
Test Case Generation for Drivability Requirements of an
Automotive Cruise Controller:

An Experience with an Industrial Simulator
Federico Formica

McMaster University

Hamilton, Canada

Nicholas Petrunti

McMaster University

Hamilton, Canada

Lucas Bruck

McMaster University

Hamilton, Canada

Vera Pantelic

McMaster University

Hamilton, Canada

Mark Lawford

McMaster University

Hamilton, Canada

Claudio Menghi

University of Bergamo

Bergamo, Italy

McMaster University

Hamilton, Canada

ABSTRACT

Automotive software development requires engineers to test their

systems to detect violations of both functional and drivability re-

quirements. Functional requirements define the functionality of the

automotive software. Drivability requirements refer to the driver’s

perception of the interactions with the vehicle; for example, they

typically require limiting the acceleration and jerk perceived by

the driver within given thresholds. While functional requirements

are extensively considered by the research literature, drivability

requirements garner less attention.

This industrial paper describes our experience assessing the use-

fulness of an automated search-based software testing (SBST) frame-

work in generating failure-revealing test cases for functional and

drivability requirements. Our experience concerns the VI-CarRealTime

simulator, an industrial virtual modeling and simulation environ-

ment widely used in the automotive domain. We designed a Cruise

Control system in Simulink
®

for a four-wheel vehicle, in an iterative

fashion, by producing 21 model versions. We used the SBST frame-

work for each version of the model to search for failure-revealing

test cases revealing requirement violations. Our results show that

the SBST framework successfully identified a failure-revealing test

case for 66.7% of our model versions, requiring, on average, 245.9s

and 3.8 iterations. We present lessons learned, reflect on the gener-

ality of our results, and discuss how our results improve the state

of practice.

KEYWORDS

Drivability, Comfort, Cruise Control, Model Development, Simulink
®

,

Search-based Software Testing

1 INTRODUCTION

Search-based software testing (SBST) is a technique used to auto-

matically generate test cases that show the violation of the system

requirements [39]. SBST frameworks support software development

in many domains, such as real-time, concurrent, distributed, em-

bedded, and safety-critical [8]. SBST is also extensively used in the

context of cyber-physical systems (CPS), including automotive ap-

plications (e.g., [14, 43, 51, 67, 68]). Despite their extensive adoption,

the usefulness of SBST depends on the assumptions and peculiari-

ties of the different domains since the types of requirements under

consideration usually depend on the application domains, e.g., slow

response time is a fault relevant for real-time systems [8], but not

necessarily for others.

This work focuses on the automotive domain and specifically on

Cruise Controller (CC) development. CC is a software component

that regulates the vehicle’s speed. Their global market was valued

at USD 34.7 billion in 2022 and is expected to grow to USD 65 bil-

lion by 2032 [53], driven by the increasing demand for safety and

comfort, the technology advancements, and the rise of autonomous

cars [45]. CC needs to satisfy functional requirements while en-

suring the comfort of the driver [9, 20]. Drivability requirements
specify properties related to the comfort of the driver and pilot the

CC development [4, 9, 11, 18, 52, 61, 66].

Testing is one of the techniques used to search for violations of

the CC requirements [17, 19, 37, 48, 57]. The assessment of the

usefulness of testing techniques in practice via empirical stud-

ies is fundamental for the academic and industrial communities,

which need experimental evaluation results to drive their (busi-

ness) decisions and understand the advantages and limitations of

SBST support for CC development. However, for CC development,

most of the studies publicly available in the research literature

(e.g., [26, 37, 46, 47, 74, 75]) focus on functional requirements and

do not empirically assess the SBST frameworks by considering the

versions of the model produced during the incremental and iterative

development of CC. This paper addresses this limitation by empiri-

cally assessing the usefulness of SBST in detecting failure-revealing

test cases for drivability requirements during the end-to-end devel-

opment of a CC for an industrial simulator.

Our case study is the VI-CarRealTime (VICRT) Simulator [77],

an industrial real-time simulation environment widely used by au-

tomotive companies (e.g., Brembo [1]). VICRT enables engineers to

develop control software for their vehicles. It integrates with well-

known development tools for cyber-physical system design, such

as Matlab/Simulink
®

[5], and supports both software-in-the-loop

(SIL) and hardware-in-the-loop (HIL) simulations. We considered

Simulink®
for developing the CC since it is a widely used frame-

work for developing control systems in the industry [21, 44]. For

the assessment of SBST, we use Simulink
®

Test
TM

[6] for test case

definition, since it is a standard tool for test case specification

in Simulink
®

. Simulink
®

Test
TM

enables engineers to specify test

ar
X

iv
:2

30
5.

18
60

8v
1

 [
cs

.S
E

]
 2

9
M

ay
 2

02
3

Formica, et al.

cases using Simulink
®

Test Sequence [71] and Test Assessment [70]

blocks, also called for short Test Blocks in this work. Test Sequences
specify test inputs, while Test Assessments specify the procedure to

check the system requirements. We selected HECATE [35] as our

SBST framework since it generates test cases in collaboration with

Test Blocks.

We iteratively and incrementally developed a complex CC for

our industrial simulator. The development activity required ap-

proximately 300 hours spread over eight months, during which

we produced 21 versions of the CC referring to seven major ver-

sions. We extensively used the SBST framework during the CC

development by running SIL and HIL experiments, and assessed the

usefulness of SBST by measuring its effectiveness, i.e., how helpful

SBST is in detecting model failures, and efficiency, i.e., the time

required for detecting the failures. Our results show that the SBST

framework successfully identified a failure-revealing test case for

66.7% of our model versions (14 out of 21). The SBST framework

required 245.9s and 3.8 iterations (on average) to detect the failure-

revealing test cases. Only the last version of the model can pass the

most complex and generic scenario we tested.

In summary, this work addresses the following problems:

P1 it assesses the usefulness of SBST in detecting failure-revealing

test cases for the development of a complex CC for an in-
dustrial simulator ;

P2 it assesses the usefulness of SBST in detecting failure-revealing

test cases for drivability requirements, an important and

large category of automotive requirements;

P3 it assesses the usefulness of SBST driven by Simulink® Test
Blocks, that are standard tools for test case specification in

Simulink
®

.

These research problems are relevant to the industry and motivated

by forthcoming industrial challenges. Understanding the usefulness

of SBST in detecting failure-revealing test cases for CC develop-

ment (P1) enables automotive industries to assess how beneficial

SBST techniques are and helps them to evaluate how to use them

within their development processes. Understanding the usefulness

of SBST in detecting failure-revealing test cases for drivability re-

quirements for the CC (P2) enables automotive industries to know

how frequently these requirements are violated compared to the

functional requirements. This information helps them understand

how to prioritize and analyze different requirements across the CC

development. Finally, understanding the usefulness of SBST driven

by Simulink
®

Test Blocks (P3) helps automotive industries assess

how beneficial this technique is in developing complex automotive

systems.

This work is organized as follows. Section 2 describes our au-

tomotive case study. Section 3 summarizes the CC development

activities and the application of the testing framework. Section 4

presents SBST andHECATE, the SBST framework considered in this

work. Section 5 presents our evaluation methodology and results.

Section 6 discusses results, lessons learned, and the improvement

on the state of practice. Section 7 presents related work. Section 8

concludes the work.

Figure 1: MARCdrive simulator.

Figure 2: Simulink
®

model under analysis.

2 CASE STUDY

This section presents our automotive case study: it describes the

controlled system (Section 2.1) and its functional and drivability

requirements (Section 2.2).

2.1 Controlled System

Our case study uses the VI-CarRealTime (VICRT) Simulator [77].

The controlled system is a vehicle traveling on the road: the inputs

and outputs of the vehicle relevant to our study are schematized

in Figure 2. The inputs are the throttle, brake, and slope percent-

ages that respectively assume values within the ranges [0, 100]%,
[0, 100]%, and [−5, 5]%. The outputs are the longitudinal jerk, accel-
eration, and velocity, and the pitch angle and acceleration. The goal

of the software engineer is to design a cruise controller (CC) that

measures the longitudinal velocity, the pitch angle, and slope per-

centages and acts on the throttle and brake to ensure the satisfaction

of the functional and drivability requirements (see Section 2.2).

During the CC development, the software engineer can use SBST

to automatically search for failure-revealing test cases, i.e., test cases

that show a violation of the functional and drivability requirements.

As we will describe later (Section 5), we performed software-in-the-

loop (SIL) and hardware-in-the-loop (HIL) simulations to test the CC

model. For SIL simulations, the vehicle is represented by a Simulink
®

model provided by the VICRT framework. This model contains 1125

Test Case Generation for Drivability Requirements of an Automotive Cruise Controller:
An Experience with an Industrial Simulator

Vertical

Lateral

Longitudinal

Yaw

Pitch

Roll

Figure 3: Axes used for the definition of the drivability re-

quirements.

Simulink
®

blocks and relies on an XML file produced by VICRT.

