
Interchain Timestamping for Mesh Security
Ertem Nusret Tas

Stanford University

nusret@stanford.edu

Runchao Han

BabylonChain

runchao.han@babylonchain.io

David Tse

Stanford University

dntse@stanford.edu

Fisher Yu

BabylonChain

fisher.yu@babylonchain.io

Kamilla Nazirkhanova

Stanford University

nazirk@stanford.edu

ABSTRACT

Fourteen years after the invention of Bitcoin, there has been a pro-

liferation of many permissionless blockchains. Each such chain

provides a public ledger that can be written to and read from by

anyone. In this multi-chain world, a natural question arises: what is

the optimal security an existing blockchain, a consumer chain, can

extract by only reading and writing to 𝑘 other existing blockchains,

the provider chains? We design a protocol, called interchain times-

tamping, and show that it extracts the maximum economic security

from the provider chains, as quantified by the slashable safety

resilience. We observe that interchain timestamps are already pro-

vided by light-client based bridges, so interchain timestamping can

be readily implemented for Cosmos chains connected by the Inter-

Blockchain Communication (IBC) protocol. We compare interchain

timestamping with cross-staking, the original solution to mesh se-

curity, as well as with Trustboost, another recent security sharing

protocol.

1 INTRODUCTION

1.1 Motivation

Bitcoin, invented by Nakamoto in 2008 [37], is the first permis-

sionless blockchain. It provides a public ledger, which anybody

can read from and write arbitrary data. Since then, there has been

a proliferation of such permissionless blockchains. They include

general-purpose blockchains such as Ethereum, Cardano, Solana,

Avalanche etc., each of which supports many decentralized applica-

tions, as well as application-specific blockchains such as the Cosmos

zones, each of which supports a specific application. Together, these

blockchains form a multi-chain world, communicating with each

other through bridging protocols, which read transactions from one

ledger and write transactions onto another. These protocols provide

important functionalities such as token swaps, thus allowing the

composability of applications across different blockchains to build

more powerful ones. Indeed, the Inter-Blockchain Communication

(IBC) protocol, which connects different Cosmos zones is a central

reason for the recent flourishing of that ecosystem.

A fundamental property of a blockchain is its security. Currently,
the security of a blockchain requires a majority or supermajority

of its own validators to follow the protocol. So the security of a

blockchain is as good as its own validator set. In amulti-chain world,

a natural question is whether a blockchain can borrow security

from other blockchains through existing bridging protocols? In

other words, can bridges be used to transfer security in addition to

transfer assets, thus allowing the composability of security? Let us
call such protocols interchain consensus protocols.

k

Provider
chains

... ...

Consumer
chain

Figure 1: A consumer chain timestamping to 𝑘 provider

chains in sequence.

A concrete motivation for this question is the recent emergence

of the mesh security concept for the Cosmos ecosystem [14, 15].

This ecosystem currently consists of 54 sovereign zones, each being

a Tendermint-driven [26] Proof-of-Stake (PoS) blockchain. Since

each such zone focuses on a specific application, individually, they

tend to be smaller compared to general-purpose blockchains and

hence have lower security. Thus, the ability to share security with

neighboring zones is critically beneficial to both individual zones,

as well as to the ecosystem as a whole since lack of security in one

chain can spread to other chains.

1.2 Interchain Timestamping

In this paper, we propose a simple candidate for PoS interchain

consensus protocols, which we call the interchain timestamping
protocol. The idea of timestamping or checkpointing to extract

security from a chain has a long history and is used for example

in finality gadgets [39, 43], rollups and bridges. This idea has also

been used recently in reducing latency of longest chain protocols

[32] and building PoS protocols enhanced by Bitcoin security [1,

24, 33, 42, 45], where signed headers of PoS blocks are submitted

as Bitcoin transactions to be timestamped on the Bitcoin chain. We

apply this idea to the problem of one PoS consumer blockchain
extracting security from 𝑘 PoS provider blockchains by having the

block headers of the consumer chain timestamped on one of the

provider chains, and the blocks of that provider chain timestamped

on the next provider chain and so forth (Figure 1).

How do we implement interchain timestamping using bridges?

There are primarily two types of bridges, which connect a sender

chain and a receiver chain: 1) multi-signature bridges, where bridge

transfers are signed by a committee external to the validators of the

1

ar
X

iv
:2

30
5.

07
83

0v
1

 [
cs

.C
R

]
 1

3
M

ay
 2

02
3

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

Figure 2: A new Cosmos zone "Rugpull" has an IBC chan-

nel with Osmosis, a Cosmos zone running a decentralized

exchange. The headers of Rugpull are timestamped onto Os-

mosis through IBC. The timestamps help secureRugpull, be-

cause if there is a safety attack to fork theRugpull chain, the

timestamps on Osmosis will determine the correct Rugpull

fork. Securing Rugpull is also beneficial to Osmosis, since

they are trading partners.

blockchains; 2) light-client based bridges, where the validators of

the sender chain sign block headers for transfers and the receiver

chain maintains an on-chain light client of the sender chain to

verify the transfers. IBC developed for Cosmos zones is a primary

example of the latter. Perhaps a happy coincidence, but maintaining

an on-chain light client of the sender chain in the receiver chain is

nothing but putting the signed headers of the sender chain in the

ledger of the receiver chain. Hence, light-client based bridges auto-
matically provide the timestamping functionality and no additional

communication messages are needed. Figure 1 gives an example of

interchain timestamping in action.

1.3 Security Guarantees

We provide a security analysis in the slashable safety framework

[26, 27, 40, 44], where security of a consensus protocol is measured

by two metrics: 1) how many validators can be held accountable

and slashed when there is safety violation, the slashable safety

resilience; 2) how many validators are needed to cause a liveness

violation, the liveness resilience. In PoS protocols, validators stake

funds in the protocol, and can be financially punished by burning,

i.e., slashing their stake if they are found accountable for a safety

violation. The liveness resilience is a classical metric in consensus

protocol theory, but the slashable safety resilience is a stronger

concept than the classical safety resilience, since no assumption is

made on how many validators are adversarial in the definition of

slashable safety resilience. Since it directly translates to the cost of

an attack, we will also call slashable safety resilience the economic
security of the protocol. We will call the liveness resilience the cen-
sorship resistance of the protocol. Since censorship cannot always be
provably attributed and slashed (cf. [45, Appendix F]), this quantity
does not directly translate into an economic security argument. In

a classical partially synchronous protocol like Tendermint, both

the economic security and the censorship resistance are 1/3 of the

total number of validators, translating into 1/3 of the market cap

of the blockchain as the funds staked in a PoS protocol typically

constitute a large fraction of the market cap.

We obtain the following security results about the interchain

timestamping protocol (timestamping protocol for short) in the

slashable safety framework:

(1) Interchain timestamping ensures the safety of the timestamped

consumer chain as long as at least one of the consumer or

provider chains is safe. Therefore, through interchain times-

tamping, the consumer chain can obtain additional economic

security equal to the sum of the economic securities of the 𝑘

provider chains (Theorem 5.1).

(2) This economic security attained by interchain timestamping is

the maximum among all possible interchain consensus proto-

cols, which only read and write to the individual blockchains

(Theorem 7.10).

(3) Interchain timestamping guarantees the liveness of the times-

tamped consumer chain if the consumer chain and all provider

chains are live. Therefore, through interchain timestamping,

the censorship resistance of the consumer chain becomes the

minimumof the censorship resistances of the constituent chains.

(4) Among all interchain protocols that only send succinct com-

mitments from the consumer chain to the provider chain, in-

terchain timestamping achieves optimal censorship resistance

if the censorship resistance of the stand-alone consumer chain

is less than the censorship resistance of every provider chain

(Theorem 7.11).

Taken all together, these results say that under the reasonable

assumption that the consumer chain has lower stand-alone security

than each of the provider chains, the timestamping protocol is si-
multaneously optimal in both its slashable safety and in its liveness

resilience guarantees, among all interchain consensus protocols

which leave data on the consumer chain and only send commit-

ments to the provider chains.

Although the protocol poses a trade-off between economic se-

curity and liveness resilience/latency in the general case, it gives

clients of the consumer chain the flexibility to select any provider

chain without changing the behavior of the validators on these

chains. Hence, each client can determine (and later modify) its

desired security-latency trade-off without coordinating with any

other party, and any modification for the nodes who do not opt for

enhanced economic security (Section 5.1).

