑐] = 𝑑

10 𝐶𝑜𝑙𝑜𝑟𝑜𝑝𝑡 ←𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑖𝑠𝑆𝑒𝑡)

11 else
12 if 𝑖𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙𝐶𝑜𝑙𝑜𝑟 (𝐶𝑜𝑙𝑜𝑟𝑜𝑟𝑔) then
13 𝐶𝑜𝑙𝑜𝑟𝑜𝑝𝑡 ← 𝑎𝑑 𝑗𝑢𝑠𝑡𝑉 (𝑉0 ,𝐶𝑜𝑙𝑜𝑟𝑜𝑟𝑔)

14 else
15 𝐶𝑜𝑙𝑜𝑟𝐻𝑆 ← 𝑎𝑑 𝑗𝑢𝑠𝑡𝐻𝑆(𝐻0 , 𝑆0 ,𝐶𝑜𝑙𝑜𝑟𝑜𝑟𝑔)
16 𝐶𝑜𝑙𝑜𝑟𝑆𝐻 ← 𝑎𝑑 𝑗𝑢𝑠𝑡𝑆𝐻 (𝐻0 , 𝑆0 ,𝐶𝑜𝑙𝑜𝑟𝑜𝑟𝑔)
17 𝐶𝑜𝑙𝑜𝑟𝑜𝑝𝑡 ←𝑚𝑖𝑛𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝐶𝑜𝑙𝑜𝑟𝑜𝑟𝑔 ,𝐶𝑜𝑙𝑜𝑟𝐻𝑆 ,𝐶𝑜𝑙𝑜𝑟𝑆𝐻)

18 return𝐶𝑜𝑙𝑜𝑟𝑜𝑝𝑡

the UI layout files of the app through the existing detection report
is also a big challenge. In this phase, Iris treats these two types
of issues separately and decides the attributes to be modified by
analyzing both the layout code and the source code.

3.3.1 Localization of the related UI components. The input
report contains two types of tips about the information of the
components: “Component ID” and “Bounds” of a component in the
layout. Note that the layout file here refers to the layout file gained
by Xbot, denoted by Xbot-Layout, which is different from those
obtained by decompiling the APK file, denoted byDecompile-Layout.
To localize the relevant components to be repaired, we analyze
these two different types of information. (1) For component ID,
since ID is unique to objects, we can directly locate the property
set of the corresponding component in the Decompile-Layout (or
source code) according to the component ID (Figure 8). (2) For
the bounds of a component, the report displays Bounds instead
of ID because Xbot sometimes failed to detect the component ID.
Meanwhile, the attribute “bounds” does not exist in the Decompile-
Layout files. Thus, to locate the relevant components, we can find
the text information of the component according to the bounds in
Xbot-Layout, and choose tomatch through theAndroid:text attribute
in Decompile-Layout (the steps 1∼3 in Figure 7).

3.3.2 Acquisition of the related attribute-to-repair. Iris uses
static data-flow analysis to extract relevant attribute sets shown
in Figure 7 and Figure 8. Firstly, Iris parses the app to extract the
layout files and Smali code. Then, through the above analysis, Iris
completes the localization of the relevant components and obtains
the attribute sets for each component. For the two types of acces-
sibility issues, the attributes-to-repair are different. (1) For text
contrast issues, the components are generally TextView, EditText,
and Button, which are prone to such problems. At this time, the

com.DartChecker:id/statistikbutton
The image's contrast ratio is 1.89. This ratio is based on an estimated foreground color of #303030
and an estimated background color of #5A595B. Consider increasing this ratio to 3.00 or greater.

<ImageButton android:id="@id/statistikbutton" android:layout_width="50.0dip"
android:layout_height="wrap_content" android:src="@drawable/statsimg"/>

<vector android:tint="#DCDCDC" android:height="24.0dip" android:width="24.0dip"
android:viewportWidth="24.0" android:viewportHeight="24.0"></vector>

Original

Detection report

Layout.xml

drawable/statsimg.xml
drawable/statsimg.png

#303030 (Selected Color) Repaired

①

②

③

④
⑤

[42,101][440,172]
The item's text contrast ratio is 1.30. This ratio is based on an estimated foreground color of #FFFFFF and an
estimated background color of #DBE2EF. Consider increasing this item's text contrast ratio to 3.00 or greater.

Detection report

<node bounds="[42,101][440,172]" content-desc="" package="ch.famoser.mensa"
class="android.widget.TextView" resource-id="" text="Dozentenfoyer"/> Layout.xml

<string name="action_share">Share log file</string>
<string name="app_name">Dozentenfoyer</string> String.xml

<application android:name="ch.famoser.mensa.app.DozenttenfoyerApplication"
android:theme="@style/AppTheme" android:label="@string/app_name"> layout.xml

<style parent="@style/AppBaseTheme" name="AppTheme">
<item name="preferenceTheme">@style/NetMonPreferenceThemeOverlay</item>
<item name="titleTextColor">#FFFFFF</item></style>

style.xml

#646464 (Selected Color) Repaired

①

②

③

④

⑤ ⑥

Original

Figure 7: Example of attribute-to-repair localization for text
contrast.

foreground color refers to the color of the text in the component,
and the background color is the color of the component background.
Therefore, for such issues, the object to be repaired is mainly the
color of the text in these components. However, since the text in
EditText is mainly used for input hints and the text color is gen-
erally light, the color contrast of the component does not have
to meet the standard requirements, and such components need
to be filtered out in the localization stage. To conclude, the main
attributes involved include Android:textcolor, Android:textcolorlink,
Android:titletextcolor, and other attributes, or set the attributes in
the style file accordingly (the step 5 in Figure 7). Figure 7 shows
an example of attribute-to-repair localization for text contrast. (2)
For image contrast issues, the frequently occurring components
mainly include ImageButton and ImageView. At this time, the issue
with low contrast is the contrast between the image color and the
background color of the component. Therefore, to prevent the im-
pact on other components in the UI, we choose the image in the
component as the repair object. The first step is to get the image
files that need to be repaired. Among them, the source file of an
image can be directly associated with the UI component through
the attribute definition in the layout file. For example, as shown
in Figure 8, images can be associated by setting the property values
of Android:src or Android:background related to the components.
Android:src=“@drawable/statsimg” can be mapped directly to the
file name in the resource folder (res/drawable/statsimg.png). Figure 8
shows an example of attribute-to-repair localization for image con-
trast. At this time, the goal of repair is to change the color setting
of the image in the component. However, some images are actually
not suitable for modification, so we need to filter out them and
conduct repairing, which is elaborated as follows.