The XML file contains all the vehicle properties (e.g. motor speed-

torque curves, the tire properties), used by the Simulink
®

model to

simulate faithfully the vehicle dynamics.

For HIL simulations, we considered the MARCdrive simula-

tor [24] from theMcMaster Automotive Resource Centre (MARC) [55]

shown in Figure 1. This simulator integrates VICRT with the model

of a Sedan Car, i.e., a passenger car with separate compartments for

the engine, passengers, and cargo. It is a high-fidelity, customizable

simulator that enables engineers to test their projects. The projec-

tions of the road and surrounding environment on the 210-degree

screen, the sound system, and the active steering wheel, brakes,

driver’s seat, and seatbelt enable the driver to perceive the vehi-

cle dynamics (speed and acceleration). The VICRT calculates the

dynamics of the car and provides feedback to the driver.

For our experiments, we considered the vehicle traveling on a

straight trajectory. We analyzed this trajectory since it is commonly

considered for acceleration tests by automotive CC developers and

vendors [52, 54].

2.2 Functional and Drivability Requirements

We analyzed the functional (F1) and drivability requirements (D1,

D2, D3) from Table 1. These requirements are largely considered

in the research literature; the interested reader can consult the

following publications: [65] for F1, [41, 60, 64] for D1, [69] for D2,

and [52] for D3.

The functional requirement F1 requires the vehicle speed to reach

and stay within 3 km/hr of the desired velocity after 30 seconds of

the velocity being set. We selected the threshold of 30 seconds as it

allows for an operating range of 100 km/hr for the CC while still

meeting all drivability requirements.

The drivability requirements limit the longitudinal acceleration

and jerk, and the pitch acceleration (see Figure 3) within given

thresholds ranges.

The drivability requirement D1 requires the longitudinal acceler-

ation to remainwithin the range [−3.5𝑚
𝑠2
, 5

𝑚
𝑠2
] (i.e., [−0.36𝑔, 0.51𝑔]).

The threshold values for the longitudinal acceleration were defined

after testing different acceleration and braking scenarios on two au-

thors using the MARCdrive simulator. The selected range includes

the expected upper limit of 1.47
𝑚
𝑠2

for acceptable longitudinal ac-

celeration in public transportation [41].

Table 1: Requirements for our controller the VI-CarRealTime

Simulator controller.

ID Description

F1 After every change, the system shall reach and stay within

3
𝑘𝑚
ℎ
of the desired speed after 30 seconds.

D1 The longitudinal acceleration of the vehicle shall not exceed

−3.5𝑚
𝑠2

and 5
𝑚
𝑠2
.

D2 The absolute value of the jerk of the vehicle shall not exceed

10
𝑚
𝑠3
.

D3 The absolute value of the acceleration of the vehicle on the

pitch axis shall not exceed 3
𝑟𝑎𝑑
𝑠2

.

The drivability requirement D2 requires the absolute value of the

acceleration of the vehicle on the pitch axis to not exceed 3
𝑟𝑎𝑑
𝑠2

. This

value was determined experimentally on the MARCdrive simulator,

in the same way as the longitudinal acceleration thresholds. We

verified that these values are reasonable by consulting relevant

studies in the field (e.g., [27]).

The drivability requirement D3 requires the longitudinal jerk (i.e.,

the acceleration change ratio over time) to be lower than 10
𝑚
𝑠3
. This

value is considered comfortable for the driver and passengers [42].

After defining the requirements of the system, the development

of the CC began.

3 DEVELOPMENT OF CRUISE CONTROL

The CC model was developed by two of the authors: a mechatron-

ics fourth-year bachelor student, and a first-year Ph.D. student in

software engineering with large experience in the development of

controllers for CPS. The development activity required approxi-

mately 300 hours. This includes the time required to develop the

CC versions and the time needed for testing them. In this section,

we summarize the characteristics of the different versions of the CC

and present its final version. The testing activity will be discussed

in Section 5.

Table 2 lists the different versions of themodel of the CC. For each

version of the model, the table provides a description of the changes

introduced in that version, the number of inputs, and the number

of blocks in the model. Finally, the table shows which requirements

were considered during the testing activities (discussed in Section 4

and Section 5) on each version: the functional requirement F1 for

the first two versions of the model, and the requirements F1, D1,

D2, D3 for the remaining versions.

The model is developed incrementally, and new features are

added to the CC until all the requirements are satisfied. For exam-

ple, version 1.0 is a PID (Proportional, Integral, Derivative) software

controller that changes the vehicle’s throttle depending on the dif-

ference between the velocity and the desired velocity. The higher

the difference, the larger the throttle. Version 2.0 also acts on the

vehicle brakes to reduce the vehicle speed when the desired velocity

is lower than the actual velocity. Version 3.0 adds a smoothing algo-

rithm to smooth non-continuous outputs from the PID controller.

The final version of the CC contains 322 blocks. Figure 4 presents

the high-level structure of the final version of the CC. The CC

consists of five main subsystems detailed as follows.

Formica, et al.

Error
Desired	Velocity
Has	Changed

u

PID	Controller

Des_Vel

Brake_in

Throttle_in

u_smooth

Change_time

u1

Has	Changed

Detect	Change

Change_time

u1

u2

u_out

Smoothing

u_in

Slope
u_out

Apply	Grade

u

Throttle_In

Brake_In

Throttle

Brake

Output

1
Throttle

2
Brake

3
Desired	Velocity

4
Slope

1
Throttle_Out

2
Brake_Out

5
Actual	Velocity

+−

Figure 4: Cruise Controller structure in the latest version.

(1) PID Controller.Calculates the difference between the desired
velocity and actual velocity of the system, and outputs

the sum of the error, its derivative, and its integral, each

multiplied by a certain gain. A proportional gain is also

added directly to the desired velocity to compensate for

different speeds requiring different amounts of throttle to

maintain. This subsystem also uses changes detected in the

Detect Change subsystem to reset the integral portion of

the controller.

(2) Apply Grade.Modifies the output of the PID controller de-

pending on the slope of the road: it respectively increases or

decreases depending onwhether the slope is uphill or down-

hill. This operation compensates for more or less brake and

throttle being necessary for those conditions.

(3) Detect Change. Monitors changes in the driving mode that

can cause discontinuous behaviors in the CC and takes ap-

propriate actions. Monitored changes include (a) the driver

releasing the throttle and brake pedals causing the CC to

automatically take over, and (b) the desired velocity chang-

ing.

(4) Smoothing. Creates a smooth transition between the old

and the new throttle and brake values after a change in the

driving mode.

(5) Output. Splits the throttle and brake signals and sends them
to the vehicle. Deactivates the cruise control if either throt-

tle or brake applied by the driver is above 5% of their maxi-

mum value.

SBST was used to check for requirement violations on the differ-

ent versions of the CC, including its final version.

4 SEARCH-BASED SOFTWARE TESTING

This section presents an overview of SBST tools for Simulink
®

models (Section 4.1), and HECATE [35], the framework we selected

in this work (Section 4.2).

1 Input

Generation

2 System

Execution

3 Fitness

Assessment

𝑇

i

𝐴 𝑆

𝑓 (𝑆 (i))

𝑆 (i) tc(i)/NFF
𝜑

Figure 5: Overview of an SBST framework.

4.1 SBST for Simulink
®

Models

Themain steps performed by an existing SBST for Simulink
®

models

in searching for failure-revealing test cases are depicted in Figure 5:

squared boxes represent their steps, arrows connect subsequent

steps describing their inputs and outputs, arrows with no source

and destination are the inputs and outputs of the SBST framework.

Simulink
®

SBST frameworks typically rely on four inputs: a

model of the system to be tested (𝑆); an assumption on the system

inputs (𝐴), a time budget (𝑇), and a requirement (𝜑). Their output is

a failure-revealing test case (tc(i)) or an indication that no failure-

revealing test case was found (NFF — No Failure Found) within the

time budget.

The SBST frameworks iteratively repeat these steps to search

for a failure-revealing test case:

1 Input Generation: generates an input (i) for the system

model (𝑆) that satisfies the assumption (𝐴);

2 System Execution: simulates the system model (𝑆) for an

input (i) and obtains a system execution (𝑆 (i)).
3 Fitness Assessment: computes the fitness value (𝑓 (𝑆 (i)))

for the system execution (𝑆 (i)) and assesses whether the

fitness value is below a threshold value.

A test case (tc(i)) is failure-revealing if: (a) the corresponding input
(i) satisfies the assumption (𝐴), and (b) the fitness value (𝑓 (𝑆 (i)))
is smaller than a threshold value. Typically, the threshold value is

Test Case Generation for Drivability Requirements of an Automotive Cruise Controller:
An Experience with an Industrial Simulator

Table 2: ID, Description, Requirements ID (Req), Number of Inputs (#In) and Number of Blocks (#Bck) of the different versions

of our controller.

