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ABSTRACT

As the basic element of graph-structured data, node has been recog-
nized as the main object of study in graph representation learning.
A single node intuitively has multiple node-centered subgraphs
from the whole graph (e.g., one person in a social network has mul-
tiple social circles based on his different relationships). We study
this intuition under the framework of graph contrastive learning,
and propose a multiple node-centered subgraphs contrastive repre-
sentation learning method to learn node representation on graphs
in a self-supervised way. Specifically, we carefully design a series
of node-centered regional subgraphs of the central node. Then,
the mutual information between different subgraphs of the same
node is maximized by contrastive loss. Experiments on various
real-world datasets and different downstream tasks demonstrate
that our model has achieved state-of-the-art results.
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1 INTRODUCTION

Graph representation learning has received increasing attention
recently [5], which aims to transform high-dimensional graph-
structured data into low-dimensional dense vectorized representa-
tions. As the basic elements of graph-structured data, node repre-
sentation has been the main object of graph representation learning.
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Figure 1: A descriptive illustration of different proxy tasks
among DGI, GMI, GIC and our proposed MNCSCL. The two-
way arrows represent MI maximization, and the different
colors represent different models. The subgraph generator
and multiple subgraphs of h; are described in details in Sec-
tion 3.1 and Section 3.2.

A comprehensive node representation can be well used for a vari-
ety of downstream tasks, such as node classification [14] and link
prediction [3].

A widespread graph representation learning method is the appli-
cation of graph neural networks (GNN) [4, 14, 29, 32, 40]. But most
of such methods focus on supervised learning, relying on super-
vised signals in the graph. For real-world networks, the acquisition
of these supervised signals is often cumbersome and expensive.
Self-supervised learning [11] is a popular research area in recent
years, which designs proxy tasks for unlabeled data to mine the
representational properties of the data itself as supervised informa-
tion.

As one of the representative methods of self-supervised learning,
the proxy task of contrastive learning is to maximize the Mutual In-
formation (MI) [25] between the input and related content [34]. For
example, Deep Graph Infomax (DGI) [30] maximizes MI between
local view and global view of the input graph and its corresponding
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Figure 2: The pipelines of MNCSCL. For a specific node v; with attribute x;, we first get its negative example X; through
perturbing the structure and attributes of the input graph G with a corruption function C. Then we use a subgraph generator

7 to get a series of node-centered subgraphs G; and their corresponding negative set G; from h; and h; (obtained by a shared
encoder 7). Finally, the mutual information between G; and G is maximized in the latent space V; and U; (obtained by a readout
function R) by contrastive loss. For more details, refer to the “overall framework” subsection in Section 3.

corrupted graph. Graphical Mutual Information (GMI) [23] doesn’t
use corruption function, instead, it maximizes the MI between the
hidden representation of nodes and their original local structure.
Graph InfoClust (GIC) [19], on the other hand, maximizes the MI
between the node representation and its corresponding cluster
representation on the basis of DGI. Although these methods have
achieved many advances, they all focus on the MI between node
embeddings and only one related graph structure, as shown in
Figure 1.

In reality, we can look at a specific thing from multiple perspec-
tives. For graph data, we can observe individual nodes in a graph
from multiple perspectives, yet little literature has focused on this.
Intuitively, for an individual in a social network, there may be a
social circle of relatives based on blood relations, a social circle
of colleagues based on work relations, and other social circles of
friends with many different interests. If we analyze this individ-
ual from these different social circles, it is actually equivalent to
learning from multiple perspectives on the nodes in this network.

Based on this intuition, we propose Multiple Node-centered
Subgraphs Contrastive Representation Learning (MNCSCL). MNC-
SCL takes each node in the network as the center and samples its
node-centered regional subgraphs under different semantics, thus
forming several different perspectives of the corresponding node,
as shown in Figure 1. More specifically, we first generate a negative
example through the corrupt function, then generate a series of
node-centered subgraphs of the original graph by the view gen-
erator, and sample the corresponding subgraphs on the negative
example. Then, these subgraphs are fed into graph neural network

encoders to obtain the representations of central nodes and its
subgraphs after pooling. Finally, the mutual information between
different subgraphs of the same node is maximized in the latent
space by contrastive learning objective function. Experimental re-
sults on a variety of datasets demonstrate the superb performance
of our design. The major contributions of this paper are as follows:

e We propose a novel framework to learn node representation
through multiple node-centered subgraphs of nodes, which
is a novel idea in current work to observe a single node from
multiple perspectives.

e We carefully design five node-centered subgraphs and ana-
lyze the influence of different subgraphs on the learning qual-
ity of node representation through extensive experiments,
which is of reference significance.

e We evaluated MNCSCL on five standard datasets and two
downstream tasks to validate the effectiveness of the pro-
posed method. Our experiments show that the contrastive
learning of multiple subgraphs outperforms the above men-
tioned single-subgraph contrastive learning in terms of re-
sults.