3.3.3 Repair constraints of images. To distinguish the images
suitable to be repaired, we divide these images into “functional
images” and “ornamental images” according to the display inten-
tion. We choose to modify the images or icons that focus more on
using functions, such as return, add, cancel, and share icons, or
images representing these meanings, which we refer to as “func-
tional images”. For the “ornamental images”, if we change the color
of the image, the display function of the image may be different

Automated and Context-Aware Repair of Color-Related Accessibility Issues for Android Apps ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

com.DartChecker:id/statistikbutton
The image's contrast ratio is 1.89. This ratio is based on an estimated foreground color of #303030
and an estimated background color of #5A595B. Consider increasing this ratio to 3.00 or greater.

<ImageButton android:id="@id/statistikbutton" android:layout_width="50.0dip"
android:layout_height="wrap_content" android:src="@drawable/statsimg"/>

<vector android:tint="#DCDCDC" android:height="24.0dip" android:width="24.0dip"
android:viewportWidth="24.0" android:viewportHeight="24.0"></vector>

Original

Detection report

Layout.xml

drawable/statsimg.xml
drawable/statsimg.png

#303030 (Selected Color) Repaired

①

②

③

④
⑤

[42,101][440,172]
The item's text contrast ratio is 1.30. This ratio is based on an estimated foreground color of #FFFFFF and an
estimated background color of #DBE2EF. Consider increasing this item's text contrast ratio to 3.00 or greater.

Detection report

<node bounds="[42,101][440,172]" content-desc="" package="ch.famoser.mensa"
class="android.widget.TextView" resource-id="" text="Dozentenfoyer"/> Layout.xml

<string name="action_share">Share log file</string>
<string name="app_name">Dozentenfoyer</string> String.xml

<application android:name="ch.famoser.mensa.app.DozenttenfoyerApplication"
android:theme="@style/AppTheme" android:label="@string/app_name"> layout.xml

<style parent="@style/AppBaseTheme" name="AppTheme">
<item name="preferenceTheme">@style/NetMonPreferenceThemeOverlay</item>
<item name="titleTextColor">#FFFFFF</item></style>

style.xml

#646464 (Selected Color) Repaired

①

②

③

④

⑤ ⑥

Original

Figure 8: Example of attribute-to-repair localization for im-
age contrast.

from before. Therefore, we only choose to repair the “functional im-
ages”. Iris distinguishes these two types of images by a lightweight
static analysis technique that determines whether the images are
associated with event handler methods. The trigger behavior of
a component is usually associated with the “clickable” attribute
in the layout file. Therefore, we judge whether the corresponding
image is classified as a “functional image” by checking the relevant
attributes of the problematic component. Then we execute the opti-
mal color selection algorithm and change the color composition of
the original image by changing the value of the color model [47] of
the pixel of the image, such as RGB [73] and RGBA [74], which ap-
plies to vector images in resources and other types of user-uploaded
non-vector images such as PNG or JPG.

After obtaining the replacement color and locating the attribute
to be modified, Iriswill directly replace the original values that have
issues, including the replacement of color values and image files.
Iris then repackages the replaced file to get a new APK. Moreover,
during repair, we also consider many other aspects such as the
judgment of foreground and background color, to solve the possible
detection errors of foreground and background color in the detec-
tion reports. Sometimes, the set of the foreground color and the
background color is reversed in the detection process, such as when
the detection report indicates the foreground color as #298670 and
the background color as #EDF064, when in reality, they are exactly
the opposite. Before repair, we capture screenshots of the UI pages
and extract the color information from them to ascertain the true
color composition of each component.

4 EXPERIMENTS
To make the experiments we designed better evaluate our ap-

proach, we raise the following questions:
• RQ1:How effective and efficient is Iris in repairing the color-
related accessibility issues?
• RQ2: How much does each key strategy of Iris contribute
to the overall performance?
• RQ3: How useful is Iris from the perspective of mobile users
and app developers?

Dataset. For reference DB construction, we randomly collected
9,978 real apps, including 5,081 open-source apps from F-Droid [26]
and 4,897 closed-source apps from Google Play. For RQ1 and RQ2,
considering the time cost of testing, we randomly selected 100 apps

Table 1: Results for effectiveness evaluation of Iris.

Issue Type
Real
Issues

Repaired
Issues

Success
Rate (%)

Text Contrast 660 618 93.6
Image Contrast 71 50 70.4

Total 731 668 91.38

with an average size of approximately 6MB as experimental subjects,
of which the number of open-source apps and closed-source apps is
50 and 50, respectively, and used Iris to automatically repair them.
It should be noticed that these 100 apps do not appear in the dataset
(i.e., 9,978) used in reference DB construction.

4.1 RQ1: Effectiveness and Efficiency Evaluation
4.1.1 Setup. To answer RQ1, we compare the detection results of
100 apps before and after repair. First, we use the Xbot [16] tool to
conduct a preliminary detection on the tested apps and count the
color-related accessibility issues of those apps before repair. Then,
we take the detection results and APK files as input, use the Iris to
repair the color-related accessibility issues of these apps one by one,
repackage them, and output new APK files. To get the results after
repair, we use the Xbot tool to detect the repaired APK files again
and obtain the detection results. We evaluate the effectiveness of
Iris by comparing the number of repaired issues and the issues in
the same original app. The success rate for the 𝑖𝑡ℎ app mentioned
here is denoted by 𝑅𝑒𝑝𝑎𝑖𝑟𝑅.

𝑅𝑒𝑝𝑎𝑖𝑟𝑅𝑖 =
𝑁
𝑅𝑒𝑝𝑎𝑖𝑟𝑑𝑖𝑠𝑠𝑢𝑒
𝑖

𝑁
𝐴𝑙𝑙𝑖𝑠𝑠𝑢𝑒
𝑖

× 100% (4)

Additionally, to evaluate the efficiency of Iris, we record the
execution time for these 100 apps and compute the average time to
demonstrate the performance.