ID Description #In #Bck
∗

#Req

1.0 Initial version of the PID model for the controller. 1 71 F1

2.0 Applies brakes when necessary and deactivates the CC by applying the throttle or brake. 1 94 F1

2.1 Introduces drivability requirements. 1 94 F1,D1,D2,D3

3.0 Adds smoothing system by limiting the derivative of outputs from the PID controller. 1 142 F1,D1,D2,D3

3.1 Introduces Test Sequence 2. 1 142 F1,D1,D2,D3

3.2 Introduces Test Sequence 3. 1 142 F1,D1,D2,D3

4.0 Adapts the velocity to the slope of the road and changes the smoothing system. 2 261 F1,D1,D2,D3

5.0 Eliminates the spikes in jerk and improves response in downhill conditions. 2 348 F1,D1,D2,D3

6.0 Adds slope detection system within the vehicle, allowing for it to be used within the control system. 2 379 F1,D1,D2,D3

6.1 Modifies the proportional gain to consider the slope of the road. 2 380 F1,D1,D2,D3

6.2 Makes smoothing more aggressive and changes the conditions that would trigger it. 2 402 F1,D1,D2,D3

6.3 The signal from the PID controller is smoothed before being applied to throttle or brake. 2 342 F1,D1,D2,D3

6.4 Changes the sigmoid smoothing equation to have an initial derivative closer to 0. 2 335 F1,D1,D2,D3

6.5 Uses cubic splines that hit and stay at zero for the throttle and brake profiles. 2 332 F1,D1,D2,D3

6.6 Removes all possibility of brake and throttle signals being on at the same time. 2 330 F1,D1,D2,D3

7.0 Prevents the throttle signal from ever going below 5, which causes a large spike in jerk. 2 339 F1,D1,D2,D3

7.1 Limits the maximum power of brakes preventing negative acceleration violations. 2 339 F1,D1,D2,D3

7.2 Changes the brake profile to a degree 5 polynomial, making it overall smoother. 2 329 F1,D1,D2,D3

7.3 Resets in the integral in the PID controller to prevent large overshoots after long run times. 2 337 F1,D1,D2,D3

7.4 Introduces Test Sequence 5. 2 337 F1,D1,D2,D3

7.5 Introduces Test Sequence 6. 2 337 F1,D1,D2,D3

* This figure counts the VICRT mask as a single block, though it actually contains 1125 blocks.

(a) Parameterized Test Sequence Block. (b) Test Assessment Block.

Figure 6: An example of a test sequence and a test assessment block for our cruise controller.

0 since the fitness value is negative if the requirement is violated

and positive otherwise (e.g., [29, 31, 59]).

Several tools for Simulink
®

models implement the framework

from Figure 5, such as ARIsTEO [58], ATheNA [34], Breach [28],

FalCAuN [78], falsify [80], FalStar [30], ForeSee [81], STGEM [63],

S-TaLiRo [10], Ψ-TaLiRo [72], and HECATE [35]. In this work, we

used HECATE [35] to support the development of our cruise control

model since, unlike the other tools, it supports Simulink
®

Test

Blocks that are commonly used for testing CPS models.

4.2 HECATE

HECATE supports Simulink
®

Test Blocks (i.e., Test Sequences and

Test Assessment blocks). Specifically, to support SBST, HECATE

supports Parameterized Test Sequences [35]: Test Sequences ex-

tended with parameters that are used for automated test case gen-

eration. Parameterized Test Sequences are detailed later in this

section. Figure 6 presents an example of a Parameterized Test Se-

quence (Figure 6a) and a Test Assessment (Figure 6b) block for

requirement F1 of our cruise controller. The Test Sequence block

describes the input of the system; the Test Assessment block de-

scribes the requirement to be satisfied. Both the Test Sequence and

the Test Assessment are Test Blocks; therefore, they share part of

their syntax. The syntax and semantics of Test Sequence and Test

Assessment blocks are summarized in the following paragraphs.

An extensive description can be found online [70, 71].

Formica, et al.

Test Blocks consist of test steps connected by transitions. The
Parameterized Test Sequence block in Figure 6a and the Test As-

sessment block in Figure 6b contains three (Start, Step_0, Step_1)

and six (CCActive, RecentChange, ThirtySecondThreshold,

VelocityChange, DriverActive, Buffer) test steps respectively.

Test steps are hierarchically organized. For example, the test step

RecentChange of Figure 6b is nested within the test step CCAc-

tive. At each time instant, the Test Blocks are in exactly one ‘child’

test step and its ‘ancestors’ in the hierarchy. For example, if the Test

Assessment in Figure 6b is in the child test step VelocityChange,

it is also in all of its ancestors, namely CCActive. Whenever a Test

Block enters a ‘non-child’ test step, it also enters its first child test

step. For example, if the CCActive test step of Figure 6b is entered,

its child test step RecentChange is also entered.

Transitions define how a Test Block switches between test steps.

They connect a source and a destination test step. They are labeled

with a Boolean formula representing a condition for the transition

to be fired. For example, transitions of the Test Sequence block from

Figure 6a specify how the Test Sequence switches between the test

steps Step_0 and Step_1. Whenever a non-child test step is exited,

so are all of its ‘descendants’. For example, if the Test Assessment

of Figure 6b is in the test step CCActive and the value of the brake

and the throttle become greater than 5, the CCActive test step is

RecentChange is also left.

Test steps from Test Sequence and Test Assessment blocks dif-

fer in their purpose. Test Sequences define the values assumed

by the input signals. For example, the test step Start of the Test

Sequence in Figure 6a assigns the value 0 to the variable throttle.

Unlike Test Sequence blocks, Test Assessment blocks contain ver-

ification statements, e.g., verify, which check whether a logical

expression evaluates to true or false. For example, the statement

verify(abs(desired_velocity-velocity)<=3)) of the test step Thir-

tySecondThreshold in Figure 6b checks whether the absolute

difference between the desired velocity and the velocity of the

vehicle is lower than 3 km/h.

A test case is made by a Test Sequence block and a Test Assess-

ment block. The Test Sequence block generates a test input, i.e., a

set of input signals, that are fed into the Simulink
®

simulator. A

test input is then executed by simulating the model for the input

signals associated with the test sequence. The Test Assessment

block evaluates if the output signals of the model lead to a violation

of the expressions of its verify statements. A Test Assessment

block is typically associated with the requirements of the system.

For example, the Test Assessment block from Figure 6b checks

whether the conditions from requirement D1 holds. A test case is

failure-revealing if the test input generated from the Test Sequence

block leads to a set of output signals that violate the conditions

specified by the Test Assessment block.

Parameterized Test Sequences enable the addition of search pa-

rameters to the Test Sequence block. These parameters are repre-

sented by variable names preceded by the keyword Hecate. For ex-

ample, the Test Sequence block from Figure 6a contains three search

parameters: Hecate_desVel1, Hecate_desVel2, andHecate_Transition1.

These search parameters (detailed in Table 3) represent the desired

initial velocity, and final velocity, and the time for which the initial

velocity is maintained.

Table 3: Test Sequence Parameters definition and range.

Parameter Description Min Max

des_vel1∗ Desired initial velocity. 50 150

des_vel2∗ Desired intermediary velocity. 50 150

des_vel3 Desired final velocity. 50 150

transition1 Time for the initial velocity. 30 40

transition2 Time for the intermediary velocity. 0 20

slope The slope of the road. -4 4

verShift Average value of the slope. -1 1

period Period of the sinusoidal slope. 30 200

horShift Horizontal shift of the slope. 0 𝜋

des_vel1, des_vel2, des_vel3 are in km/h. transition1, transition2, ver-
Shift, period, horShift are in s. slope and verShift are %.
∗
For the first Test Sequence (TS1 in Table 4), des_vel1 and des_vel2

are in the range [0, 100]km/h, since the CC is activated with zero

initial velocity.

HECATE is an automated SBST framework that implements

the framework from Figure 5. For the input generation phase (1),

HECATE iteratively generates new Test Sequences by assigning val-

ues to the parameters of the Parameterized Test Sequences. For the

system execution phase (2), HECATE relies on the Simulink
®

simu-

lator to produce the output signals associated with a Test Sequence

block. Finally, for the fitness assessment phase (3), HECATE re-

lies on a specific translation that converts Test Assessment blocks

into fitness functions (the interested reader can refer to [35] for

additional information). Phases (1 , 2 , and 3) are executed until a

failure revealing test case is detected, or a time budget (number of

test cases evaluated) is exceeded. In the first case, HECATE returns

the search parameter values associated with the failure-revealing

test case. Otherwise, it returns the NFF value.

We use HECATE to assess the usefulness of SBST.

5 EVALUATION

Our evaluation estimates the usefulness of SBST in developing CPS

by assessing its support for developing a complex CC model for an

industrial simulator and answering two research questions:

RQ1: How effective is SBST in producing failure-revealing test

cases? (Section 5.1)

RQ2: How efficient is SBST in producing failure-revealing test

cases? (Section 5.2)

RQ1 assesses how helpful SBST is in detecting model failures. RQ2

assesses the time required for detecting these failures.

