
Beware of the Unexpected: Bimodal Taint Analysis
Yiu Wai Chow

University of Stuttgart
Stuttgart, Germany

victorcwai@gmail.com

Max Schäfer
GitHub

Oxford, UK
max-schaefer@github.com

Michael Pradel
University of Stuttgart
Stuttgart, Germany

michael@binaervarianz.de

ABSTRACT
Static analysis is a powerful tool for detecting security vulnerabili-
ties and other programming problems. Global taint tracking, in par-
ticular, can spot vulnerabilities arising from complicated data flow
across multiple functions. However, precisely identifying which
flows are problematic is challenging, and sometimes depends on
factors beyond the reach of pure program analysis, such as con-
ventions and informal knowledge. For example, learning that a
parameter name of an API function locale ends up in a file path
is surprising and potentially problematic. In contrast, it would be
completely unsurprising to find that a parameter command passed
to an API function execaCommand is eventually interpreted as part
of an operating-system command. This paper presents Fluffy, a
bimodal taint analysis that combines static analysis, which reasons
about data flow, with machine learning, which probabilistically
determines which flows are potentially problematic. The key idea
is to let machine learning models predict from natural language
information involved in a taint flow, such as API names, whether
the flow is expected or unexpected, and to inform developers only
about the latter. We present a general framework and instantiate it
with four learned models, which offer different trade-offs between
the need to annotate training data and the accuracy of predictions.
We implement Fluffy on top of the CodeQL analysis framework and
apply it to 250K JavaScript projects. Evaluating on five common
vulnerability types, we find that Fluffy achieves an F1 score of 0.85
or more on four of them across a variety of datasets.

ACM Reference Format:
Yiu Wai Chow, Max Schäfer, and Michael Pradel. 2023. Beware of the Unex-
pected: Bimodal Taint Analysis. In Proceedings of ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2023). ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Taint analysis is a powerful technique for detecting various kinds of
programming mistakes, including both security vulnerabilities and
other kinds of bugs. A taint analysis tracks the flow of information
from a source to a sink and reports a warning if the existence of this
flow violates some pre-defined policy. For example, such a policy
might specify that data from an HTTP request sent by an unknown
and potentially malicious user (the source) must not flow into an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA 2023, 17-21 July, 2023, Seattle, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

API that executes strings as operating-system commands (the sink)
to prevent remote code execution, a type of vulnerability known
as command injection. As another example, a policy might state
that unencrypted passwords or other secrets must not flow into
logging statements to prevent accidentally leaking them through
clear-text logging. Taint analysis is an integral part of popular static
analysis solutions, such as Facebook Infer or GitHub Code Scanning,
that regularly scan large amounts of proprietary and open-source
software.

A lot of research and engineering has gone into developing
precise and scalable algorithms for inter-procedural taint tracking
for various languages, ensuring that modern taint analyses can
scale to even the largest of code bases. However, in the end a taint
analysis is only as good as the policies it enforces: If a source or sink
is missing, the analysis will not report problematic flows involving
it, leading to false negatives and hence missed vulnerabilities. If, on
the other hand, a source or sink is included that should not be, the
analysis will report false positives, leading to unnecessary work
and frustration for developers and security researchers.

In some cases, such as the command injection example above,
suitable sources and sinks can be identified by carefully examining
the APIs of the analyzed libraries, which is a well-defined if perhaps
tedious process that can cover only a limited set of APIs due to
the high human effort. For clear-text logging, on the other hand,
the solution is not so obvious. While it is easy to identify the sinks
(calls to logging libraries), it is much less clear what constitutes
a source, since the way sensitive data are stored and handled is
usually highly application-specific.

As another example, consider the problem of detecting “unhy-
gienic” APIs, that is, library APIs that use data from a client applica-
tion in a security-sensitive context without clearly indicating to the
client that this is the case (for example by appropriate naming or
documentation). Depending on whether the security-sensitive use
is intentional or not, such APIs either suffer from a vulnerability
or provide insufficient documentation, both of which put client
applications at risk. As an example, the API of the JavaScript library
moment for handling times and dates contains a locale function for
setting the locale used for pretty-printing purposes. Before version
2.29.2, this function treats its parameter name (the name of the lo-
cale to use) unsafely, leading to remote code execution if untrusted
data is passed to it.1 Nothing about the name of the function or
the parameter suggests that the parameter directly impacts an exe-
cuted command, and indeed, this behavior was not intentional but
a consequence of sloppy coding practices. A client relying on API
names and documentation, might well pass data obtained from an
untrusted third party to the API and thereby open themselves up to

1CVE-2022-24785.

ar
X

iv
:2

30
1.

10
54

5v
1

 [
cs

.S
E

]
 2

5
Ja

n
20

23

https://orcid.org/0000-0003-1623-498X
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/advisories/GHSA-8hfj-j24r-96c4

ISSTA 2023, 17-21 July, 2023, Seattle, USA Yiu Wai Chow, Max Schäfer, and Michael Pradel

a vulnerability–as some, indeed, did before the moment developers
fixed the problem.2

Identifying such unhygienic APIs seems to be a natural fit for
taint analysis, but while it is easy to define the sinks (they are identi-
cal to the sinks for command injection), the set of sources is harder
to pin down. Just treating all API entry points as sources would
not do: For example, the library execa, which provides improved
cross-platform support for spawning child processes on Node.js,
exports a function execaCommand with a parameter command that
flows into a command-injection sink. However, flagging this flow
as a vulnerability makes no sense, since it is precisely the intended
functionality.

The common denominator in both of these examples is that the
flows we are looking for are in some sense unexpected in that they
are at odds with the intentions and expectations of developers:
In a production code base, one would not expect to see sensitive
information being logged in clear text, and likewise one would not
expect a library to use data in a security-sensitive context without
clearly indicating to the client that this is the case.

To address the problem of detecting such unexpected taint flows,
we present Fluffy (“Flagging unexpected flows for better security”) a
bimodal taint analysis that exploits the fact that source code conveys
meaning both through the programming language semantics and
through natural language information embedded in code, e.g., in the
form of identifier names [1, 26, 45]. Fluffy allows for implementing
security policies where the set of sources is partially determined
using natural language information.3

The approach consists of two steps. First, we run an off-the-shelf,
monomodal taint analysis that overapproximates the set of sources
so it can be captured purely in terms of code constructs without
any natural language reasoning. For example, for clear-text logging
we consider all variables to be sources, and for unhygienic APIs
all parameters. Secondly, the candidate flows resulting from the
first step are filtered by a machine learning model that predicts
whether the source in a candidate flow is, in fact, a true source. Our
approach combines the power of logic-based static taint analysis,
which reasons about data flow and control flow dependencies, and
machine learning models, which probabilistically “understand” the
meaning of natural language information.

The Fluffy approach is a general framework with four concrete
instantiations that use different ways of formulating the predic-
tion task, build on different machine learning models, and impose
different demands for manually labeled data. The four instantia-
tions are (i) a neural, binary classifier trained on manually labeled
examples, (ii) a neural model trained on millions of taint flows ex-
tracted automatically via static analysis, (iii) a novelty detection
technique based on a one-class support vector machine, and (iv)
a technique that queries a large language model (Codex [14]) via
few-shot learning.

Our work relates to combinations of program analysis and ML
models for other analysis problems, such as call graph pruning [33,
51] and filtering null dereference warnings [30]. Fluffy differs by ad-
dressing the problem of identifying unexpected taint flows. Another
related line of work is a purely neural taint analysis [50], which

2For example, see advisory GHSA-7v28-g2pq-ggg8.
3The case of sinks is symmetric, but in this paper we focus on sources only.

trains a neural model to “emulate” a dynamic taint analysis more
efficiently than an actual dynamic analysis would be. In contrast,
our work leverages the complementary power of static analysis
and machine learning. Finally, Fluffy also relates to prior work on
automatically annotating APIs as sources and sinks using a trained
model [48]. Their work relies on a set of hand-coded features, such
as whether a method returns a specific type, and it makes predic-
tions about source and sink APIs. In contrast, we exploit pre-trained
neural models that avoid manual feature engineering and propose
models that make predictions about specific flows between already
identified sources and sinks. Overall, our work is the first to present
a bimodal analysis for the problem of taint tracking.