4.1.2 Result. The results of the effectiveness evaluation (RQ1)
are shown in Table 1. The column “# Real Issues” represents the
number of issues of the text and image contrast contained in all
100 apps. Note that, we removed a part of issues when counting
the number of real issues for repairing. The removing parts include
(1) the EditText components as we mentioned in § 3.3.2, (2) the
false positive cases caused by wrong screenshots in the detection
reports, and (3) the causes altered by the system design style (the
problem also introduced in [3]). Finally, we have 660 real issues
with text contrast and 71 real issues with image contrast, which
owns the most issues among all the issue types, accounting for
30.17%. Remarkably, because a component, uniquely marked by ID,
may be applied to different pages or the same page multiple times,
there may be two or three issues caused by the same component.
At this time, the property only needs to be modified once, which
belongs to components with the same ID. As for text contrast,
Table 1 shows that the number of issues of 100 apps before the
repair is 660. Among them, there are 618 issues that have been
repaired successfully, accounting for a 93.6% success repair rate and
including 413 different UI components. The repair rate unveils that
our tool can effectively reduce the number of text contrast issues.
The root causes of the remaining 42 unresolved issues are as follows.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yuxin Zhang, Sen Chen, Lingling Fan, Chunyang Chen, and Xiaohong Li

Repaired UIDetected Issues Repaired UIDetected Issues Repaired UIDetected Issues Repaired UIDetected Issues

Figure 9: Examples of repaired issues.

Table 2: Evaluation of the key phrase (context-aware color
selection).

Category
Repaired issues
by reference DB

Repaired issues
by direct modification

Text Contrast 569 49
Image Contrast 39 11

Total 608 60

(1) For some components, although we have located their locations
and initial attribute sets during the repair process and have tried
to repair them, the user’s actions may cause the components to
appear in different states during the running of the app, failing
the repair. Because the color rendering is implemented in complex
source code supported by new reconstructed API interfaces of third-
party libraries, rather than the official APIs introduced in Figure 2.
(2) Errors are due to the shortcomings of using bounds to locate
attributes. In the process of issue detection, the detection tool cannot
obtain the ID of some components, so we use the text information
of the component according to the bounds to achieve positioning,
and the positioning effect is not as good as using ID.

For the issues of image contrast, Table 1 shows that there are 71
image issues before repair, and 50 problems were repaired by Iris,
including 35 different components. Therefore, the success rate of
image contrast is 70.4%. There are still 21 issues that have not been
solved for the reason of the shortcomings of using bounds to locate.
Finally, the overall success rate of the two types of issues is 91.38%,
and the total number of issues repaired is 668. Figure 9 presents
several examples of the repair results by Iris. More examples can
be found on our website [11].

Apart from evaluating the effectiveness of Iris in the number of
repairs, we also record the execution time of Iris in practice. When
repairing an APK, Iris will first use Xbot to detect the accessibility
issues in it, update the reference DB, and then start to automatically
repair. Finally, the average time of issue detection and DB updating
is 100.7 seconds, and the average time of repair is 136.2 seconds.
Compared with manual repair, Iris can greatly shorten the time
of attribute localization and provide a feasible reference value for
color replacement. Thus, Iris has high time efficiency.

4.2 RQ2: Ablation Study
4.2.1 Setup. In RQ2, we aim to evaluate the key phases (i.e.,
context-aware color selection and attribute-to-localization). For the
localization, the accuracy of this phase is consistent with 𝑅𝑒𝑝𝑎𝑖𝑟𝑅

(i.e., 91.38%). For context-aware color selection, there are two strate-
gies to obtain the optimal replacement color: (1) selected from
reference DB; (2) direct modification based on the complementary
strategy. We also use Xbot to detect the accessibility issues of APK
before and after repair and investigate the number of repaired issues
by each strategy.

4.2.2 Result. As shown in Table 2, for the issue of text contrast
and image contrast, the proportions of the two strategies are 569:49
and 39:11, respectively. We can see that 91.02% of the issues in the
selected 100 apps can be repaired by the reference DB, indicating
the reference color DB plays an important role in the phase of
context-aware color selection. Since the color pairs in reference
DB are all from real apps, their color matching is recognized and
loved by the designers and users of those apps, which also proves
the rationality of our replacement. That is also the reason why
we prefer to utilize the reference DB to repair issues as many as
possible at first. Meanwhile, there are also some issues (i.e., 60) that
cannot be repaired by the reference DB, while they can still be fixed
by the complementary strategy. Although the replacement colors
obtained using the complementary strategy do not appear in the
apps in the existing DB, they also meet the standards, including the
color contrast and two designed criteria.

4.3 RQ3: Usefulness Evaluation
To evaluate the usefulness of Iris, on the one hand, it is neces-

sary to conduct a user study on the repaired UI page and repaired
app. Meanwhile, the consistency of the design style between the
original UI pages and repaired UI pages as well as the design style
of the app level also should be evaluated by the validation from
real users. On the other hand, the pull requests that are accepted by
real app developers on GitHub will make our repair results more
convincing in a real scenario. During this process, the feedback
from real developers facilitates the iterative improvement of Iris.

4.3.1 User study from app users. Dataset. To compare the ef-
fects before and after repair from the app users’ perspective, (1)
we randomly selected 12 pairs of UI pages from the repaired UIs.
Each pair of pages consists of the original UI and the repaired UI.

Automated and Context-Aware Repair of Color-Related Accessibility Issues for Android Apps ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

0 20 40 60 80 100

Original UI

Repaired UI

Both of them

Participants with nomal vision # Participants with low vision

0 10 20 30 40 50 60

[2,3)

[3,4)

[4,5)

5

Participants

Figure 10: Participants’ preference between the original UI
pages and repaired UI pages.

Then, we divided the 12 pairs of pages into two groups as a control
experiment (for Task 1). (2) To facilitate the scoring of participants,
we randomly selected other 7 pairs of pages (for Task 2). In each
pair, besides the original UI page and the repaired UI page, we
also added the UI page with the circled issues. (3) To evaluate the
overall coordination of the design style of the repaired apps, we
randomly selected 3 apps according to the different levels of the UI
page number, whose UI page numbers are 4, 8, and 14 (for Task 3).
Among them, the number of issues in each app is not less than 10.
Participant recruitment.We recruited 32 participants from our
university, including 20 who are near-sighted (16 participants for
Task 1 and Task 2 (both of them are near-sighted), and 16 partici-
pants for Task 3). None of them has used the repaired apps, which
excludes the potential bias. The participants are from different
countries, including Singapore, the United States, Germany, and
China. These participants include undergraduates, postgraduates,
PhD students, and staff.
Setup. For app users, we design user research from two levels (i.e.,
the UI level and the app level). At the UI level, we investigate the
user’s preference for the UI pages before and after repair in Task
1 and the user’s satisfaction with the repair effect of Iris in Task
2. The purpose of Task 1 is to demonstrate the usefulness of Iris
for different users. To achieve it, we divided the page screenshots
before and after repair into two groups, looked for people who
are nearsighted with over 2.0 diopters as participants in this part,
and asked them to make preference choices for the two groups of
screenshots without glasses (simulating people with special vision)
and with glasses (normal vision). In this step, the order of each
pair of screenshots is random and marked separately. We request
participants to replicate the real-world usage conditions as closely
as possible when making their selections, which aims to accurately
simulate the authentic experiences of diverse user groups.