1.4 Design Challenges

Safety of the timestamping protocol depends only on the safety

resiliences of the constituent chains, whereas its liveness depends

only on their liveness resiliences. Although timestamping has been

used extensively by multichain protocols (e.g. Snap-and-Chat [39],
Babylon [45]) for different goals, separation of safety and liveness

conditions introduces unique challenges for the timestamping pro-

tocol, which limits the ability of existing protocols to address its se-

curity requirements. For instance, a Snap-and-Chat implementation

using light-client bridges would be susceptible to data availability

attacks and need liveness of the constituent chains for safety. In

contrast, the Babylon protocol would stall and lose liveness after a

safety violation in the consumer chain even if all chains are live. To

overcome these limitations, our protocol combines iterative times-

tamping on multiple providers with special stalling and sanitization
2

Interchain Timestamping for Mesh Security

rules. Section 2 analyzes how attacks against existing solutions

inspired the design of the timestamping protocol.

1.5 Interchain Timestamping for Mesh

Security

Interchain timestamping is a natural solution for mesh security,

since the zones with IBC channels are already timestamping to each

other. We empirically evaluate the economic security gain in each

Cosmos zone from interchain timestamping. The results are shown

in the top of Figure 3. The evaluation setup is described in Section

6. Empirical analysis shows that each Cosmos zone can derive eco-

nomic security from any other zone at the cost of merely 6s latency
and $52, 560 per year. We compare the results with that achieved

by cross-staking, a technique proposed in [14] to achieve mesh secu-

rity. Cross-staking allows validators to stake their tokens not only

on their native chain but also simultaneously on any other chain

with which there is an IBC channel. This means that validators

are simultaneously downloading, validating and executing transac-

tions on multiple zones as full nodes, a significantly heavier form

of security sharing than timestamping, where validators in each

chain accept succinct commitments of blocks from other chains

into their ledger but as light clients do not download, validate or

execute the data within these blocks on the other chains. Similarly,

the timestamping protocol allows clients of the consumer chain to

run light clients of the provider chains with the same guarantees.

As such, timestamping is an example of an interchain consensus
protocol: these protocols do not require any more interaction (e.g.,
running other consensus engines) among distinct validator sets

than reading and writing to the ledgers of the other blockchains.

1.6 Outline

Section 2 compares the interchain timestamping prootocol with the

related work, highlighting the technical challenges and novelty of

our protocol with respect to older protocols that use timestamping.

Section 3 presents definitions and the core assumptions. Sections 4

and 5 provide a detailed description of the timestamping protocol

and its security guarantees. Section 6 gives an empirical evaluation

of the security, latency and overhead of timestamping protocols for

Cosmos zones. In Section 7, we delineate the limits of the security

properties achievable by interchain consensus protocols, character-

ize the settings where the timestamping protocol is optimal, and

provide an achievability result for all optimal interchain consensus

protocols. Finally, in Section 8, we characterize the limits of the se-

curity guarantees achievable by all possible cross-staking solutions

and provide an achievability result for all optimal cross-staking

protocols.

2 RELATEDWORK

2.1 Snap-and-Chat Protocols

Snap-and-chat protocols post snapshots of the ledger output by

a permissioned longest chain (LC) protocol (e.g., Sleepy consen-

sus [41]), to a partially-synchronous BFT protocol (e.g., HotStuff [47])

to satisfy the ebb-and-flow property, i.e. to produce an available

ledger, secure under dynamic participation, and a prefix ledger,

secure under network partitions. These snapshots consist of all

transactions within the LC, thus making the protocol unpractical

in terms of communication complexity. Replacing them with suc-

cinct timestamps opens snap-and-chat protocols to data availability
attacks, where the timestamp of a confirmed LC (i.e., consumer)

block appears in the (provider) chain output by the partially syn-

chronous protocol, yet the block itself remains hidden from the

clients. For instance, an adversarial majority among the LC valida-

tors can confirm a block 𝐵 and post its timestamp to the provider

chain without revealing 𝐵 itself (this would not be possible if the

entire LC data is posted as a snapshot). Then, clients would have to

skip the unavailable timestamp and create their ledgers using the

available LC blocks. However, the adversarial validators can later

reveal 𝐵 to a late-coming client, which would include 𝐵 in its ledger.

As this is a safety violation despite the safety of the provider chain,

snap-and-chat protocols fall short of the timestamping protocols,

which satisfy safety when at least one chain is safe.

To avoid such safety violations, the timestamping protocol re-

quires its clients to stall upon observing unavailable timestamps,

thus trading-off liveness for safety. Although the stalling rule intro-

duces a new liveness attack vector, it does not reduce the liveness

resilience of the timestamping protocol.

2.2 Babylon

Babylon [45] uses Bitcoin to protect PoS blockchains against long-

range attacks and provide them with slashable safety. Towards this
goal, it posts signed headers of PoS blocks as timestamps to the

Bitcoin chain. Unlike Babylon, our work assumes that long range

attacks are resolved, either via [45] or other means, and improves

the economic security of PoS blockchains by timestamping their

signed headers to multiple other PoS chains.

Although Babylon uses succinct timestamps and is equipped

with the stalling rule, it cannot achieve the security objectives

of the timestamping protocol even when Bitcoin is replaced with

a PoS chain. The timestamping protocol satisfies liveness when

all constituent PoS chains are live, without any requirement on

their safety. In contrast, the chain of timestamped consumer blocks

output by Babylon loses its liveness when there is a safety violation

on the consumer chain. This is because the fork-choice rule of

Babylon requires the timestamped consumer blocks to be consistent

with the blocks of earlier timestamps. However, this cannot be

satisfied when there is a safety violation on the consumer chain.

In the case of such safety violations, the timestamping protocol

preserves liveness with a sanitization step that resolves and merges

consumer chain forks at different timestamps. It thus ensures live-

ness when both the provider and consumer chains are live, without

requiring their safety.

2.3 Trustboost

Trustboost [46] is a class of consensus protocols, which treats mul-

tiple blockchains as ‘validators’ of an external consensus protocol

run on top of these blockchains (cf. [2] for earlier discussions on
such protocols). The validator functionality is provided by a custom

smart contract, and the emulated validators exchange messages

over a cross-chain communication protocol (CCC). Authors imple-

ment Trustboost by using smart contracts on the Cosmos zones and

IBC as the CCC protocol. Since the interaction among the validators

3

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

Figure 3: Economic security of interchain timestamping over Cosmos zones, with a comparison to cross-staking [19]. Each

vertex represents a Cosmos zone and each edge represents an IBC channel. Vertex color is the maximum economic security

in logscale: for example, a zone with color code 8 achieves the economic security of 108 USD. The edge thickness indicates

the frequency of IBC transfers (thus light client updates), also in logscale. In interchain timestamping, parameter 𝑘 indicates

the number of provider zones each consumer zone gets security from. The edge transparency indicates whether the edge is

used for providing security for a zone. In cross-staking, parameter 𝑝 in cross-staking indicates the power cap: the maximum

percentage of the total stake on a consumer chain that can be cross-staked from a provider chain.

is restricted to the IBC messages, which convey information from

other zones’ ledgers, Trustboost also represents an instance of the

interchain consensus protocols.

Let us compare Trustboost and the timestamping protocol in

terms of security properties. Trustboost running a partially syn-

chronous consensus protocol (e.g., HotStuff [47], Tendermint [26],

Streamlet [30]) on top of the constituent blockchains satisfies se-

curity (safety and liveness) if over two-thirds of the constituent

blockchains are secure [46]. For instance, Trustboost instantiated

with two blockchains requires the security of both chains for the

security of the Trustboost ledger (this is not a very interesting

statement since a trivial protocol achieving the same guarantee

is to simply use one of the constituent blockchains). In contrast,

the timestamping protocol requires the safety of only one of the

constituent blockchains for the safety of the timestamped ledger.

However, unlike the timestamping protocol, Trustboost instanti-

ated with 𝑘 > 3 blockchains does not require the liveness of all

𝑘 blockchains for liveness. As such, it is not comparable to the

timestamping protocol in terms of optimality. However, we believe

that there is a potential path to unify the security guarantees of

Trustboost and timestamping protocol in a single framework (cf.
Section 7.6).

From an implementation point of view, Trustboost requires the

deployment of custom smart contracts on the constituent blockchains

and the exchange of specific messages beyond the timestamps pro-

vided by the existing IBC communication among Cosmos zones.

In contrast, given sufficient connectivity among the zones, times-

tamping does not require any changes or enhancements in the

participating zones besides updating the clients of the zones to

interpret timestamps. Hence, the timestamping protocol maximizes

the economic security achievable by any interchain protocol with-

out any need to change or upgrade the underlying protocols.