5.1 Effectiveness (RQ1)

To assess the effectiveness of SBST in producing failure-revealing

test cases, we proceeded as follows.

Methodology. We ran our SBST framework for each version of

the CCmodel from Table 2 using the SIL simulations. We set the cut-

off value of 20 iterations: since a single model simulation requires

100s, this value ensures that the test case generation takes approx-

imately 30min (at maximum 34min). If our test case generation

Test Case Generation for Drivability Requirements of an Automotive Cruise Controller:
An Experience with an Industrial Simulator

Table 4: Test Sequences considered for testing the model: Identifier (ID), Number of Steps (#S), Usage of the Slope Parameter

(SP), Manual Startup (MS), Velocity Range (VR), Simulation Time (T), and Description.

ID #S SP MS VR T Description

TS1 1 U No 0-100 70s CC starts from stationary and has one step.

TS2 1 U Yes 50-150 70s Driver accelerates to a speed above 50 km/h before activating CC with one step.

TS3 2 U Yes 50-150 100s Driver accelerates to a speed above 50 km/h before activating CC with two steps.

TS4 1 C Yes 50-150 70s Driver accelerates to a speed above 50 km/h before activating CC with one step on a constant slope.

TS5 2 C Yes 50-150 100s Driver accelerates to a speed above 50 km/h before activating CC with two steps on a constant slope.

TS6 2 S Yes 50-150 100s Driver accelerates to a speed above 50 km/h before activating CC with two steps on a sinusoidal slope.

U: Unused, C: Constant, S: Sinusoidal

Table 5: Parameters used in each Test Sequence.

Parameter TS1 TS2 TS3 TS4 TS5 TS6

des_vel1 ✓ ✓ ✓ ✓ ✓ ✓

des_vel2 ✓ ✓ ✓ ✓ ✓ ✓

des_vel3 ✓ ✓ ✓

transition1 ✓ ✓ ✓ ✓ ✓ ✓

transition2 ✓ ✓ ✓

slope ✓ ✓ ✓

verShift ✓

period ✓

horShift ✓

framework returned a failure-revealing test case, we assessed the

test case to find and fix the source of the error. We iteratively modi-

fied the CC model, and re-ran the test case generation framework,

until the test case generation framework was not able to produce

any failure-revealing test case for that requirement. When the SBST

framework was not able to produce any failure-revealing test case,

we proceeded by extending the test scenario (e.g., introducing slope

as a parameter). In our experiments, the input generation algorithm

was Uniform Random [13], since 20 iterations do not enable other

optimization algorithms to converge to a good solution.

We ran our SBST framework by considering six different Test

Sequences detailed in Table 4: as new features were added to the

model, we considered more complex Test Sequence blocks to trigger

these features. For example, the Test Sequence TS1 (detailed in

Figure 6a) activates the CC immediately, with an initial vehicle

speed of 0 km/h (noManual Startup). We considered a more realistic

Test Sequence (TS2), which had the driver accelerate to 50 km/hr

before activating the CC (with Manual Startup), when the CC could

switch itself off when the driver applied brake or throttle. Table 6

reports the Test Sequences considered for the different versions of

themodel. The Test Sequences rely on the Test Sequence parameters

from Table 3. A Test Assessment block models the requirements

of the CC. The SBST algorithm searches values for the parameters

of the Test Sequences that violate the conditions specified by the

Test Assessment blocks, i.e., lead to requirement violations. If a

violation is detected, the corresponding Test Blocks (Test Sequence

and Test Assessment) of the failure-revealing test case are returned.

We verified the failure-revealing test cases also on the hardware

platform (see Figure 1) by running them with the HIL simulator.

We analyzed how many versions of the CC model the SBST

framework was helpful by returning a failure-revealing test case.

We also verified that the HIL and SIL simulations yielded consistent

results for the failure-revealing test cases.

Results. Table 6 presents our results. The table reports the ver-

sion of the model (ID) and the Test Sequences (TS#) considered for

that version of the model. For each version, the table reports the

number of iterations (#IT) required to identify the failure-revealing

test case, which requirement was not satisfied, and a description

of the identified failure. The SBST framework returned a failure-

revealing test case for 66.7% of the versions of our model (14 out of

21). The versions of the model that did not yield failing test cases

were then tested with 50 iterations of the Simulated Annealing

algorithm [2]. Of the models that returned a failing test case, 42.9%

(6 out of 14) were due to functional violations, 21.4% (3 out of 14)

were due to drivability violations, and 35.7% (5 out of 14) were due

to both.

For example, for version 1.0 of the model, the SBST returned a

failure-revealing test case for the functional requirement F1. The

test case revealed that the controller did not act on the vehicle

brakes to reduce the speed: when the desired speed was lower

than the speed of the car, the vehicle’s aerodynamic resistance was

insufficient to ensure the vehicle reached the desired speed within

30s. The failure was solved by version 2.0 of the model. For version

2.1 of the model, the SBST returned a failure-revealing test case for

the drivability requirement D1. Figure 7 shows a snapshot of our

simulation, revealing that the CC acts on the brake and the throttle

by leading to a longitudinal acceleration of −11.1𝑚
𝑠2

that exceeds

the threshold values (−3.5𝑚
𝑠2

and 5
𝑚
𝑠2
) specified by the requirement

D1. The corresponding video is available online [3].

RQ1 - Effectiveness

The answer to RQ1 is that, for our automotive model, SBST

returned a failure-revealing test case for 66.7% of our model

versions (14 out of 21). The failure-revealing test cases enabled

the identification of the failures described in Table 6. The test

cases revealed a violation of the drivability requirements for

21.4% of the cases.

5.2 Efficiency (RQ2)

To assess the efficiency of our SBST framework in producing failure-

revealing test cases, we proceeded as follows.

Formica, et al.

Table 6: Model failures identified by analyzing the failure-revealing test cases.

ID TS# #IT F1 D1 D2 D3 Description of Failure

1.0 1 1 ✗ N.T. N.T. N.T. The controller does not act on the brakes to decrease the speed of the vehicle.

2.0 1 > 20 ✓ N.T. N.T. N.T. No failure; introduced drivability requirements.

2.1 1 9 ✓ ✗ ✗ ✓ The controller discontinuously applies brakes or throttles.

3.0 1 > 20 ✓ ✓ ✓ ✓ No failure detected; introduced test sequence 2.

3.1 2 > 20 ✓ ✓ ✓ ✓ No failure detected; introduced test sequence 3.

3.2 3 > 20 ✓ ✓ ✓ ✓ No failure detected; introduced slope parameter.

4.0 4 1 ✗ ✓ ✗ ✓ Numerical errors in the VICRT mask cause random spikes in jerk during run time.

5.0 4 1 ✗ ✓ ✓ ✓ Large negative/positive slopes prevent the vehicle from timely reaching the desired velocity.

6.0 4 1 ✗ ✗ ✓ ✓ Large changes in desired velocity cause the vehicle to violate acceleration requirements.

6.1 4 8 ✗ ✓ ✗ ✓ Fails to solve the previous problems.

6.2 4 2 ✓ ✓ ✗ ✓ Fails to solve the previous problems.

6.3 4 1 ✗ ✓ ✗ ✓ Fails to solve the previous problems.

6.4 4 1 ✗ ✗ ✗ ✓ Fails to solve the previous problems.

6.5 4 2 ✓ ✗ ✓ ✓ Fails to solve the previous problems.

6.6 4 2 ✗ ✓ ✓ ✓ Fails to solve the previous problems.

7.0 4 7 ✗ ✓ ✓ ✓ Large negative changes in desired velocity are impossible to reach without violating D1.

7.1 4 14 ✗ ✓ ✓ ✓ Very specific test cases marginally fail functional requirements.

7.2 4 4 ✗ ✓ ✓ ✓ Fails to solve the previous problem.

7.3 4 > 20 ✓ ✓ ✓ ✓ No failure detected; introduced test sequence 5.

7.4 5 > 20 ✓ ✓ ✓ ✓ No failure detected; introduced test sequence 6.

7.5 6 > 20 ✓ ✓ ✓ ✓ No failure detected.

✗: Requirement not met; ✓: Requirement met; N.T.: Requirement not tested.

Figure 7: HIL simulation of a test case where the car breaks

the drivability requirements.

(a) Number of iterations. (b) Time.

Figure 8: Iterations and time of our SBST framework.

Methodology. We considered the runs from RQ1 returning a

failure-revealing test case. We analyzed the number of iterations

and time required to detect the failure-revealing test case.

Results. The box plots in Figure 8 report the number of iterations

(Figure 8a) and the time (Figure 8b) required to produce the failure

revealing test cases. Our SBST framework required, on average

3.8 (min=1, max=14, StdDev=3.9) iterations and 245.9s (min=48.2s,
max=784.5s, StdDev=262.2s) to generate these test cases.