The purpose of Task 2 is to test the repair effect of Iris through
the score of participants. We showed the users the original UI page,
the detection UI page with the issue identification (the problematic
component is circled), and the repaired UI page. Meanwhile, we also
explained to the participants what is the color-related accessibility
issues and the goal of Iris. In this part, we randomly look for partici-
pants to rate the repair effect of Iris and explain the shortcomings of
the repair or their suggestions. The main evaluation criteria are: ①

Whether the issues are successfully repaired. ② Whether the design
style of the UI page after the repair is consistent with the original
design style. ③ Whether the color matching of the whole UI page

0 20 40 60 80 100

Original UI

Repaired UI

Both of them

Participants with nomal vision # Participants with low vision

0 10 20 30 40 50 60

[2,3)

[3,4)

[4,5)

5

Participants

Figure 11: Distribution of participants’ scores.

Table 3: Results of Task 3.

App Package Component UI Page

𝐶𝑅𝑒
𝐴𝑙𝑙

𝐶𝑈𝑛
𝐴𝑙𝑙

𝐶𝑈𝑛
𝑅𝑒

𝑃𝑅𝑒
𝐴𝑙𝑙

𝑃𝑈𝑛
𝐴𝑙𝑙

𝑃𝑈𝑛
𝑅𝑒

jp.co.hateblo.bomberhead 11 3.88 1.12 4 0.69 0.13
com.guidoo.lulo.booxx 17 5.69 1.69 7 1.56 0.38
ch.rmy.android.http 10 2.50 0.88 8 1.81 0.37

after the repair is coordinated. ④ Whether the color changes are
minimal. ⑤ Score on the Likert scale ranging from 1 to 5.

At the app level, we evaluate the overall coordination of the
repaired app through user research (Task 3). The goal of Task 3 is
to verify whether Iris performs well in maintaining overall color
harmony within the app. We asked the participants to circle the UI
pages and uncoordinated components in each app and counted the
proportion of repaired components among the circled components.
It is worth noting that we set the same resolution and the same
page size for each UI screenshot, ensure that each participant can
see the same screenshot, and eliminate the impact of other factors
on user selection.
User study result. The results of the user study are shown in Fig-
ure 10 and Figure 11. Figure 10 shows the preference of participants
with different vision levels for the UIs before and after repair, in
which the blue bar chart represents the preference of participants
with low vision and the orange bar chart represents the choice of
participants with normal vision. On the whole, our repair is more
attractive to people with low vision. Under the condition of low
vision (without glasses), almost all participants chose the repaired
page (94.80%). Meanwhile, under normal vision, only one-third of
the results of page preferences are the original pages, and more
than half (56.3%) of the results are the repaired pages. This also
shows that the effect of our repair is also accepted and liked by
most people, which can effectively solve the impact of low contrast
on the viewing effect of people with weak vision. We also investi-
gated the reasons why some participants chose the original page.
For example, they said that they preferred the color matching of
the original UI on the premise that they could see the text content.
There is no doubt that this color preference has the participants’
personal aesthetic standards.

Figure 11 shows the distribution of participants’ score results on
the repair effect of Iris under the condition of known issues (both
participants’ scores are greater than 3). More than one-third of the
results (36.6%) are full scores (i.e., 5), and the results higher than 4
accounts for 81.3% of all scores. The final calculated average score
is 4.218. Most of the participants said that the color contrast of the

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yuxin Zhang, Sen Chen, Lingling Fan, Chunyang Chen, and Xiaohong Li

Table 4: Feedback from app developers.

App # Star Version IssueID Issue State
OpenPods 613 v1.7 (18) #142 Merged

motioneye-client 27 v1.0.0-alp9 (10000008) #22 Merged
TapUnlock 28 v2.1.0 beta (13) #5 Merged
ItsDicey 4 v1.0.1 (2) #3 Merged

greentooth 20 v1.12 (5) #4 Merged
knightsofalentejo 8 v5.0.0-RC-1 (5021) #6 Merged
mundraub-android 32 v1.236 (237) #326 Merged

DriSMo 23 v1.0.3 (17) #4 Merged
Icicle for Freenet 10 v0.4 (4) #5 Merged
Anki-Android 5.4k v2.15.6 (21506300) #10472 Positive Response

ActivityManager 69 v4.2.0 (415) #6 Positive Response
Mensa 9 v1.7.0 (38) #5 Positive Response

mundraub-android 32 v1.236 (237) #326 Positive Response

repaired UI was improved and easy to read, the replacement color
selected during repair is also more coordinated with the style of the
original UI, and the feeling of the page is better than the original
UIs. In addition, some participants said that the repair of Iris is
more effective for people with low vision, and the color matching
of the original UI also has practical advantages under the condition
of normal vision.

Table 3 shows the feedback results of users on the overall co-
ordination of the repaired apps at the app level. 𝐶𝑅𝑒

𝐴𝑙𝑙
and 𝑃𝑅𝑒

𝐴𝑙𝑙
respectively represent the number of components and UI pages
repaired by Iris, while 𝐶𝑈𝑛

𝐴𝑙𝑙
and 𝑃𝑈𝑛

𝐴𝑙𝑙
respectively represent the

average number of components and UI pages that are considered
uncoordinated by the user. While 𝐶𝑈𝑛

𝑅𝑒
and 𝑃𝑈𝑛

𝑅𝑒
are the number of

components repaired by Iris and contained in the components or UI
pages circled by users (considered uncoordinated with the design
style of the original app). It can be seen that the components and
UI pages repaired by Iris are rarely considered to be uncoordinated
with the original app, which also indicates that when Iris is applied
to an app with color-related issues including multiple UI interfaces,
the color selected by Iris is consistent with the original app design.

