Simulation-Based Validation for Autonomous Driving Systems

Changwen Li Joseph Sifakis Qiang Wang Rongjie Yan® Jian Zhang
SKLCS, ISCAS Univ. Grenoble Alpes, Academy of Military SKLCS, ISCAS SKLCS, ISCAS
Univ. of Chinese CNRS, Grenoble INP, Sciences Univ. of Chinese Univ. of Chinese
Academy of Sciences VERIMAG Beijing, China Academy of Sciences Academy of Sciences

Beijing, China Grenoble, France

ABSTRACT

We investigate a rigorous simulation and testing-based validation
method for autonomous driving systems that integrates an existing
industrial simulator and a formally defined testing environment.
The environment includes a scenario generator that drives the sim-
ulation process and a monitor that checks at runtime the observed
behavior of the system against a set of system properties to be
validated. The validation method consists in extracting from the
simulator a semantic model of the simulated system including a
metric graph, which is a mathematical model of the environment
in which the vehicles of the system evolve. The monitor can ver-
ify properties formalized in a first-order linear temporal logic and
provide diagnostics explaining their non-satisfaction. Instead of
exploring the system behavior randomly as many simulators do,
we propose a method to systematically generate sets of scenarios
that cover potentially risky situations, especially for different types
of junctions where specific traffic rules must be respected. We show
that the systematic exploration of risky situations has uncovered
many flaws in the real simulator that would have been very difficult
to discover by a random exploration process.

CCS CONCEPTS

« Software and its engineering — Software verification and
validation; « Computing methodologies — Modeling and sim-
ulation.

KEYWORDS

Autonomous driving systems, Simulation-based validation, Run-
time verification, Formal specification, Temporal logic, LGSVL

ACM Reference Format:

Changwen Li, Joseph Sifakis, Qiang Wang, Rongjie Yan, and Jian Zhang.
2023. Simulation-Based Validation for Autonomous Driving Systems. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA °23), July 17-21, 2023, Seattle, WA, United States.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598100

*Corresponding author (yrj@ios.ac.cn)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07...$15.00
https://doi.org/10.1145/3597926.3598100

Beijing, China Beijing, China

RvAds
scenario
Extended Simulator - Monitor |, verdict for cach
semantic run and property
model [

AN
Property Specification

Figure 1: An overview of the proposed RvADS framework

1 INTRODUCTION

Autonomous driving systems (ADS) are real-time distributed sys-
tems involving components with partial knowledge of their en-
vironment, pursuing specific goals while the collective behavior
must meet given global properties. They are probably the most
difficult systems to design and validate, as they are built from het-
erogeneous components subject to temporal and spatial dynamism.
They operate in unpredictable environments whose topological and
geometric properties constrain the behavior of their agents. These
characteristics challenge the application of rigorous model-based
development and validation techniques that have been successfully
applied to safety-critical systems such as aircraft systems [3]. In
particular, formal methods are defeated by the complexity of these
systems and can be applied only to their components [5, 24].

In the face of these problems, global validation through simula-
tion and testing appears to be a viable approach to obtain evidence
of the trustworthiness of ADS [23, 28].

Nevertheless, there is still a big gap between the state-of-the-
art and the needs for rigorous validation of ADS. One challenging
problem is how to connect off-the-shelf industrial simulators to
validation tools systematically. Currently, industrial simulators are
mostly built on top of game platforms in an ad hoc manner. They
favor a certain realism of modeling with performance considera-
tions, but lack semantic awareness required for rigorous validation.
Semantic awareness implies the possibility to extract from the simu-
lated system software, a semantic model with a well-defined notion
of system state as the distribution of vehicles on a map with all their
kinetic and time attributes. Such a model should define an abstract
system behavior with a notion of execution step and should respect
fundamental properties of time and space.

Another challenging problem is to explain how simulated miles
relate to "real miles" [13]. A simple simulation, even for an ex-
tremely high number of simulated miles or hours, is not sufficient.
We need well-founded criteria showing that simulation does indeed
cover a large fraction of the relevant real-world situations. In addi-
tion, the validation must concern not only incidents, but also the
detection of any type of potentially dangerous situation, such as
traffic violations.

https://doi.org/10.1145/3597926.3598100
https://doi.org/10.1145/3597926.3598100

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

Fig. 1 presents an overview of the proposed RvADS framework,
which integrates an off-the-shelf autonomous driving simulator, in
particular the LGSVL Simulator [26], with a Scenario Generator
and a Monitor for the rigorous validation of ADS.

The Scenario Generator drives the simulation process. It gen-
erates scenarios as the coordinated sequences of actions executed
by the agents in the Simulator. Thus, scenarios play the role of
test cases intended to drive the simulated system towards specific
configurations, for example to explore particular high-risk configu-
rations or to meet specific coverage criteria.

The Simulator runs the system model that consists of both the
behavior models of traffic agents (e.g., mobile agents such as vehi-
cles and pedestrians, and non-moving objects such as traffic signals)
and the model of the static environment. The latter includes the
map and all relevant information regarding the system state. The
state of traffic agents consists of their kinematic attributes and their
positions on the map. The state of the system model is defined by
the positions of the agents and objects in their environment with
their states. It determines the possible interactions between agents,
objects and their physical environment. The resulting global behav-
ior should satisfy safety and performance properties, in particular
those implied by traffic rules.

To link the simulation and the validation processes, we have
extended the Simulator in two main directions. The first is to modify
the agents’ controllers to follow predefined scenarios and explore
specific situations. The second one is the development of an API
to export an abstract semantic model of the simulated system on
which the Monitor can check the properties to be validated.

The Monitor checks whether the runs of the simulated system
satisfy given properties expressed as logical formulas. It evaluates
the atomic propositions of the formulas based on the semantic
model exported through the Simulator API, and applies the run-
time verification technique to detect property violations from the
observed behavior of the system.

Contribution. First, we provide a rigorous simulation-based
validation framework for ADS. Our framework can automatically
construct the semantic model from the simulated ADS and adopt
a formal runtime verification technique to check against the se-
mantic model the satisfiability of the system properties, e.g., traffic
rules, specified in the first-order temporal logic. Second, we pro-
pose a concept of structural equivalence and the coverage criteria
for scenarios containing junctions. The proposed concept can be
used to guide the scenario generation systematically and to explore
different types of potentially risky situations. Finally, we have inte-
grated the high-fidelity LGSVL Simulator in our framework. The
experimentation considering scenarios with two types of junctions
has revealed several deficiencies in the Simulator.

Organization. Section 2 presents the way of connecting simu-
lation to validation and the construction of semantic model of an
ADS using the information extracted from the Simulator. Section 3
presents the formalization of system properties and the runtime
verification method to validate such formulas against the seman-
tic model. Section 4 presents the rigorous validation methodology
using scenarios and the coverage criteria for scenarios containing
junctions. Section 5 presents the implementation of RvADS and the
experimental results. We conclude with a review of related work
and a discussion of the future development.

Li et al.

2 CONNECTING SIMULATION TO VALIDATION

2.1 Map model formalization

The basis of the semantic model is a metric graph [5], defining the
set of positions on which the simulated vehicles are located. We
first present the HD map model used by the LGSVL simulator and
then the transformation into a formal metric graph model.

The maps adopted in the LGSVL simulator involve lanes, junc-
tions, self-reversing lanes, and other features. The annotations of
lanes include waypoints and boundary lines. The annotations of
intersections include lanes, traffic signals, traffic signs, and stop
lines. For ease of discussion, we assume that all the roads and junc-
tions are single-lane, and are equipped with the necessary signals
to enforce the traffic rules. Nevertheless, the approach followed
can be extended to multi-lane roads without significant changes.
Furthermore, we ignore the width of lanes and simply represent
them by their center lines. A lane is denoted by ¢ = (l1,7,4,12),
where [; and I3 record the locations of the endpoints of £ and the
direction of the lane is from [; to I3, 7 represents the turn type of
the lane (such as left, right, straight), and A is the label type of
the lane (i.e., either in a road or in a junction). For example, in the
sub-map of Fig. 2(a), there is a road with lane #; and a junction with
two lanes #; and #3, positioned with respect to their center-lines.
The lane #; in the road is denoted by (I, straight, road, [;), and
the lane #3 in the junction is denoted by (l4, left, junction, Iy).

2.1.1 Metric graph We use metric graphs [5] for the formalization
of the map model provided by the Simulator. These are directed
graphs whose edges are labeled with segments that carry geomet-
ric information characterizing the road structure between their
endpoints.

A metric graph is formally defined by a tuple G = (V, S, E),
where V is a finite set of vertices, S is a set of segments with a
partial concatenation operator - : S XS — S U {1} with L for
undefined cases, and E C V X 8* X V is a set of edges labeled by
segments of non-zero length (denoted by S*). An edge e = (v,s,0”)

is denoted by v 2 o for brevity. For example, the metric graph
representing the sub-map of Fig. 2(a) is shown in Fig. 2(b). There are
three vertices in the graph and three edges labeled with segments
s1, 82, 83 corresponding to the three lanes of the map.