We implement the approach in the CodeQL analysis frame-
work [22] and apply it to 250k JavaScript and TypeScript projects.
Our evaluation considers five taint analyses aimed at detecting in-
tegrity problems, such as command injections, and confidentiality
problems, such as clear-text logging. We find Fluffy to be effective
at determining unexpected taint flows, with 81%–97% precision,
80%–100% recall, and 76%–97% F1-score, depending on the analysis.
To assess the usefulness of the approach, we apply Fluffy to 131
confirmed vulnerabilities from the past, of which it successfully
detects 117. Finally, we report 16 newly detected vulnerabilities to
the respective developers, who have so far confirmed eight of them.

In summary, this paper contributes the following:

• A bimodal taint analysis, combining static analysis with
machine learning to identify problematic flows.

• A general framework with four instantiations, offering trade-
offs between labeling effort and prediction accuracy.

• An integration into CodeQL and empirical evidence that the
approach is effective and useful in practice.

To foster future work, our implementation and experimental
results are publicly available.4

2 BACKGROUND: TAINT ANALYSIS WITH
CODEQL

CodeQL [22] is an open-source static program analysis system,
which powers LGTM.com and GitHub CodeScanning. Following
the code-as-data paradigm, code is represented as relational data
and analyses are expressed as queries written in QL [5], an object-
oriented extension of Datalog. CodeQL offers extensive standard
libraries for performing typical analysis tasks, including a frame-
work for global taint analysis that underpins a suite of individual
analyses for finding common vulnerabilities, such as command
injection or path traversal.

Security policies are also expressed in QL, typically identify-
ing uses of particular APIs as sinks and sources of taint. In the
case of JavaScript, for instance, the CodeQL query for identifying
command-injection vulnerabilities5 identifies various sources of
potentially untrusted user input, such as HTTP request parame-
ters accessed through the express npm package, as sources, and
calls to command execution APIs, such as those in the Node.js

4https://figshare.com/s/1ab456424bfb5a2ead5e
5https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-
078/CommandInjection.ql.

https://github.com/TryGhost/Ghost/security/advisories/GHSA-7v28-g2pq-ggg8
https://figshare.com/s/1ab456424bfb5a2ead5e
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/CommandInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/CommandInjection.ql

Beware of the Unexpected: Bimodal Taint Analysis ISSTA 2023, 17-21 July, 2023, Seattle, USA

child_processmodule, as sinks. The path-traversal query6 shares
the same set of sources, but uses file-system operations as its sinks.

Both of these are examples of integrity violations whereby un-
trusted data is used in a security-sensitive context. Other examples
of such violations also covered by CodeQL queries include code
injection,7 where untrusted data is used to construct code to be exe-
cuted, and reflected cross-site scripting (“reflected XSS” for short),8
where untrusted data is embedded in an HTTP response.

As mentioned above, some analyses are not amenable to this kind
of formulation. One example is the problem of finding clear-text
logging of sensitive information, an example of a confidentiality
violation in which security-sensitive data is exposed in an untrusted
context. The CodeQL query for finding clear-text logging9 employs
hand-crafted regular expressions to identify variables and proper-
ties whose names suggest they might contain sensitive data, which
are then treated as sources for the analysis. As we will demonstrate
below, this is error-prone and a manual update to the libraries is
required every time a spurious or missing source is discovered.

As another example, the CodeQL query Unsafe shell command
constructed from library input10 attempts to identify unhygienic
library APIs by detecting taint flow from API parameters to shell
commands, excluding parameters whose name suggests they are
meant to be commands. Again, a regular expression is used for this
purpose, with the same drawbacks as above.

Recently, CodeQL has been extended with experimental support
for leveragingmachine-learning techniques to discover new sources
and sinks that are not covered by the standard security policies [21].
While this helps with identifying sources and sinks in rarely-used
or proprietary APIs, it is not clear whether it offers any advantages
in situations where natural language information is needed since it
is currently only available for four queries, none of which fall into
this category.

3 APPROACH
This section presents Fluffy, our bimodal taint analysis, in more
detail. After defining the problem addressed by the approach (Sec-
tion 3.1), Section 3.2 gives an overview of our general framework.
The remaining subsections then present four instantiations of our
framework, which explore different trade-offs in the design space.

3.1 Problem Statement
The input to Fluffy is a taint-style security policy P and a code
base𝐶 to check against that policy. The security policy specifies a set
of problematic flows for 𝐶 as a set of source-sink pairs (𝑙𝑠𝑟𝑐 , 𝑙𝑠𝑖𝑛𝑘)
for which no data should propagate from the source location 𝑙𝑠𝑟𝑐
to the sink location 𝑙𝑠𝑖𝑛𝑘 in 𝐶 .

This specification consists of two parts P𝐹 and P𝑈 . The first
part P𝐹 is precisely specified but overapproximate, determining a

6https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-
022/TaintedPath.ql.
7https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-
094/CodeInjection.ql.
8https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-
079/ReflectedXss.ql.
9https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-
312/CleartextLogging.ql.
10https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-
078/UnsafeShellCommandConstruction.ql.

Corpus of projects

Unexpected
flows

Traditional taint
analysis

Source-to-sink
flows

Expected
flows

Developers(discarded)

Machine learning
model

Mining and
labeling

4x

Pre-trained
models of code

5x

Taint
query

Figure 1: Overview of the approach. The yellow components
are the contributions of this paper.

set 𝐹 of potentially problematic flows that can be computed purely
in terms of code structure, for instance by a standard taint analysis.
The second part P𝑈 is imprecisely specified, describing a set 𝑈 of
unexpected flows. Whether a flow is unexpected is an inherently
fuzzy problem, because the expectations of developers depend on
common coding conventions and informal information, such as
identifier names and API documentation.

The problem addressed in this paper is to identify all flows in a
given code base that fulfill both parts of the security policy, i.e., to
find the set {(𝑙𝑠𝑟𝑐 , 𝑙𝑠𝑖𝑛𝑘) | 𝑙𝑠𝑟𝑐 ∈ 𝐶, 𝑙𝑠𝑖𝑛𝑘 ∈ 𝐶, (𝑙𝑠𝑟𝑐 , 𝑙𝑠𝑖𝑛𝑘) ∈ 𝐹 ∩𝑈 }
of actually problematic flows to show to the developer.

3.2 Overview
Motivated by the fuzziness of the problem, we address it with
learning-based techniques, which have been shown to effectively
capture inherently fuzzy information [45]. Figure 1 gives an overview
of the approach. In line with the two-part specification of the prob-
lem, the approach consists of two main steps. Given a project to
analyze, the first step is to apply a traditional taint analysis. We
build upon CodeQL, which offers a static code analysis engine and
a suite of standard taint analyses as described in Section 2. The
taint analysis 𝑇 : 𝐶 ↦→ 𝐹 identifies all flows between source-sink
pairs in the given code base 𝐶 that are in 𝐹 . In the second step, the
source-sink flows detected by the taint analysis are then given to
a machine learning model 𝑀 : 𝐹 ↦→ 𝑈 that predicts which flows
in 𝐹 are likely unexpected by the developers, and hence should
be reported to the developers. The machine learning model builds
on existing, pre-trained models, e.g., to embed code tokens into
a continuous vector, and is supported by a mining and labeling
component, which provides training data to learn from.