3 PRELIMINARIES

Notation. Let [𝑘] denote the set {0, 1, 2, . . . , 𝑘}, and 𝜆 denote the

security parameter. An event happens with negligible probability, if
its probability is 𝑜 (1

𝜆𝑑
) for all 𝑑 > 0. An event happens with over-

whelming probability (w.o.p.) if it happens except with negligible

probability. We use ‘iff’ as a short-hand for ‘if and only if’.

Validators and clients.We consider two sets of protocol partic-

ipants: validators and clients. Validators receive transactions from

the environmentZ, execute a state machine replication (SMR) pro-

tocol and send consensus-related messages to the clients. Upon

collecting messages from a sufficiently large quorum of validators,

each client outputs a sequence of transactions called the ledger.
In this case, the ledger is said to be finalized in the client’s view.

The validators’ goal is to ensure that the clients output the same

4

Interchain Timestamping for Mesh Security

ledgers and obtain the same end states. The set of clients includes

honest validators, as well as external observers that can go offline

arbitrarily and output ledgers at arbitrary times. The protocol is

permissioned and there is a public-key infrastructure (PKI): Valida-

tors have unique cryptographic identities, and their public keys are

common knowledge. In the following sections, we only consider

static validator sets, i.e., it is specified by the PKI and does not

change throughout the execution.

Blocks and chains. In blockchain protocols, transactions are
batched into blocks, and the SMR protocol orders these blocks.

They are denoted by 𝐵, and consist of a header and transaction

data. The header contains (i) a pointer to a parent block (e.g. hash
of the parent block by a collision-resistant hash function), (ii) a

binding and succinct vector commitment to the transaction data

(e.g., a Merkle root), and (iii) consensus-related messages. There is

a genesis block 𝐵0, that is common knowledge.

A block 𝐵 is a descendant of 𝐵′ (respectively, block 𝐵′ is an
ancestor of 𝐵), denoted by the prefix notation 𝐵′ ⪯ 𝐵, if 𝐵′ is the
same as, or can be reached from 𝐵 by following the parent pointers.

A block is valid iff it is a descendant of 𝐵0, and all its ancestors

have correct commitments to the respective transaction data in

their headers. Thus, each valid block 𝐵 uniquely determines a chain,
denoted byC, starting at 𝐵0 and ending at 𝐵. Blocks 𝐵 and 𝐵′ conflict
if 𝐵′ ⪯̸ 𝐵 and 𝐵 ⪯̸ 𝐵′. In blockchain protocols, each client outputs

a chain of blocks, from which a ledger can be extracted using the

transaction data.

Adversary. The adversary A is a PPT algorithm that corrupts

a subset of the validators, hereafter called adversarial, before the
protocol execution commences. Adversary takes control of these

validators’ internal states and can make them deviate from the

protocol arbitrarily (Byzantine faults). The remaining honest valida-
tors faithfully follow the protocol rules. We denote the number of

adversarial validators by 𝑓 and the total number of validators by 𝑛.

Networking. Time proceeds in discrete rounds and the clocks

are synchronized
1
. Validators can send messages to each other and

the clients through point-to-point channels, which are authenti-

cated and reliable if there are honest validators or clients at the

endpoints [34]. A validator is said to broadcast a message if it is

sent to all other validators and clients. The adversary controls the

schedule of message delivery and observes messages before the

intended recipients. Upon becoming online, a client observes all

messages delivered to it while it was asleep.

We consider two network models: In the synchronous network,
the adversary has to deliver a message sent by an honest validator

to all intended recipients within Δ rounds, where Δ is a known

parameter. Upon becoming online at round 𝑡 , a client receives all

messages sent to it by the honest validators before round 𝑡 − Δ. In
the partially synchronous network [31], the adversary can delay

messages arbitrarily until a global stabilization time (GST) chosen
by the adversary. After GST, the network becomes synchronous,
and the adversary has to deliver the messages sent by any honest

validators to all intended recipients within the known Δ delay. Here,

GST is unknown to the honest validators and clients, and it can

be a causal function of the protocol randomness. In the following

1
Bounded clock offset can be captured as part of the network delay.

sections, we assume that the network is partially synchronous

unless stated otherwise.

Security. Let Cc
𝑟 denote the chain output by a client c at round

𝑟 . We say that the protocol is secure with latency 𝑇fin = poly(𝜆) if:

• Safety: For any rounds 𝑟, 𝑟 ′ and clients c, c′, either Cc
𝑟 ⪯ Cc′

𝑟 ′ or

vice versa. For any client c, Cc
𝑟 ⪯ Cc

𝑟 ′ for all slots 𝑟 and 𝑟
′ ≥ 𝑟 .

• Tfin-Liveness: IfZ inputs a transaction tx to an honest val-

idator at some round 𝑟 , then, tx ∈ Cc
𝑟 ′ for all 𝑟

′ ≥ 𝑟 +𝑇fin and

any client c.

A protocol provides 𝑓s-safety if it satisfies safety iff 𝑓 ≤ 𝑓s, and

𝑓l-𝑇fin-liveness if it satisfies 𝑇fin-liveness iff 𝑓 ≤ 𝑓l.

Slashable safety. Each honest validator collects the exchanged

consensus messages in an execution transcript. If clients observe

a safety violation, they send the conflicting chains as evidence

to the validators, upon which the honest validators answer with

their transcripts. The clients then invoke a forensic protocol with

these transcripts and generate a proof identifying 𝑓𝑎 adversarial

validators as protocol violators [44]. This proof is subsequently

broadcast to all other clients, and serves as evidence of protocol

violation.

Definition 3.1. A blockchain protocol provides slashable safety

with resilience 𝑓𝑎 if when there is a safety violation, (i) at least

𝑓𝑎 adversarial validators are identified by the forensic protocol as

protocol violators, and (ii) no honest validator is identified (w.o.p.).

Such a protocol is said to provide 𝑓𝑎-slashable-safety.

As a stronger notion, 𝑓𝑎-slashable-safety implies 𝑓𝑎-safety. When

safety is violated, 𝑓𝑎 adversarial validators are irrefutably identified;

which cannot happen if fewer than 𝑓𝑎 validators are adversarial.

We hereafter assume a homogeneous stake distribution; since

validators with more stake can be modeled as multiple unit-stake

validators controlled by the same entity. Thus, identification of a

fraction 𝛽 > 0 of adversarial validators imply the slashing of 𝛽

fraction of stake. Moreover, as the total amount staked on a PoS

blockchain is typically proportional to its market cap, slashable

safety of a blockchain can thus be economically quantified as a

fraction (e.g., 𝛽) of its market cap, allowing comparison of this

economic security across different PoS chains.

Data Availability. A valid block 𝐵 is available in a client’s view

at round 𝑟 if the contents of 𝐵 and all its ancestors have been ob-

served by the client by round 𝑟 . Upon outputting an ordering of

the block headers, the clients can determine a total order across

the transactions of available and valid blocks as the vector commit-

ments in the headers are binding. A validator executing a blockchain

protocol is said to check for data availability if it verifies the avail-

ability of the valid blocks before considering them valid. In sub-

sequent sections, all clients are full nodes unless stated otherwise:

They download all of the block headers and transaction data of the

blockchain protocols.

4 INTERCHAIN TIMESTAMPING PROTOCOL

We next describe the details of the timestamping protocol, and how

it can be instantiated in the Cosmos ecosystem without changing

the existing protocols.

5

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

Algorithm 1 The function used by a bootstrapping client c to output the

checkpointed ledger Lc
𝑟 at some round 𝑟 . It takes the blocktrees T𝐶 and T𝑃

of finalized consumer and provider blocks as input, and outputs Lc
𝑟 . The

function GetCkpts outputs the sequence of checkpoints on the unique

provider chain extending the genesis provider block 𝐵𝑃
0 . The function

IsValid checks if the given checkpoint contains pre-commit signatures by

𝑞𝐶 of the consumer validators on its block hash. The function GetChain

returns the chain of finalized consumer blocks within T𝐶 that ends at the

preimage of the hash within the checkpoint. It returns ⊥ if the block or

its prefix chain is unavailable or not finalized. The function Clean(L,C)
returns the sanitized sequence of blocks (cf. Figure 4).

1: function OutputChain(T𝐶 , T𝑃)
2: ckpt1, . . . , ckpt𝑚 ← GetCkpts(T𝑃)
3: L ← 𝐵𝐶0
4: for 𝑗 = 1 to𝑚 do ⊲ Obtain the checkpointed ledger

5: if IsValid(ckpt𝑗) then ⊲ Check validity.