In addition to the vertices, we introduce the concept of positions
on a segment s as follows. s(—, 1) and s(, —) are the positions of
distance 7 from the beginning and the end of s, respectively, and
s[—, 1] and s[5, —] are the segments defined respectively between
the beginning of s and s(—,), and between s(, —) and its end.

For example in Fig. 2(c), the position of vehicle a; on the metric
graph is s5(7.67, —). The segment s5[7.67, —] is the fragment of ss
from its end to the position of a;.

2.1.2 Map to metric graph transformation The transformation from
a map of the Simulator to a metric graph is straight-forward. Each
location of a lane is regarded as a vertex, and an edge e with its
labelling segment s is created if there is a lane ¢ between two
locations. Finally, we associate the attributes of the lanes to the
corresponding edges and segments, e.g., the turn type of a lane is
associated to that of the segment. The traffic signals and stop signs
are indicated at their positions on the metric graph. For example,
the four locations in the map model of Fig. 2(a) correspond to the

Simulation-Based Validation for Autonomous Driving Systems

road junction

Uy
(a) Map (b) Metric graph
84:36.24 U1
Q4 :84(-, 20.12)
L green
52:20,19/7 vallta' ¥
vy (Ity: red)
Us @1:85(-, 110.05)
s3:24.29 ag:ss(-, 95.01)
81: 76.07,
s5: 117.72 3:85(-, 35.13)
Ve >

(c) A state of the semantic model
Figure 2: An example map (a), its corresponding metric graph
and (b) a state of the semantic model (c)

four vertices of the metric graph in Fig. 2(b). As there are three
connections from I to I1, from I3 to I, and from I4 to I, respectively,
we create three edges labeled with segments s1, sz and s3 in the
corresponding metric graph.

2.2 Semantic model of an ADS

In order to simplify the presentation, we regard the mobile traffic
participants, such as vehicles and pedestrians as agents, and non-
mobile traffic participants such as traffic lights and traffic signs as
objects in the subsequent sections.

The semantic model provides a global view of the dynamics of
the simulated system by combining in a coherent way two comple-
mentary aspects: on one hand the state of the agents and on the
other hand the static environment where they move. We construct
the semantic model from the state information of the simulated
system exported by the Simulator API.

First, we extract, through the Simulator API, the state informa-
tion of the agents and objects and build the state of the semantic
model. The state of an ADS consists of a map with the states of
its agents and objects. The state of an agent includes its position,
orientation, velocity and itinerary, where an itinerary is a sequence
of consecutive segments in the metric graph that cannot begin or
finish in a junction. For example, an itinerary for the agent a; in
Fig. 2(c) can be {s5[—, 110.05] s3 s1[—, 7]}, and s5[—, 110.05] is the
first segment of the itinerary. The state of an object includes its
position and for a traffic light additionally its color.

We represent the state of an agent by s, = (it, pos, sp, wt) where
it is an itinerary with it? being the first segment in the itinerary,
pos = it’(—, 0) is the position of agent a on the metric graph, sp
is its speed, and wt is the waiting time elapsed since its speed
became zero. Similarly, the state of a traffic light It is denoted by
sg¢ = (pos, color), where pos is its position in the metric graph, color
can be either red, yellow or green. For a stop sign, its state only
records its position in the metric graph. Notice that the generation
of the corresponding states of the semantic model requires the
computation of the relative positions of agents and objects on the
metric graph from their physical 2D Cartesian coordinates.

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

A run of an ADS is a sequence of states generated periodically by
the Simulator. We assume that the states of agents and objects are
updated periodically by the simulation process every time At. The
global state (state for short) at time t for a set of n agents and objects
is denoted by S; = (s1,...,sn). The sequence of states in a time
interval [0, m * At] is then denoted by (So, ..., Sp). Considering
again the map model in Fig. 2, a state of a simulated system on the
corresponding metric graph is shown in Fig. 2(c). There are one
vehicle in segment s4, three vehicles in segment s5 and two traffic
lights in segment sy and s3 respectively. The length of s5 is 117.72.

The semantic model of a simulated system is then defined by
the set of all the tuples (G, S), where G is the metric graph of the
involved map, and S = (Sp, . .., Sm) is a system run extracted from
the Simulator in time interval [0, m = At]. Each element of a run
describes a global state including the states of all agents and objects.

3 PROPERTY SPECIFICATION AND VALIDA-
TION

In this section, we formalize a set of global system properties de-
scribing traffic rules as formulas of the linear temporal logic pro-
posed in [5] and provide a runtime verification method to validate
such formulas against the semantic model.

3.1 Property specification

The metric graph G = (V, S, E) representing a map can be decom-
posed into two sub-graphs corresponding respectively to its roads
and its junctions.

The sub-graph R = (V;,, Sy, E;) represents the roads with E, C E

and V. C V. Each road is a maximal directed path r = vy N

v o up, where all the vertices vy, . .., v,—1 have in-degree and
out-degree equal to one. Vertices vy and vy, are called the entrance
and exit of the road r, respectively.

The sub-graph J = (V}, S}, E,) representing the set of junctions
is obtained from G by removing from its roads all the vertices except
their entrances and exits, with E; = E \ E; the set of edges labelled
with junctions, V,cv the vertices of edges in E,, and SJ the set
of the corresponding segments. We assume that in a junction each
entrance v has a neighboring exit o’ denoted by v entex v’.

Let A and O denote the set of agents and the set of objects,
respectively. The properties of the system are expressed as formulas
of a first-order linear temporal logic involving the following types of
variables. Let a, o, r, j denote the variables of agents, objects, roads,
and junctions, respectively. We denote by x.pos the position of an
agent (x = a) or an object (x = 0) on the map, and by y.en, y.ex, an
entrance and an exit of a road (y = r) or junction (y = j). Variables
v and e represent a vertex and an edge of the map, respectively.
Finally, we introduce three types of predicates on these variables
defined as follows.

e vy orientation vz, where orientation € {right-of, opposite}
describes the relative position between two vertices v1 and v
in a junction of a map. In particular, predicate v; right-of vy
means that v; is to the right of v3, and predicate v1 opposite vy
means that v1 and vy are the origins of two segments oriented in
opposite directions.

e x@y indicates that the position of x is at y, where x is an agent or
object variable and y is a sub-graph restricted to a set of vertices.

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

e turn(a,d) indicates the direction taken by an agent a following
its itinerary, where d € {left, right, straight} means respec-
tively that a turns left, right or goes straight.

The semantics of the predicates for elements (G, S) of the se-
mantic model is defined in Table 1. We consider the first-order
linear temporal logic generated from the above predicates using
the temporal modalities G, F, X, U, i.e., always, eventually, next and
until operator, respectively. For instance, the following formula
specifies that for any run of the system with m agents and k objects,
formula ¢ should always hold on a system run: Vay - - - Vay,.Vo; -
Yor.G ¢(ai,...,am,01,...,0k)-

To ease the presentation, we also introduce the following predi-
cate that states the agent a is at an entrance of junction j and head-
ing in direction d: take(a, j.en, d) o [a@j.en A [a@j.en U [a@) A
turn(a,d)]]]

We provide traffic rules enforcing priorities of agents approach-
ing junctions and their formal specifications in Table 2. The first
three rules are for junctions with stop signs and the other three are
for junctions with traffic lights.

3.2 Runtime verification

Given (G, S) an element of the semantic model constructed from
the exported states and a formula ¢ specifying the desired property,
we apply runtime verification as shown in Algorithm 1 to check
whether (G, S) satisfies the given property.
1: Input: a formula ¢ and an element (G, S) of the semantic
model

: Output: verdict showing the verification result
: ¢’ =unfold(p,G,S)
: % = extract(S)
. @ = simplify(¢’, G, S°)
. verdict = check(¢”’, G, S)

Algorithm 1: Runtime verification algorithm

[~ S BT N OV R)

The first step applies the unfold function (Line 3), which elim-
inates all the quantifiers of the input property ¢ and obtains a
quantifier-free formula ¢’ in the following manner.

Let Dy be the finite domain of a variable x. Recall that each
variable in the formula refers to an element of specific type which
can be an agent, object or junction entrance. The domain Dy of
variable « is a finite set of constants that can be extracted from
(G, S) according to the type of k. For instance, if variable k refers to
elements of type agent, its domain D will be simply all the agents
of the simulated system.

Quantifier elimination for variable x boils down to the appli-
cation of the following two rules that instantiate x with all the
corresponding elements in its domain Dy, where ¢ [«k/c] represents
substitution of k by c in the formula ¢.

Vk. ¢ & /\ plx/c]; 3k. ¢ & \/ plx/c]
ceD, ceD,

The function extract (Line 4) constructs a static model S°,
which contains the state attributes of non-mobile objects that do
not change over the simulation, e.g., the positions of traffic lights.
This static model can be used to further simplify the formula.