The overall framework described in Figure 1 can be instantiated
in several ways. One dimension is the taint analysis to use; we focus
on five CodeQL analyses for JavaScript: code injection, command
injection, reflected XSS, path traversal, and clear-text logging. The
other dimension is the machine learning model to use; we present
four models that explore different trade-offs in the design space.

https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-022/TaintedPath.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-022/TaintedPath.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/CodeInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-094/CodeInjection.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-079/ReflectedXss.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-079/ReflectedXss.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-312/CleartextLogging.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-312/CleartextLogging.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/UnsafeShellCommandConstruction.ql
https://github.com/github/codeql/blob/main/javascript/ql/src/Security/CWE-078/UnsafeShellCommandConstruction.ql

ISSTA 2023, 17-21 July, 2023, Seattle, USA Yiu Wai Chow, Max Schäfer, and Michael Pradel

Table 1: Four instantiations of our general framework.

Approach Training data Model

Binary Classification Hundreds of manually labeled flows Neural binary classifier, predicts if a flow is expected
Sink Prediction Millions of unlabeled flows Neural model, predicts the most likely sink
Novelty Detection Fewer than ten relevant terms for each sink type One-class SVM, identifies unusual flows
Codex Language Model Ten examples given in the prompt Generative language model, predicts if a flow is expected

Table 1 gives an overview of the four machine learning models,
which are described in detail in Sections 3.3 and 3.4.

3.3 Gathering and Representing Natural
Language Information

Running the queries described above against a code base yields a set
𝐹 of flows, i.e., source-sink pairs where data from the source propa-
gates to the sink. To determine whether a flow is likely unexpected
by developers, Fluffy exploits natural language information associ-
ated with the flow. Specifically, the approach gathers the following
information about each flow:

• The identifier name 𝑛𝑠 ∈ 𝑁 of the source, which is the
parameter 𝑝 of an API function 𝑓 for the integrity queries
and a source variable 𝑣 for the confidentiality query.

• Additionally, for the integrity queries, the name 𝑛𝑓 ∈ 𝑁fct ⊆
𝑁 of 𝑓 and any documentation 𝑑 ∈ 𝐷 for 𝑝 .

To allow a machine learning model to effectively reason about
the extracted natural language information, we embed it into a
continuous vector representation. For this purpose, Fluffy uses a
pre-trained embedding function 𝑒 : 𝑁 → R𝑘 that maps a natural
language string in 𝑁 to a 𝑘-dimensional vector in such a way that
semantically similar strings have similar vector representations. As
the embedding function, we use VarCLR [15], which we select for
two reasons. First, VarCLR has been shown on the IdBench bench-
mark [53] to be the state of the art for the task of mapping identifier
names to continuous vectors in a way that preserves semantic re-
latedness and similarity. Second, while comparing VarCLR against
other pre-trained embeddings, e.g., FastText [9], in preliminary
experiments, we found VarCLR to produce the best overall results.

3.4 Predicting Unexpected Flows
Based on the flows 𝐹 extracted by traditional taint analysis and
the natural language information associated with each flow, the
core step of Fluffy is to determine the subset 𝑈 ∩ 𝐹 of flows that
are unexpected and hence should be reported to developers. The
following presents four machine learning-based techniques for this
purpose, which differ in the kind and amount of labeled training
data they require, the kind of model they build on, and (as shown
in Section 4) their ability to effectively identify unexpected flows.

3.4.1 Approach 1: Binary Classification. We train a neural model
𝑀 that predicts the probability that a given flow is unexpected. As
its input, the model receives embeddings of the identifier name of
the source, and if available the other natural language information
associated with the flow. That is, the model is the following learned

function:

𝑀 : 𝑁 × 𝑁fct × 𝐷 → {Expected,Unexpected}
The model is implemented using a standard feed-forward neural

network with two hidden layers and the softmax function applied
to the output layer, which we train with cross-entropy loss. The
names 𝑛𝑠 and 𝑛𝑓 are embedded using the embedding function 𝑒 . For
the documentation 𝑑 , we embed each token using a jointly trained
embedding layer and encode the sequence of embedded tokens
using an LSTM-based, bidirectional recurrent neural network. We
train a separate model for each of the five taint queries, using
hundreds of manually labeled flows (details in Section 4).

3.4.2 Approach 2: Sink Prediction. The Binary Classification ap-
proach requires a significant amount of manually labeled training
data. To avoid this human effort, to following approach is trained
only on automatically mined training data. The basic idea is to train
a neural classification model that predicts for a given source what
sink it is supposed to flow into.

For the integrity queries, this corresponds to the function

𝑀 : 𝑁 × 𝑁fct × 𝐷 → {CmdInj,CodeInj,XSS, PathTrav,None}
where the first four output classes correspond to the sinks of the
four integrity queries, and None means that a source location does
not propagate to any of the any four sinks. Likewise, for the confi-
dentiality query, the model is the following learned function:

𝑀 : 𝑁 → {Logging,None}
where Logging means that it is unproblematic for the source con-
tents to be logged, while None means that it should not be logged.

The model uses the same architecture as for the Binary Classifi-
cation, but with an output layer that has the appropriate length for
the classification problem. Training data is collected using CodeQL,
as explained in Section 4.1.1, without any need for manual labeling.

Once themodel has been trained, Fluffy queries it with previously
unseen flows to determine whether the flow is unexpected. If the
flow involves a sink type 𝑠 ≠ None and the model predicts 𝑠 as the
most likely sink, then we consider the flow to be expected. The
rationale is that if sources with particular names commonly flow
this sink type, then developers are likely aware of this. Otherwise,
if the model predicts some other sink 𝑠 ′ ≠ 𝑠 (where 𝑠 ′ may be None),
we consider the flow to be unexpected and report it.

3.4.3 Approach 3: Novelty Detection. The previous two approaches
require training data labeled to belong to different classes. Our
third approach instead uses a novelty detection technique trained
only on examples of one class. We use a one-class support vector
machine (OC-SVM) [49] that predicts whether a previously unseen
example belongs to this class or is “novel”.

Beware of the Unexpected: Bimodal Taint Analysis ISSTA 2023, 17-21 July, 2023, Seattle, USA

Table 2: Seed names used for Novelty Detection.

Sink type Seed names

Integrity:

Command injection execute, command
Code injection eval, execute, compile, render,

callback, function, fn
Reflected XSS sent, content
Path traversal file, directory, path, cwd, source,

input

Confidentiality:

Clear-text logging authkey, password, passcode,
passphrase

For each sink kind, we train an OC-SVMmodel with examples of
expected “seed” names, as shown in Table 2, which we select based
on our understanding of the domain. For the integrity queries these
names indicate data that we would expect to flow to the specific
sink, while for the confidentiality query they indicate sensitive data
that is not expected to flow to the sink. As the set of names is small
(less than ten examples per sink kind), obtaining this training data
imposes relatively little effort. To train the model, we embed the
natural language information using the pre-trained embedding 𝑒 .
Once trained, we let the model predict whether a previously un-
seen flow is unexpected, again embedding the natural language
information using 𝑒 .

3.4.4 Approach 4: Codex LanguageModel. Motivated by the impres-
sive results obtained with large language models like Codex [14],
for different software engineering tasks [6, 27, 29, 30], we also im-
plement a Codex-based approach. To query the language model,
we design a prompt that provides information about the flow and
ends with a comment that we ask the model to complete. Following
a few-shot approach [10], the prompt includes ten examples of the
task we want the model to perform and ends with an unfinished
eleventh example for it to complete.

For the integrity queries, the prompt consists of the following:
• The signature of the API function and, if available, the doc
comment associated with it.