RQ2 - Efficiency

The answer to RQ2 is that, for our automotive model, the

SBST framework required on average 3.8 iterations (min=1,
max=14, StdDev=3.9) and 245.9s (min=48.2s, max=784.5s, Std-
Dev=262.2s) to return the failure-revealing test cases.

5.3 Discussion and Threats to Validity

Our results confirm the usefulness of SBST in detecting failure-

revealing test cases of a complex CC for an industrial simulator

(P1): the SBST returned a failure-revealing test case for the majority

(66.7%) of our model versions in practical time (245.9s≈ 4min). They

also confirm the usefulness of SBST in detecting failure-revealing

test cases for drivability requirements (P2): 21.4% of the failure-

revealing test cases showed a violation of a drivability require-

ment. Finally, our results confirm the usefulness of SBST driven by

Simulink
®

Test Blocks (P3): we could express all the requirements

of the CC using the Test Assessment blocks, and our search space

using Parameterized Test Sequences.

Our results are subject to the following threats to validity.

The automotive benchmark model, requirements, and controller

versions we analyzed could threaten our results’ external validity

Test Case Generation for Drivability Requirements of an Automotive Cruise Controller:
An Experience with an Industrial Simulator

since different benchmark models, requirements, and controllers

can lead to different results for the effectiveness and efficiency

of the SBST. The fact that our industrial model is used by many

automotive companies (e.g., Brembo [1]) and taken from the VI-

CarRealTime simulator, the functional and drivability requirements

come from the research literature (e.g., [65], [41, 60, 64], [69], [52]),

and the CC model is a large and complex model developed in eight

months mitigate this threat. The number (1461) of blocks of the final

model (system under test plus CC) is a reasonable approximation

to a small to mid-sized realistic industrial model [21].

The values of the configuration parameters of our SBST could

threaten the internal validity of our results: a higher number of

iterations for our SBST framework or a different search algorithm

can produce different results [36]. To mitigate this threat, for the

versions of the CC for which the SBST did not return any failure-

revealing test case, we increased the number of iterations to 50

and considered an additional search algorithm (Simulated Anneal-

ing [2]). This configuration of our SBST framework also did not

return any failure-revealing test case for these versions of the CC.

6 DISCUSSION

This section reflects on the lessons learned (Section 6.1), the im-

provement on the state of the practice (Section 6.3), and the gener-

ality of our results (Section 6.2).

6.1 Lessons Learned

The results of our experimental evaluation confirm the usefulness of

SBST in detecting failure-revealing test cases of a complex CC (P1),

for drivability requirements (P2), and Simulink
®

Test Blocks (P3).

In addition, we learned many lessons from our experimental

evaluation: we report on five of these lessons (L1-L5).

Running many simulations is compute-intensive (L1). Testing our

automotive case study requires significant computational time. For

our automotive system, executing a test case takes around 100s.

Therefore, running 20 iterations of our SBST framework takes ap-

proximately 34min. This time may be prohibitive for many applica-

tions that require executing a vast number of test cases that need to

be executed in-house for confidentiality reasons or due to specific

configurations of the machines that are difficult to replicate on large

computing platforms.

The input domain of our model is large (L2). In our testing ac-

tivity, we considered the vehicle traveling in a straight trajectory.

We also assumed that no other vehicles were present on the road,

and the CC can only be set to speeds between 50 km/h and 150

km/h. Despite these assumptions, the input domain is infinite: the

values of the slope percentage (represented as a real variable) can

be changed (across the simulation time) in an infinite number of

ways. In addition, even though our assumptions are reasonable for

our experiments, large testing campaigns may require considering

other input configurations (e.g., different input shapes), leading to

additional problems for the applicability of SBST. The large input

domain poses the engineers with trade-off decisions: on the one

hand, the engineer wants to increase the number of simulations to

increase the number of inputs that are analyzed; on the other hand,

since the automotive model is compute-intensive (L1), a limited

number of simulations can be executed.

HIL testing is laborious (L3). HIL requires time and effort. Con-

figuring our hardware platform for our experiments required sig-

nificant effort. Starting and shutting down the simulator requires

10 minutes and the channels to transmit the signals to and from

the hardware must be checked manually for each model version

(24 input signals and 21 output ones). Running experiments using

the hardware platform may also lead to unpredicted problems: for

example, while running our experiments, the light of one of the

projectors of our simulator stopped working, and we had to replace

it. Replacing the light of the projector required a few weeks. In

addition, HIL testing activities could only be performed within the

McMaster facilities to access the hardware platform, and we had to

ensure the presence of humans monitoring the simulator’s behav-

ior as mandated by our laboratory regulations. The presence of a

human limits the number of HIL tests that can be executed on the

hardware platform that, therefore, need to be carefully selected.

Results of HIL and SIL simulations may differ (L4). We notice dis-

crepancies in the results of HIL and SIL simulations for some of the

test cases. Specifically, HIL simulations introduce some noise (with

non-zero average) on the throttle pedal, brake pedal, and steering

wheel angle signals that were not present in the SIL simulations.

Furthermore, the HIL simulations have a sampling time of 10𝑚𝑠 ,

while SIL uses 1𝑚𝑠 . This causes a difference in the way the jerk

is computed and produces much lower values for the HIL results.

These minor discrepancies are enough to change the test verdict in

some of the test cases. We will carefully investigate the discrepan-

cies between HIL and SIL simulations and how to mitigate them in

future work.

SIL testing activities need to be automated (L5). Manually execut-

ing the SBST framework after any change in the model is laborious

and needs to be automated. Integrating the SBST activity in a con-

tinuous pipeline that automatically fetches the model and runs

the SBST activity after each version of the model is produced can

alleviate this challenge.

The challenges we identified in our automotive case study are

general and apply to other CPS domains, as argued in the following.

6.2 Generality of the Results

To assess the generality of our results and lessons learned, we

critically compared them to those from the literature.

For the usefulness in detecting failure-revealing test cases for a

complex CC (P1), we do not expect that the number of model ver-

sions in which the SBST returned a failure-revealing test case will

be the same for other CC, automotive models, and CPS. However,

we believe that these findings apply to other types of CPS. Empir-

ical studies from the literature confirm this hypothesis in other

domains (e.g., space [58], automotive [32, 68], biomedical [16], med-

ical [12, 16, 22]).

For the usefulness in detecting failure-revealing test cases for

drivability requirements (P2), we do not expect that the percentage

of test cases that reveals a violation of the drivability requirements

will match the one obtained by analyzing other CC models since

the results of SBST strongly depend on the model that is analyzed.

However, we believe that SBSTwill help detect failure-revealing test

cases for the drivability requirements of other CC models. Future

empirical studies will confirm or refute our hypothesis.

Formica, et al.

For the usefulness in detecting failure-revealing test cases for

Simulink
®

Test Blocks (P3), we do not expect the values for the

effectiveness and efficiency to match the one obtained by analyzing

other systems, since the results depend on the model and the Test

Blocks considered by the SBST framework. However, we believe

that the SBST framework is also useful to analyze Simulink
®

Test

Blocks that refer to other CPS. The results provided byHECATE [35]

confirm our hypothesis. The authors of this work have shown that

SBST was useful in detecting failure-revealing test cases for a large

set of benchmarks consisting of 16 Simulink
®

models from differ-

ent domains (automotive, energy, biomedical, avionics, domotics),

including three developed by Lockheed Martin (EU, NNP, TUI) [56].

We believe that the lessons we learned (L1, L2, L3, L4, and L5)

generalize to other types of CPS. There are several additional studies

from the literature confirming these hypotheses (i.e.,[58, 76] for

L1, [46, 47] for L2, and [57, 67] for L3 and L4).

We conclude that our results are likely generalizable and may

also apply to other CPS domains. Additional empirical studies and

experimental analysis may confirm or confute our hypothesis across

the different domains. In the following section, we will also argue

that our results significantly improve the state of the practice.

6.3 Improvement on the State of the Practice

Our results significantly improve the state of practice.

Our results show that SBST effectively supports the development of
a complex CC for an industrial simulator (P1). Our results improve

the state of practice by providing empirical data, evidence, and

reflections related to using SBST to develop CC. Our findings, i.e.,

the percentage of model versions in which the SBST could return a

failure-revealing test case and the number of iterations and time

needed to compute them, provide automotive companies with em-

pirical data that can help them decide when and how to use SBST

and estimate the resources (e.g., time and computational resources)

needed to conduct this activity.

Our results show that SBST effectively supports the analysis of
drivability requirements (P2). We argued (Section 1) that drivability

requirements are critical for automotive applications. Despite their

importance, the research literature does not extensively assess the

usefulness of SBST frameworks for these requirements. This work

evaluates the usefulness of SBST for drivability requirements ex-

perimentally via a case study supported by an industrial simulator.