The function simplify (Line 5) evaluates the predicates involv-
ing non-mobile objects in the quantifier-free formula ¢’ according
to (G, S%), and outputs a simplified formula ¢"’.

Li et al.

Finally, the function check (Line 6) evaluates the simplified
quantifier-free formula ¢”’ against (G, S), and returns a verdict
indicating the satisfaction or not of the given formula.

For formula evaluation, we adopt the method proposed in [4],
that consists in extracting a deterministic finite state machine char-
acterizing the behavior specified by formula ¢’’. Then the satisfia-
bility check boils down to checking the run S of (G, S) is accepted
by the finite state machine.

4 RIGOROUS VALIDATION USING SCENARIOS

4.1 Structural equivalence for scenarios

Given a set of properties P, we define an equivalence relation ~p
on system runs. For two system runs S1, Sy, we put S; ~p Sz when
S1 E p iff Sy [p for each property p of P. That is, the equivalence
relation ~p does not distinguish between system runs that satisfy
exactly the same properties.

To define the structural equivalence for scenarios, we introduce
some necessary notations. Recall that a system state can be defined
asatuple S = ({sa}ac @, {50 }oec o) consisting of states of the agents
and objects. For a given system state S, an abstract scenario is the
set of the itineraries of the involved agents of A, and denoted by
as(S) = {itq}qc #- For example, one possible abstract scenario for
the set of agents {ay, a4} in Fig. 2(c) is {a; : s5[—, 110.05]s3s1[—, 7],
aq : s4[—, 20.12]sps1[—, 6]}.

Clearly, any state S can be considered as the disjoint union S =
as(S) ®cn(S) where cn(S) is the context of S including the dynamic
attributes of the states. This decomposition is motivated by the need
to distinguish between the part of the agent’s state that remains
unchanged and the part that changes during system evolution.

Now, we define a structural equivalence ~p on abstract scenarios
parameterized by the set of properties P. For two abstract scenarios
asi, asp, we say that as; =p asp if S; ~p Sy for any runs Sq, Sy of
the simulated system from the initial states S; and Sz such that
as(S1) = as1, as(S2) = asz and cn(S1) = cn(Sz). That is, two equiv-
alent abstract scenarios extended with identical contexts define
two initial states from which the simulated system will generate
equivalent runs with respect to the properties of P.

In our testing methodology, we assume that the scenario gener-
ator extends abstract scenarios by providing each agent its initial
state and determining the whole initial execution context.

We focus on abstract scenarios of a system with a map and a fixed
set of agents and objects. A key observation is that for most traffic
rules, their application depends mainly on the relative positions of
the agent itineraries regardless of the agent dynamics. For instance,
if the itineraries of two vehicles cross a junction, the traffic rules in
Table 2 are applicable independently of their speeds.

The considered abstract scenarios may involve multiple roads
and junctions. As the behavior of a vehicle in one junction has little
influence on its behavior in subsequent junctions of its itinerary,
we focus on testing policies for different types of junctions.

4.2 Coverage criteria for junctions

We discuss below principles for generating abstract scenarios for
junctions guided by a coverage criterion exactly as for structural
testing of software systems [2]. We show how structural equiva-
lence on abstract scenarios can be computed for the considered two

Simulation-Based Validation for Autonomous Driving Systems

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

Table 1: Semantics of the predicates

. . s B . .
(G,S) E vy opposite vy iff o =5 3 A0y = vg A (v1 entex vg) A (0 entex v3) A s1.7 = straight A sp.7 = straight

for two vertices v3 and vg in G

(G,S) E v1 right-of vs iff o o, 3 A0y 22, v3 A ((s1.7 = right A sp.7 = straight) Vv (s1.7 = straight A sp.7 = left))

for a vertex v3 in G

(G,S) Fx@y iff oy BN v A sx.pos = s(—, n) for two vertices v1, v and a segment s in y, and a n € [0, ||s]|],
where sy is the state of agent or object x in Sp
(G,S) E turn(a,d) iff s4.it%.7 = d where s, is the state of agent a in Sy

Table 2: Traffic rules and their formal specifications in linear temporal logic

Properties for a stop junction j:

p1: If a vehicle is in the junction, then no other vehicle can be in the junction:

VaVa'.G [[a@)jAa#d] - -d@)]

p2: If a vehicle arrives at the same time as another vehicle, the vehicle on the right has the right-of-way:
Vj.enVj.en' YaNa'. G [[a@).en A d’ @).en’ A a.wt = awt’ A Jenright-of jen’] — [[Xd' @).en’] U a@)]]
p3: The vehicle that arrives first at the entrance will pass before other vehicles:

Vj.enVj.en' YaNa' .G [[a@)j.en Ad’@).en’ A awt < a' wt] - [[Xa@).en] Ud @)]]

Properties for a traffic light junction ;:

pa: Any vehicle facing a red light must stop until the traffic light turns green, unless the vehicle is turning right.

Vj.enNaVit. G [[a@j.en A lt@).en A lt.cl = red A —take(a, j.en, right)] — [a@j.en U lt.cl = green]]

ps: If a vehicle facing a red light is turning right, then the vehicle should wait until there is no vehicle on the left.

Vj.enVj.en' YaVa' ¥it. G [[a@j.en A a’@j.en” A (j.en right-of j.en’) A lt@j.en A (It.c] = red) A take(a, j.en,right)] —

[[X a@j.en] Uad'@)]]

pe: If two vehicles arrive at the entrances of a junction opposite each other, the vehicle turning left must give way to the other.
Vj.enVjen' VYaV¥a'.G [[a@jen A a’@jen’ A jen opposite jen’ A take(a, j.en left) A =take(d,j.en’,left)] —

[[Xa@j.en] Ud' @)]]

types of junctions and the corresponding properties. We assume,
without loss of generality, that the same type of traffic rules are
applied to all junction entrances, i.e., regulation either by stop signs
or by traffic lights.

Considering a junction with k + 1 entrances and corresponding
exits, we can encode possible itineraries and the corresponding
abstract scenarios for vehicles that are at its entrances in the follow-
ing manner using a set of k symbolic directions {dy, ..., dy}. For a
vehicle entering at entrance i, the symbolic direction d; means that
the vehicle is heading to exit i + j (mod (k + 1)). For instance, for
a vehicle at entrance 0, its possible itineraries can be represented
by the ordered set {0g,,0g4,, ..., 04, } heading to exits from 1 to k.
Thus if we consider maximal abstract scenarios with one vehicle
per entrance of the junction, we will have k+1) different abstract
scenarios (for each entrance we have k different itineraries and
we have k + 1 different entrances). The general form of a maximal
abstract scenario is idy, * i(k+1)djk , where j1, ja, ..., ji take values
in the set {1,2, .., k}, and all the entrance indexes i1, ..., i(41) are
different.

Note that if the traffic rules do not particularize the inputs of
the junction according to their positions, one can easily define
structurally equivalent abstract scenarios by simply rotating the
inputs and preserving the symbolic directions. This is generally the
case when access to a junction is governed by the same traffic rules,
such as an all-way stop or a traffic signal controlled junction. Thus,
the abstract scenario id;, "'i(k+1)d,-k under these assumptions
is structurally equivalent to the one (i; + 1)avj1 co (Asn) + l)djk
where the sum operation on indices is modulo k + 1. That is, this

Figure 3: A junction with k + 1 entrances and exits

transformation gives structurally equivalent abstract scenarios by
simple rotation of the positions of the agents without changing the
relative positions of their trajectories.

We consider all possible itineraries (from an entrance to an exit
of a junction) to ensure the full structural coverage of a junction
with maximal abstract scenarios (one vehicle per entrance).

In Fig. 4 we show how possible itineraries and their abstract
scenarios can be generated for a junction with 3 entrances/exits
(Fig. 4.(a)). We have k = 2, thus we have 2% = 8 abstract scenar-
ios that are shown and grouped in four equivalence classes (asi:
Fig. 4(b), asz: Fig. 4(c), as3: Fig. 4(d)-(f), and asy: Fig. 4(g)-(i)). The ab-
stract scenario 04 14,24, is alone in its equivalence class as well as
the abstract scenario 04,24,14,- The abstract scenario 04, 14,24, is
equivalent to two other abstract scenarios: 14,24,04, and 24,04, 14,
depicted in the second row of the figure. Finally, the third row
presents three other structurally equivalent abstract scenarios.