6: C𝑗 ← GetChain(T𝐶 , ckpt𝑗)
7: if C𝑗 = ⊥ then

8: return L ⊲ Data Unavailable

9: else

10: L ← Clean(L,C𝑗) ⊲ Update chkpt. ledger

11: end if

12: end if

13: end for

14: return L
15: end function

Algorithm 2 The timestamping protocol Π𝐼 with 𝑘 + 1 blockchains. A

client 𝑐 runs this protocol to determine the Π𝐼 chain.

1: function Π𝐼 (T0, . . . , T𝑘)
2: for 𝑖 = 0 to 𝑘 − 1 do

3: T𝑃 , T𝐶 ← T𝑘−𝑖 , T𝑘−𝑖−1
4: if 𝑖 < 𝑘 − 1 then

5: T𝑘−𝑖−1 ← OutputHeaderChain(T𝐶 , T𝑃)
6: else

7: T𝑘−𝑖−1 ← OutputChain(T𝐶 , T𝑃)
8: end if

9: end for

10: return T0
11: end function

4.1 Timestamping on One Provider

Wefirst describe the timestamping protocolΠ𝐼 with two constituent

blockchains Π𝐶 and Π𝑃 . We call Π𝑃 receiving the timestamps the

provider blockchain (running the provider protocol) and Π𝐶 at the

origin of these timestamps the consumer blockchain (running the

consumer protocol). This notation highlights the flow of security
enabled by the timestamping protocol. We denote their blocks

by 𝐵𝐶 and 𝐵𝑃 , and call them the consumer and provider blocks

respectively. At a high level, validators of Π𝐶 receive transactions

from the environment and output the Π𝐶 ledger. Validators of Π𝑃

receive timestamps of the Π𝐶 ledger as their input transactions,

and order these snapshots within the Π𝑃 ledger. At any round 𝑟 ,

each online client c inspects the timestamps of the Π𝐶 ledger in

the Π𝑃 ledger. They extract the ledgers, whose timestamps were

finalized by the Π𝐶 validators, and output these ledgers in the order

they appear in the Π𝑃 ledger. Finally, they eliminate the duplicate

Provider
chain

Consumer
chain

Checkpoint

Canonical chain

Figure 4: Interchain timestamping protocol. A client ob-

serving the consumer chain blocks 𝐵1 thru 𝐵4 outputs

𝐵1, 𝐵2, 𝐵3, 𝐵4 as the timestamped ledger (Π𝐼 chain). Af-

ter observing block 𝐵′4, it updates the ledger by calling

Clean(𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵1, 𝐵2, 𝐵3, 𝐵′4), which after eliminating

the duplicate blocks returns the sequence 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵
′
4.

Upon observing the timestamp of 𝐵5, the client out-

puts Clean(𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵′4 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5), which returns

𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵
′
4, 𝐵5 as the timestamped ledger. Note that 𝐵′4

does not have a pointer to 𝐵4 in the ledger, thus in this ex-

ample, it is not a chain.

transactions appearing in multiple ledgers (Figure 4) and output a

timestamped ledger of consumer blocks as the Π𝐼 ledger.

For constituent blockchains, we focus on quorum-based BFT

protocols such as PBFT [29], Tendermint [26], HotStuff [47] and

Streamlet [30] with slashable safety, and assume Π𝐶 and Π𝑃 are

run by 𝑛𝐶 and 𝑛𝑃 validators with quorums of size 𝑞𝐶 and 𝑞𝑃 respec-

tively. These protocols enable clients to verify the finality of blocks

by checking their quorum of signatures and allow validators to

generate transferrable and succinct proofs of finality consisting of

these signatures (cf. certificate producing protocols [35]). Therefore,
finalized consumer (resp. provider) blocks hereafter refer to valid

blocks, whose ancestors (including itself) have gathered a quorum

of 𝑞𝐶 (resp. 𝑞𝑃) signatures from among the 𝑛𝐶 (resp. 𝑛𝑃) validators

of Π𝐶 (resp. Π𝑃)
2
.

Timestamps. The timestamps are succinct representations of fi-

nalized blocks that convey their finality. They consist of the hash

of the block (or blocks), its height, and a quorum of 𝑞𝐶 signatures

on the hash. When a new consumer block is finalized, an honest

consumer validator (or a designated client) sends a timestamp to

the provider blockchain as a transaction
3
.

Clients.We assume that each client c is a full node of the consumer

chain and downloads the consumer blocks. In contrast, from the

provider chain, c has to obtain only the timestamps of the consumer

chain. Thus, it is sufficient for it to download the header chain of

provider blocks and run a light client of the provider chain akin to

simple payment verification [37]. Indeed, c can succinctly verify

the finality of the provider blocks, and receive all consumer chain

timestamps within the finalized blocks from an honest full node

(e.g. validator) of the provider chain. By using namespaced Merkle

2
Exact name of the signatures depends on the protocol, it is called pre-commit in

Tendermint [26] and commit in HotStuff [47]).

3
Not every consumer block has to be timestamped and periodic timestamping is

sufficient, albeit making latency larger for the Π𝐼 ledger

6

Interchain Timestamping for Mesh Security

trees [23] to organize the provider chain data, these validators can

convince c that it has received all consumer timestamps within a

finalized provider block.

Sanitization. The sanitization function Clean(L,C) takes a se-

quence of blocks L (not necessarily a chain with consistent parent

pointers) and a chain C (cf. [39]). It inspects their concatenation
L ∥ C, and eliminates the duplicate blocks that appear later (Fig-

ure 4). It outputs the remaining sequence of blocks.

Fork-choice rule (Alg. 1). To identify the Π𝐼 ledger at some round

𝑟 , each client c first downloads all finalized consumer blocks and

constructs a blocktree denoted by T𝐶 with quorums of signatures

on the blocks. It also identifies the sequence ckpt𝑖 , 𝑖 ∈ [𝑚], of
consumer chain timestamps within the chain of finalized provider

blocks, listed from the genesis to the tip of the provider header

chain (if c observes a fork in the provider header chain, it outputs

timestamps only from the portion preceding the fork).

Starting at the genesis consumer block, c constructs a times-
tamped ledger of finalized consumer blocks, denoted by Lc

𝑟 , by

sequentially going through the timestamps. This ledger is a se-

quence of blocks and imposes a total order across the consumer

chain blocks and the transactions therein. This total order is the

same in the view of every client, and the clients can agree on a

clean ledger by eliminating double-spends etc. in the same order.

However, the timestamped ledger need not be a chain, since a block

in the ledger does not necessarily have a parent pointer to the

previous block
4
.

For 𝑖 = 1, . . . ,𝑚, let C𝑖 denote the chain of consumer blocks

ending at the block, denoted by 𝐵𝐶
𝑖
, at the preimage of the hash

within ckpt𝑖 , if 𝐵
𝐶
𝑖
and its prefix chain is available in c’s view at

round 𝑟 . Suppose c has gone through the sequence of timestamps

until ckpt𝑗 for some 𝑗 ∈ [𝑚], and obtained L as the latest times-

tamped ledger based on the blocktree T𝐶 and ckpt1 . . . , ckpt𝑗 . The
timestamp ckpt𝑗+1 is said to be valid if it contains 𝑞𝐶 pre-commit

signatures by the consumer validators on its block hash. Then,

(1) If (i) ckpt𝑗+1 is valid, and (ii) every block in C𝑗+1 is available

and finalized in c’s view, then c sets L ←− Clean(L,C𝑗+1).
(2) If (i) ckpt𝑗+1 is valid, and (ii) a block inC𝑗+1 is either unavailable
or not finalized in c’s view, then c stops going through the sequence
ckpt𝑗 , 𝑗 ∈ [𝑚], and outputs L as its final timestamped ledger. This

premature stalling of the fork-choice rule is necessary to prevent

data availability attacks.

After going through all timestamps or stalling early, c outputs
the timestamped ledger Lc

𝑟 as the Π𝐼 ledger.

4.2 Timestamping on Multiple Providers

We generalize the construction above by describing a timestamping

protocol Π𝐼 (Alg. 2) with 𝑘 + 1 constituent blockchains Π𝑖 , 𝑖 ∈ [𝑘],
each with 𝑛𝑖 validators and a quorum of 𝑞𝑖 respectively. Validators

of Π0 receive transactions from the environment and output the

Π0 chain. For each 𝑖 = 1, . . . , 𝑘 , validators of Π𝑖 receive timestamps

of the finalized Π𝑖−1 chain as their input transactions, and order

them within their output chains. The finalized Π𝑘 chain is not
timestamped on any other chain.