• A JavaScript comment with the sentence “In the above func-
tion 𝑓 , the parameter 𝑝 flows into the 𝑠 sink (𝑒), which is 𝑐”,
where
– 𝑓 is the name of the function,
– 𝑝 is the name of the formal parameter,
– 𝑠 is an abbreviated name of the query, e.g., “CommandIn-
jection”,

– 𝑒 is a brief explanation of the query, e.g., “uncontrolled
data used in a path expression”, and

– 𝑐 is either “expected” or “unexpected”.
For the confidentiality query, the prompt consists of:

• A stub function 𝑓 calling console.log on its parameter 𝑝 .
• A JavaScript comment with the sentence “In the above func-
tion 𝑓 , the parameter 𝑝 is being logged, which likely exposes
𝑐 data”, where 𝑐 is either “sensitive” or “insensitive”.

The word in 𝑐 is provided for the ten few-shot examples but left
undefined for the eleventh example. The model then completes the
prompt by predicting the missing word. For the integrity queries,
we check whether “expected” or “unexpected” is the more likely
completion according to the model, and report flows to the devel-
opers only when the model predicts them as unexpected. Likewise,
for the confidentiality query, we report a flow to developers only
when the model considers completing the prompt with “sensitive
data” as more likely than completing it with “insensitive data”.

4 EVALUATION
To assess the efficacy and practicality of our approach, we pose
ourselves the following research questions:

RQ1 How effective is Fluffy at identifying unexpected flows?
RQ2 How effective is Fluffy at finding vulnerabilities?
RQ3 What is the trade-off between labeling effort and predic-

tion accuracy?
RQ4 How well does Fluffy scale to large code bases?
We now describe our evaluation setup, methodology, and results,

and discuss how they answer our research questions.

4.1 Experimental Setup
4.1.1 Data Collection. We collect three datasets for our eval-
uation. The first two (param-sink flows and logging flows) are
compiled by running special-purpose CodeQL queries across all
JavaScript/TypeScript projects on LGTM.com (around 250,000 at the
time of writing), while the third one is derived from SecBench.js [7],
a corpus of real-world vulnerabilities in server-side JavaScript.

Param-sink flows. The first dataset concerns unhygienic APIs.
Wewant to collect examples of flows fromAPI parameters to known
sinks. For purposes of this dataset, an API parameter is a parameter
of a function exported by an npm package, or (by a slight abuse of
terminology) a property of such a parameter. Our sinks are collected
from four CodeQL security analyses that identify four common
types of integrity violations: code injection, command injection,
reflected XSS, and path traversal.

For each kind of integrity violation, we write a custom CodeQL
query using the standard taint-tracking framework. The queries
collect flow tuples of the form (𝑝, 𝑠), where 𝑝 is an API parameter
and 𝑠 is one of the four types of sinks mentioned, such that taint
flows from 𝑝 into a sink of type 𝑠 , or the special type None if no
flow from 𝑝 to any known sink is found.11 Apart from the name
of the API parameter, we also collect its doc comment and the
doc comment of the enclosing function, if any. Finally, we filter
out flows where the parameter name has less than two characters,
since single-character names are unlikely to convey much semantic
information to either a human or a model.

Overall, the query found 3,245,860 flows on 61,123 projects,
where 3,228,034 are flows to None; 1,123 to code-injection sinks;
1,498 to command-injection sinks; 70 to reflected-XSS sinks; and
15,135 to path-traversal sinks. Note the grave imbalance of sink
types, which is a consequence of the selection of projects on

11Note this means that we can have two flows (𝑝, 𝑠) and (𝑝, 𝑠′) for the same parameter
𝑝 with different sink types 𝑠 and 𝑠′, but only if 𝑠 and 𝑠′ are not None.

ISSTA 2023, 17-21 July, 2023, Seattle, USA Yiu Wai Chow, Max Schäfer, and Michael Pradel

LGTM.com, and hence not under our control. Filtering out single-
character names removed 233,091 flows, i.e., 6.7% of all flows before
filtering.

Logging flows. The second dataset concerns clear-text logging.
We again write a custom CodeQL taint-tracking query, this time
looking for flow from a variable or property 𝑣 into a call to a logging
function, as determined by existing API modeling in the CodeQL
standard libraries. Apart from the name of 𝑣 , we also record whether
the clear-text logging analysis shipping with CodeQL considers 𝑣
to be potentially sensitive. As above, we filter out single-character
names, which account for 8.9% of all flows, yielding 4,535,851 flows
in 112,765 projects.

SecBench.js. For our final dataset, we examine all code-injection,
command-injection, and path-injection vulnerabilities in the
SecBench.js corpus to find the ones caused by unhygienic APIs, of
which there are 33, 101, and 1, respectively after filtering.12

4.1.2 Non-Neural Baselines. In addition to the four neural network-
based instantiations of Fluffy, we also consider two non-neural
baseline approaches to compare against. The first baseline, called
Frequency Counting, is a statistical approach based on determining
the frequency with which a given parameter name is observed to
flow into a particular sink type in our param-sink flows dataset. If
this frequency is below a given threshold, we consider this sink
type to be unexpected for the parameter. Note that no semantic
reasoning about names is involved and only exact namematches are
considered. Due to the composition of the datasets this approach
only works for the integrity violations since the logging-flows
dataset considers only a single sink type.

The second baseline, called Regular Expressions, is for the log-
ging flows. It is an existing CodeQL query (Section 2) that uses
regular expressions to flag likely problematic flows, first applying
two regular expressions to identify names that may indicate sen-
sitive content such as passcode and authkey.13 Names matching
either of these regular expressions are then checked against a third
regular expression that filters out names suggesting that the value
has been encrypted or hashed.14

We also considered a direct comparison with CodeQL queries
that search for confidentiality violations and that existed prior
to this work (Section 2). However, these queries do not answer
the same question as Fluffy. The preexisting queries find end-to-
end flows from sources of tainted data to sensitive sinks, whereas
Fluffy works on flows from API parameters to sensitive sinks. The
preexisting queries would not consider these API parameters to
be sources (and conversely, Fluffy does not consider flows from
non-parameter sources), so the two cannot be compared directly.

12We exclude one code-injection vulnerability and two command-injection vulner-
abilities from consideration since the affected npm package is no longer available,
making it impossible to determine the parameters involved. We also exclude one
further command injection vulnerability for which details are no longer available since
the corresponding advisory has been withdrawn.
13https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/
javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#
L69
14https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/
javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#
L104

4.1.3 Data Labeling. To obtain ground truth for our evaluation,
we label a subset of the collected data to indicate whether the flow
may cause or contribute to a vulnerability.

For the param-sink dataset, the authors manually label 1,058
flows. To check the reliability of our labeling, we send out a survey
to four program analysis engineers with experience in security-
related analyses. The survey asks the analysis experts to label 30
randomly selected flows each, based on the parameter name, func-
tion name, package name, sink, package description, parameter
documentation, and function documentation. Specifically, the ques-
tion we ask is: “As a client of the package, would you expect data
passed into this parameter to flow into the sink in question with-
out further sanitization?” Using Krippendorff’s alpha to compute
the inter-rater agreement, the labels we assign and those given by
the analysis experts have an agreement score of 0.74. That is, the
analysis experts by and large agree with the labels in our ground
truth.

The total set of labeled flows consists of two overlapping sub-
sets. The first is the random set, which consists of 272 randomly
selected flows. While this set is unbiased, it does not contain many
unexpected flows since most flows observed in real-world code are
unproblematic. Hence, we extend the random set into a second set,
which we call the balanced set, additionally including flows selected
from results of the Frequency Counting approach.

For the logging dataset, we manually label a subset of 340 flows.
Table 4 shows the number of total and unexpected flows according
to our labeling for each sink type.

Note that our manual labeling shows that simply flagging all
flows as unexpected would result in many false positives, demon-
strating the importance of our approach.