2 RELATED WORK

2.1 Graph Representation Learning Based on
Contrastive Learning

Inspired by the advances of contrastive learning in fields such as
CV and NLP, some work has started to apply contrastive learning
on graph data for graph representation learning. The objective of
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graph contrastive learning is to maximize the MI between similar
instances in a graph [33], and its model design focuses on three mod-
ules: data augmentation, proxy tasks, and contrastive objectives.
Among them, the most important modules is the proxy task, which
describes the definition of similar instances (i.e. positive example)
and dissimilar instances (i.e. negative example). DGI [30] extends
the idea of DIM [8] to graph data to learn node representations by
maximizing the MI between local node representation and global
graph representation. GMI [23] takes nodes and their neighbors
as objects of study and maximizes the MI between hidden repre-
sentation of each node and the original features of its neighboring
nodes. GIC [19] clusters the nodes in the graph by a differentiable
version of K-means clustering, and then maximizes the MI between
the node representation and its corresponding cluster summaries.
SUBG-CON [10] obtains the context subgraph of each node by
subgraph sampling based data augmentation, and then maximizes
the consistency between them. Despite the good results achieved,
these works perform graph contrastive learning only on a single
perspective for nodes.

2.2 Multi-view Contrastive Learning

Recently, multi-view representation learning has become a rapidly
growing direction in machine learning and data mining areas [17,
22, 37-40]. It has had a lot of success in areas such as computer
vision. For instance, Contrastive Multiview Coding (CMC) [28] uses
contrastive learning to maximize the mutual information between
multiple views of a dataset to perform representation learning of
images. MVGRL [6] obtains multiple views of graph through data
augmentation, and they find out that unlike visual representation
learning, increasing the number of views of the entire graph to
more than two by data augmentation does not improve perfor-
mance. Unlike the multi-view graph contrastive learning summa-
rized in MVGRL which focuses on node attributes at graph-level,
our multiple node-centered subgraphs in this paper focus more on
the differences in structure at node-level.

3 METHODOLOGY

Problem definition. Given a graph G = (V, E) with N nodes,
where V = {v1,02,...,05} and & represent the node set and the
edge set respectively. X = {x1,x2,...XN} € RN*F is the node
features matrix, where x; € R¥ denotes the features of dimension
F for node v;. We use the adjacency matrix A € RVXN o represent
the connectivity of the graph, where A(i, j) = 1 if nodes v; and v;
are linked, and A(i, j) = 0 otherwise. In this way, a graph can also
be represented as G = (X, A). If V' C V is a subset of vertices of
G and &’ consists of all of the edges in & that have both endpoints
in V, then the subgraph S = (V’,&’) of graph G is an induced
subgraph. The subgraphs mentioned in this paper are all induced
subgraphs.

The goal of self-supervised graph representation learning is
to learn a encoder F : RNXF yx RNXN _, RNXF/, which takes
the features matrix X and the adjacency matrix A as input to get
the node representation H = {hy,hy,...,hy} € RNXF" without
label information, formulated as H = ¥ (X, A). The learned node
representation H can be used directly for downstream tasks such
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Table 1: Summary of notations. The first five notations are
described in detail in the following subsections.

Notation Meaning

Shared encoder

Corruption function

Subgraph generator

Readout function

Discriminator

Number of nodes in the input graph

Feature dimension of each node

Feature dimension of each node representation

Rz QR0 H

Number of node-centered subgraphs sampled by 7

Number of nodes in the corresponding
node-centered subgraph

d Range of neighbors in the neighboring subgraph

Number of nodes that are most similar to the
central node for intimate subgraph

C number of clusters for communal subgraph

n self-weighted factor for full subgraph

G.G Input graph and its negative example obtained by C

The k-th node-centered subgraph of node v; and
its negative example

~k  Node representation matrix of the k-th node-centered
i subgraph of node v; and its negative example

~k  Adjacency matrix of the k-th node-centered subgraph
of node v; and its negative example

k Representation of the k-th node-centered subgraph of
i node v; and its negative example, obtained by R

as node classification and link prediction. For the sake of clarity,
we list all important notations in Table 1.