Our results improve the state of practice by showing that SBST

effectively finds failure-revealing test cases for drivability require-

ments. They also show that the test cases revealed a violation of

the drivability requirements for 21.4% of the failure-revealing test

cases. This result suggests that automotive industry needs to exten-

sively consider these requirements since, for a significant number

of cases, the failure-revealing test cases refer to these requirements

rather than the functional requirements of the CC. This finding

will impact the automotive domain, supporting a more extensive

adoption of SBST frameworks driven by drivability requirements.

Our results show that SBST driven by Test Blocks is useful (P3).
Although existing work has shown the effectiveness of SBST for

Simulink
®

models, the only framework that supports Test Blocks is

HECATE. It was evaluated by considering a benchmark consisting

of 16 Simulink
®

models from different domains. However, this work

does not assess SBST for the end-to-end development of a CPS, i.e.,

the benchmark does not include a model for which all the versions

produced during the software development are available. Unlike the

work introducing HECATE, we assessed the effectiveness of SBST

driven by Test Blocks during the end-to-end development of a CC

for an automotive system supported by an industrial simulator. Our

results improve the state of practice by showing that SBST driven by

Test Blocks effectively supports developer activities and paves the

way for adopting this framework within the industry and for more

empirical studies assessing the advantages and limitations of the

usage of SBST driven by Test Blocks in the end-to-end development

of CPS.

7 RELATEDWORK

Several works assessed the usefulness of SBST in detecting failure-

revealing test cases for the development of CPS (e.g., [7, 12, 22, 49,

50, 76]) and CCs (e.g., [38, 79]). Unlike these works, we assessed

the usefulness of SBST by considering the end-to-end development

of the CC and used an industrial simulator for our simulation.

Several other studies have used the VI-CarRealTime industrial

simulator. For example, this simulator was used to analyze alterna-

tive steering mechanisms [73], the relationship of steering and sta-

bility [40], and other aspects of automated driving [15, 23, 25, 33, 62].

However, none of these studies used the simulator to assess the

usefulness of SBST.

Although drivability requirements are extensively considered

during the design of CC (e.g., [9, 11, 18, 52, 61, 66]), the assessment

of SBST techniques typically focuses on the functional requirements

of the CC (e.g., [37, 46, 75]). Our results showed the importance

of considering the drivability requirements, i.e., for a significant

number of the generated failure-revealing test cases (21.4%), the

failure caused a violation of the drivability requirements.

Finally, based on our knowledge, the only work that assesses

the usefulness of SBST driven by Simulink
®

Test Blocks is the one

proposed by HECATE [35].

8 CONCLUSION

We assessed the usefulness of SBST in generating failure-revealing

test cases for the functional and drivability requirements of a CC

of a vehicle. We used an SBST framework during the end-to-end

development of a complex CC developed using Simulink
®

. We per-

formed SBST relying on a framework that supports Simulink
®

Test

Blocks. We performed both SIL and HIL testing using an industrial

simulation environment widely used in the automotive domain.

The empirical results of our experimental evaluation confirm

that SBST is useful in detecting failure-revealing test cases of a com-

plex CC, for drivability requirements, and Simulink
®

Test Blocks.

We presented the lessons we learned from our experimentation,

reflected on the generality of our results, and discussed how our

results improve the state of practice.

DATA AVAILABILITY

A replication package containing all of our data, test results, and

videos recorded during HIL simulations is publicly available [3].

Test Case Generation for Drivability Requirements of an Automotive Cruise Controller:
An Experience with an Industrial Simulator

REFERENCES

[1] 2022. VI-GRADE Announces Installation of Latest Generation Compact
Driving Simulator at Italian Braking Systems Manufacturer, Brembo.
https://www.vi-grade.com/en/about/news/vi-grade-announces-installation-

of-latest-generation-compact-driving-simulator-at-italian-braking-systems-

manufacturer-brembo-1805/

[2] 2022. What Is Simulated Annealing? https://www.mathworks.com/help/gads/

what-is-simulated-annealing.html

[3] 2023. . https://figshare.com/s/f07f53b2461e67418202

[4] 2023. Adaptive Cruise Control for Passengers Cars. https://www.bosch-mobility.

com/en/solutions/assistance-systems/adaptive-cruise-control/

[5] 2023. Simulink. https://www.mathworks.com/products/simulink.html

[6] 2023. Simulink Test. https://www.mathworks.com/products/simulink-test.html

[7] Bestoun S Ahmed, Angelo Gargantini, and Miroslav Bures. 2020. An Automated

Testing Framework For Smart TV apps Based on Model Separation. In Interna-
tional Conference on Software Testing, Verification and Validation Workshops. IEEE,
62–73.

[8] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-

Walawege. 2009. A systematic review of the application and empirical inves-

tigation of search-based test case generation. IEEE Transactions on Software
Engineering 36, 6 (2009), 742–762.

[9] Matthias Althoff, SebastianMaierhofer, and Christian Pek. 2020. Provably-correct

and comfortable adaptive cruise control. IEEE Transactions on Intelligent Vehicles
6, 1 (2020), 159–174.

[10] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-

narayanan. 2011. S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid

Systems. In Tools and Algorithms for the Construction and Analysis of Systems,
Parosh Aziz Abdulla and K. Rustan M. Leino (Eds.). Springer.

[11] Pier Giuseppe Anselma, Phillip J. Kollmeyer, Stefano Feraco, Angelo Bonfitto,

Giovanni Belingardi, Ali Emadi, Nicola Amati, and Andrea Tonoli. 2021. Assess-

ing Impact of Heavily Aged Batteries on Hybrid Electric Vehicle Fuel Economy

and Drivability. In IEEE Transportation Electrification Conference & Expo.
[12] P Arcaini, E Riccobene, A Gargantini, et al. 2016. Model-based offline and online

testing for medical software. In European & Asian System, Software & Service
Process Improvement & Innovation. WHITEBOX, 11–20.

[13] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. 2011. Random

testing: Theoretical results and practical implications. Transactions on Software
Engineering 38, 2 (2011), 258–277.

[14] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. 2016. Test

case prioritization of configurable cyber-physical systems with weight-based

search algorithms. In Genetic and Evolutionary Computation Conference.
[15] Michele Asperti, Michele Vignati, and Edoardo Sabbioni. 2022. Driver-in-the-

Loop Simulation to Assess Steering Torque Feeling due to Torque Vectoring

Control. In Vehicle Power and Propulsion Conference. IEEE, 1–6.
[16] Mostafa Ayesh, Namya Mehan, Ethan Dhanraj, Abdul El-Rahwan, Simon Emil

Opalka, Tony Fan, Akil Hamilton, Akshay Mathews Jacob, Rahul Anthony Sun-

darrajan, Bryan Widjaja, et al. 2022. Two Simulink Models with Requirements

for a Simple Controller of a Pacemaker Device. In International Workshop on
Applied, Vol. 90. 18–25.

[17] David Barnes, Jared Folden, Hwan-Sik Yoon, and Paulius Puzinauskas. 2020.

Scalable Simulation Environment for Adaptive Cruise Controller Development.
Technical Report. SAE Technical Paper.

[18] Daniel Goretti L Barroso, Ali Emadi, and Lucas Bruck. 2023. Driver-in-the-Loop
Drivability and Energy Efficiency Analysis of Regenerative Braking Strategies for
Electric Vehicles. Technical Report. SAE Technical Paper.

[19] Mirko Barthauer and Alexander Hafner. 2019. Testing an Adaptive Cruise

Controller with coupled traffic and driving simulations.. In SUMO. 48–55.
[20] Stefan Björnander and Lars Grunske. 2008. Adaptive cruise controllers–a litera-

ture review. Technical Rep. C4-01 TR M 50 (2008).

[21] Alexander Boll, Florian Brokhausen, Tiago Amorim, Timo Kehrer, and Andreas

Vogelsang. 2021. Characteristics, potentials, and limitations of open-source

Simulink projects for empirical research. Software and Systems Modeling 20, 6

(2021), 2111–2130.

[22] Andrea Bombarda, Silvia Bonfanti, and Angelo Gargantini. 2022. Automatic Test

Generation with ASMETA for the Mechanical Ventilator Milano Controller. In

Testing Software and Systems. Springer, 65–72.
[23] Emanuele Bonera, Marco Gadola, Daniel Chindamo, Stefano Morbioli, and Paolo

Magri. 2020. Integrated Design Tools forModel-Based Development of Innovative

Vehicle Chassis and Powertrain Systems. InDesign Tools and Methods in Industrial
Engineering. Springer, 118–128.

[24] Lucas Bruck, Bruce Haycock, and Ali Emadi. 2021. A Review of Driving Simula-

tion Technology and Applications. IEEE Open Journal of Vehicular Technology 2

(2021), 1–16. https://doi.org/10.1109/OJVT.2020.3036582

[25] Mattia Bruschetta, Enrico Picotti, Enrico Mion, Yutao Chen, Alessandro Beghi,

and Diego Minen. 2019. A Nonlinear Model Predictive Control based Virtual

Driver for high performance driving. In Conference on Control Technology and
Applications. IEEE, 9–14.