Finally, for the SecBench.js dataset, we review all flows, and iden-
tify one code-injection vulnerability and seven command-injection
vulnerabilities that, despite having been reported as a vulnerability,
are expected according to our judgment. Full details about these
vulnerabilities are included in the supplementary materials. To
give just one example, SecBench.js includes CVE-2020-7784, which
identifies the fact that the parameter command of the function exec
exported by the npm package ts-process-promises is interpreted
as a shell command. We consider this flow obvious from context
and hence not a genuine vulnerability. None of the vulnerabilities
have been fixed, and in one case the advisory has been withdrawn,
suggesting that the authors of the packages involved do not con-
sider them to be a problem. All remaining 127 vulnerabilities are
labeled as unexpected by us.

4.1.4 Model Hyperparameters. All our models operate on vectors
with 768 dimensions, corresponding to the output dimension of
the VarCLR embedding [15]. The only exception to this is Codex,
which we access indirectly through an HTTP API as explained in
Section 3.4.4. In the Sink Prediction and Binary Classification ap-
proaches, the hidden layer dimensions are 500 and 250, respectively.
We use the Adam optimizer with a learning rate of 0.001. For Sink
Prediction, the training batch size is 256, and we stop the training
early when validation loss does not decrease in two epochs. We
reserve 10% of the training data for use as a validation set. For
Binary Classification, the training batch size is 32, and the model
stops when validation loss does not decrease in 50 epochs. We use

https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#L69
https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#L69
https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#L69
https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#L104
https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#L104
https://github.com/github/codeql/blob/499f20f6e8a3a91e394c30e05a340fe10b9ecec7/javascript/ql/lib/semmle/javascript/security/internal/SensitiveDataHeuristics.qll#L104
https://github.com/advisories/GHSA-ww4j-c2rq-47q8

Beware of the Unexpected: Bimodal Taint Analysis ISSTA 2023, 17-21 July, 2023, Seattle, USA

Table 3: Comparison of the different approaches.

Approach Training data Number of models Needs threshold Computation of F1 score

Sink Prediction Param-sink flows One Yes From precision-recall curve
Novelty Detection Seed names One per sink type Yes From precision-recall curve
Binary Classification Balanced set One per sink type No From k-fold cross-validation
Codex Balanced set One No Direct
Frequency Param-sink flows One Yes From precision-recall curve

Table 4: Ground truth labels.

Random Set Balanced Set

Integrity: Unexpected Total Unexpected Total

Code injection 16 27 113 340
Command injection 15 29 144 168
Reflected XSS 19 28 29 46
Path traversal 8 188 105 504
Confidentiality: Unexpected Total

Logging sensitive data 245 340

Radial Basis Function (RBF) as the kernel for the OC-SVM in the
Novelty Detection approach. The hyperparameters gamma and nu
are 0.05 and 0.01, respectively. For the Codex language model, we
set the temperature, frequency penalty, and presence penalty to
zero.

4.2 RQ1: Identifying Unexpected Flows
In this section, we explain the evaluation process for each approach
and then discuss the results for param-sink and logging flows. We
compare the approaches to each other, as well as to the two baselines
(Frequency Counting and Regular Expressions) discussed above.

4.2.1 Evaluation Process. We investigate how well each approach
can classify unexpected flows, using the F1 score as our main metric.
Table 3 compares the characteristics of the four neural approaches
and the Frequency Counting baseline. All approaches requiring a
threshold are evaluated by plotting the precision-recall curve (PR
curve) showing the relationship between precision and recall for
different thresholds, and recording the best F-1 score obtainable.
We compute precision and recall w.r.t. source-sink pairs.

For Sink Prediction, we train the model with all flows that have
not been labeled, using of these flows for 90% training and 10% for
validation. The labeled ground truth serves as the test set. Since
the model outputs probabilities, a threshold is required to make a
prediction.

For Novelty Detection, we train one OC-SVM for each sink type
(i.e., four for param-sink flows, and one for logging flows) using
the corresponding seed names. We again use the ground truth as
our test set, which may contain flows involving the seed names
as these were chosen independently. The model outputs a score
for each flow, representing the distance between the flow and the
boundary of the OC-SVM, which again requires a threshold to
derive a prediction.

For Binary Classification, we also train one model per sink based
on the relevant flows from the balanced set. No threshold is needed
since the model directly classifies flows. We evaluate using 5-fold
cross-validation with five different 80/20 splits, reporting average
precision, recall, and F1-score across the five folds for each model.

For Codex, for each flow to evaluate, we randomly draw ten
examples of the same sink from the balanced set to put in the
prompt. We ensure that the flow we ask it to evaluate is not among
the ten examples embedded in the prompt. As this model directly
classifies whether the flow is expected, we again do not need a
threshold and can directly compute the precision, recall, and F1-
score based on the predictions.

Finally, Frequency Counting is similar to Sink Prediction in that
it is trained on all param-sink flows and requires a threshold.

4.2.2 Param-Sink Flows. For param-sink flows, all four approaches
are evaluated on the random set and the balanced set, with Fre-
quency Counting as the baseline. The summary results for the
random set are shown in Table 5, with the best scores for each
sink type highlighted in bold. We observe that Fluffy’s approaches
outperform the baseline for all sinks, with Novelty Detection as the
overall winner followed by Binary Classification. The approaches
perform especially well on command injection and reflected XSS
with F1 scores of 0.9–1.0, and around 0.8 for code injection. Ef-
fectiveness on path traversal, on the other hand, is significantly
worse with widely spread scores peaking at 0.45. This is likely
due to the random set having only eight examples of unexpected
path-traversal flow.

The result on the balanced set are shown in Table 6, with PR
curves in Figure 2. In this setup, Binary Classification performs
best, surpassing Novelty Detection by a significant margin on code
injection and path traversal. This could be due to the balanced set
containing more diverse names, giving Binary Classification an
opportunity to learn from the dataset, while Novelty Detection
relies on a fixed set of seed names. For the path traversal sink, all
approaches perform better in the balanced set than in the random
set, which is likely due to having manymore (105) unexpected cases.
Frequency Counting performs very well for command injection,
but this has to be interpreted with caution since the balanced set
was partly constructed from results of this very approach. Another
interesting finding is that Sink Prediction performs much worse
on code injection flows in the balanced set than in the random set,
as the F1-score drops from 0.82 to 0.53. This is due to a decline in
precision: while it is able to capture most of the unexpected flows
(108), it also includes many false positives (194). The rest of the
results are similar to the random set.

ISSTA 2023, 17-21 July, 2023, Seattle, USA Yiu Wai Chow, Max Schäfer, and Michael Pradel

Table 5: Effectiveness of Fluffy on the random set of param-sink flows.

Random Set

Code injection Command injection Reflected XSS Path traversal

Approach Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Sink Pred. 0.78 0.88 0.82 1.00 1.00 1.00 0.68 1.00 0.81 0.18 0.75 0.29
Novelty Det. 0.82 0.88 0.85 1.00 1.00 1.00 0.86 1.00 0.93 0.36 0.63 0.45
Binary Class. 0.83 0.82 0.81 1.00 1.00 1.00 0.95 0.90 0.91 0.33 0.30 0.31
Codex 0.65 0.69 0.67 0.63 1.00 0.77 0.94 0.89 0.92 0.08 0.13 0.10

Frequency 0.59 1.00 0.74 0.91 0.67 0.77 0.68 1.00 0.81 0.22 0.25 0.24

Table 6: Effectiveness of Fluffy on the balanced set of param-sink flows.

Balanced Set

Code injection Command injection Reflected XSS Path traversal

Approach Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Sink Pred. 0.36 0.98 0.53 0.94 0.99 0.97 0.63 1.00 0.77 0.53 0.64 0.58
Novelty Det. 0.74 0.88 0.80 0.92 0.97 0.95 0.88 1.00 0.94 0.50 0.80 0.62
Binary Class. 0.90 0.88 0.88 0.97 0.97 0.97 0.96 0.94 0.94 0.81 0.73 0.76
Codex 0.76 0.76 0.76 0.90 0.97 0.94 0.90 0.93 0.92 0.62 0.42 0.50

Frequency 0.33 1.00 0.50 0.93 0.92 0.93 0.63 1.00 0.77 0.42 0.63 0.51

Figure 2: PR curves on the balanced set for Sink Prediction, Novelty Detection, and Frequency Counting (left to right).