Overall framework. Inspired by recent graph representation
learning work based on contrastive learning, we propose MNCSCL
algorithm for graph representation learning by maximizing MI of
multiple node-centered subgraphs of nodes. As illustrated in Figure
2, if there is only a single graph provided as input, the summarized
steps of MNCSCL are as follows:

e Utilize a corruption function C to perturb the structure and
attributes of the input graph G to obtain a negative example
G =X A) ~C(XA).

e Pass input graph G and negative example G into a shared
encoder F to get node representation H and H.

e Use a subgraph generator 7~ to sample a series of node-
centered subgraphs G; = {g} le QIK} for node v; from
the input graph G, where K is the number of different sub-
graphs and glk = (H{?,Af), k =1,2,..., K. The correspond-
ing node-centered subgraphs set G; = {él-l, Q~12, . élK} from
the negative example G are further obtained according to
G;.

e Summarize all subgraphs in G; and G; through a readout
function R to get their representations V; = {v}, v?, v{( }
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Figure 3: Five types of node-centered subgraphs for node
v4 from original graph. Note that nodes are divided into 3
clusters in (4), which are {01,032}, {v3,04} and {uvs, v6}.

of node v; and the corresponding negative samples U; =
{u%, uf, uf}. As an example, v{.‘ = R(Hf).

e Update parameters of 7, R and D (mentioned later) by
applying gradient descent to maximize Eq. (13) or Eq. (14).

In the following sections, we will elaborate on the crucial com-
ponents mentioned above.

3.1 Subgraph Generator

We can deal with a whole graph from different views [6], and the
same is true for any node in the graph. For a single node, there are
many subgraphs centered on it (e.g., ego network [42]). If these
node-centered regional subgraphs have certain semantic informa-
tion (e.g., ego network represents a specific individual and other
persons who have a social relationship with him), then we can treat
them as different perspectives of the central node.

The main role of the subgraph generator 7 is to sample these
node-centered regional subgraphs from G and generate the corre-
sponding negative samples from G. Specifically, for a specific node
v; and a prepared node-centered subgraph type k, the subgraph gen-
erator 7 first gets idx, a set which represents the index of chosen
nodes for subgraph Qlk to be obtained. Then, the node representa-
c RN "XF’

tion matrix Hi‘ and adjacency matrix Ai? e RN'XN of

Qlk are denoted respectively as
k k
Hi = Hidx,:» Ai = Aidx,idx» (1)

where -4, is an indexing operation and N’ is the length of idx.
In this way, we can obtain the k-th node-centered subgraph
Qlk = (HfAfc) ~ 7 (H, A) for any specific node v;. Likewise,
the corresponding negative example can be obtained by élk =
~k ~k . -
(H;, Aj) = (Higx, . Ajdxidx)-

Li et al.

3.2 Node-centered Subgraphs Design

To learn a more comprehensive representation, we carefully design
five different node-centered subgraphs, as illustrated in Figure 3.
The details of them are as follows:

Subgraph 1: Basic subgraph. The basic subgraph only contains
the central node itself (i.e., N’ = 1), that means for each node v;:

idx = {i}. (2)

Further, we can get the basic subgraph representation and its cor-
responding negative example by v} = h; and u} = h;. For any
specific node, basic subgraph is the purest “subgraph” as well as
the main subgraph, which contains the most concentrated features
of the node iteself.

Subgraph 2: Neighboring subgraph. The neighbors of the
central node are often closely related to the node in structure, and
study with them can better capture the structural features of node
[4]. The neighboring subgraph contains all nodes with a distance
less than or equal to d from the central node v;, denoted as

idx = {j|dis(v;,0;) < d}, ®3)

where dis(-, -) is a function used to get the distance between two
nodes. After obtaining the neighboring subgraph le by Eq. (1), a
readout function R : RN*F" — RF’ is used to obtain the neigh-
boring subgraph representation and its corresponding negative
example:

vZ = R(H?), u? = R(H)). @

It is beneficial to learn a more comprehensive representation
when we take a larger range of neighbors. But at the same time, the
features of the central node will be weakened, which will cause the
model to be more inclined to learn the representation of a region
or even the whole graph. It follows that it’s important to choose
the value of d. As shown in the Figure 5, the model reaches the best
performance when d = 1 for the neighboring subgraph.

Subgraph 3: Intimate subgraph. The intimate subgraph takes
into account the similarity that actually exists between two nodes
in the input graph G. It contains the first [ nodes that are most
similar to the central node. This is equivalent to identifying the
nodes that are structurally close to the central node from another
perspective, and thus learning the structural features of the nodes
more comprehensively.

The similarity between nodes is usually measured by a similarity
scores matrix S € RNXN where S(i, j) measures the similarity
between nodes v; and v;. Here we follow the personalized pagerank
(PPR) algorithm [9] as introduced in [36]. The similarity scores
matrix S based on the PPR algorithm can be denoted as

S=a-(I-(1-a)-A)7}, (5)

where I is the identity matrix and A = AD™! denotes the colum-
normalized adjacency matrix. D is the diagonal matrix correspond-
ing to A with D(i,i) = }; A(i, j) on its diagonal. & € [0,1] is a
parameter which is set as 0.15 in [10]. For a specific node v;, the
subgraph generator 7~ chooses its top-I similar nodes (i.e., N’ =)
to generate intimate subgraph with S(i, :), which can be denoted as

idx = top_rank(S(i,:), 1), (6)

where top_rank(-) is a function that selects the top-I values from
a vector and return the corresponding indices. Same as Subgraph
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2 subsection, we can obtain the intimate subgraph representation
and its corresponding negative example with v? = R(H?) and
w} = R(H)).