At any round 𝑟 , each online client c inspects the timestamps

of the finalized Π𝑖−1 chain in the Π𝑖 chain for 𝑖 = 1, . . . , 𝑘 (c is a

4
If the consumer chain is safe, the timestamped ledger is a chain of consumer blocks.

Figure 5: The IBC light client protocol does automatic times-

tamping.

light client of all blockchains except Π0). It first determines the

timestamped ledger of Π𝑘−1 block headers by using the protocol in

Section 4.1 with Π𝑘 acting as the provider blockchain and Π𝑘−1 as

the consumer blockchain. Note that while running the protocol, c
acts as a light client towards Π𝑘−1 and obtains only the headers of

the Π𝑘−1 blocks constituting the timestamped Π𝑘−1 ledger. Then,

for each 𝑖 = 𝑘 − 1, . . . , 1, by treating the timestamped ledger of Π𝑖

headers as the finalized provider header chain and the finalized

Π𝑖−1 as the consumer blockchain, c iteratively repeats the protocol

in Section 4.1 to output the timestamped ledger of Π𝑖−1 headers.

In the final step, c acts as a full node towards Π0 and outputs the

full timestamped ledger of Π0 blocks as the Π𝐼 ledger. In this ar-

chitecture, all blockchains Π𝑖 , 𝑖 = 1, . . . , 𝑘 act as providers, directly

or indirectly, towards Π0, which in turn acts as a consumer of all

others.

4.3 Interchain Timestamping via IBC

A promising real-world tool for realizing the interchain timestamp-

ing protocol is IBC (inter-blockchain communication). It is the

bonding agent of the Cosmos ecosystem, and has attracted atten-

tion from other PoS ecosystems. It allows Cosmos zones, sovereign

blockchains running specific applications, to send IBC packets (e.g.,
cross-chain transfers) to each other via an IBC channel. A receiver

zone verifies IBC packets from the sender zone by maintaining

a light client of the sender zone. The ordered IBC packets in the

ledger are then executed at the application layer defined using

Cosmos SDK [6]. The light client protocol of IBC has already im-

plemented our desired timestamping mechanism. Thus, utilizing

it to extract security will not require any breaking changes to the

existing systems.

Figure 5 depicts the light client protocol. It consists of two main

components:

(1) An IBC relayer, which is an independent program connecting

two validators from two zones. It relays headers and transactions

of the sender zone to the receiver zone by sending them as the

receiver zone’s transactions, so that the receiver zone’s Tendermint

engine can add them to the ledger.

7

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

(2) An IBC light client, which is a Cosmos application layer module

sitting inside each full node. It is responsible for maintaining the

headers and verifying the transactions of the counter-party zone

supplied by its Tendermint consensus engine.

Via the IBC light client, the receiver zone effectively already

timestamps the sender zone’s headers. Since IBC is two-way, the

two zones mutually timestamp each other and are ready to extract

security from each other. Implementing this security extraction

only requires adding new APIs to the existing systems and running

a standalone monitoring program. This monitor comprises a client

(full node) of both the consumer and provider zones, and also a

polling mechanism that:

(1) periodically obtains the latest finalized consumer headers times-

tamped by the provider zone from its own provider zone client;

(2) runs the sanitization function using these timestamped con-

sumer zone headers with the consumer zone ledger obtained by its

own consumer zone client. If they are conflicting, alerts with a proof

of equivocation to slash the malicious consumer zone validators.

Thus, unless the provider zone is also compromised, the mon-

itor always alerts if its consumer zone client is in a fork that is

not timestamped by the provider zone. The consumer zone thus

successfully extracts the security of the provider zone.

Monitor can also be improved to only run light clients instead

of full nodes. This requires an extra step in the polling, which is

to verify the successful execution of the timestamped transactions

in the provider zone
5
. This is a standard verification already sup-

ported by the Tendermint light client. Akin to timestamping on

multiple providers, one can extend the monitoring to any sequence

of interconnected zones to extract their total economic security.

5 INTERCHAIN TIMESTAMPING SECURITY

In this section, we state the security theorem for the interchain

timestamping protocol.

Theorem 5.1 (Security of the Timestamping Protocol). Given
a set of adversarial validators, the timestamping protocol Π𝐼 of Sec-
tion 4.2 instantiated with 𝑘 +1 blockchains Π𝑖 with latency𝑇𝑖 , 𝑖 ∈ [𝑘],
under partial synchrony, satisfies

• liveness with latency
∑𝑘
𝑖=0𝑇𝑖 (w.o.p.) for all PPT A iff all of the

constituent blockchains are live (w.o.p.) for all PPT A.
• safety (w.o.p.) for all PPT A iff at least one of the constituent
blockchains is safe (w.o.p.) for all PPT A.
• slashable safety (w.o.p.) such that there is a safety violation in
Π𝐼 iff safety is violated in all of the constituent blockchains.

The proof is provided in Appendix B.1. Since the transactions

input toΠ0 are directly or indirectly ordered by all of the constituent

blockchainsΠ𝑖 , 𝑖 ∈ [𝑘],Π𝐼 remains safe as long as one ofΠ𝑖 , 𝑖 ∈ [𝑘],
satisfies safety and provides a consistent ordering. In contrast, since

all of the blockchains participate in the ordering, Π𝐼 loses liveness

as soon as one blockchain Π𝑖 , 𝑖 ∈ [𝑘], loses liveness. Note that the
lack of liveness on one blockchain Π 𝑗 implies the lack of liveness for

Π𝐼 but not the lack of liveness for the blockchains Π𝑖 , 𝑖 ∈ [𝑘], 𝑖 ≠ 𝑗 .

5
The current Tendermint implementation is a lazy consensus that follows the order-

then-execute flow. This means a transaction’s inclusion in the ledger does not mean

successful execution and acceptance to the application state.

We next state a corollary of Theorem 5.1 for the timestamping

protocol instantiated with 𝑘 + 1 blockchains, each running Tender-

mint with 𝑛𝑖 = 3𝑓𝑖 + 1 validators and a quorum of 𝑞𝑖 = 2𝑓𝑖 + 1,
𝑖 = 0, . . . , 𝑘 . It will be used in Section 6 when we analyze mesh secu-

rity for Cosmos zones. The corollary utilizes the security properties

of Tendermint:

Proposition 5.2 (Tendermint security, from [25, 26]). Ten-
dermint with 𝑛 = 3𝑓 + 1 validators and a quorum of 𝑞 = 2𝑓 + 1
satisfies 𝑓 -safety, 𝑓 -liveness and 𝑓 + 1-slashable safety.

Corollary 5.3. The timestamping protocol Π𝐼 of Section 4.2 in-
stantiated with𝑘+1 blockchainsΠ𝑖 , 𝑖 ∈ [𝑘], each running Tendermint
with 𝑛𝑖 = 3𝑓𝑖 + 1 distinct validators and a quorum of 𝑞𝑖 = 2𝑓𝑖 + 1
respectively, under partial synchrony, satisfies

• liveness (w.o.p.) for all PPT A iff for all blockchains Π𝑖 , 𝑖 ∈ [𝑘],
the number of adversarial Π𝑖 validators is 𝑓𝑖 or less.
• safety (w.o.p.) for all PPT A iff for at least one blockchain Π𝑖 ,
𝑖 ∈ [𝑘], the number of adversarial Π𝑖 validators is 𝑓𝑖 or less.
• slashable safety (w.o.p.) such that if there is a safety violation, for
all 𝑖 ∈ [𝑘], 𝑓𝑖 + 1 adversarial validators are identified from the
validator set of Π𝑖 , and no honest validator is identified (w.o.p.).

5.1 Slashable Safety-Liveness/Latency Tradeoff

Theorem 5.1 implies a trade-off between slashable safety, i.e. eco-
nomic security, and liveness resilience, i.e. censorship resistance.

Using more provider chains to improve the economic security of the

timestamped (Π𝐼) ledger increases both the latency and the risk of

losing liveness. However, the timestamping protocol gives clients of

each blockchain the ability to independently determine their trade-

off. For illustration, consider 𝑘 + 1 blockchains Π𝑖 , 𝑖 = 0, . . . , 𝑘 ,
which are fully connected via IBC links. Then, clients of Π0 can

instantiate the timestamping protocol with any subset of the 𝑘

chains as their providers. This decision affects only the clients’ in-

terpretation of the fork-choice rule as specified by Algs. 1 and 2.

Hence, it does not require any change in the protocol code run by

the validators of the constituent chains.

Flexibility of the timestamping protocol is not restricted to unan-

imous decisions by clients. Different clients can use different tele-

scopic sets of provider chains without sacrificing interoperability.