In summary, Fluffy proves to be a significant improvement over
the baseline FrequencyCounting approach. The two best approaches
are Novelty Detection and Binary Classification, while Sink Predic-
tion does not work as well. Our interpretation is that the observed
likelihood of flow from a source to a sink does not help understand
how unexpected such a flow is. Codex also does not perform as
well as the others, possibly because the randomly chosen samples
embedded in the prompt do not provide enough information.

Path traversal flows are the hardest to classify for all the ap-
proaches. This seems to be because the names involved are very
diverse, including file operations (such as move and rm), file types,

e.g., png and mp4), and other names that could represent certain
kinds of files (such as log and config). It is hard for the models to
learn all these concepts, reducing their effectiveness. The names for
other sink types are not as diverse, as shown, for example, by the ex-
cellent score of the Novelty Detectionmodel for command-injection
flows in spite of only having two seed names.

4.2.3 Logging Flows. The results of evaluating Fluffy on the log-
ging flows are shown in Table 7, with PR curves in Figure 3. Overall,
Binary Classification performs best, followed by Novelty Detec-
tion and Regular Expressions. The latter gives the highest recall,

Beware of the Unexpected: Bimodal Taint Analysis ISSTA 2023, 17-21 July, 2023, Seattle, USA

Figure 3: PR curves on the logging flows for Sink Prediction and Novelty Detection (left to right).

Table 7: Effectiveness of Fluffy on the logging flows.

Logging Flows Dataset

Approach Precision Recall F1-Score

Sink Prediction 0.76 0.93 0.84
Novelty Detection 0.81 0.93 0.87
Binary Classification 0.90 0.94 0.92
Codex 0.78 0.96 0.86

Regexps 0.79 0.97 0.87

Table 8: Effectiveness of Fluffy on the SecBench.js dataset.

SecBench.js Dataset

Code injection Command injection

Approach Precision Recall F1 Precision Recall F1

Sink Pred. 0.97 0.88 0.92 1.00 0.90 0.95
Novelty Det. 0.96 0.75 0.84 0.99 0.98 0.98
Binary Class. 0.97 0.69 0.80 1.00 0.97 0.98
Codex 0.96 0.69 0.80 0.94 0.97 0.95

Frequency 0.94 0.47 0.63 1.00 0.65 0.79

while the latter have better precision. This suggests that regular
expressions are fairly effective, but they can be difficult to write and
maintain while our learning-based approach requires very little
human intervention.

As a case in point, we discover that Fluffy was able to correctly
flag clear-text logging of a variable named passcode as unexpected,
while CodeQL does not. This was surprising since the namematches
one of the regular expressions for finding sensitive data. However,
it turns out that it also matches the regular expression used to filter
out encrypted sources. We report this to the CodeQL maintainers,
who acknowledge it as a bug.

4.3 RQ2: Real-World Vulnerabilities
The results for RQ1 provide some evidence that Fluffy is effective
at spotting unexpected flows, but this does not yet prove that it can
be used to find real-world vulnerabilities. To address this question,
we evaluate Fluffy on the SecBench.js dataset, and also report some
unexpected flows flagged in the param-sink dataset to the main-
tainers of the corresponding projects to get their input on whether
the flows are indeed problematic.

4.3.1 Fluffy on Past Vulnerabilities. For evaluating on SecBench.js,
we use mostly the same evaluation methodology as shown Sec-
tion 4.2.2, except for the threshold-based approaches where we use
the threshold that gave the best F-1 score on the balanced set in
Section 4.2.2. This allows us to assess if the threshold we set can
generalize to a different dataset. We omit the path-traversal sink
type, since there is only one flow for this type in the dataset.

We use recall as our main metric (Table 8), since we are mainly
interested in whether Fluffy would have been able to flag these
known vulnerabilities and since precision is already evaluated in
RQ1. Somewhat surprisingly, Sink Prediction has the best recall
for code injection. This turns out to be because the best threshold
for this approach on the balanced set is very high, favoring the
SecBench.js dataset where all but one code injection flows are unex-
pected. As before, Novelty Detection does very well for command
injection, closely followed by Binary Classification.

4.3.2 Fluffy on Previously Unknown Vulnerabilities. In this section,
we examine how effective Fluffy is at finding new vulnerabilities.
Inspecting the flows flagged by Fluffy on the param-sink dataset,
we find and report a flow from a parameter called name of a function
called locale in the popular moment library to code-injection sink,
as mentioned in the introduction. The developers have acknowl-
edged and fixed this vulnerability, now known as CVE-2022-24785.
We furthermore create 16 pull requests on GitHub to fix other unex-
pected flows that seemed undesirable but less critical. At the time
of writing, seven of them have been merged, eight are still open
without feedback from developers, and one pull request has been
closed, with an alternative fix implemented.

ISSTA 2023, 17-21 July, 2023, Seattle, USA Yiu Wai Chow, Max Schäfer, and Michael Pradel

10 20 30 40 50 60 70 80
Training dataset size (%)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Av
er

ag
e

F1
-s

co
re

 a
cr

os
s 5

-fo
ld

s

Training dataset size vs F1-score

Code Injection
Command Injection
Reflected XSS
Path Traversal
Logging

Figure 4: Training set size versus model effectiveness.

Taken together, these results indicate that Fluffy is indeed able
to find real-world vulnerabilities.

4.4 RQ3: Human Efforts vs. Model
Effectiveness

From Table 5 and Table 6, we can observe that Binary Classifica-
tion is one of the approaches with the best effectiveness. However,
training the Binary Classification model requires a lot of manual
labeling, requiring human effort, which is a scarce resource. There-
fore, we would like to know how many labels are needed to achieve
a good effectiveness for Binary Classification.

In this experiment, we evaluate Binary Classification with dif-
ferent training set sizes on the balanced set. Keeping the test set
constant at 20% of the flows for a single sink type, we increase the
training-set size from 10% to 80% in 10% steps. The results in Fig-
ure 4 show that the F1 score generally increases with training-set
size, but for command injection even 10% suffices. Binary Classifi-
cation with 10% training data is, however, outperformed by Novelty
Detection with even less training data (viz, the seed names in Ta-
ble 2), showing that the former is a good choice if enough labeled
data is available, while the latter is more parsimonious.

4.5 RQ4: Scalability
One potential concern with our approach is the performance of the
underlying CodeQL query which has a very large set of sources.
However, the query for the param-sink flows dataset finishedwithin
LGTM.com’s default timeout of four hours on all but 73 projects
(> 99.97%), and the one for the logging flows on all but 49 (> 99.98%).
This suggests that while Fluffy might not scale to truly massive
projects, the CodeQL component is not usually a bottleneck.

For Binary Classification, our 5-fold cross-validation takes less
than 5 minutes to train and around 1.5 seconds to evaluate each
model. The Sink Prediction model takes one and a half hour to
train and around 20 seconds to evaluate. The Novelty Detection
model takes less than 3 seconds to train and less than 3 seconds
to evaluate. For Codex, the model is accessed via a rate-limited

REST API, providing one completion in 1.8 seconds, on average.
This indicates that, except for Codex, the neural components of
Fluffy scale well, as training takes at most a couple of hours, and
the model can classify hundreds of flows within seconds. We con-
duct our experiments on a server with 48 Intel Xeon CPU cores
clocked at 2.2GHz, 250GB of RAM, and one NVIDIA Tesla V100
GPU. The Binary Classification and Sink Prediction model use the
GPU, whereas Novelty Detection and Codex use the CPU.