Subgraph 4: Communal subgraph. In graph clustering, nodes
in a uniform cluster tend to have similarity in attributes. Therefore,
we can select all nodes in the cluster to which the central node
belongs to get the communal subgraph. These nodes with similar
attributes to the central node can help the model better learn the
attribute features of the central node.

It is particularly noteworthy that the other subgraphs are ob-
tained independently of the node attributes (i.e., H), but the com-
munal subgraph is attribute-related. Since H will change during
training, a fixed idx before the model training as other subgraphs
may lead to undesirable results.

There are already many methods to perform graph clustering
[26]. We tried three different clustering strategies based on K-means
clustering [18] due to the stable and excellent performance of it.

o Strategy 1: Precomputed K-means. Same as other sub-
graphs, the node-centered subgraphs are sampled before
model training starts. Specifically, the traditional K-means
clustering algorithm is used to cluster the nodes in the input
graph G. For any specific node v;, take all the indices of
nodes in its cluster as idx and further compute v? and “?'

o Strategy 2: A differentiable version of K-means. To up-
date the communal subgraph during training, we need an
end-to-end clustering algorithm. Here we follow a differen-
tiable version of K-means as introduced in [31]. For each
node vj, let y. denote the center of cluster ¢ and Jjc (s.t.,
¢ Vie = 1,Vi) denotes the degree to which node v; is as-
signed to cluster c. Suppose that the number of clusters to be
obtained is C, ClusterNet updates i via an iterative process

by alternately setting.
s
le = Z"/—lf‘ c=1,..,C ()
2i Vic
and

o _exp(fesimhip) ©
YT Seexp(-Bsimhp)) CT

where f is an inverse-temperature hyperparameter, the stan-

dard K-means assignment is recovered when f§ — oo.sim(-, -)

denotes a similarity function between two instances. Even-

tually, we can get the communal subgraph representation

by

C
V;‘l =0 (Z )A/ic/rlc) > )
c=1

where o(-) is the logistic sigmoid nonlinearity. Since this
method does not get idx, we simply get negative exam-
ple {u‘ll, u‘zl, - u?\,} of all nodes by row-wise shuffling of
{v‘ll,vg, V?\]}.

e Strategy 3: An end-to-end version of K-means with an
estimation network. In this way, we replace the iterative
process in Strategy 2 with an estimation network, which
utilizes a multi-layer neural network to directly predict the

degree to which each node belongs to each cluster y € RNVXC

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

=
<Y

v vi eoe e \& v; Vil e e (V7
L i
,«T 1 Maximize MI | EIE Y L3
e o
kT ' MinimizeMI | ¥y ¥ na

Soen
Sien

md u?z e+

1 2
Mg g °=°° 4 %

(b) Contrastive lossess under core view and full graph cases

Figure 4: Take the five node-centered subgraphs of node v; as
an example. (a) The “core view” (left) and “full graph” (right)
paradigms. The numbers within the regions represent the
number of MI in this region. For example, if we select all 5
node-centered subgraphs under the full graph case, MI will
be calculated once between every two subgraphs, and hence
ismarked with the number 10. (b) Contrastive lossess under
core view and full graph cases. Refer to Section 3.3 for more
details.

denoted as
7 = softmax(MLP(H; 0)), (10)

where softmax(-) is a softmax nonlinearity and MLP(-) is
a multi-layer neural network with trainable parameters 6.
Then we get the communal subgraph representation by Eq.
(8) and Eq. (9) as same as Strategy 2.

The comparison of the three strategies is shown in Figure 5.
After weighing both accuracy and efficiency, we chose Strategy 2
to generate the communal subgraph.

Subgraph 5: Full subgraph. To learn a comprehensive rep-
resentation of a node, it is essential to observe it from a global
perspective. The full subgraph contains all the nodes (i.e. N’ = N)
in the input graph G, e.g., for any specific node v;,

idx = {jlj = 1,2,..,N}. (11)
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Table 2: The statistics of all the five datasets. *Note that the node classification on PPI dataset is a multilabel classification

problem.