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

« 9, — <« 5
0 24, 2 0 24, 2 00— .2
0g, 04,
Od, p 0, 1a, 1
1a) da 24
24,
1 1 1
(a) (b)as: ©as,
3 — “— o —
0 2 0 2a, 220 24, 2
0Od,
04, 1a 14 04,
24, Loy
1 1 1
as; () as; (Das;
0 2 0 0 <~ 32, —~)
0d, 04,
A Od, 1
2 24, D, La,
1 1 1
(9)as; (h) asy () as,

Figure 4: A 3-way junction and its equivalent classes

4.3 Generating concrete scenarios

By following an approach inspired from the metamorphic test-
ing [8], we use equivalent scenarios to test the simulated system
with respect to the properties under consideration. Equivalent sce-
narios are obtained by extending equivalent abstract scenarios with
the same dynamic attributes.

Note that given two abstract scenarios for a junction, we can
extend them into equivalent abstract scenarios by appending seg-
ments that modify corresponding itineraries in the same man-
ner. That is, given two abstract scenarios as; = (it11,...,it1n)
and as, = (itey,...,itan), such that as; ~ asz, we can extend
them by appending road segments sy, ...,s, leading to the en-
trances of the junction that are the starting points of the itineraries.
We thus obtain abstract scenarios as{ = (s1it11,...,Snit1n) and
asy = (syita1, ..., Spitan) such that as] ~ as;,. We use this simple ex-
tension mechanism to generate new equivalence classes of abstract
scenarios by simply changing a parameter that is the distance of
corresponding itineraries from the entrance of the junction.

For each abstract scenario, we consider one vehicle per direction.
The vehicles are initialized at different positions and with different
speeds in order to generate concrete scenarios. The positions of the
vehicles cover different distances from the entrance of a junction.
The speed of the vehicles ranges from zero to the speed limit of
the road on which they are located. However, in order to generate
realistic scenarios we should choose the initial speeds and distances
from the entrance of a junction in such a manner that the vehi-
cle can safely stop before the entrance of the junction if needed.
According to the vehicle dynamics, for each distance d, there is a
maximal braking speed v(d)mqx beyond which the vehicle cannot
safely stop by braking over the distance d. Thus, we will consider
scenarios where the following condition holds: if the distance from
the entrance of a junction is d, then the initial speed of the vehicle
will be less than or equal to v(d)max. In that manner, we exclude
the cases where a vehicle may violate a traffic rule for a junction
because of excessive speed. Since v(d)max is an increasing function
of d, the correspondence between the distance and the maximal
braking speed can be estimated by iterative testing of the vehicle
dynamics in the Simulator.

Li et al.

Extended Simulator

LGSVL Simulator

Physical States

B)

l traffic light collors

Adapter

——

Decoder l

semantic
model

scenario

Scenario Generator Monitor

Junction Find Context Checker
Junction Type unction Finder
Initial Distances —>

Initial Speeds

roeris |

verdict for each

Formula Simplifier | |—f
run and property

Abstact Scenario Generator
Predicate Evaluator

LTL; Tools

Scenario Instantiator

RvADS Framework

: New Modification
i | Implementation

Figure 5: RvADS with the integrated LGSVL Simulator

5 IMPLEMENTATION AND EXPERIMENTATION

5.1 Implementation

We have implemented in the RvADS framework the proposed rig-
orous testing method to validate autonomous driving systems !.
RvADS shown in Fig. 5 integrates a Scenario Generator and a Moni-
tor with an ADS simulator. The Scenario Generator produces equiv-
alent scenarios obtained from abstract scenarios that cover all the
maximal possible configurations of vehicles from a junction en-
trance. The Monitor performs runtime verification of the simulated
system against a set of properties specifying traffic rules applied at
junctions.

RvADS uses the LGSVL Simulator to simulate an ADS. The
LGSVL Simulator provides a controller for each vehicle, which
is in charge of the speed control, as well as the direction to cross
the junction. For speed control, the LGSVL controller evaluates
the target speed of the vehicle based on the state of the static and
dynamic environment. Additionally, it uses a scheduler taking into
account the order of arrival of vehicles at each stop junction and
deciding their order of entry in sequence.

In addition to the speed control, the controller randomly decides
a direction to follow when a vehicle is approaching a junction. Fur-
thermore, as explained, the original LGSVL Simulator API provides
only the physical coordinates of the vehicles, without any explicit
connection to the map information. In order to make it compatible
with the proposed semantic model construction and validation, we
have also extended the LGSVL Simulator. The major modifications
are as follows:

o First, we have modified the implementation of the controllers
to allow them to follow an itinerary on the HD Map when the
vehicle approaches a junction. The itinerary on the HD Map is

! Available at https://github.com/LIIHWF/RVADS and [21]

https://github.com/LIIHWF/RvADS

Simulation-Based Validation for Autonomous Driving Systems

10.0 |
3 7.54
=
T 5.01 —— aggression = 1
= 2.5 aggression = 2
----- aggression = 3
0.0

002 05 1.0 15 2.0 25 3.0 35 40
distance d from junction entrance
Figure 6: Maximal safe speeds as a function of the braking
distance

defined as a sequence of segments using the extended AP In ad-
dition, we have established a connection between the controllers
and the API such that they can access both the position and the
itinerary of a vehicle on the HD map.

e Second, we have developed a Map Transformer from the HD
map and static object state information in the Simulator into the
corresponding metric graph and object state representation.

e Third, we have developed an Adapter between the Extended
Simulator, the Scenario Generator, and the Monitor. Based on
the mapping between the HD Map and the metric graph, the
encoder in the Adapter transforms an itinerary on the metric
graph into an itinerary on the HD Map; the decoder transforms
state information of the simulated system into a state of the
semantic model.

5.2 Experimental setup

The key question we would like to investigate in the experimen-
tation is how effective RvADS is for the validation of ADS against
complex traffic rules and for the systematic exploration of various
types of scenarios.

We consider 4-way junctions (as shown in Fig. 7(a)) equipped
with stop signs or traffic lights as the static environment of the
simulated system. For the stop sign junction, we consider that the
stop signs are located exactly at the entrances. A 4-way junction
involves 81 abstract scenarios, which are partitioned into 24 struc-
tural equivalence classes. For each scenario, we set one vehicle per
entrance of the junction.

The simulation period (At) of the Simulator is set to 10 ms, which
is small enough to accurately approximate the continuous vehicle
dynamics. For the simulation of each scenario, the modified LGSVL
Simulator can enforce the execution of the given scenario so that
each vehicle follows the corresponding itinerary. RvVADS checks
whether the properties specifying the traffic rules presented in
Table 2 are satisfied by the simulated system at runtime. If the se-
mantic model of a scenario is not within the context of the property,
then RvADS produces an "NA" verdict. Otherwise if the generated
system run satisfies a property, RvADS delivers a "pass" verdict;
else it delivers a "fail" verdict.

In Fig. 6, we plot the maximal safe braking speed (in meters/second)
as a function of the distance (in meters) from the entrance of a junc-
tion. We consider a city map with a speed limit of 11.176 m/s. The
three curves correspond to the three speed adjustment rates (i.e.,
aggression € {1, 2,3}) used by the LGSVL Simulator. For a given
distance, the lower the aggression, the lower the safe braking speed.
We set aggression = 1 in this experimentation. In generating con-
crete scenarios, we consider the distance and speed so that the
vehicles can stop by braking before the junction.

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

We remark that in estimating the correspondence between the
maximal braking speed and the distance from a stop sign, we have
found that a vehicle cannot brake at the stop sign when the distance
is less or equal to 0.01 meters to the stop sign, even if the initial speed
is zero. The reason is that the controller of the LGSVL Simulator will
always apply a speeding-up policy to initialize the vehicle without
checking the safe braking distance to the stop sign. That reveals
the lack of controllability for small distances in the Simulator that
would occur even when simulating a single vehicle.

5.3 Experimentation

RVADS proves to be very effective at testing ADS and allows sys-
tematic exploration of high-risk situations whose probability of oc-
currence is extremely low in random testing. In particular, we have
been using RVADS to uncover several deficiencies of the LGSVL
Simulator as summarized in Table 5.

5.3.1 Experimentation with a 4-way stop junction A 4-way junction
contains 24 structural equivalence classes. In Table 3 we provide
testing results for the traffic rules p1, p2, and p3 for 8 abstract scenar-
ios grouped into two structural equivalence classes. The concrete
scenarios are then obtained by setting different distances from the
entrance (i.e., 0.01m, 0.3 m and 20 m) and different initial speeds
(i.e., 0m/s and 10 m/s) that respect the safe braking distance rela-
tion as shown in Fig. 6. For brevity, we denote a scenario by the
index of its abstract scenario and the index of the initial distance
and speed configuration. For example, (1, A) includes the scenarios
in the first structural equivalence class with 0.01 meters from the
stop sign and zero initial speed for each vehicle.

We detail below the causes for each property violation. Exper-
iments show that, for an all-way stop junction, vehicles do not
decide autonomously based on knowledge of their surroundings.
The Simulator uses a Scheduler to decide which vehicle should
move first in case of a conflict. In addition, the Scheduler considers
the junction as a different zone than the one defined by its entrances
and exits. The use of such a centralized control mechanism goes
against the assumption that vehicles are autonomous. Furthermore
as discussed below, it is a source of inconsistencies as the Sched-
uler’s perception of the junction differs from that of a vehicle based
on its own sensor equipment.