For instance, a conservative client c1 favoring safety can designate

both Π1 and Π2 as its provider chains, whereas c2 favoring live-

ness might only use Π1. While Π0 remains safe, i.e., under normal

operation, c1’s timestamped ledger remains a prefix of c2’s ledger
so that the clients agree on a single transaction history.

Flexibility of timestamping also allows conservative clients to

resolve liveness violations by modifying the trade-off. For instance,

when c1’s timestamped ledger stops growing due to Π2 stalling, it

can independently decide to stall or continue running the protocol

with only Π1 after a timeout period. In the latter case, it avoids

stalling; however, the economic security of the new blocks will be

proportional to the sum of the remaining provider chains.

6 MESH SECURITY FOR COSMOS ZONES

As interchain timestamping is automatically provided by IBC, a

natural application of our protocol is to provide mesh security to

8

Interchain Timestamping for Mesh Security

the Cosmos ecosystem. Here, we give an empirical evaluation of

interchain timestamping for Cosmos zones.

6.1 Goals of Evaluation

The evaluation aims to answer the following questions:

Economic security upper bound: Given the current market cap

distribution and IBC channels of Cosmos zones, what is the eco-

nomic security (i.e., slashable safety resilience) upper bound for

Cosmos zones? (6.3)

Security: Given a consumer Cosmos zone and an upper bound on

the number of provider zones, what is the best achievable economic

security and the corresponding censorship resistance (i.e., liveness
resilience) of the zone? (6.4)

Latency: What is the confirmation latency of the interchain times-

tamping protocol? (6.5)

Interchain timestamping v.s. cross-staking: How does inter-

chain timestamping compare with cross-staking [19] in terms of

security? (6.6)

Economic Security Upper Bound. Since the Cosmos zones

form a mesh and each zone runs Tendermint with a quorum size

equal to 2/3 of the number of its validators, the economic security

upper bound for each zone is 1/3 of the total funds staked in all of

the zones, and is achieved by the timestamping protocol instantiated

with all of the zones (cf.Corollaries 5.3 and 7.10). As the total amount

staked on each zone is proportional to its total market cap, the upper

bound on economic security is proportional to the total market cap

of all zones. Given a consumer zone, a timestamping protocol using

all other zones as providers can be constructed when there exists a

directed IBC path that starts at the consumer zone and touches all

other zones. In the presence of a Hamiltonian path, all zones can

act as consumer zones and extract the maximum economic security.

When zones have good connectivity, e.g., when the mesh of zones

is fully connected, then every zone can achieve this upper bound.

Security. The economic security of a Cosmos zone is propor-

tional to the sum of the market caps of the zones on the path with

the maximum total market cap among all paths going through this

zone. However, since censorship resistance is determined by the

zone with the lowest market cap in a path, a long path is likely to

reduce resilience to censorship. In addition, if a path involves more

zones, then the latency for the consumer zone increases, eventu-

ally becoming impractical for long paths. Therefore, we quantify

economic security for bounded path lengths 𝑘 , and analyze the cen-

sorship resistance of the path that gives the best economic security

among paths of bounded length. For example, when 𝑘 = 0, both
the economic security and censorship resistance of a zone depends

only on its own market cap. When 𝑘 = 1, the economic security

of a zone is proportional to the sum of the market caps, while its

censorship resistance is characterized by the market cap of the zone

with the smaller market cap.

Latency. The latency for the header of a consumer zone to be

finalized in a provider zone consists of two parts: 1) the latency for

the header to be sent to the provider zone, and 2) the latency for

finalizing a transaction in the provider zone. The former depends

on the frequency of updates for the IBC light clients, and the latter

depends on the congestion level of the provider zone. In turn, the

frequency of updates in a connection depends on the IBC relayers.

The Cosmos community has noted that client updates are mostly

triggered by pending IBC packets [10], while the majority of IBC

packets are IBC token transfers [12]. Thus, we use the frequency of

IBC token transfers as a proxy for the frequency of client updates.

The latency evaluation is two fold. First, we evaluate the latency

while assuming that relayers follow their current behaviours in

our collected data. Second, in order to show the trade-off between

latency and the cost of interchain timestamping, we evaluate the

latency and its corresponding cost w.r.t. the frequency of relaying

headers. The cost is quantified by the gas fee of transactions carry-

ing MsgUpdateClient [21], the message type that carries a header

in the IBC protocol.

Interchain Timestamping v.s. Cross-Staking. Another ap-

proach for implementing mesh security is cross-staking [19]. In

cross-staking, validators of a provider zone replicate their staked to-

kens to a consumer zone, such that these validators can participate

in the consensus of the consumer zone. A consumer zone Π𝑖 can set

a parameter 𝑞 𝑗 ∈ [0, 1] to limit the ratio between the value of stake

from another zone Π 𝑗 with an IBC channel and the total value of

stake. A blog post [19] from Informal Systems provides a model

for analyzing the security of Cosmos zones with cross-staking. In

summary, given a consumer zone Π𝑖 with 𝑋𝑖 market cap from its

native validators, it can borrow 𝑋𝑖, 𝑗 market cap from validators of

other provider zones {Π 𝑗 } 𝑗 ∈[𝑘]\𝑖 with a direct IBC channel such

that

𝑋𝑖,𝑗

𝑋𝑖+𝑋𝑖,𝑗
≤ 𝑞 𝑗 , i.e., 𝑋𝑖, 𝑗 ≤

𝑞 𝑗

1−𝑞 𝑗
𝑋𝑖 . The economic security and

censorship resistance of Π𝑖 are then at most

𝑋𝑖+
∑

𝑗∈[𝑘]\𝑖 𝑋𝑖,𝑗

3 . A large

𝑞 𝑗 allows Π𝑖 to borrow more security from Π 𝑗 , but weakens the

sovereignty in the sense that validators from other zones have more

voting power on this zone’s consensus.

6.2 Data Collection and Experimental Setting

Answering these questions requires data of Cosmos zones, including

(i) information of zones (e.g., chain ID), (ii) market caps of zones,

and (iii) information of all IBC channels, (e.g., IBC transfers).

We obtained such data from Map of Zones [13], an explorer for

all Cosmos zones and their IBC channels. Specifically, we retrieved

the data by using the GraphQL [11] APIs provided by Map of Zones

on Jan. 13, 2023. It is refreshed by Map of Zones every 24 hours.

After retrieving the data, we parsed it to a graph of all zones,

where each vertex denotes a zone and each edge denotes the IBC

channel between two zones (cf. Figure 3). Each vertex carries the

market cap of the corresponding zone as a property. Each edge

carries the frequency of IBC transfers in the corresponding IBC

channel as a property. Such a graph allows us to derive the security

and latency of zones by using the above methodology, as well as

the security of cross-staking by using the model in [19]. We use

Python’s NetworkX [17] library for processing the data to such

a graph. The collected data and source code for processing it is

available at [20].

Increasing the frequency of client updates improves the latency

but requires more transaction fees. To quantify the trade-off be-

tween latency and monetary cost, we deploy a private Cosmos zone

and connect it to multiple public Cosmos zones (Akash, Injective,

Juno, Osmosis, Secret, Sei) via IBC relayer [7], so that headers of

these zones can be checkpointed to the private zone and the gas cost

9

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

can be measured. Note that the cost of checkpointing the header

of different zones is the same because they all use the Tendermint-

specific block header format.

6.3 Summary of Cosmos Zones

The results show that there are 43 Cosmos zones with IBC activity

and native tokens on their main net. Their total market cap is about

9.1 billion USD, leading to the economic security upper bound of 3

billion USD when the zones are fully connected.

Figure 3 depicts the graph of zones for different 𝑘 ∈ {0, 1, 2, 3}.
In these figures, the vertex color indicates economic security, i.e.,
1/3 of the total market cap of the zone itself plus 𝑘 other zones as

described above. The color map is in logscale: if the color code is 8,
then the economic security is 108 USD. The edge thickness indicates
the frequency of IBC transfers (thus light client updates), also in

logscale. The edge transparency indicates whether the edge is used

for providing security for a zone. If an edge is less transparent, then

it is used by some zones for providing security. Inspecting the color

of the vertices, we observe that, with larger 𝑘 , vertices become

greener, meaning that zones obtain more security. When 𝑘 = 3,
most zones obtain an economic security of ≥ 108 USD except for

some zones without any IBC channel.

From the transparency of edges, we find that zones choose a

small subset of zones and channels to extract economic security.

These zones either have a high market cap, or connect to many

other zones. This is because a zone with higher market cap is more

likely to provide better security, and a zone with better connectivity

is more likely to connect to other zones with high market cap.