Task Dataset Type #Nodes  #Edges  #Features #Classes Train/ Val/ Test
Node classification Cora Citation network 2,708 5,429 1,433 7 0.05/0.18 / 0.37
& Link prediction  Citeseer Citation network 3,327 4,732 3,703 6 0.04/0.15/ 0.30
(Transductive) Pubmed Citation network 19,717 44,338 500 3 0.003 / 0.03 / 0.05
Node classification  Reddit Social network 232,965 11,606,919 602 41 0.66 / 0.10 / 0.24
(Inductive) PPI Protein network 56,944 818,716 50 121* 0.79/0.11/0.10

Compared with the previous subgraphs, the full subgraph con-
tains far more nodes than they do, which extremely weakens the
specificity of the central node. At the same time, it is not conducive
to learning a specialized node representation as all nodes have the
same full subgraph. Based on these ideas, we propose full subgraph
for specific node v; with self-weighted, denoted as

v} = (1= mR(H}) + nh;, (12)

where 5 € [0, 1] is a self-weighted factor.

So far, we have introduced five carefully designed node-centered
subgraphs. It is noted that subgraphs other than Subgraph 4 can
be precomputed before model training starts, which allows us to
quickly obtain these subgraphs during training by performing only
one calculation before training.

3.3 Contrastive Loss

The key idea of self-supervised comparative learning is to define a
proxy task to generate positive and negative samples. The encoder
¥ that generates the node representation is trained by contrast
between positive and negative samples.

To handle multiple subgraphs we obtained before, we take the
“core view” (CV) and “full graph” (FG) paradigms as introduced in
CMC [28], as shown in Figure 4.(a). Further, the contrastive lossess
under core view and full graph cases are illustrated in Figure 4.(b).
Specifically, in the core view case, we regard Subgraph 1 as the most
critical node-centered subgraph. It and its corresponding negative
sample constitute positive and negative pairs with Subgraph 2~5,
respectively. As for the full graph case, any two between Subgraph
1~5 constitute positive pairs, and Subgraph 1~5 respectively form
negative pairs with their corresponding negative examples.

After defining the proxy task, we follow the intuitions from DGI
[30] and use a noise-contrastive type objective with a standard
binary cross-entropy (BCE) loss between positive examples and
negative examples. MNCSCL’s objective under core view case is

i Ex.a) [logD(v}, v{)]

Jj=2

Mz

I
—-

(13)

Mw

+i

i=1 j

E [log(l —Z)(u V]))]

1l
[\

where K is the number of selected node-centered subgraphs and D :
RF" x RF" — R s a discriminator which is used for estimating the
MI by assigning higher scores to positive examples than negatives.

When using the full graph case, the objective becomes

N K-1 K _
Lrpg = Z Z Z Ex.a) [109@("{,%“)]
i=1 j=1 k=j+1

. (14)
ZE(X,A) [zog(l - z)(v{,u{))] .

Jj=1

Mz

+

I
-

The Eq. (13) and Eq. (14) are used as the contrastive loss in the
experiments respectively.

4 EXPERIMENTS
4.1 Experimental Settings

Datasets. We use 5 commonly used benchmark datasets in the
previous work [4, 19] for node classification and link prediction
downstream tasks, including 3 transductive citation networks (i.e.,
Cora, Citeseer, and Pubmed), a inductive large social network (i.e.,
Reddit) and a inductive protein-protein interaction dataset that
contains multiple graphs with multiple labels (i.e., PPI).

e Cora, Citeseer, and PubMed are all citation networks, with
Cora and Citeseer focusing on papers in computer science
and information science, and Pubmed containing a large
amount of literature information in medical and life science
fields. They represent citation relationships between papers
through graph data structure, where each node represents
a paper and the edges represent the citation relationships
between papers.

e Reddit is a collection of information from Reddit, the world’s
largest social news aggregation, discussion and community
site. the Reddit dataset provides a large amount of user-
generated content, including posts, comments, polls and
more. In Reddit, posts are represented as nodes, and the
connections between them correspond to user comments.

e PPI is a protein-protein interaction dataset that contains
multiple graphs with multiple labels. PPI contains the in-
teraction relationships between proteins that can form a
network or graph structure. Each node represents a protein,
while edges indicate interactions between proteins.

We use all five datasets in the node classification task and follow the
settings in the division of the training set and the test set as same as
[30]. In the link prediction task, we use Cora, Citeseer, and Pubmed
datasets and follow the setup described in [15]. The statistics of all
the datasets are shown in Table 2.
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Table 3: The classification accuracy (in %) on the transductive datasets and the micro-averaged F1 (x100) on the inductive
datasets of the node classification task. Some results are directly taken from their original papers (DGI, GMI#inductive, GIC
and GRACE#inductive), and other compared results are taken from [10, 20]. The second column is the data used in the training
process (X: features matrix, A: adjacency matrix, Y: labels). The best result for each dataset is indicated by bolded.