4.3.2 Feedback from app developers. Setup. To understand
the views of app developers, we randomly selected 40 open-source
apps containing color-related accessibility issues from F-Droid [26]
and used Iris to repair them, aiming to obtain feedback from them
about our issue repair results. Although there are many issues
detected and repaired in each app, to investigate how different app
developers of specific apps act towards accessibility issues and the
repair result, we randomly selected one issue from each app and
submit pull requests in the corresponding GitHub repositories, in
which we introduced the focus of Iris, implementation functions,
and the repair results to developers. We also asked for comments
about Iris, the repair result, and suggestions for improvement.
Result. As shown in Table 4, till now, we received 9 merged pull
requests and 4 positive comments. Meanwhile, we display the app
name, app version, the number of stars, and the id of the pull re-
quests in this table. During the traceability analysis, the developers
claimed “That looks interesting” [9] and “Good you made a PR and
bring in your knowledge” [10] in their feedback, indicating the use-
fulness and practicability of Iris. Figure 12 shows an example of
feedback from an app developer. She pays attention to repairing
such issues and hopes to have tools that uncover and directly fix
accessibility issues. Although we find that some developers even

Figure 12: Feedback from the real app developers.

do not know about these contrast issues [24], they have realized
the importance of accessibility through Iris and want to use it to
automatically repair their apps, which shows that Iris is meaning-
ful. At the same time, other developers think that their limitation
is the time to implement the fixes and worry about the difficulty
of positioning. They also hope to have a tool that can automati-
cally analyze relevant issues, and Iris just implements this function
and realizes the positioning of related components and automated
recommendation of replacement colors, which shows that Iris has
practical significance. More importantly, Iris can clearly make more
developers aware of these issues, so they can effectively avoid them
during development.

5 DISCUSSION
5.1 Limitations
5.1.1 Scope-to-repair. (1) Iris repairs the apps based on the input
test results, so we only repair the problematic components raised
in the test report until now. If there are other components with
color-related accessibility issues, but they are not detected by the
detection tool, Iris will not repair them. In addition, most of the
repair failures are due to the limitations of bounds shown in our
experiments in § 4.1. Although using bounds can effectively solve
the problem of text contrast, it cannot accurately locate the problem
of image contrast. So the repair rate of image contrast is slightly
lower. But if the information identifying the components in the
detection report is more accurate, the less this restriction will be. In
fact, although the repair of the apps highly depends on the detection
report, if the other effective detection tools can be integrated in the
future, Iris also works for them because it is scalable in practice.

5.1.2 Object-to-repair. (2) Iris adopts the method of static analysis
in the localization and repair stage to analyze and extract attributes
from the app UI layout file and its resource file. However, the prop-
erties of some components are set in the app source code. Currently,
we can only handle the basic implementation by Java or Kotlin code
such as using official API like setTextColor, as shown in Figure 2. We
noticed that some third-party libraries provide new API interfaces
to restructure the official APIs. Iris cannot resolve the restructured
implementations, but they actually do not belong to the research
scope of our work. Similarly, Jetpack uses a new view structure
to implement GUIs, therefore, Iris has restrictions on apps using
Jetpack. Based on our experiments and investigation, most apps use
the traditional Android XML layouts (i.e., Android View) to design
and implement their UI pages. Therefore, the current version of Iris
is applicable to most recent apps.

Automated and Context-Aware Repair of Color-Related Accessibility Issues for Android Apps ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

5.2 Threats to validity
As we mentioned in § 4.2, the proportion of the first strategy di-

rectly depends on the size of the color reference DB we constructed
in advance. If the size changes, the proportions of the first strategy
will change accordingly. We are continuing to expand the reference
DB by running more apps. In fact, under the current situation, the
proportion of the first strategy is already the largest, that is, it has
the greatest impact on the color selection results.

6 RELATEDWORK
6.1 Accessibility Issue Repair
6.1.1 Mobile platform. For mobile accessibility, automated repair
has been a fresh research direction in recent years. Most of the
existing studies focused on the issue categories with high propor-
tions such as the issues of item label and touch target. As for the
item label issues, the goal of repair is to augment or predict the
missing content labels for UI components. For example, Zhang et
al. [83] developed methods for robust annotation of app interface
elements by leveraging social annotation techniques that have been
used on the web. Chen et al. [15] trained a deep learning model
named LabelDroid to predict the missing labels. COALA [56] was a
similar work based on using deep learning algorithms. Moreover,
crowd-sourcing techniques are also used to recommend the labels
of UI components in [12]. In terms of touch target issues, named
size-based accessibility issues, Alotaibi et al. [1] leveraged a genetic
algorithm guided by a fitness function to automatically repair them.
All above studies focus on addressing one specific type of issue due
to the diverse characteristics of different issues.

Compared with these studies, we focus on the other issue cat-
egories including text contrast and image contrast, named color-
related accessibility issues. However, this category is of great im-
portance and critical not only for its high proportion but also for
the impact of mobile accessibility.

6.1.2 Web platform. Substantial efforts are put into automatically
fixing accessibility problems in web settings [50–52, 54, 60], but
some of them focused more on Mobile Friendly Problems, which
can inspire the repair of size-related issues, however, cannot benefit
color-based accessibility issues. In the works related to color-related
accessibility issues, the re-coloring tool [30] enhanced the acces-
sibility of the entire page by changing the color matching of the
entire web page. Tools [45, 62, 69] that modify the color match-
ing of some web components with accessibility issues also tried to
improve the contrast of components by changing the problematic
text background color pairs, but they all lack consideration of the
overall design style of the original web page. Last but not least,
the implementation mechanisms are significantly different for web
apps and Android apps, which directly distinguish repair solutions.

6.2 Accessibility Issue Detection and Analysis
Compared with mobile app testing including functional test-

ing [28, 29, 72, 81] and security testing [19–21], mobile app accessi-
bility testing is studied to a lesser extent. Silve et al. [70] surveyed
the available approaches for detecting accessibility issues. The exist-
ing approaches can be categorized into static and dynamic methods.

Android Lint [33] can report missing content labels, but it is inef-
fective for other issue categories. Accessibility Scanner [32] can
detect issues with the help of manual exploration of the app but
is limited to the low activity coverage. To mitigate such problems,
Eler et al. [25] developed a model, named MATE, by generating
testing cases specifically for accessibility testing. Similarly, Salehna-
madi et al. proposed Latte [66] and Groundhog [67] by reusing
tests written by developers or automatically generated to validate
the accessibility of those use cases. Recently, Alshayban et al. [3]
detected issues by deploying Monkey [36]. However, in a recent
work, Chen et al. [16] identified such a solution is not effective and
they further proposed Xbot to automatically detect accessibility
issues by leveraging app instrumentation and data-flow analysis.
Recently, several works [2, 55] have also focused on the interactive
accessibility of apps when users with disabilities are using Assistive
Technologies, such as TalkBack [78] and VoiceOver [6].