6.4 Security Evaluation

Figure 6 provides the histogram of the best achievable economic

security with different 𝑘 for Cosmos zones, as well as the censorship

resistance resulting from paths that give them the best achievable

economic security. With larger 𝑘 , zones achieve higher economic

security except those without any IBC channels, similar to our

observation in Figure 3. In addition, we observe two gaps in the

economic security, one is before 1.5 billion USD and the other is

between 1.5 billion USD and 2.5 billion USD. The gap is because

when 𝑘 becomes 2 from 0, zones with less than 0.2 billion USD

obtain more security from a specific zone with 0.7 billion USD.

When 𝑘 becomes 3 from 2, some zones with the economic security

of about 1.5 billion USD obtain more security from that zone with

0.7 billion USD as well.

Censorship resistance either remains stable or decreases with

larger 𝑘 as it is determined by the zone with the lowest market

cap in a path. When 𝑘 increases by 1, if the newly chosen zone

has a higher market cap than any existing zone in the path, then

the economic security remains stable; if it has a lower market cap

than any existing zone, then the economic security decreases. For

example, when 𝑘 becomes 1 from 0, the censorship resistance of

Cosmos Hub decreases to less than 0.2 billion USD from 1.5 billion

USD.

6.5 Latency and Cost Evaluation

Figure 7 shows the frequency of IBC transfers for all IBC channels.

A small number of IBC channels are active, with up to 155 IBC

transfers per hour, leading to at least 24 seconds for relaying a

header. Meanwhile, most IBC channels have less than 25 IBC trans-

fers (thus client updates) per hour, leading to at least 144 seconds

for relaying a header. This is much longer compared to a zone’s

transaction confirmation latency, which is about no more than 6
seconds in Cosmos Hub according to Mintscan [16]. Therefore,

when piggybacking the interchain timestamping to existing relay-

ers without changing their behaviors, the latency for the provider

zone to confirm a header of the consumer zone is 30 seconds in the

best case, and is at least 150 seconds when client updates are not

often.

Zones can lower the latency by increasing the frequency of client

updates. This requires IBC relayers to pay more gas fees, leading to

a trade-off between the latency and gas cost. We evaluate the gas

cost of a client update by running the relayer for about 12 hours,

during which the relayer relayed 625 headers in total. The results

show that on average, each client update costs 217052.8 ± 53472.1
gases, which are worth 0.01 USD in Cosmos Hub according to the

gas fee [9] and the price of ATOM [3] at the date of the experiment.

Therefore, with 0.01 USD per header and the existing 6-second
transaction confirmation latency, relaying headers per 6 seconds

costs 144 USD per day and 52560 USD per year. Assuming that

the relayer’s latency is also 𝑥 seconds per header, the worst-case

latency of obtaining a timestamp for a header is 𝑥 + 6 seconds. If

the relayer’s latency is 60 seconds, then the worst-case latency is

66 seconds, and the cost will be 5256 USD per year.

We also observe that the standard deviation of the gas cost is

large compared to the average value. This is because verifying a

header includes a quorum intersection, whose overhead largely

depends on the size of the intersected signature set.

6.6 Comparison to Cross-Staking

Based on themodel in [19], we quantify the economic security upper

bound for Cosmos zones with cross-staking in Figure 3, similar to

the evaluation for Cosmos zones with interchain timestamping.

For every consumer zone, we set 𝑞 𝑗 = 𝑝 for every provider zone

with an IBC channel, where we test 𝑝 = {0%, 10%, 50%, 100%}.
Compared to interchain timestamping, vertices are less green in

cross-staking, i.e., cross-staking provides a lower economic security

upper bound than interchain timestamping, even with 𝑝 = 100%.

This is because cross-staking allows a zone to get security from only

the zones with a direct IBC channel, bounding the total security

obtainable from other zones. Meanwhile, interchain timestamping

allows a zone to get security from any zone reachable via a path of

IBC channels. To achieve better security in cross-staking, a zone

needs to establish direct IBC channels with more zones.

In terms of latency, cross-staking allows validators to directly

participate in the consensus of any zone with an IBC channel, so

does not suffer from the latency of relaying headers or finalizing

blocks as in interchain timestamping.

6.7 Beyond Cosmos

Our interchain timestamping protocol can support light-client

based bridges in other blockchain ecosystems besides Cosmos.

There have been efforts for bringing IBC functionalities to certain

blockchains such as Ethereum (e.g., Polymer [18] and Electron [8]),

10

Interchain Timestamping for Mesh Security

0.0 × 100 5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109
10

0

10
1

10
2

k=0

0.0 × 100 5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109
10

0

10
1

10
2

k=1

0.0 × 100 5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109
10

0

10
1

10
2

k=2

0.0 × 100 5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109
10

0

10
1

10
2

k=3

Economic security (USD)

zo

ne
s

0.0 × 100 5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109
10

0

10
1

10
2

k=0

0.0 × 100 5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109
10

0

10
1

10
2

k=1

0.0 × 100 5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109
10

0

10
1

10
2

k=2

0.0 × 100 5.0 × 108 1.0 × 109 1.5 × 109 2.0 × 109 2.5 × 109
10

0

10
1

10
2

k=3

Censorship resistance (USD)

zo

ne
s

Figure 6: Best achievable economic security of zones with various values for 𝑘 , and the resulting censorship resistance.

0 25 50 75 100 125 150 175

Frequency of IBC transfers (# per hour)

10
0

10
1

ch

an
ne

ls

Figure 7: Frequency of IBC transfers for IBC channels.

Near (e.g., Electron [8]), Polkadot (e.g., Composable [5]), and for

building hubs supporting cross-chain communication (e.g., Axe-
lar [4]). The interchain timestamping protocol can be integrated

with them to expand its adoption beyond Cosmos. However, it can-

not be directly applied to multi-signature bridges. Thus, supporting

those bridges remains as future work.

7 OPTIMALITY OF INTERCHAIN

TIMESTAMPING

Among the class of interchain consensus protocols, is interchain

timestamping optimal? In what sense is it optimal? We explore

these questions in this section.

7.1 Interchain Consensus Protocols

An interchain consensus protocol (interchain protocol for short) Π𝐼

is a SMR protocol executed using existing blockchains with disjoint

validator sets. Its participants are the clients and validators of the

constituent blockchains Π𝑖 , 𝑖 ∈ [𝑘]. Clients and honest validators

of each blockchain act as clients towards all other blockchains: for

each 𝑖 , validators of Π𝑖 can read the output ledgers of Π 𝑗 , 𝑗 ≠ 𝑖 ,

and use the observed ledgers to determine the transactions to be

input to Π𝑖 . This communication among blockchains is captured by

the cross-chain communication (CCC) abstraction [46, 48] (e.g. IBC,

Section 4.3): Each chain exposes its output ledger, whose finality is

verified by the clients and validators of the other chains; however,

its internal mechanisms, e.g., validator set, is hidden, except as used
by CCC to verify finality. This encapsulation of the blockchains

imposes limits on the properties of the interchain protocols.

7.2 Quorum and Fail-Prone Systems

Before we analyze the interchain protocols, we introduce the nota-

tion needed to express their security properties.

Background. Consensus security is typically quantified by the

maximum number 𝑓 of adversarial validators, for which the pro-

tocol remains secure. For instance, Tendermint [26] is secure for

3𝑓 + 1 ≤ 𝑛. To capture less uniform assumptions on the validators,

we use the quorum and fail-prone systems as defined by Malkhi and

Reiter [36]. LetU denote the set of validators. A quorum system Q
is a non-empty set of subsets ofU, where each set𝑄 ∈ Q is called a

quorum, and ∀𝑄1, 𝑄2 ∈ Q : 𝑄1 ⊄ 𝑄2. Quorums represent smallest

collections of validators that can drive consensus on behalf of the

whole validator set.

A fail-prone system B is a non-empty set of subsets ofU such

that ∀𝐵1, 𝐵2 ∈ B : 𝐵1 ⊄ 𝐵2. Each set 𝐵 ∈ B represents a potential

set of adversarial validators under which the protocol remains

secure.

Definition 7.1 (Closure). Given a validator setU, we define the

closure operation cl(Q) on a quorum system Q as: cl(Q) = {𝑆 ⊆
U : ∃𝑄 ∈ Q, 𝑆 ⊇ 𝑄}. We define the closure operation cl(B) on a

fail-prone system B as: cl(B) = {𝑆 ⊆ U : ∃𝐵 ∈ B, 𝑆 ⊆ 𝐵}.