1) Analysis for property p;

Property pj: If a vehicle is in the junction, then no other vehicle
can be in the junction. Hence, violating p; means that more than
one vehicle is in the junction at the same time.

This property is violated in all scenarios (1, A), (2, A), (1, B) and
(2, B). For scenarios (1, A) and (2, A), the cause is deficiency I; in
Table 5, due to the lack of controllability for short distances. During
initialization, the controller randomly assigns a rate for vehicle
acceleration without considering the safe braking distance. When
the distance to go is 0.01 meters, the vehicle cannot brake safely.

For scenarios (1, B) and (2, B), the cause is deficiency I in Table
5, due to hidden guidance for control. Vehicle control uses a bound-
ary zone for junctions that is smaller than the area defined by its
entrances and exits. For example, in Fig. 7(b), the shaded square
area is considered as the junction area by the Scheduler. When the
vehicle at entrance 0 leaves the shaded square area, the vehicle at
entrance 1 is then scheduled to enter. In such a case, if we consider

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

Table 3: Experimental results for a 4-way stop junction

Li et al.

class of | distance (0.01,0.01,0.01,0.01) ||distance (0.3,0.3,0.3,0.3) distance (20,20,20,20) distance (0.3,0.3,20,20)
#| abstract A: speed (0,0,0,0) B: speed (0,0,0,0) C: speed (0,0,0,0) |D: speed (10,10,10,10) E: speed (0,0,0,0)
scenarios Pp1 P2 3 p1 p2 P3 P1 p2 3 p1 P2 P3 P1 p2 p3
01423 Fail Fail NA Fail Fail NA Fail Fail NA Fail Fail NA Fail Fail Pass
d2idi%di>di|(0135) (0.61s) (0.75s)|[(0.255) (0.61s) (0.78s) |[(0.30s) (0.74s) (0.92s)|(0.45s) (1.09s) (0.98s)|[(0.275) (0.665) (2.375)
001,23 Fail Fail NA Fail Fail NA Fail Fail NA | Fail Fail NA Fail Fail Pass
1| 4 de%divdi(013s) (0.61s) (0.758)](0.25s) (0.61s) (0.78s) |[(0.32s) (0.74s) (0.94s)(0.30s) (0.71s) (0.90s)||(0.27s) (0.63s) (2.23s)
01023 Fail Fail NA Fail Fail NA Pass Fail NA | Pass Fail NA Pass Fail Pass
ditdi®d di|(0145) (0.625) (0.768)]](0.25s) (0.64s) (0.79s) ||(0.33s) (0.74s) (0.92s)|(0.32s) (0.75s) (0.93s)|[(0.31s) (0.65s) (2.29s)
0s 14243 Fail Fail NA Fail Fail NA Fail Faill NA | Fail Fail NA Fail Fail Pass
ditdi%di>da|(0135) (0.62s) (0.75s)|[(0.255) (0.62s) (0.78s) |[(0.32s) (1.02s) (0.95s)[(0.365) (0.82s) (0.99s)|[(0.275) (0.62s) (2.33s)
014203 Fail Fail NA Fail Fail NA Fail Fail NA Fail Fail NA Fail Fail Pass
d3tdi“di>di| (0 155) (0.68s) (0.94s)|[(0.275) (0.72s) (0.89s) |[(0.32s) (0.82s) (1.03s)[(0.325) (0.81s) (1.04s)|[(0.285) (0.83s) (2.74s)
001,23 Fail Fail NA Fail Fail NA Faill Fail NA | Fail Fail NA Fail Fail Pass
2| 4 dstdivdi] (0.215) (0.69s) (0.86s)]/(0.285) (0.71s) (0.89s) ||(0.35s) (0.82s) (1.02s)[(0.40s) (0.90s) (1.07s)||(0.28s) (0.71s) (2.54s)
001,23 Fail Fail NA Fail Fail NA Pass Faill NA | Pass Fail NA Fail Fail Pass
ditdi®ds di) (0 145) (0.68s) (0.85s)|[(0.27s) (0.71s) (0.88s) ||(0.39s) (0.88s) (1.09s)|(0.36s) (0.80s) (1.01s)|[(0.39s) (0.76s) (2.69s)
001.2.3 Fail Fail NA Fail Fail NA Fail Fail NA | Fail Fail NA Fail Fail Pass
ditdi%di>ds| (0 145) (0.68s) (0.85s)|[(0.265) (0.72s) (0.94s) |[[(0.34s) (0.82s) (1.03s)[(0.35s) (0.87s) (1.07s)|[(0.325) (0.71s) (2.565)
Table 4: Experimental results for a 4-way traffic light junction
class of | distance (0.01,0.01,0.01,0.01) ||distance (0.3,0.3,0.3,0.3) distance (20,20,20,20) distance (20,0.3,20,0.3)
#| abstract F: speed (0,0,0,0) G: speed (0,0,0,0) H: speed (0,0,0,0) | L: speed (10,10,10,10) J: speed (0,0,0,0)
scenarios P4 Ps Pe P4 Ps Peo P4 Ps Pe P4 Ps Pe P4 Ps Pe
001,23 Fail NA Fail Pass NA Fail Pass NA Fail | Pass NA Fail || Pass NA Fail
diidy%ds>ds| (3 025) (1.88s) (4.90s)|[(2.195) (1.95s) (5.10s) |[(2.18s) (1.95s) (5.02s)[(2.08s) (1.85s) (4.79s)||(2.20s) (1.96s) (5.105)
014223 Fail NA Fail Pass NA Fail Pass NA Fail | Pass NA Fail Pass NA Fail
3| ds di%da ds| (2.025) (1.87s) (4.80s)|[(2.33s) (1.93s) (5.08s) ||(2.17s) (1.93s) (4.97s)|(2.10s) (1.85s) (4.91s)||(2.11s) (1.88s) (4.87s)
001,23 Fail NA Fail Pass NA Fail Pass NA Fail | Pass NA Fail Pass NA Fail
dstdsSdicdy|(210s) (1.80s) (4.71s)|[(2.15s) (1.92s) (5.00s) ||(2.18s) (1.94s) (5.11s)|(2.19s) (1.95s) (5.05s)||(2.21s) (1.95s) (5.09s)
001,23 Fail NA Fail Pass NA Fail Pass NA Fail | Pass NA Fail Pass NA Fail
dyidsCdscdi| (2 045) (1.77s) (4.72s)|[(2.11s) (1.87s) (4.90s) ||(2.28s) (2.01s) (5.28s)|(2.12s) (1.88s) (4.91s)||(2.21s) (1.94s) (5.055)
001023 NA Pass NA NA Pass NA NA NA NA NA NA NA NA Fail NA
dytdid d| (0 36s) (2.23s) (0.77s)][(0.36s) (2.265) (0.78s) ||(0.44s) (0.99s) (0.94s)|(0.42s) (0.95s) (0.90s)||(0.37s) (2.29s) (0.79s)
0010203 NA Pass NA NA Pass NA NA NA NA NA NA NA NA Fail NA
4| i dfdicd (0355) (2.185) (0.75s)[(0.36s) (2.24s) (0.77s) |[(0.455) (1.03s) (0.97s)|(0.43s) (0.98s) (0.92s)||(0.41s) (2.58s) (0.89s)
00 10.2.3 NA Pass NA NA Pass NA NA NA NA NA NA NA NA Fail NA
dyidid d| (0 355) (2.13s) (0.73s)][(0.34s) (2.09s) (0.71s) ||(0.44s) (0.98s) (0.94s)|(0.42s) (0.97s) (0.92s)|[(0.38s) (2.34s) (0.81s)
01023 NA Pass NA NA Pass NA NA NA NA NA NA NA NA Fail NA
ditdydicdr| (0 36s) (2.18s) (0.73s)][(0.36s) (2.18s) (0.75s) ||(0.44s) (0.98s) (0.92s)|(0.44s) (0.99s) (0.94s)||(0.40s) (2.40s) (0.84s)
Table 5: Deficiencies discovered in the LGSVL Simulator
Deficiency ID | Explanation
I Lack of controllability for short distances as explained at the end of Section 5.2.
I Hidden guidance for control. Vehicle control uses a boundary zone for junctions that cannot be obtained by sensing the
2 junction environment delineated by entrances/exits and traffic signs.
I No consideration of priorities between different itineraries with the same waiting time. The Scheduler sets priorities
3 according to the creation order of vehicles.
I No consideration of the priorities when turning right at a red light. When a right turning vehicle faces a red light and
4 stops at the entrance of a junction, it does not consider the priority of the vehicle at its left side facing a green light.
I Application of a partial order between the lanes of a junction followed by the vehicles. However, this order is incomplete
> and leaves unresolved conflicts.