A large number of empirical studies focused on investigating
the characteristics of mobile accessibility. Ross et al. [63] unveiled
some common labeling issues. Their following work [64] studied
the properties of each accessibility type. Yan et al. [80] investigated
if the apps violate the accessibility guidelines and further introduced
the degree of violation. Vendome et al. [75] proposed a taxonomy
in terms of the aspects of accessibility issues by analyzing the
developers’ posts on Stack Overflow. Alshaybana et al. [3] proposed
a metric named inaccessibility issue rate to measure the distribution
of such a metric for each app, each issue type, and app categories.
Moreover, they also observed this research field from app developers
and users. Chen et al. [16] also conducted a large-scale empirical
study from the perspective of the issues themselves and revealed
many fine-grained findings.

7 CONCLUSION
In this paper, we propose Iris to automatically repair the color-

related accessibility issues for Android apps. Our approach builds
a large-scale reference DB to help design a context-aware color
selection technique as well as well-defined criteria and an effective
attribute-to-repair localization method. Based on these key phrases,
Iris can identify the optimal color replacement for automated repair
and further generate a new repackaged APK for app developers. Our
comprehensive experiments including a user study demonstrate
the effectiveness, efficiency, and usefulness of our approach from
different aspects.We finally highlight that the feedback from several
real app developers is quite positive and the merged pull requests
on GitHub confirm the practicality of Iris.

8 DATA AVAILABILITY
We have released the code of Iris on GitHub [8], the constructed

reference DB based on 9,978 apps and the 100 APK files used in
our experiment on Google Drive [7]. To facilitate developers to
understand the repair performance, we also have uploaded the data
of the user study and some other repair cases to our website [11].

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-

dation of China (No. 62102284, 62102197).

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yuxin Zhang, Sen Chen, Lingling Fan, Chunyang Chen, and Xiaohong Li

REFERENCES
[1] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. 2021. Automated Repair of

Size-Based Inaccessibility Issues in Mobile Applications. In 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 730–742.

[2] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. 2022. Automated Detection
of TalkBack Interactive Accessibility Failures in Android Applications. In 2022
IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE,
232–243.

[3] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues
in Android apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE, 1323–1334.

[4] Abdulaziz Alshayban and Sam Malek. 2022. AccessiText: Automated Detection
of Text Accessibility Issues in Android Apps. In Proceedings of the 30th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering.

[5] Apple. 2022. Accessibility - Apple. https://www.apple.com/accessibility/
[6] Apple-VoiceOver. 2022. VoiceOver on iPhone. https://support.apple.com/en-

sg/guide/iphone/iph3e2e415f/ios
[7] Anonymous Author. 2022. The 100 apks used in our experiment. https:

//drive.google.com/drive/folders/1MOEnN1j54HkRvTsigTodIpUo0IEWcOIJ?
usp=sharing

[8] Anonymous Author. 2022. Iris-mobile. https://github.com/iris-mobile-
accessibility-repair/iris-mobile.git

[9] Anonymous Author. 2022. Seek advice from an app developer. https://github.
com/ankidroid/Anki-Android/issues/10472

[10] Anonymous Author. 2022. Solve issue of low contrast. https://github.com/
niccokunzmann/mundraub-android/pull/326

[11] Anonymous Author. 2023. Automated repair of color-related accessibility issues
for Android apps. https://sites.google.com/view/iris-mobile/home

[12] Erin Brady and Jeffrey P Bigham. 2015. Crowdsourcing accessibility: Human-
powered access technologies. (2015).

[13] Posted by Amnet. 12 April, 2021. Ensuring Mobile Accessibility: Color Contrast.
https://amnet-systems.com/ensuring-mobile-accessibility-color-contrast/

[14] Posted by Wiinnova. 2 June, 2020. The Importance of Accessibility in Mobile App
Development. https://www.wiinnova.com/blog/the-importance-of-accessibility-
in-mobile-app-development/

[15] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhut, Guo-
qiang Li, and JinshuiWang. 2020. Unblind your apps: Predicting natural-language
labels for mobile gui components by deep learning. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 322–334.

[16] Sen Chen, ChunyangChen, Lingling Fan,Mingming Fan, Xian Zhan, and Yang Liu.
2021. Accessible or Not An Empirical Investigation of Android App Accessibility.
IEEE Transactions on Software Engineering (2021).

[17] Sen Chen, Lingling Fan, Chunyang Chen, and Yang Liu. 2022. Automatically
Distilling Storyboard with Rich Features for Android Apps. IEEE Transactions on
Software Engineering (2022).

[18] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. Storydroid: Automated generation of storyboard for Android apps.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 596–607.

[19] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue,
Yang Liu, and Lihua Xu. 2020. An empirical assessment of security risks of
global Android banking apps. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 1310–1322.

[20] Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu, and
Lihua Xu. 2018. Are mobile banking apps secure? what can be improved?. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 797–802.

[21] Sen Chen, Yuxin Zhang, Lingling Fan, Jiaming Li, and Yang Liu. 2022. Ausera:
Automated security vulnerability detection for Android apps. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering.
1–5.

[22] Daniel Cohen-Or, Olga Sorkine, Ran Gal, Tommer Leyvand, and Ying-Qing Xu.
2006. Color harmonization. In ACM SIGGRAPH 2006 Papers. 624–630.

[23] Henrique Neves da Silva, Silvia Regina Vergilio, and André Takeshi Endo. 2022.
Accessibility Mutation Testing of Android Applications. Journal of Software
Engineering Research and Development 10 (2022), 8–1.

[24] Marianna Di Gregorio, Dario Di Nucci, Fabio Palomba, and Giuliana Vitiello.
2022. The making of accessible android applications: an empirical study on the
state of the practice. Empirical Software Engineering 27, 6 (2022), 145.

[25] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST). IEEE, 116–126.

[26] F-Droid. 2022. F-Droid. https://f-droid.org
[27] Facebook. 2022. Facebook Accessibility - Home. https://www.facebook.com/

accessibility
[28] Lingling Fan, Ting Su, Sen Chen, GuozhuMeng, Yang Liu, Lihua Xu, and Geguang

Pu. 2018. Efficiently manifesting asynchronous programming errors in Android

apps. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 486–497.

[29] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions
in Android apps. In Proceedings of the 40th International Conference on Software
Engineering. 408–419.

[30] David R Flatla, Katharina Reinecke, Carl Gutwin, and Krzysztof Z Gajos. 2013.
SPRWeb: Preserving subjective responses to website colour schemes through
automatic recolouring. In Proceedings of the SIGCHI conference on human factors
in computing systems. 2069–2078.