Method Input Transductive Inductive

X A Y Cora Citeseer Pubmed Reddit PPI
Raw features Vv 56.6+04 57.8+02 69.1+0.2 585+0.1 425+03
Deep Walk v 67.2 43.2 65.3 324 52.9
GCN v v v 81406 703+07 768+0.6 93.3+0.1 51.5+0.6
FastGCN v v v 780+21 635+18 744+0.8 89.5%1.2 63.7 £ 0.6
DGI v 823+06 71.8+0.7 76.8%+0.6 94.0+0.1 63.8+0.2
GMI v v/ 83.0+£0.2 724+0.2 79904 950%0.02 65.0=0.02
GIC v v 81.7+08 719+£09 77.4%0.5 - -
GRACE v 83.1+0.2 721+£01 79.6%0.5 94.2+0.0 66.2+0.1
MVGRL v v/ 829+£03 726+04 80.1%0.7 - -
MNCSCL-FG Vv Vv 843+05 732+06 80.0+04 952+01 67.3+0.2
MNCSCL-CV v 84.7+0.3 73.8+05 815+04 95.8+0.1 67.1+0.2

Baseline methods. In node classification task, the compared
methods include direct use of row features, 1 traditional unsuper-
vised algorithm (i.e., Deep Walk [24]), two supervised graph neural
networks (i.e., GCN [14] and FastGCN [1]) and 5 state-of-the-art
self-supervised methods(i.e., DGI, GMI, GIC, GRACE [41] and MV-
GRL [6]).

o DGI is one of the classical methods of graph representation
learning based on contrastive learning. It aims to maximize
the MI between the local perspective and the global per-
spective of the input graph, as well as the corresponding
corrupted graph.

e GMI draws on the ideas of DGI, but rather than employing
a corruption function, this approach focuses on maximizing
the MI between the hidden representations of nodes and
their original local structure.

e GIC is also inspired by DGI, its objective is to maximize the
MI between the node’s representation and the representation
of the cluster to which it is assigned.

® GRACE propose a novel framework for unsupervised graph
representation learning by leveraging a contrastive objective
at the node level. In order to enhance the contrast effect, they
created two sets of negative pairs, one within the same view
and the other across different views.

o MVGRL performs self-supervised learning by contrasting
structural views of graphs, where they contrast first-order
neighbors of nodes as well as a graph diffusion, with good
results.

In link prediction, we directly follow the effective link prediction
methods used in GIC (i.e., Deep Walk, Spectral Clustering (SC) [27],
VGAE [15], ARGVA [21], DGI and GIC).

o Spectral Clustering is initially introduced to solve the node
partitioning problem in graph analysis. It has demonstrated
satisfactory performance across diverse domains, such as
graphs, text, images, and microarray data. Its effectiveness
has been widely acknowledged in these areas.

e VGAE is an unsupervised learning framework designed for
graph-structured data, utilizing the variational auto-encoder
(VAE) methodology. In VGAE, a GNN-based encoder is em-
ployed to generate node embeddings, while a straightfor-
ward decoder is used to reconstruct the adjacency matrix.

e ARGVA is a graph embedding framework specifically de-
signed for graph data, incorporating adversarial learning
techniques. Similar to VGAE, ARGVA adopts a similar struc-
ture, but it learns the underlying data distribution through
an adversarial approach.

Evaluation metrics. For the node classification task, we classify
the test set by a logistic regression classifier, and then evaluate the
performance using classification accuracy for transductive datasets
(i.e., Cora, Citeseer and Pubmed) and micro-averaged F1 score for
inductive datasets (i.e., Reddit and PPI). Suppose that TP, FN, FP
and TN represent the number of true positives, false negatives,
false positives, and true negatives, respectively. Then classification
accuracy can be calculated by accuracy = (TP +TN) /(TP + FP +
TN + FN). Also micro-averaged F1 score can be calculated by
F1 — Score = 2 x precision * recall/(precision + recall), where
precision = TP/(TP + FP) and recall = TP/(TP + FN). For the
link prediction task, we use the AUC score (the area under ROC
curve) and the AP score (the area under Precision-Recall curve) for
evaluation. The closer the AUC score and the AP score approaches
1, the better the performance of the algorithm is.

Training strategy. We implement MNCSCL using PyTorch [12]
on 4 NVIDIA GeForce RTX 3090 GPUs and use Adam optimizer [13]
with an initial learning rate of 0.001 (specially, 0.0001 for Reddit)
during training. We follow settings in DGI that using an early
stopping strategy with a patience of 20 epochs for transductive
datasets and a fixed number of epochs (150 on Reddit, 20 on PPI)
for inductive datasets. For large graphs, we adopt the sampling
strategy used by GraphSAGE [4].
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Table 4: The AUC scores (in %) of the link prediction task. The results of the compared methods are replicated from [19]. The

best result for each dataset is indicated by bolded.