[26] Alessandro Calò, Paolo Arcaini, Shaukat Ali, Florian Hauer, and Fuyuki Ishikawa.

2020. Simultaneously searching and solving multiple avoidable collisions for

testing autonomous driving systems. In Genetic and Evolutionary Computation
Conference. 1055–1063.

[27] Florent Colombet, Zhou Fang, and Andras Kemeny. 2017. Tilt thresholds for

acceleration rendering in driving simulation. Simulation 93, 7 (2017), 595–603.

[28] Alexandre Donzé. 2010. Breach, A Toolbox for Verification and Parameter

Synthesis of Hybrid Systems. In Computer Aided Verification. Springer, 167–170.
[29] Gidon Ernst, Paolo Arcaini, Georgios Fainekos, Federico Formica, Jun Inoue,

Tanmay Khandait, MohammadMahdiMahboob, ClaudioMenghi, Giulia Pedrielli,

Masaki Waga, Yoriyuki Yamagata, and Zhenya Zhang. 2022. ARCH-COMP

2022 Category Report: Falsification with Ubounded Resources. In International
Workshop on Applied Verification of Continuous and Hybrid Systems (EPiC Series
in Computing, Vol. 90). EasyChair, 204–221.

[30] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. 2018. Fast Falsifi-

cation of Hybrid Systems using Probabilistically Adaptive Input. In International
Conference on Quantitative Evaluation of Systems. Springer, 165–181.

[31] Georgios E Fainekos and George J Pappas. 2006. Robustness of temporal logic

specifications. In Formal Approaches to Software Testing and Runtime Verification.
Springer, 178–192.

[32] Georgios E. Fainekos, Sriram Sankaranarayanan, Koichi Ueda, and Hakan Yazarel.

2012. Verification of automotive control applications using S-TaLiRo. In 2012
American Control Conference (ACC). 3567–3572. https://doi.org/10.1109/ACC.

2012.6315384

[33] Alessandro Ferraris, Henrique de Carvalho Pinheiro, Edoardo Galanzino, An-

drea Giancarlo Airale, and Massimiliana Carello. 2019. All-Wheel Drive Elec-

tric Vehicle Performance Optimization: From Modelling to Subjective Evalu-

ation on a Static Simulator. In Electric Vehicles International Conference. 1–6.
https://doi.org/10.1109/EV.2019.8893027

[34] Federico Formica, Mehrnoosh Askarpour, and Claudio Menghi. 2022. Search-

based Software Testing Driven by Automatically Generated and Manually De-

fined Fitness Functions. arXiv preprint arXiv:2207.11016.

[35] Federico Formica, Tony Fan, Akshay Rajhans, Vera Pantelic, Mark Lawford, and

Claudio Menghi. 2022. Simulation-based Testing of Simulink Models with Test

Sequence and Test Assessment Blocks. https://arxiv.org/abs/2212.11589.

[36] Kamran Ghani, John A. Clark, and Yuan Zhan. 2009. Comparing algorithms for

search-based test data generation of Matlab® Simulink® models. In Congress on
Evolutionary Computation. IEEE, 2940–2947.

[37] Christoph Gladisch, Thomas Heinz, Christian Heinzemann, Jens Oehlerking,

Anne von Vietinghoff, and Tim Pfitzer. 2019. Experience Paper: Search-Based

Testing in Automated Driving Control Applications. In International Conference
on Automated Software Engineering. IEEE/ACM.

[38] Liping Han, Tao Yue, Shaukat Ali, Aitor Arrieta, and Maite Arratibel. 2022.

Are elevator software robust against uncertainties? results and experiences

from an industrial case study. In European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 1331–1342.

[39] Mark Harman and Bryan F Jones. 2001. Search-based software engineering.

Information and software Technology 43, 14 (2001), 833–839.

[40] Yizhuo He and Jie Pang. 2022. Optimization Design of Suspension Geometric

Parameters of Formula Student Race Vehicle Based on ADAMS. In International
Conference on Manufacturing, Industrial Automation and Electronics. IEEE, 164–
169.

[41] Lawrence L Hoberock. 1976. A survey of longitudinal acceleration comfort stud-
ies in ground transportation vehicles. Technical Report. Council for Advanced
Transportation Studies.

[42] Quanan Huang and Huiyi Wang. 2004. Fundamental study of jerk: evaluation of
shift quality and ride comfort. Technical Report. SAE Technical Paper.

[43] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. 2021. Quality metrics

and oracles for autonomous vehicles testing. In Conference on Software Testing,
Verification and Validation. IEEE, 194–204.

[44] Monika Jaskolka, Vera Pantelic, Alan Wassyng, Mark Lawford, and Richard

Paige. 2021. Repository Mining for Changes in Simulink Models. In International
Conference on Model Driven Engineering Languages and Systems. ACM/IEEE,

46–57.

[45] Philip Koopman and Michael Wagner. 2016. Challenges in autonomous vehicle

testing and validation. SAE International Journal of Transportation Safety 4, 1

(2016), 15–24.

[46] Markus Koschi, Christian Pek, Sebastian Maierhofer, and Matthias Althoff. 2019.

Computationally efficient safety falsification of adaptive cruise control systems.

In Intelligent Transportation Systems Conference. IEEE, 2879–2886.
[47] Thomas Laurent, Stefan Klikovits, Paolo Arcaini, Fuyuki Ishikawa, and Anthony

Ventresque. 2022. Parameter Coverage for Testing of Autonomous Driving

Systems Under Uncertainty. ACM Transactions on Software Engineering and
Methodology (2022).

[48] Qin Lin, Sicco Verwer, and John Dolan. 2020. Safety verification of a data-driven

adaptive cruise controller. In Intelligent Vehicles Symposium. IEEE, 2146–2151.

[49] Xiao Ling and Tim Menzies. 2023. On the Benefits of Semi-Supervised Test Case

Generation for Cyber-Physical Systems. arXiv preprint arXiv:2305.03714 (2023).

https://www.vi-grade.com/en/about/news/vi-grade-announces-installation-of-latest-generation-compact-driving-simulator-at-italian-braking-systems-manufacturer-brembo-1805/
https://www.vi-grade.com/en/about/news/vi-grade-announces-installation-of-latest-generation-compact-driving-simulator-at-italian-braking-systems-manufacturer-brembo-1805/
https://www.vi-grade.com/en/about/news/vi-grade-announces-installation-of-latest-generation-compact-driving-simulator-at-italian-braking-systems-manufacturer-brembo-1805/
https://www.mathworks.com/help/gads/what-is-simulated-annealing.html
https://www.mathworks.com/help/gads/what-is-simulated-annealing.html
https://figshare.com/s/f07f53b2461e67418202
https://www.bosch-mobility.com/en/solutions/assistance-systems/adaptive-cruise-control/
https://www.bosch-mobility.com/en/solutions/assistance-systems/adaptive-cruise-control/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink-test.html
https://doi.org/10.1109/OJVT.2020.3036582
https://doi.org/10.1109/ACC.2012.6315384
https://doi.org/10.1109/ACC.2012.6315384
https://doi.org/10.1109/EV.2019.8893027

Formica, et al.

[50] Xiao Ling and TimMenzies. 2023. What Not to Test (for Cyber-Physical Systems).

IEEE Transactions on Software Engineering (2023), 1–17. https://doi.org/10.1109/

TSE.2023.3272309

[51] Bing Liu, Shiva Nejati, and Lionel C Briand. 2019. Effective fault localization

of automotive Simulink models: achieving the trade-off between test oracle

effort and fault localization accuracy. Empirical Software Engineering 24 (2019),

444–490.

[52] Eduardo Louback, Fabricio Machado, Lucas Bruck, Phillip J. Kollmeyer, and Ali

Emadi. 2022. Real-Time Performance and Driveability Analysis of a Clutchless

Multi-Speed Gearbox for Battery Electric Vehicle Applications. In IEEE Trans-
portation Electrification Conference & Expo.

[53] MARC 2022. Adaptive Cruise Control System Market to Witness Strong
Growth, with a Projected CAGR of 6.6% | Market.us Report. http:

//www.globenewswire.com/news-release/2023/04/11/2644946/0/en/Adaptive-

Cruise-Control-System-Market-to-Witness-Strong-Growth-with-a-

Projected-CAGR-of-6-6-Market-us-Report.html

[54] MARC 2022. Everything You Need to Know about Our Comprehensive Car Testing.
https://www.caranddriver.com/features/a32018270/how-we-test-cars/

[55] MARC 2022. McMaster Automotive Resource Centre (MARC). https://facilities.

mcmaster.ca/building/mcmaster-automotive-resource-centre-marc/

[56] Anastasia Mavridou, Hamza Bourbouh, Dimitra Giannakopoulou, Thomas Press-

burger, Mohammad Hejase, Pierre-Loic Garoche, and Johann Schumann. 2020.