[31] Google. [n. d.]. Android Accessibility Help - Change text and display settings.
https://support.google.com/accessibility/android/answer/11183305

[32] Google. 2022. Accessibility Scanner. https://play.google.com/store/apps/details?
id=com.google.android.apps.accessibility.auditor&hl=en_SG

[33] Google. 2022. Android Lint. https://developer.android.com/studio/write/lint.html
[34] Google. 2022. Documentation | Android Developers. https://developer.android.

com/docs
[35] Google. 2022. Google accessibility. https://www.google.com/accessibility/
[36] Google. 2022. Google Monkey. https://developer.android.com/studio/test/monkey
[37] Google-Accessibility-Guideline. 2022. Accessibility Guideline for Android apps.

https://support.google.com/accessibility/android/answer/6376559
[38] Google-Accessibility-Test-Framework. 2022. Accessibility-Test-Framework-for-

Android. https://github.com/google/Accessibility-Test-Framework-for-Android
[39] Google-Espresso. 2022. Espresso | Android Developers. https://developer.android.

com/training/testing/espresso
[40] Google-Monkey. 2019. Google-Monkey. https://developer.android.com/studio/

test/monkey
[41] Google-Robolectric. 2022. Robolectric. http://robolectric.org/
[42] GSA. 2018. European accessibility act - Employment, Social Affairs, Inclusion.

https://www.section508.gov/manage/laws-and-policies
[43] GSA. 2018. IT Accessibility Laws and Policies. https://www.section508.gov/

manage/laws-and-policies
[44] Shing-Sheng Guan. 2002. A study of color harmony relating with area ratio. In

9th Congress of the International Colour Association, Vol. 4421. SPIE, 199–202.
[45] Fredrik Hansen, Josef Jan Krivan, and Frode Eika Sandnes. 2019. Still not readable?

An interactive tool for recommending color pairs with sufficient contrast based
on existing visual designs. In The 21st International ACM SIGACCESS Conference
on Computers and Accessibility. 636–638.

[46] IBM. 2022. Accessibility Research | IBM. https://www.ibm.com/able/
[47] Noor A Ibraheem, Mokhtar M Hasan, Rafiqul Z Khan, and Pramod KMishra. 2012.

Understanding color models: a review. ARPN Journal of science and technology 2,
3 (2012), 265–275.

[48] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimil-
iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2018. Multi-objective
optimization of energy consumption of guis in Android apps. ACM Transactions
on Software Engineering and Methodology (TOSEM) 27, 3 (2018), 1–47.

[49] Renan Lopes, Agebson Rocha Façanha, and Windson Viana. 2022. I can’t pay!
Accessibility analysis of mobile banking apps. In Proceedings of the Brazilian
Symposium on Multimedia and the Web. 253–257.

[50] Sonai Mahajan, Negarsadat Abolhassani, Phil McMinn, and William GJ Halfond.
2018. Automated repair of mobile friendly problems in web pages. In Proceedings
of the 40th International Conference on Software Engineering. 140–150.

[51] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Halfond.
2017. Automated repair of layout cross browser issues using search-based tech-
niques. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 249–260.

[52] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Halfond.
2017. Xfix: an automated tool for the repair of layout cross browser issues. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 368–371.

[53] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Halfond.
2018. Automated repair of internationalization presentation failures in web pages
using style similarity clustering and search-based techniques. In 2018 IEEE 11th
International Conference on Software Testing, Verification and Validation (ICST).
IEEE, 215–226.

[54] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Halfond.
2018. Automated repair of internationalization presentation failures in web pages
using style similarity clustering and search-based techniques. In 2018 IEEE 11th
International Conference on Software Testing, Verification and Validation (ICST).
IEEE, 215–226.

[55] Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek. 2022.
Too Much Accessibility is Harmful! Automated Detection and Analysis of Overly
Accessible Elements in Mobile Apps. In 37th IEEE/ACM International Conference
on Automated Software Engineering. 1–13.

[56] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-driven
accessibility repair revisited: on the effectiveness of generating labels for icons in
Android apps. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.

https://www.apple.com/accessibility/
https://support.apple.com/en-sg/guide/iphone/iph3e2e415f/ios
https://support.apple.com/en-sg/guide/iphone/iph3e2e415f/ios
https://drive.google.com/drive/folders/1MOEnN1j54HkRvTsigTodIpUo0IEWcOIJ?usp=sharing
https://drive.google.com/drive/folders/1MOEnN1j54HkRvTsigTodIpUo0IEWcOIJ?usp=sharing
https://drive.google.com/drive/folders/1MOEnN1j54HkRvTsigTodIpUo0IEWcOIJ?usp=sharing
https://github.com/iris-mobile-accessibility-repair/iris-mobile.git
https://github.com/iris-mobile-accessibility-repair/iris-mobile.git
https://github.com/ankidroid/Anki-Android/issues/10472
https://github.com/ankidroid/Anki-Android/issues/10472
https://github.com/niccokunzmann/mundraub-android/pull/326
https://github.com/niccokunzmann/mundraub-android/pull/326
https://sites.google.com/view/iris-mobile/home
https://amnet-systems.com/ensuring-mobile-accessibility-color-contrast/
https://www.wiinnova.com/blog/the-importance-of-accessibility-in-mobile-app-development/
https://www.wiinnova.com/blog/the-importance-of-accessibility-in-mobile-app-development/
https://f-droid.org
https://www.facebook.com/accessibility
https://www.facebook.com/accessibility
https://support.google.com/accessibility/android/answer/11183305
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_SG
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_SG
https://developer.android.com/studio/write/lint.html
https://developer.android.com/docs
https://developer.android.com/docs
https://www.google.com/accessibility/
https://developer.android.com/studio/test/monkey
https://support.google.com/accessibility/android/answer/6376559
https://github.com/google/Accessibility-Test-Framework-for-Android
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
http://robolectric.org/
https://www.section508.gov/manage/laws-and-policies
https://www.section508.gov/manage/laws-and-policies
https://www.section508.gov/manage/laws-and-policies
https://www.ibm.com/able/

Automated and Context-Aware Repair of Color-Related Accessibility Issues for Android Apps ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

107–118.
[57] Microsoft. 2022. Microsoft accessibility. https://www.microsoft.com/en-us/

accessibility
[58] Sergio Naranjo-Puentes, Camilo Escobar-Velásquez, Christopher Vendome, and

Mario Linares-Vásquez. 2022. A Preliminary Study on Accessibility of Augmented
Reality Features in Mobile Apps. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 454–458.

[59] Prane Mariel B Ong and Eric R Punzalan. 2014. Comparative analysis of RGB and
HSV color models in extracting color features of green dye solutions. In DLSU
Research Congress. 1500–20.