4.6 Threats to Validity
While the results shown above are promising, there are several
threats to validity to keep in mind. First, we only evaluate on five
vulnerability types, and our results may not generalize to other
types. The corpus of code bases we consider is prescribed by the
selection of projects hosted on LGTM.com, potentially introducing
bias. Similarly, our evaluation is limited to JavaScript, andwe cannot
say for certain that our approach would work for other languages.
Second, our evaluation relies on manual labeling, which is subject
to human error. We tried to mitigate this by involving independent
labelers, but they only labeled a small fraction of the data, leaving
open the possibility of bias in the remainder. Third, our selection
of seed names for Novelty Detection is based on human judgment,
again introducing a potential source of bias. Finally, the balanced
dataset contains more unexpected flows than we expect to actually
occur in the wild, which may lead to overfitting.

5 RELATEDWORK
Our work fits in the general category of neural software analy-
sis [45], which is characterized by fuzziness of available informa-
tion and lack of well-defined correctness criteria, but also a large
amount of training data. Previous work in this area ranges tackles
problems as diverse as bug detection [3, 47, 52], automated program
repair [16, 34, 35, 39, 54], code completion [4, 14, 31], probabilistic
type inference [2, 24, 40, 46], call graph pruning [33, 51], emulating
a dynamic taint analysis [50], and learning inference rules for static
analyzers from data [8]. There has also been a lot of work on using
machine learning techniques to detect vulnerabilities [20, 23, 36, 37],
though such approaches are not yet precise enough in practice [13].

Unlikemany of theseworks, however, our goal is not to produce a
fully neural end-to-end vulnerability detector. Instead, we enhance
an existing static analysis tool (CodeQL) with the help of machine
learning techniques. In this regard we stand in the tradition of
systems like Merlin [38], SuSi [48], Seldon [17], and USpec [19],
which usemachine learning to improve taint analyses by identifying
additional sources and sinks or inferring aliasing behavior. However,
those systems and our work have complementary goals. While the
above-mentioned approaches can be used to identify APIs that
produce tainted data directly, Fluffy finds parameters into which an
unsuspecting user might pass tainted data, that is, the tainted data
does not originate in the parameter, but somewhere else. Moreover,
since we use natural-language information we can do this even
if we have never seen an example of tainted data actually being

Beware of the Unexpected: Bimodal Taint Analysis ISSTA 2023, 17-21 July, 2023, Seattle, USA

passed to this parameter, thus allowing us to spot potential, not yet
exploitable vulnerabilities.15

Weare, of course, not the first to realize and exploit the “bi-modal”
structure of source code [1, 12, 26]. For example, identifier names
in particular have previously been used for bug detection [43, 47],
bug injection [42], type refinement [18], and type prediction [40].
However, we believe we are the first to systematically use natural
language information for the purpose of improving taint analyses.

One could also view our approach as using neural techniques to
identify false positives, though in our case the underlying taint anal-
ysis is deliberately imprecise and not expected to stand on its own.
A recent contribution in this direction is Kharkar et al.’s work [30],
which explores both a feature-based and a neural approach to iden-
tifying false positives produced by the Infer static analyzer [11].
Their ideas relate to ours in that their neural models implicitly
use both code and natural language information. Our work differs
by specifically focusing on taint analysis and by presenting other
formulations of the learning task.

Another line of related work is on predicting heuristics used
in static analyses. For example, Jeong et al. learn heuristics for
selecting methods likely to benefit from certain depth-levels of
context-sensitive points-to analysis [28]. Others predict which loops
to unroll without missing any bugs to report [25] and learn state-
selection heuristics to reduce the cost of path-sensitivity [32]. Such
work ultimately aims at improving the efficiency of static analyses,
whereas Fluffy’s goal is to ensure that the warnings reported by
the analysis are indeed relevant to developers.

The effectiveness of our approach depends crucially on the un-
derlying word embeddings. Common methods to train such embed-
dings include FastText [9], word2vec [41] and GloVe [44], but these
are meant for natural language. We work with variables names,
which have substantially different characteristics [53]. Hence we
use VarCLR [15], which specifically targets identifier names, and
has been shown to outperform other approaches in this domain.

6 CONCLUSIONS
This paper presents Fluffy, a general framework for bimodal taint
analysis combining a static taint analysis identifying candidate
flows with a neural component identifying the problematic ones.
We instantiate this framework on top of the CodeQL JavaScript
analysis with four different neural components (Binary Classifi-
cation, Sink Prediction, Novelty Detection, and Codex Language
Model), and evaluate the resulting system on a large corpus of
real-world JavaScript code bases as well as a collection of known
vulnerabilities. Our findings show that Fluffy performs well in prac-
tice, identifying potentially problematic flows with high accuracy
and flagging known vulnerabilities with high recall.

For futurework, wewould like to investigate a tighter integration
between the static and the neural components, and also explore the
broader applicability of this technique to other languages.

15While some features used by SuSi are based on natural language information, these
are manually engineered and rely on very simple string matching, such as determining
whether a method name starts with “get”.

ACKNOWLEDGMENTS
This work was supported by the European Research Council (ERC,
grant agreement 851895), and by the German Research Foundation
within the ConcSys and DeMoCo projects.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 81.

[2] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus:
Neural Type Hints. In PLDI.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning
to Represent Programs with Graphs. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. https://openreview.net/forum?id=BJOFETxR-

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. https://openreview.net/forum?id=H1gKYo09tX

[5] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. 2016.
QL: Object-oriented Queries on Relational Data. In 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs,
Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2:1–2:25. https://doi.org/10.4230/LIPIcs.ECOOP.
2016.2

[6] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. 2022. Code
Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained Language
Models on Code. CoRR abs/2206.01335 (2022). https://doi.org/10.48550/arXiv.
2206.01335 arXiv:2206.01335

[7] Masudul Bhuiyan, Adithya Srinivas, Nikos Vasilakis, Michael Pradel, and Cristian-
Alexandru Staicu. 2022. SecBench.js: An Executable Security Benchmark Suite
for Server-Side JavaScript. https://github.com/cristianstaicu/SecBench.js

[8] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2017. Learning a Static
Analyzer fromData. InComputer Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 10426), Rupak Majumdar and Viktor Kuncak (Eds.).
Springer, 233–253. https://doi.org/10.1007/978-3-319-63387-9_12

[9] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. TACL 5 (2017), 135–146.
https://transacl.org/ojs/index.php/tacl/article/view/999

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[11] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. 2015. Moving fast with software verification. In
NASA Formal Methods Symposium. Springer, 3–11.

[12] Casey Casalnuovo, Earl T Barr, Santanu Kumar Dash, Prem Devanbu, and Emily
Morgan. 2020. A theory of dual channel constraints. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 25–28.

[13] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2020.
Deep Learning based Vulnerability Detection: Are We There Yet? CoRR
abs/2009.07235 (2020). arXiv:2009.07235 https://arxiv.org/abs/2009.07235

[14] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.48550/arXiv.2206.01335
https://doi.org/10.48550/arXiv.2206.01335
https://arxiv.org/abs/2206.01335
https://github.com/cristianstaicu/SecBench.js
https://doi.org/10.1007/978-3-319-63387-9_12
https://transacl.org/ojs/index.php/tacl/article/view/999
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2009.07235
https://arxiv.org/abs/2009.07235

ISSTA 2023, 17-21 July, 2023, Seattle, USA Yiu Wai Chow, Max Schäfer, and Michael Pradel

Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. CoRR abs/2107.03374 (2021).
arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[15] Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan
Vasilescu, and Claire Le Goues. 2022. VarCLR: Variable Semantic Representation
Pre-training via Contrastive Learning. In ICSE.

[16] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE TSE (2019).

[17] Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin T. Vechev. 2019.
Scalable Taint Specification Inference with Big Code. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen
Fisher (Eds.). ACM, 760–774. https://doi.org/10.1145/3314221.3314648

[18] Santanu Kumar Dash, Miltiadis Allamanis, and Earl T. Barr. 2018. RefiNym: Using
Names to Refine Types. In ESEC/FSE.