Simulation-Based Validation for Autonomous Driving Systems

<0
37 s
a2

a0 bl ~a1

1

(a) Possible itineraries (b) Violating property p;

(c) Satisfying property p;

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

(d) Violating property ps (e) Violating property pe

Figure 7: Example scenarios of a 4-way junction

(e) Violation of pg (at time ¢ — 1)
Figure 8: Snapshots for property violations

that the junction is delimited by its entrances and exits, the two
vehicles are in the junction simultaneously.

We can also observe that even for the same class of scenarios,
e.g., (2,C), some scenario violates property p1, while some do not.
For example, there is one scenario in (2, C) satisfying this property.
The inconsistency is also due to the use of a boundary zone different
from the area of the junction. Moreover, the boundary zone is not
placed in the center of the junction, or symmetrical under rotation.
Thus, the validity of a property for equivalent scenarios may depend
on the configurations between vehicles and the boundary zone of
the junction considered by the Scheduler.

For example, the first scenario shown in Fig. 7(b) of (2,C) does
not satisfy the property pi, for the same reason as discussed for
scenarios (1, B) and (2, B). However, when considering the case of
Fig. 7(c), the third scenario in class (2, C), the vehicle at entrance 2
enters the junction first. As the boundary zone is close to exit 0 and
1, the vehicle at entrance 3 will enter the junction after the one at 2
leaves the junction. The same is true for vehicles from entrances 3
and 0, and from entrances 0 and 1, respectively. Therefore, there is
no more than one vehicle in the junction simultaneously, and the
property p; is satisfied.

(f) Violation of pg (at time ¢)

2) Analysis for property p;

Property py: If vehicles arrive at the stop sign at the same time,
the one on the right has the right-of-way.

Property ps is violated in all scenarios. For scenarios (1, A) and
(2, A), the cause of violation is explained by deficiency I; in Table
5, as the vehicles cannot brake safely and enter the junction.

For scenarios (1, B), (1,C), (1,D), (2,B), (2,C), and (2, D), the
cause of violation is explained by deficiency I3 in Table 5. In these
scenarios, the Scheduler ignores the priority rule. The four vehicles
reach the stop sign at the same time. According to pz, a circular
priority relationship between the vehicles would result in a dead-
lock, as each of the four vehicles waits for the vehicle to its right to
proceed. In the Simulator however, the Scheduler ignores the rule
and schedules the vehicles according to the order of initialization.

For scenarios (1, E) and (2, E), the reason of violation is also
explained by deficiency Is. Consider the first scenario in (1, E) as
an example. The vehicles at entrances 0 and 1 reach the stop sign of
the junction at the same time. And according to the rule, the vehicle
at entrance 1 has a higher priority than the one at 0. However,
the Simulator schedules the vehicles according to the initialization
order ignoring this rule.

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

Figs. 8(a) and 8(b) show two successive scenes illustrating a
violation. In Fig. 8(a), vehicles a and a’ arrive at the same time.
Vehicle @’ is to the right of a and supposed to have higher priority.
However, in the next moment, as shown in Fig. 8(b), vehicle a enters
before a’.

3) Analysis for property p3

Property p3: The vehicle that arrives at the entrance first will
proceed before the other vehicles.

In the scenarios other than those with configuration E, all the
vehicles arrive at the entrance simultaneously, so the above property
is not applicable and the corresponding results are labelled by NA.
For the scenarios in (1, E) and (2, E), property ps is satisfied. That
is, the Simulator applies this first-in, first-out policy.

5.3.2 Experimentation with a 4-way traffic light junction The re-
sults of the validation of the properties of Table 2 for the four-way
traffic light junction are shown in Table 4. We choose two struc-
tural equivalence classes different from those in Table 3. The initial
distances to the entrance and speeds of the vehicles are also chosen
from {0.01 m, 0.3 m, 20 m} and {0 m/s, 10 m/s}, respectively. Exper-
iments show that, for a traffic light junction, the vehicles follow
for conflict resolution an implicit order encoded in the lanes of the
junction. This is a source of inconsistencies as discussed below.

1) Analysis for property py

Property p4: Every vehicle facing a red light should stop until
the traffic light turns green, unless the vehicle is turning right.

In scenarios (3, F), the property is violated. The cause is defi-
ciency I in Table 5. The vehicle facing red light cannot brake safely
when it is making a left turn.

In the other scenarios obtained from abstract scenarios of class 3,
this property is satisfied, and all the vehicles wait before the traffic
lights turn green. However, for scenarios obtained from class 4, this
property is not applicable since the two vehicles facing the red light
are turning right.

2) Analysis for property ps

Property ps: If a vehicle facing a red light is turning right, then
the vehicle should wait until there is no vehicle on its left.

The abstract scenario 3 does not involve a vehicle turning right
when facing a red light. Therefore, the property is not applicable
for this class.

For scenarios in (4, F) and (4, G), the property is satisfied. In
these scenarios, the vehicles facing green light will pass through
the junction without decelerating. Then the vehicle facing the red
light turns right.

For scenarios in (4, H) and (4, 1), the vehicles turning right at
entrances 1 and 3 are facing red lights and will decelerate first.
When they arrive at the entrances, the other vehicles have already
entered the junction. Therefore, the property is not applicable.

The scenarios in (4, J) do not satisfy property ps. As shown in
Fig. 7(d), the vehicle facing a red light can enter the junction when
there is a vehicle at the entrance on its left. The reason described
by deficiency 14 of Table 5 is that when a vehicle facing green light
arrives at the junction, the vehicle making a right turn may have
already reached its randomly-assigned waiting time and enters the
junction without considering the priority.

We provide a snapshot for such a case in the simulation. In
Fig. 8(c), vehicle a is waiting to turn right facing a red light, and

Li et al.

vehicle @’ arrives. In Fig. 8(d), the traffic light for vehicle a is still
red. However, it enters the junction and nearly causes a collision.

3) Analysis for property pe

Property pe: If two vehicles arrive at the entrances of a junction
from opposite directions and the traffic lights are green, the vehicle
turning left must give way to the other.

For class 3, property pe is not satisfied. For scenarios (3, F), the
reason is deficiency I of Table 5, that is lack of controllability for
short distances. The vehicle turning left cannot stop safely and
enters the junction before the other.

For the other scenarios from class 3, the reason is deficiency Is of
Table 5 due to the application of an incomplete priority order. For
example, in Fig. 7(e) the vehicle at entrance 0 is turning right, and
the vehicle at entrance 2 enters without considering that the one at
entrance 0 has a higher priority. However, in the abstract scenario
4, no vehicle turns left. Thus this property is not applicable.

We provide snapshots showing the violation of the property in
Figs. 8(e) and 8(f). In Fig. 8(e), vehicles a, a’ arrive at the entrances
simultaneously, where a is turning left and @’ is turning right.
According to the traffic rule, a’ should proceed first. However, in
Fig. 8(f), the two vehicles enter simultaneously.

5.3.3 Runtime overhead of RvADS In addition to the verdict re-
ported by RvADS, we also present time consumption in validating
the properties in Tables 3 and 4.

RvADS first checks the applicability of a scenario against a prop-
erty by evaluating its implicant. If the implicant is not true, RvADS
returns NA result without evaluating the whole formula. Therefore,
the time costs for NA cases are low.

We can observe that for the same scenario, the time cost increases
with the number of temporal operators and variables involved in
a property. This is due to the increase in the size of the unfolded
formulas.

Moreover, the number of simulation steps for scenarios with the
traffic light junction is larger than the one with the stop junction.
This fact leads to an increase in the size of the constructed semantic
model. Therefore, the time cost of the scenarios with a signalized
intersection is higher than that of a stop junction.

6 RELATED WORK

In the literature of simulation-based validation for ADS [19, 23, 34],
there is a large body of work on the generation of safety-critical sce-
narios [7], either by using scenario modeling languages [12, 25], or
from available databases [10, 31]. Scenic is a well-known probabilis-
tic programming language for generating scenarios for ADS [12].
Paracosm [25] is another software system that also allows users
to describe complex driving situations with specific characteris-
tics and generate scenarios by different parameter configurations.
Our approach is based on a semantic model extracted from the
Simulator. We generate scenarios based on coverage criteria and
test them against properties specified in a logic and verified by
verification techniques. Many other works adopt search-based algo-
rithms to generate scenarios challenging the autonomous driving
systems. For example, Av-fuzzer [22] utilizes a genetic algorithm-
based search to detect situations where an autonomous driving
system can run into safety violations. MOSAT [31] uses genes to
encode basic driving maneuvers and applies a multi-objective ge-
netic algorithm to search for adversarial and diverse test scenarios.