i P
Method Cora Citeseer ubmed
AUC AP AUC AP AUC AP

DeepWalk 83.1 £0.01 85.0 £ 0.00 80.5 £ 0.02 83.6 £ 0.01 84.4 £ 0.00 84.1 £ 0.00
Spectral Clustering  84.6 + 0.01 88.5 £ 0.00 80.5 £ 0.01 85.0 £ 0.01 84.2 £ 0.02 87.8 £ 0.01
VGAE 91.4 £ 0.01 92.6 £ 0.01 90.8 £ 0.02 92.0 £ 0.02 96.4 £ 0.00 96.5 £ 0.00
ARGVA 92.4 £ 0.004 93.2+0.003 92.4+0.003 93.0+0.003 96.8+0.001 97.1+0.001
DGI 89.8 £0.8 89.7 £ 1.0 95.5% 1.0 95.7 £ 1.0 91.2+£0.6 92.2+0.5
GIC 935+ 0.6 93.3+0.7 97.0 £ 0.5 96.8 + 0.5 93.7+£0.3 935+ 0.3
MNCSCL-CV 94.8+04 942:0.6 97.7+04 97205  948:02 95404

4.2 Implementation Details

Encoder design. For transductive datasets, we adopt a one-layer
Graph Convolutional Network (GCN) as our encoder, with the
following propagation rule:

F(X,A) = a(f)‘%Aﬁ‘%xwx (15)

where A = A + Iy is the adjacency matrix with self-loops and
D(i,i) = 2 A(i, ) is its corresponding degree matrix. o(+) is the
PReLU nonlinearity [7] and W is a learnable parameter matrix
with F/ = 512 (specially, F/ = 256 on Pubmed). As for inductive
datasets, we adopt a one-layer GCN with skip connections [35] as
our encoder, with the following propagation rule:

PR S | ~
F(X,A) = (D ZAD IXW + AW, (16)

where W, is a learnable parameter matrix with F ’ = 512 for skip
connections.

Corruption function. For transductive datasets,we transform
adjacency matrix A to a diffusion matrix U. Specifically, we compute
diffusion using fast approximation and sparsification methods [2]
with heat kernel [16]:

U =exp (tAD™! — 1), (17)

where D is a diagonal degree matrix as in Section 3.1 and ¢ is
diffusion time [2]. For Reddit dataset, we implement the corruption

function C by keeping the adjacency matrix A unchanged (i.e.
A = A) and perturbing the feature matrix X by row-wise shuffling.

And for PPI dataset, we simply samples a different graph from the
training set due to it’s a multiple-graph dataset.

Readout function. We use identical readout function R for all
datasets, which performs a simple average of all node features for
a given subgraph with N’ nodes:

1 &
R(H):U(VZhi), (18)

i=1
where o(+) is the logistic sigmoid nonlinearity.
Discriminator. We use a simple bilinear scoring function as
discriminator D:

D(hy,hj) = o(h] Wyh)), (19)

where W is a learnable scoring matrix and o(+) is the logistic
sigmoid nonlinearity.

Table 5: The classification accuracy (in %) of different node-
centered subgraphs combinations (Subgraph 1: Basic sub-
graph, Subgraph 2: Neighboring subgraph, Subgraph 3: Inti-
mate subgraph, Subgraph 4: Communal subgraph, Subgraph
5:Full subgraph) on Cora, Citeseer and Pubmed datasets with
same hyperparameter setting. Note that due to the use of the
“core view” paradigm, there must be at least the basic sub-
graph and another subgraph. The best result for each dataset
is indicated by bolded.

Subgraphs Dataset
1 2 3 4 5 Cora Citeseer Pubmed
v 825+0.7 722%0.7 77.5 + 0.1
v v 828+03 725+0.7 786+0.9
v v 82.7+0.6 72.1+0.6 782%*0.4
v v 827+05 71.8+0.6 781106
AVG of 2 Subgraphs  82.7+0.6 722+0.7 782%0.6
v v/ 83105 72.7+0.9 783%0.8
v v v 82909 723+05 780%0.9
v v v 832+04 721+04 77.6%0.8
v v v 82.9+05 720+0.7 786+04
v v v 830%05 729+05 78.7 £ 0.8
v v v 831+£038 72.9 + 0.6 78.5 + 0.6
AVG of 3 Subgraphs  83.0£0.6 725+0.7 783 0.8
v v v Y 835+04 726+0.7 79.2+04
v v/ v 835%04 73.0 + 0.6 78.8 0.9
v v v vV 836+06 724+06 785%0.8
v v v v 833107 731110 786106
AVG of 4 Subgraphs  83.5+0.5 727+08 78.7%0.7