[19] Jan Eberhardt, Samuel Steffen, Veselin Raychev, and Martin T. Vechev. 2019.
Unsupervised learning of API aliasing specifications. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. 745–759. https://doi.org/10.1145/
3314221.3314640

[20] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-based
Line-Level Vulnerability Prediction. In MSR.

[21] Tiferet Gazit. 2022. Leveraging machine learning to find security vulnerabili-
ties. https://github.blog/2022-02-17-leveraging-machine-learning-find-security-
vulnerabilities/

[22] GitHub. 2022. CodeQL. https://codeql.github.com/
[23] Jacob A. Harer, Louis Y. Kim, Rebecca L. Russell, Onur Ozdemir, Leonard R.

Kosta, Akshay Rangamani, Lei H. Hamilton, Gabriel I. Centeno, Jonathan R. Key,
Paul M. Ellingwood, Marc W. McConley, Jeffrey M. Opper, Sang Peter Chin, and
Tomo Lazovich. 2018. Automated software vulnerability detection with machine
learning. CoRR abs/1803.04497 (2018). arXiv:1803.04497 http://arxiv.org/abs/
1803.04497

[24] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018.
Deep learning type inference. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, No-
vember 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu
(Eds.). ACM, 152–162. https://doi.org/10.1145/3236024.3236051

[25] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Machine-learning-guided
selectively unsound static analysis. In Proceedings of the 39th International Con-
ference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017, Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE /
ACM, 519–529. https://doi.org/10.1109/ICSE.2017.54

[26] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-
vanbu. 2012. On the naturalness of software. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 837–847.

[27] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: Large Language
Models meet Program Synthesis. In ICSE.

[28] Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. 2017. Data-driven
context-sensitivity for points-to analysis. Proc. ACM Program. Lang. 1, OOPSLA
(2017), 100:1–100:28. https://doi.org/10.1145/3133924

[29] Harshit Joshi, José Cambronero, Sumit Gulwani, Vu Le, Ivan Radicek, and Gust
Verbruggen. 2022. Repair Is Nearly Generation: Multilingual Program Repair
with LLMs. https://doi.org/10.48550/ARXIV.2208.11640

[30] Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xiaoyu Liu,
Xin Shi, Colin Clement, and Neel Sundaresan. 2022. Learning to Reduce False
Positives in Analytic Bug Detectors. In ICSE.

[31] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. 2021. Code Predic-
tion by Feeding Trees to Transformers. In ICSE.

[32] Yoonseok Ko and Hakjoo Oh. 2023. Learning to Boost Disjunctive Static Bug-
Finders. In ICSE.

[33] Thanh Le-Cong, Hong Jin Kang, Truong Giang Nguyen, Stefanus Agus Hary-
ono, David Lo, Xuan-Bach D. Le, and Quyet Thang Huynh. 2022. AutoPruner:
Transformer-Based Call Graph Pruning. In ESEC/FSE.

[34] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65. https://doi.org/10.1145/
3318162

[35] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-based Code
Transformation Learning for Automated Program Repair. In ICSE.

[36] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability detection with
fine-grained interpretations. In ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha
Chechik, and Massimiliano Di Penta (Eds.). ACM, 292–303. https://doi.org/10.
1145/3468264.3468597

[37] Zhen Li, Shouhuai Xu Deqing Zou and, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In NDSS.

[38] V. Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee.
2009. Merlin: specification inference for explicit information flow problems. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. 75–86.

[39] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models
using ensemble for program repair. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 101–114. https:
//doi.org/10.1145/3395363.3397369

[40] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: Inferring
JavaScript function types from natural language information. In Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019. 304–315. https://doi.org/10.1109/ICSE.2019.00045

[41] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
http://arxiv.org/abs/1301.3781

[42] Jibesh Patra and Michael Pradel. 2021. Semantic bug seeding: a learning-based
approach for creating realistic bugs. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios
Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.). ACM, 906–918.
https://doi.org/10.1145/3468264.3468623

[43] Jibesh Patra and Michael Pradel. 2022. Nalin: Learning from Runtime Behavior
to Find Name-Value Inconsistencies in Jupyter Notebooks. In ICSE.

[44] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
Alessandro Moschitti, Bo Pang, and Walter Daelemans (Eds.). ACL, 1532–1543.
https://doi.org/10.3115/v1/d14-1162

[45] Michael Pradel and Satish Chandra. 2022. Neural software analysis. Commun.
ACM 65, 1 (2022), 86–96. https://doi.org/10.1145/3460348

[46] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
Writer: Neural Type Prediction with Search-based Validation. In ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020.
209–220. https://doi.org/10.1145/3368089.3409715

[47] Michael Pradel and Koushik Sen. 2018. DeepBugs: A learning approach to
name-based bug detection. PACMPL 2, OOPSLA (2018), 147:1–147:25. https:
//doi.org/10.1145/3276517

[48] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A Machine-
learning Approach for Classifying and Categorizing Android Sources and
Sinks. In 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss2014/machine-learning-approach-
classifying-and-categorizing-android-sources-and-sinks

[49] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. 2001. Estimating the support of a high-dimensional distribution.
Neural computation 13, 7 (2001), 1443–1471.

[50] Dongdong She, Yizheng Chen, Baishakhi Ray, and Suman Jana. 2019. Neutaint:
Efficient Dynamic Taint Analysis with Neural Networks. CoRR abs/1907.03756
(2019). arXiv:1907.03756 http://arxiv.org/abs/1907.03756

[51] Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg. 2022.
Striking a Balance: Pruning False-Positives from Static Call Graphs. In ICSE.

[52] Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh Singh.
2019. Neural Program Repair by Jointly Learning to Localize and Repair. In ICLR.

[53] Yaza Wainakh, Moiz Rauf, and Michael Pradel. 2021. IdBench: Evaluating Se-
mantic Representations of Identifier Names in Source Code. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 562–573. https://doi.org/10.1109/ICSE43902.2021.00059

[54] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural Program Repair
with Execution-based Backpropagation. In ICSE.

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3314221.3314648
https://doi.org/10.1145/3314221.3314640
https://doi.org/10.1145/3314221.3314640
https://github.blog/2022-02-17-leveraging-machine-learning-find-security-vulnerabilities/
https://github.blog/2022-02-17-leveraging-machine-learning-find-security-vulnerabilities/
https://codeql.github.com/
https://arxiv.org/abs/1803.04497
http://arxiv.org/abs/1803.04497
http://arxiv.org/abs/1803.04497
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1109/ICSE.2017.54
https://doi.org/10.1145/3133924
https://doi.org/10.48550/ARXIV.2208.11640
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3468264.3468597
https://doi.org/10.1145/3468264.3468597
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1109/ICSE.2019.00045
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3468264.3468623
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1145/3460348
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://www.ndss-symposium.org/ndss2014/machine-learning-approach-classifying-and-categorizing-android-sources-and-sinks
https://www.ndss-symposium.org/ndss2014/machine-learning-approach-classifying-and-categorizing-android-sources-and-sinks
https://arxiv.org/abs/1907.03756
http://arxiv.org/abs/1907.03756
https://doi.org/10.1109/ICSE43902.2021.00059

	Abstract
	1 Introduction
	2 Background: Taint Analysis with CodeQL
	3 Approach
	3.1 Problem Statement
	3.2 Overview
	3.3 Gathering and Representing Natural Language Information
	3.4 Predicting Unexpected Flows

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Identifying Unexpected Flows
	4.3 RQ2: Real-World Vulnerabilities
	4.4 RQ3: Human Efforts vs. Model Effectiveness
	4.5 RQ4: Scalability
	4.6 Threats to Validity

	5 Related Work
	6 Conclusions
	References