Simulation-Based Validation for Autonomous Driving Systems

ISSTA °23, July 17-21, 2023, Seattle, WA, United States

Table 6: Comparison with existing validation tools for autonomous driving systems

tools simulation environment | #ego vehicles tested properties specification language test case generation
AsFault [14] BeamNG single lane keeping performance - search for road networks
AV-Fuzzer [22] Apollo+LGSVL single collision - search for NPC maneuvers
LawBreaker [27] Apollo+LGSVL single traffic laws STL specification coverage
RvADS LGSVL multiple traffic laws parameterized first-order LTL structural coverage

None of them considers violation of properties or traffic rules as
the criteria in identifying safety-critical scenarios.

Efforts are also made to generate scenarios according to map
topology. To facilitate the virtual testing of motion planners for
automated vehicles, the work in [18] first extracts a large variety of
road networks from OpenStreetMap. Then it uses the traffic simula-
tor SUMO to generate traffic scenarios for these road networks. The
criticality of the scenarios is reinforced by the use of nonlinear op-
timization. The works in [29, 30] classify junction lanes according
to the collision avoidance maneuvers of the ego vehicle and build
map topology-based scenarios with various algorithms. SOCA [6]
adopts zone graphs as the abstraction of traffic situations at junc-
tions for behavior analysis, where each zone graph represents an
intention of the ego vehicle. Unlike these three works [6, 29, 30],
we ignore the detailed topology of the junctions while we consider
abstractions that suffice to define coverage criteria for a systematic
exploration of traffic patterns.

In addition to generating scenarios, many works use linear tem-
poral logic [5, 11, 16], or signal temporal logic [1, 27, 33], or metric
temporal logic [9] to describe traffic rules or safety properties for
the validation of ADS. We also adopt linear temporal logic to de-
scribe traffic rules. However formulas are parametric involving
quantification over both map and vehicle attributes.

Testing techniques have also been widely applied for the valida-
tion of ADS [14, 17, 23]. The most related ones are combinatorial
testing [20, 25], metamorphic testing [32, 35], fuzz testing [22] and
search-based testing [15]. Among all, adopting combinatorial test-
ing can guarantee the coverage of the generated scenarios with
respect to the given parameters [20, 25]. By adopting metamorphic
relations on the inputs, such as generating scenes with various
weather conditions [32], or introducing noise [35], the inconsis-
tency between the outputs can be detected, which eliminates the
need to use a test oracle. In fuzz testing, existing scenarios can
be mutated to search for potential bugs or safety violations [22].
Search-based testing leverages on optimization to generate concrete
test cases [15]. In this work, we use equivalence on scenarios as a
metamorphic testing relation. However, we use an Oracle applying
runtime verification to detect discrepancies.

Table 6 compares the characteristics of the most recent tools for
systematically testing autonomous systems, showing significant
differences with RvADS. The criteria considered are the simulation
environment, the number of ego vehicles, the type of properties
tested, the specification language, and the test case generation
method. It should be noted that RvADS, after making appropriate
modifications to the Simulator, allows each vehicle to have its own
autopilot. On the contrary, the other tools handle a single vehicle
with autopilot. The other vehicles follow either a predefined trajec-
tory or interact randomly with the ego vehicle. Thus, the scenarios
in RVADS involve the autonomous movement of all the vehicles,

allowing realistic critical situations to be created and tested. Further-
more, in RVADS we use a specification language that can deal with
configurations between vehicles, and so to describe traffic rules for
junctions. This is achieved using an appropriately formalized map
on which we can reason and test vehicle configurations.
LawBreaker is the closest tool to RvADS. However, its logic
cannot handle vehicle configurations on a map. In addition, Law-
Breaker’s scenario description language is taken from AVUnit?,
which can introduce NPC vehicles that are unclear to what extent
they can be controlled to achieve specific global configurations.

7 CONCLUSION

The paper proposes a rigorous simulation-based method for the
validation of autonomous driving systems. A key idea is to link the
LGSVL Simulator with the RvADS tool that combines a Scenario
Generator and a Monitor to test sets of desired system properties
specified in a linear temporal logic. The proposed methodology is
quite general and can be applied to other Simulators after proper
instrumentation.

Unlike simulation-based approaches that focus on quantitative
criteria such as the number of hours or kilometers simulated, we rely
on the semantic model of the system to achieve sufficient coverage
of high-risk situations. We focus on testing traffic rules applicable
to two types of junctions where the probability of accidents is
increased. The main result is the definition of a property-preserving
equivalence on scenarios. We show how we can use equivalent
scenarios to discover flaws in the simulated system and ensure
fair coverage of risky situations whose probability of occurring in
random simulation is very low.

The obtained experimental results reveal several deficiencies in
the simulated systems, some of which are related to the driving
policies of the agents and some to the simulation runtime imple-
mentation. In addition, we found that the deceleration rates applied
by the simulated vehicles are unreasonable. For example, the speed
of a vehicle in the simulator can be reduced from 10m/s to 0 m/s
in less than 3.5 meters, which is impossible in reality.

The method is novel to our knowledge. It shows that for this
reputedly difficult problem, there is a way to tame its complexity.
Instead of exploring ordinary situations with low risk potential
over long periods of time, we can decompose the validation prob-
lem into relatively independent contexts given the locality of the
decision making. In a future work, we will show how to apply a
compositionality principle to achieve global system validation.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their constructive
comments. This work has been partly funded by the National Natu-
ral Science Foundation of China (Grant No. 62132020), and the CAS
Project for Young Scientists in Basic Research (Grant No.YSBR-040).

Zhttps://avunit.readthedocs.io/en/latest/

https://avunit.readthedocs.io/en/latest/

ISSTA °23, July 17-21, 2023, Seattle, WA, United States Lietal.

REFERENCES [19

[1] Nikos Arechiga. 2019. Specifying safety of autonomous vehicles in signal tempo-
ral logic. In IV. IEEE, 58-63. https://doi.org/10.1109/IVS.2019.8813875

Philip Koopman and Michael Wagner. 2016. Challenges in autonomous vehicle
testing and validation. SAE International Journal of Transportation Safety 4, 1
(2016), 15-24. http://www.jstor.org/stable/26167741

[20] Changwen Li, Chih-Hong Cheng, Tiantian Sun, Yuhang Chen, and Rongjie Yan.

[2] Victor R Basili and Richard W Selby. 1987. Comparing the effectiveness of X Lo o > -

A . ies. IEEE A N i 2 (1987 2022. ComOpT: Combination and optimization for testing autonomous driving
software testing strategies. transactions on software engineering 12 (1987), systems. In ICRA. IEEE, 7738-7744. https://doi.org/10.1109/ICRA46639.2022.
1278-1296. https://dm.org/lo.l109/TSE.1987.232881 9811794

[3] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad [21]

Changwen Li, Joseph Sifakis, Qiang Wang, Rongjie Yan, and Jian Zhang. 2023.
Reproduction Package for ‘Simulation-Based Validation for Autonomous Driving
Systems’. https://doi.org/10.5281/zenodo.7825616

G. Li, Y. Li, S. Jha, T. Tsai, and R. Iyer. 2020. AV-FUZZER: Finding safety viola-

Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. 2011. Rigorous component-
based system design using the BIP framework. IEEE Software 28 (2011), 41-48.