The ten lockheed martin cyber-physical challenges: formalized, analyzed, and

explained. In International Requirements Engineering Conference. IEEE, 300–310.
[57] Aakar Mehra, Wen-Loong Ma, Forrest Berg, Paulo Tabuada, Jessy W Grizzle,

and Aaron D Ames. 2015. Adaptive cruise control: Experimental validation of

advanced controllers on scale-model cars. In American control conference. IEEE,
1411–1418.

[58] Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. 2020.

Approximation-Refinement Testing of Compute-Intensive Cyber-Physical Mod-

els: An Approach Based on System Identification. In International Conference on
Software Engineering. ACM/IEEE.

[59] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C Briand. 2019.

Generating automated and online test oracles for simulink models with continu-

ous and uncertain behaviors. In European software engineering conference and
symposium on the foundations of software engineering. ACM, 27–38.

[60] Thomas Müller, Hermann Hajek, Ljubica Radić-Weißenfeld, and Klaus Bengler.

2013. Can you feel the difference? The just noticeable difference of longitudinal

acceleration. In Human Factors and Ergonomics Society Annual Meeting, Vol. 57.
SAGE Publications Sage CA, 1219–1223.

[61] Daniel F Opila, Xiaoyong Wang, Ryan McGee, R Brent Gillespie, Jeffrey A Cook,

and Jessy W Grizzle. 2011. An energy management controller to optimally trade

off fuel economy and drivability for hybrid vehicles. IEEE Transactions on Control
Systems Technology 20, 6 (2011), 1490–1505.

[62] Luigi Pariota, Angelo Coppola, Luca Di Costanzo, Claudio D’Aniello, and Gen-

naro Nicola Bifuclo. 2019. Motivating the need for an integrated software ar-

chitecture for Connected and Automated Vehicles technologies development

and testing. In International Conference on Models and Technologies for Intelligent
Transportation Systems. 1–8.

[63] Jarkko Peltomäki and Ivan Porres. 2022. Falsification of Multiple Requirements

for Cyber-Physical Systems Using Online Generative Adversarial Networks and

Multi-Armed Bandits. In International Conference on Software Testing, Verification
and Validation Workshops. IEEE.

[64] Herbert Schuette and Peter Waeltermann. 2005. Hardware-in-the-loop testing

of vehicle dynamics controllers–a technical survey. SAE transactions (2005),
593–609.

[65] A Shaout and Mohammad Ameen Jarrah. 1997. Cruise control technology review.

Computers & electrical engineering 23, 4 (1997), 259–271.

[66] Simscape 2022. Objectified Evaluation at Engine-In-The-Loop Test Bench. https:

//magazine.fev.com/en/drivability-characteristics/

[67] Andrea Stocco, Brian Pulfer, and Paolo Tonella. 2022. Mind the Gap! A Study

on the Transferability of Virtual vs Physical-world Testing of Autonomous

Driving Systems. IEEE Transactions on Software Engineering (2022), 1–13. https:

//doi.org/10.1109/TSE.2022.3202311

[68] Andrea Stocco, Brian Pulfer, and Paolo Tonella. 2023. Model vs system level test-

ing of autonomous driving systems: a replication and extension study. Empirical
Software Engineering 28, 3 (2023), 73.

[69] Taku Takahama and Daisuke Akasaka. 2018. Model predictive control approach

to design practical adaptive cruise control for traffic jam. International journal of
automotive engineering 9, 3 (2018), 99–104.

[70] TestAssessment 2022. Test Assessment. https://www.mathworks.com/help/sltest/

ref/testassessment.html

[71] TestSequence 2022. Test Sequence. https://www.mathworks.com/help/sltest/ref/

testsequence.html

[72] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and

Georgios Fainekos. 2021. PSY-TaLiRo: A Python Toolbox for Search-Based Test

Generation for Cyber-Physical Systems. In Formal Methods for Industrial Critical

Systems, Alberto Lluch Lafuente and Anastasia Mavridou (Eds.). Springer, 223–

231.

[73] Eugenio Tramacere, Luis Miguel Molina Castellanos, Nicola Amati, Andrea

Tonoli, and Angelo Bonfitto. 2022. Adaptive LQR Control for a Rear-Wheel

Steering Battery Electric Vehicle. In Vehicle Power and Propulsion Conference.
IEEE.

[74] Cumhur Erkan Tuncali, Georgios Fainekos, Danil Prokhorov, Hisahiro Ito, and

James Kapinski. 2019. Requirements-driven test generation for autonomous

vehicles with machine learning components. IEEE Transactions on Intelligent
Vehicles 5, 2 (2019), 265–280.

[75] Cumhur Erkan Tuncali, Theodore P. Pavlic, and Georgios Fainekos. 2016. Uti-

lizing S-TaLiRo as an automatic test generation framework for autonomous

vehicles. In International Conference on Intelligent Transportation Systems. IEEE,
1470–1475.

[76] Pablo Valle, Aitor Arrieta, and Maite Arratibel. 2023. Automated Misconfigura-

tion Repair of Configurable Cyber-Physical Systems with Search: an Industrial

Case Study on Elevator Dispatching Algorithms. In International Conference on
Software Engineering: Software Engineering in Practice. IEEE.

[77] VI-CarRealTime-Simulink 2022. VI-CarRealTime. https://www.vi-grade.com/

en/products/vi-carrealtime/

[78] Masaki Waga. 2020. Falsification of Cyber-Physical Systems with Robustness-

Guided Black-Box Checking. In International Conference on Hybrid Systems:
Computation and Control. ACM, Article 11, 13 pages.

[79] Qinghua Xu, Shaukat Ali, Tao Yue, and Maite Arratibel. 2022. Uncertainty-aware

transfer learning to evolve digital twins for industrial elevators. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 1257–1268.

[80] Yoriyuki Yamagata, Shuang Liu, Takumi Akazaki, Yihai Duan, and Jianye Hao.

2021. Falsification of cyber-physical systems using deep reinforcement learning.

IEEE Transactions on Software Engineering 47, 12 (2021), 2823–2840. https:

//doi.org/10.1109/TSE.2020.2969178

[81] Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun

Zhao. 2021. Effective Hybrid System Falsification Using Monte Carlo Tree Search

Guided by QB-Robustness. In Computer Aided Verification. Springer, 1–24.

https://doi.org/10.1109/TSE.2023.3272309
https://doi.org/10.1109/TSE.2023.3272309
http://www.globenewswire.com/news-release/2023/04/11/2644946/0/en/Adaptive-Cruise-Control-System-Market-to-Witness-Strong-Growth-with-a-Projected-CAGR-of-6-6-Market-us-Report.html
http://www.globenewswire.com/news-release/2023/04/11/2644946/0/en/Adaptive-Cruise-Control-System-Market-to-Witness-Strong-Growth-with-a-Projected-CAGR-of-6-6-Market-us-Report.html
http://www.globenewswire.com/news-release/2023/04/11/2644946/0/en/Adaptive-Cruise-Control-System-Market-to-Witness-Strong-Growth-with-a-Projected-CAGR-of-6-6-Market-us-Report.html
http://www.globenewswire.com/news-release/2023/04/11/2644946/0/en/Adaptive-Cruise-Control-System-Market-to-Witness-Strong-Growth-with-a-Projected-CAGR-of-6-6-Market-us-Report.html
https://www.caranddriver.com/features/a32018270/how-we-test-cars/
https://facilities.mcmaster.ca/building/mcmaster-automotive-resource-centre-marc/
https://facilities.mcmaster.ca/building/mcmaster-automotive-resource-centre-marc/
https://magazine.fev.com/en/drivability-characteristics/
https://magazine.fev.com/en/drivability-characteristics/
https://doi.org/10.1109/TSE.2022.3202311
https://doi.org/10.1109/TSE.2022.3202311
https://www.mathworks.com/help/sltest/ref/testassessment.html
https://www.mathworks.com/help/sltest/ref/testassessment.html
https://www.mathworks.com/help/sltest/ref/testsequence.html
https://www.mathworks.com/help/sltest/ref/testsequence.html
https://www.vi-grade.com/en/products/vi-carrealtime/
https://www.vi-grade.com/en/products/vi-carrealtime/
https://doi.org/10.1109/TSE.2020.2969178
https://doi.org/10.1109/TSE.2020.2969178

	Abstract
	1 Introduction
	2 Case Study
	2.1 Controlled System
	2.2 Functional and Drivability Requirements

	3 Development of Cruise Control
	4 Search-based Software Testing
	4.1 SBST for Simulink® Models
	4.2 HECATE

	5 Evaluation
	5.1 Effectiveness (RQ1)
	5.2 Efficiency (RQ2)
	5.3 Discussion and Threats to Validity

	6 Discussion
	6.1 Lessons Learned
	6.2 Generality of the Results
	6.3 Improvement on the State of the Practice

	7 Related Work
	8 Conclusion
	References