[60] Pavel Panchekha and Emina Torlak. 2016. Automated reasoning for web page
layout. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 181–194.

[61] Python. 2022. Python PIL | getcolors() Method. https://www.geeksforgeeks.org/
python-pil-getcolors-method/

[62] Rick T Richardson, Tara L Drexler, and Donna M Delparte. 2014. Color and
contrast in E-Learning design: A review of the literature and recommendations
for instructional designers and web developers. MERLOT Journal of Online
Learning and Teaching 10, 4 (2014), 657–670.

[63] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2018.
Examining image-based button labeling for accessibility in Android apps through
large-scale analysis. In Proceedings of the 20th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM, 119–130.

[64] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2020.
An Epidemiology-inspired Large-scale Analysis of Android App Accessibility.
ACM Transactions on Accessible Computing (TACCESS) 13, 1 (2020), 1–36.

[65] Miho Saito. 1996. Comparative studies on color preference in Japan and other
Asian regions, with special emphasis on the preference for white. Color Research
& Application 21, 1 (1996), 35–49.

[66] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy
Branham, and Sam Malek. 2021. Latte: Use-case and assistive-service driven
automated accessibility testing framework for Android. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–11.

[67] Navid Salehnamadi, Forough Mehralian, and Sam Malek. 2022. Groundhog: An
Automated Accessibility Crawler forMobile Apps. In 37th IEEE/ACM International
Conference on Automated Software Engineering. 1–12.

[68] Amit Samsukha. 2021. Why Mobile Application Development Is Important
In Today’s Scenario. https://www.emizentech.com/blog/why-is-mobile-app-
development-important.html

[69] Frode Eika Sandnes. 2021. Inverse Color Contrast Checker: Automatically Sug-
gesting Color Adjustments that meet Contrast Requirements on the Web. In The
23rd International ACM SIGACCESS Conference on Computers and Accessibility.
1–4.

[70] Camila Silva, Marcelo Medeiros Eler, and Gordon Fraser. 2018. A survey on the
tool support for the automatic evaluation of mobile accessibility. In Proceedings

of the 8th International Conference on Software Development and Technologies for
Enhancing Accessibility and Fighting Info-exclusion. 286–293.

[71] Alvy Ray Smith. 1978. Color gamut transform pairs. ACM Siggraph Computer
Graphics 12, 3 (1978), 12–19.

[72] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong
Su. 2020. Why my app crashes? understanding and benchmarking framework-
specific exceptions of Android apps. IEEE Transactions on Software Engineering
48, 4 (2020), 1115–1137.

[73] Sabine Süsstrunk, Robert Buckley, and Steve Swen. 1999. Standard RGB color
spaces. In Color and imaging conference, Vol. 1999. Society for Imaging Science
and Technology, 127–134.

[74] Philipp Urban, Tejas Madan Tanksale, Alan Brunton, Bui Minh Vu, and Shigeki
Nakauchi. 2019. Redefining A in RGBA: Towards a standard for graphical 3D
printing. ACM Transactions on Graphics (TOG) 38, 3 (2019), 1–14.

[75] Christopher Vendome, Diana Solano, Santiago Liñán, and Mario Linares-Vásquez.
2019. Can Everyone use my app? An Empirical Study on Accessibility in Android
Apps. In 2019 IEEE International Conference on SoftwareMaintenance and Evolution
(ICSME). IEEE, 41–52.

[76] W3C. 2021. Mobile Accessibility at W3C. https://www.w3.org/WAI/standards-
guidelines/mobile/

[77] W3C. 2022. Text or Image Contrast. https://www.w3.org/WAI/WCAG21/quickref/
?versions=2.0#contrast-minimum

[78] Wiki-TalkBack. 2022. Google TalkBack. https://en.wikipedia.org/wiki/Google_
TalkBack

[79] Moiz Yamani. 7 September, 2021. Importance of Mobile Accessibility. https:
//www.barrierbreak.com/importance-of-mobile-accessibility/

[80] Shunguo Yan and PG Ramachandran. 2019. The current status of accessibility in
mobile apps. ACM Transactions on Accessible Computing (TACCESS) 12, 1 (2019),
3.

[81] Sen Yang, Sen Chen, Lingling Fan, Sihan Xu, Zhanwei Hui, and Song Huang.
2023. Compatibility Issue Detection for Android Apps Based on Path-Sensitive
Semantic Analysis. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 257–269.

[82] Xiangyu Zhang, Lingling Fan, Sen Chen, Yucheng Su, and Boyuan Li. 2023. Scene-
Driven Exploration and GUI Modeling for Android Apps. In 2023 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE.

[83] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust annotation of
mobile application interfaces in methods for accessibility repair and enhancement.
In Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology. 609–621.

[84] Yuxin Zhang, Sen Chen, and Lingling Fan. 2023. A Web-Based Tool for Using
Storyboard of Android Apps. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 117–121.

Received 2023-03-02; accepted 2023-07-27

https://www.microsoft.com/en-us/accessibility
https://www.microsoft.com/en-us/accessibility
https://www.geeksforgeeks.org/python-pil-getcolors-method/
https://www.geeksforgeeks.org/python-pil-getcolors-method/
https://www.emizentech.com/blog/why-is-mobile-app-development-important.html
https://www.emizentech.com/blog/why-is-mobile-app-development-important.html
https://www.w3.org/WAI/standards-guidelines/mobile/
https://www.w3.org/WAI/standards-guidelines/mobile/
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.0#contrast-minimum
https://www.w3.org/WAI/WCAG21/quickref/?versions=2.0#contrast-minimum
https://en.wikipedia.org/wiki/Google_TalkBack
https://en.wikipedia.org/wiki/Google_TalkBack
https://www.barrierbreak.com/importance-of-mobile-accessibility/
https://www.barrierbreak.com/importance-of-mobile-accessibility/

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Color-related Accessibility Issue
	2.2 Color-related Layout Implementation
	2.3 Reports Collected from Detection Tools
	2.4 Default Solution in Android

	3 Approach
	3.1 Reference DB Construction
	3.2 Context-aware Color Selection
	3.3 Attribute-to-repair Localization

	4 Experiments
	4.1 RQ1: Effectiveness and Efficiency Evaluation
	4.2 RQ2: Ablation Study
	4.3 RQ3: Usefulness Evaluation

	5 Discussion
	5.1 Limitations
	5.2 Threats to validity

	6 Related Work
	6.1 Accessibility Issue Repair
	6.2 Accessibility Issue Detection and Analysis

	7 Conclusion
	8 Data Availability
	Acknowledgments
	References