https://doi.org/10.1109/MS.2011.27 [22

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. 2011. Runtime ver- tions in autonomous driving systems. In ISSRE. 25-36. https://doi.org/10.1109/
ification for LTL and TLTL. ACM Transactions on Software Engineering and ISSRE5003.2020.00012
Meti}odology 20, 4 (2011), 1-64. https://doi.org/10.1145/2000799.2000800 [23] Guannan Lou, Yao Deng, Xi Zheng, Mengshi Zhang, and Tianyi Zhang. 2022.
(5] Marius Bozga and Joseph Sifakis. 2021. ~ Specification and validation of Testing of autonomous driving systems: where are we and where should we go?.
autonomous driving systems: A multilevel semantic framework. CoRR In ESEC/FSE. 31-43. https://doi.org/10.1145/3540250.3549111
abS/leO9'06473 (?0?1)- https://doi.org/lo:l007/978-3—031—22337-27?) [24] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.
[6] Martm BUt?: Christian He1nz§manf1, Martlp Herrmann, Jens Oehlgrkmg, Mthael 2019. Formal specification and verification of autonomous robotic systems: A
Rittel, Nadja Schalm, and Dirk Ziegenbein. 2020. SOCA: Domain analysis for survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 1-41. https://doi.org/10.
highly automated driving systems. In ITSC. IEEE, 1-6. https://doi.org/10.1109/ 1145/3342355
ITSC45102-?020-?294433))) [25] Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner, and Damien
[7] Jinkang Cai, Weiwen Deng, Haoran Guang, Ying Wang, Jiangkun Li, and Juan Zufferey. 2021. Paracosm: A test framework for autonomous driving simulations.
Ding. 2022. A survey on data-driven scenario generation for automated vehicle In FASE. 172-195. https://doi.org/10.1007/978-3-030-71500-7_9
testing. Machines 10, 1A1 (2(?22), 1101. htFpsj/doLorg/10A3390/machine510111101 [26] Guodong Rong, Byung Hyun Shin, Hadi Tabatabaee, Qiang Lu, Steve Lemke,
[8] Tsong YuehA Chen, Fei-Ching Kuo, Huai Llui Pak'I;Ok Poon, ADave Towey, TH Martin$ Mozeiko, Eric Boise, Geehoon Uhm, Mark Gerow, Shalin Mehta, et al.
Tse, and Zhi Ql'lan Zhou. 2018. Metamorphlc testing: A review of challenges 2020. LGSVL simulator: A high fidelity simulator for autonomous driving. In
and opportunities. ACM Computing Surveys (CSUR) 51, 1 (2018), 1-27. https: ITSC. IEEE, 1-6. https://doi.org/10.1109/ITSC45102.2020.9294422
//d01<0rg/10.1145/31435§1)) [27] Yang Sun, Christopher M Poskitt, Jun Sun, Yuqi Chen, and Zijiang Yang. 2022.
[9] Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward J. Kim, Hadi LawBreaker: An approach for specifying traffic laws and fuzzing autonomous
Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. 2019. VerifAl: A vehicles. In ASE. 1-12. https://doi.org/10.1145/3551349.3556897
toolkit for the formal design and analysis of artificial intelligence-based systems. [28] Shuncheng Tang, Zhenya Zhang, Yi Zhang, Jixiang Zhou, Yan Guo, Shuang Liu,
In CAV. 432‘4f12- https://doi,o}'g/ 10.1007/978-3-030- 255‘}0' 4.25) Shengjian Guo, Yan-Fu Li, Lei Ma, Yinxing Xue, et al. 2022. A survey on automated
[10] E Esenturk, Siddartha Khastgir, A Wallace, and P Jennings. 2021. Analyzing driving system testing: Landscapes and trends. arXiv preprint arXiv:2206.05961
real-world accidents for test scenario generation for automated vehicles. In IV. (2022). https://doi.org/10.48550/arXiv.2206.05961
IEEE, 288-295. httP_S://dOi-Org/lu1109/1\1488_6320219576007 o [29] Yun Tang, Yuan Zhou, Yang Liu, Jun Sun, and Gang Wang. 2021. Collision
[11] Klemens Esterle, Luis Gressenbuch, and Alois Knoll. 2020. Formalizing traffic avoidance testing for autonomous driving systems on complete maps. In IV. IEEE,
rules for machine interpretability. In CAVS. IEEE, 1-7. https://doi.org/10.1109/ 179-185. https://doi.org/10.1109/1V48863.2021.9575536
CAY551000-2020»9334599])) [30] Yun Tang, Yuan Zhou, Tianwei Zhang, Fenghua Wu, Yang Liu, and Gang Wang.
[12] Daniel J Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu 2021. Systematic testing of autonomous driving systems using map topology-
Yue, Alberto L Sangiovanni-Vincentelli, and Sanjit A Seshia. 2022. Scenic: A based scenario classification. In ASE. IEEE, 1342-1346. https://doi.org/10.1109/
language for scenario specification and data generation. Machine Learning (2022), ASE51524.2021.9678735
1‘45; https://doLorg/10.1097/510994—021—06120-5 .) [31] Haoxiang Tian, Yan Jiang, Guoquan Wu, Jiren Yan, Jun Wei, Wei Chen, Shuo
[13] DanielJ. Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A Seshia, Atul Acharya, Li, and Dan Ye. 2022. MOSAT: Finding safety violations of autonomous driving
Xantha Bruso, Paul Wells, Steve Lemke, Qiang Lu, and Shalin Mehta. 2020. Formal systems using multi-objective genetic algorithm. In ESEC/FSE. ACM, 94-106.
scenario-based testing of autonomous vehicles: From simulation to the real world. https://doi.org/10.1145/3540250.3549100
In ITSC- 1-8. https://doi.org/lo.l 109/1TSC45102.2020.9294368)) [32] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
[14] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
self-driving cars with search-based procedural content generation. In ISSTA. framework for autonomous driving systems. In ASE. IEEE, 132-142. https:
Association for Computing Machinery, 318-328. https://doi.org/10.1145/3293882. //doi.org/10.1145/3238147.3238187
3339566)) o) . [33] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen, Sushant Veer, Tong Che,
[15] Christoph 913415Ch: Thomas'Hemz, Christian Heinzemann, Jens Oehlerking, Baishakhi Ray, and Marco Pavone. 2022. Guided conditional diffusion for control-
Anne von Vietinghoff, and Tim Pfitzer. 2020. Experience paper: Search-based lable traffic simulation. ArXiv abs/2210.17366 (2022). https://doi.org/10.48550/
testing in automated driving control applications. In ASE. IEEE Press, 26-37. arXiv.2210.17366
htt.ps://doi.org/lQ1109/ASE.2(A)19A00013 o o [34] Ziyuan Zhong, Yun Tang, Yuan Zhou, Vania de Oliveira Neves, Yang Liu, and
[16] Luis Gressenbuch and Matthias Althoff..2021. Predictive monitoring of traffic Baishakhi Ray. 2021. A survey on scenario-based testing for automated driving
rules. In ITSC. IEEE, 915-922. https://doi.org/10.1109/ITSC48978.2021.9564432 systems in high-fidelity simulation. arXiv preprint arXiv:2112.00964 (2021). https:
[17] Wuling Huang, Kunfeng Wang, Yisheng Lv, and Fenghua Zhu. 2016. Autonomous //doi.org/10.48550/arXiv.2112.00964
vehicles testing methods review. In ITSC. 163-168. https://doi.org/10.1109/ITSC. [35] Zhi Quan Zhou and Liqun Sun. 2019. Metamorphic testing of driverless cars.
2016.7795548 Commun. ACM 62, 3 (2019), 61-67. https://doi.org/10.1145/3241979
[18] Moritz Klischat, Edmond Irani Liu, Fabian Héltke, and Matthias Althoff. 2020.
Scenario factory: Creating safety-critical traffic scenarios for automated vehicles. Received 2023-02-16; accepted 2023-05-03

In ITSC. 1-7. https://doi.org/10.1109/ITSC45102.2020.9294629

https://doi.org/10.1109/IVS.2019.8813875
https://doi.org/10.1109/TSE.1987.232881
https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-031-22337-2_5
https://doi.org/10.1109/ITSC45102.2020.9294438
https://doi.org/10.1109/ITSC45102.2020.9294438
https://doi.org/10.3390/machines10111101
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3143561
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1109/IV48863.2021.9576007
https://doi.org/10.1109/CAVS51000.2020.9334599
https://doi.org/10.1109/CAVS51000.2020.9334599
https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1109/ITSC45102.2020.9294368
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1109/ASE.2019.00013
https://doi.org/10.1109/ITSC48978.2021.9564432
https://doi.org/10.1109/ITSC.2016.7795548
https://doi.org/10.1109/ITSC.2016.7795548
https://doi.org/10.1109/ITSC45102.2020.9294629
http://www.jstor.org/stable/26167741
https://doi.org/10.1109/ICRA46639.2022.9811794
https://doi.org/10.1109/ICRA46639.2022.9811794
https://doi.org/10.5281/zenodo.7825616
https://doi.org/10.1109/ISSRE5003.2020.00012
https://doi.org/10.1109/ISSRE5003.2020.00012
https://doi.org/10.1145/3540250.3549111
https://doi.org/10.1145/3342355
https://doi.org/10.1145/3342355
https://doi.org/10.1007/978-3-030-71500-7_9
https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.1145/3551349.3556897
https://doi.org/10.48550/arXiv.2206.05961
https://doi.org/10.1109/IV48863.2021.9575536
https://doi.org/10.1109/ASE51524.2021.9678735
https://doi.org/10.1109/ASE51524.2021.9678735
https://doi.org/10.1145/3540250.3549100
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.48550/arXiv.2210.17366
https://doi.org/10.48550/arXiv.2210.17366
https://doi.org/10.48550/arXiv.2112.00964
https://doi.org/10.48550/arXiv.2112.00964
https://doi.org/10.1145/3241979

	Abstract
	1 Introduction
	2 Connecting simulation to validation
	2.1 Map model formalization
	2.1.1 Metric graph
	2.1.2 Map to metric graph transformation

	2.2 Semantic model of an ADS

	3 Property specification and validation
	3.1 Property specification
	3.2 Runtime verification

	4 Rigorous validation using scenarios
	4.1 Structural equivalence for scenarios
	4.2 Coverage criteria for junctions
	4.3 Generating concrete scenarios

	5 Implementation and experimentation
	5.1 Implementation
	5.2 Experimental setup
	5.3 Experimentation
	5.3.1 Experimentation with a 4-way stop junction
	5.3.2 Experimentation with a 4-way traffic light junction
	5.3.3 Runtime overhead of RvADS

	6 Related work
	7 Conclusion
	Acknowledgments
	References