v v v v Vv 847+03 738%0.5 815+04

Details of node-centered subgraphs. We conduct experiments
with all five node-centered subgraphs on two different contrastive
losses (named MNCSCL-FG under full graph case and MNCSCL-CV
under core view case, respectively). More specifically, we choose
d = 1for the neighboring subgraph and Strategy 2 for the communal
subgraph. For hyperparameters, we set the size of intimate subgraph
I as 20 (specially, 10 on citeseer). The number of clusters C and
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Figure 5: Heat map of classification accuracy (in %) on three
transductive datasets when choosing different range of neigh-
bors in the neighboring subgraph (d = 1,d = 2 and d = 3) and
different clustering strategies in the communal subgraph
(S-1, S-2 and S-3, where S-1 denotes Strategy 1, S-2 denotes
Strategy 2 and S-3 denotes Strategy 3). The bolded value in
each sub-plot represents the maximum classification accu-
racy for the current dataset.

inverse-temperature hyperparameter f§ for communal subgraph is
set to 128 and 10 respectively. To build a proper full subgraph, we
also set the self-weighted factor as 0.01.

4.3 Experimental Results and Analysis

Node classification. Experiments show that MNCSCL achieves
the best performance on all five datasets compared to other com-
peting self-supervised methods, as shown in Table 3. We believe
this robust performance is due to our comparison of multiple node-
centered subgraphs, resulting in learning a more comprehensive
node representation. Although MNCSCL-FG and MNCSCL-CV both
have shown excellent performance, MNCSCL-FG performs better
on PPI dataset and MNCSCL-CV performs better on other datasets.
We think this is due to the very sparse available features on the
PPI (over 40% of the nodes have all-zero features). It is more ef-
fective to use more perspectives for comparison on such sparse
graph datasets. For other datasets, the contrastive loss under core
view case is enough for MNCSCL to learn comprehensive infor-
mation about the nodes, too much comparison will instead lead to
overfitting and waste of resources. Compared to supervised meth-
ods, MNCSCL also outperforms the two compared methods on
all datasets. This shows that our method is also very competitive
compared to traditional supervision methods.

Link prediction. To test the generalization capability of MNC-
SCL, we intend to further investigate the performance of MNCSCL
in link prediction task, as shown in Table 4. We find that MNCSCL
outperforms all competing methods on both the Cora and Cite-
seer datasets, suggesting that a multiple node-centered subgraphs
based comparison can help the model learn node representations
with good generalizability. The excellent performance on different
downstream tasks further proves the feasibility of our method.

4.4 Ablation Study

Node-centered subgraph combination. To investigate how the
number of node-centered subgraphs affects the performance of
MNCSCL, we permuted and combined five previously mentioned
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node-centered subgraphs under the core view case and observed
the classification accuracy of different subgraph combinations on
Cora, Citeseer and Pubmed datasets with same hyperparameter
setting, as shown in Table 5. Obviously, as the number of node-
centered subgraphs increases, the classification accuracy continues
to increase, and the best results are achieved when all five subgraphs
are used. This indicates that multiple node-centered subgraphs
contrastive learning can indeed learn better node representation.
We also notice that the classification accuracy improvement is
more obvious with the increase in the number of node-centered
subgraphs.

Range of neighbors and clustering strategy. We investigate
the value of d in the neighboring subgraph and the selection of
different clustering strategies in the communal subgraph, and the
results are shown in Fig 5. Here we use all five node-centered
subgraphs with the contrastive loss under core view case. It can be
seen that the optimal choice in all three datasets is d = 1 neighbors
and Strategy 2. Our analyses are as follows.

e For the neighboring subgraph, the classification accuracy
tends to decrease as the vale of d increases. We believe that
too many neighboring nodes will lead to cause overfitting
of the model and performance degradation. This viewpoint
can also be verified from the pubmed dataset, where it is
not obvious whether the classification accuracy is better or
worse when setting d = 1 and d = 2. Because the attributes
of pubmed are relatively sparse, sometimes its neighboring
subgraph needs to contain more neighbors to get better
results.

e In the choice of clustering strategy, Strategy 11is significantly
less effective than the other two end-to-end strategies. Strat-
egy 2 and Strategy 3 show comparable performance, but
considering that Strategy 3 involves an estimation network,
which means more resource consumption, we finally choose
Strategy 2 as the clustering strategy for the communal sub-
graph.

5 CONCLUSION

We propose Multiple Node-centered Subgraphs Contrastive Repre-
sentation Learning (MNCSCL), a novel approach to self-supervised
graph representation learning. MNCSCL obtains five different node-
centered subgraphs carefully designed by us through a subgraph
generator on each node, and maximizes the mutual information
between them through two types of contrastive loss, thus allowing
us to obtain comprehensive node representation that combines
information from multiple node-centered subgraphs of nodes. Ex-
periments show that MNCSCL reach the advanced level of self-
supervised learning in both transductive and inductive node classi-
fication tasks as well as in link prediction task.
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