Intuitively, Q represents the set of smallest quorums needed for

liveness (e.g., sets of 2𝑓 + 1 validators), whereas cl(Q) gives the set
of all possible quorums (e.g., sets with 2𝑓 + 1 or more validators).

Similarly, B represents the set of largest adversarial validator sets
11

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

(e.g., sets of 𝑓 validators), whereas cl(B) gives the set of all tolerable
adversarial validator sets (e.g., sets with 𝑓 or less validators).

Fail-prone Systems for Liveness, Safety and Slashable Safety.

To express the liveness, safety and slashable safety guarantees of

interchain protocols, we extend the original definition for quorum

and fail-prone systems (for a similar extension, cf. [28]). Let 𝐹 denote

the set of adversarial validators. A protocol Π is said to be B𝑠 -safe
if Π is safe (w.o.p.) for all PPT A iff ∃𝐵𝑠 ∈ B𝑠 : 𝐹 ⊆ 𝐵𝑠 . Namely,

B𝑠 is the set of validator sets such that the protocol is safe (w.o.p)

for all PPT A iff the adversarial validators are covered by a set in

B𝑠 . A protocol Π is said to be B𝑎-slashably-safe if whenever there
is a safety violation, the validators in a set 𝐵𝑎 ∈ B𝑎 , 𝐵𝑎 ⊆ 𝐹 , are

identified by the forensic protocol as protocol violators, and no

honest validator is identified (w.o.p.).

Since quorums have protocol-specific definitions, we redefine

the quorum system Q as a security parameter applicable to all

protocols. A protocol Π is said to be Q-live if Π is live (w.o.p.) for

all PPT A iff ∃𝑄 ∈ Q : 𝐹 ∩ 𝑄 = ∅. Intuitively, 𝑄 represents sets

of validators such that if the validators in 𝑄 are honest, then the

protocol is live (w.o.p.) for all PPT A. As an example, Tendermint

with 𝑛 = 4𝑓 + 1 validators and a quorum of 3𝑓 + 1 requires at least

3𝑓 + 1 honest validators for liveness, whereas it remains safe up to

2𝑓 adversarial validators. Hence, it is Q-live for Q containing every

subset ofU with 3𝑓 + 1 validators, and B𝑠 -safe for B𝑠 containing
every subset with 2𝑓 validators.

We next define the class of pareto-optimal6 interchain protocols

that cannot be dominated in all dimensions of security by any other

interchain protocol.

Definition 7.2 (Dominating Points). A tuple of quorum and fail-

prone systems (Q,B𝑠 ,B𝑎) dominates another tuple (Q ′,B′𝑠 ,B′𝑎) if
cl(𝑄) ⊇ cl(𝑄 ′), cl(B𝑠) ⊇ cl(B′𝑠), cl(B𝑎) ⊇ cl(B′𝑎), and at least

one of cl(Q), cl(B𝑠) or cl(B𝑎) is a strict superset of cl(Q ′), cl(B′𝑠)
or cl(B′𝑎) respectively.

Definition 7.3 (Pareto-Optimal Interchain and SMR Protocols). An
interchain (SMR) protocol with the validator setU and the quorum

and fail-prone systems𝑄 , B𝑠 and B𝑎 is pareto-optimal under partial
synchrony if there is no interchain (resp. SMR) protocol with the

same validator set and the quorum and fail-prone systems 𝑄 ′,B′𝑠
and B′𝑎 such that (𝑄 ′,B′𝑠 ,B′𝑎) dominates (𝑄,B𝑠 ,B𝑎).

We denote the security guarantees of blockchains Π𝑖 , 𝑖 ∈ [𝑘],
that make up an interchain protocol Π𝐼 , by the quorum and fail-

prone systems Q𝑖 , B𝑖𝑠 and B𝑖𝑎 . We denote the validator set, quorum

and fail-prone systems of Π𝐼 byU𝐼
, Q𝐼 , B𝐼𝑠 , and B𝐼𝑎 .

7.3 Upper Bounds on Interchain Protocols

We now identify bounds on the quorum and fail-prone systems

achievable by interchain protocols. Consider an interchain protocol

with the blockchains Π𝑖 , 𝑖 ∈ [𝑘], validator setsU𝑖
, quorum systems

Q𝑖 and fail-prone systems B𝑖𝑠 and B𝑖𝑎 . Given a set 𝑄 ′ ⊆ U𝐼
, we

define 𝑓𝑄 : 2U
𝐼 → 2U

𝐼
,

𝑓𝑄 (𝑄 ′) = {𝑖 ∈ [𝑘] : ∃𝑄 ∈ Q𝑖 , 𝑄 ′ ∩U𝑖 ⊇ 𝑄}
6
There are no games or rational actors in our model. We adopt the nomenclature of

pareto-optimality to emphasize that a protocol dominating a pareto-optimal one in

terms of one security property, e.g., safety, must necessarily have worse security in

terms of the other properties, e.g., liveness.

as the function that returns the indices of the blockchains that are

live (w.o.p.) for all PPT A given the set 𝑄 ′ of honest validators.
Similarly, given a set 𝐹 ⊆ U𝐼

, we define the functions 𝑓𝑠 and

𝑓𝑎 : 2
U𝐼 → 2U

𝐼
,

𝑓𝑠 (𝐹) = {𝑖 ∈ [𝑘] : ∀𝐵 ∈ B𝑖𝑠 , 𝐹 ∩U𝑖 ⊈ 𝐵}
𝑓𝑎 (𝐹) = {𝑖 ∈ [𝑘] : ∃𝐵 ∈ B𝑖𝑎, 𝐹 ∩U𝑖 ⊇ 𝐵}

The function 𝑓𝑠 (.) returns the indices of blockchains that are not
safe (with non-negligible probability) for some PPTA given a set 𝐹

of adversarial validators. The function 𝑓𝑎 (.) returns the indices of
the blockchains such that if the validators in 𝐹 are identified as ad-

versarial validators after a safety violation for Π𝐼 , sufficiently many

adversarial validators from these blockchains are also irrefutably

identified as protocol violators.

For any given blockchain Π, we assume that if ∀𝑄 ∈ Q : 𝐹 ∩𝑄 ≠

∅, then the adversarial validators can ensure (w.o.p.) that any desired
client of Π outputs an empty Π ledger at all times.

Theorem 7.4 (Safety-Liveness Trade-off under Partial Syn-

chrony for Interchain Protocols). Consider an interchain pro-
tocol with the blockchains Π𝑖 , 𝑖 ∈ [𝑘], validator setsU𝑖 , quorum sys-
tems Q𝑖 and fail-prone systems B𝑖𝑠 under partial synchrony. Then, it
holds that ∀𝑄1, 𝑄2 ∈ Q𝐼 and 𝐵𝑠 ∈ B𝐼𝑠 : 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2) ⊈ 𝑓𝑠 (𝐵𝑠).

Theorem 7.4 generalizes the safety bound [31, Theorem 4.4]

on the tolerable adversary fraction under partial synchrony to the

setting of interchain protocols. Its proof follows from the techniques

used in the proof of [31, Theorem 4.4].

Theorem 7.5 (Slashable Safety-Liveness Trade-off for In-

terchain Protocols). Consider an interchain protocol with the
blockchains Π𝑖 , 𝑖 ∈ [𝑘], validator sets U𝑖 , quorum systems Q𝑖
and fail-prone systems B𝑖𝑎 . Then, it holds that ∀𝑄1, 𝑄2 ∈ Q𝐼 and
𝐵𝑎 ∈ B𝐼𝑎 : 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2) ⊄ 𝑓𝑎 (𝐵𝑎).

Moreover, ∀𝐵𝑎 ∈ B𝑎, 𝑗 ∈ [𝑘] : ∄𝐵 𝑗
𝑎 ∈ B

𝑗
𝑎, 𝐵𝑎 ∩U 𝑗 ⊃ 𝐵

𝑗
𝑎 .

Theorem 7.5 generalizes the bound [44, Theorem B.1] on the

number of adversarial validators that can be identified by a forensic

protocol to the setting of interchain protocols. Its proof follows

from the techniques used in the proof of [44, Theorem B.1]. The

result holds under both synchrony and partial synchrony.

For interchain protocols Π𝐼 outputting chains, when the val-

idators of a constituent blockchain are not checking for the data

availability of the output blocks, we further require each quorum

of Π𝐼 to fully cover a quorum from one of the blockchains whose

validators check for data availability. This ensures that the output

chain of Π𝐼 does not contain any unavailable block in the view of

any client since validators checking data availability can prevent

such blocks from being finalized.

Theorem 7.6. Consider an interchain protocol Π𝐼 outputting a
chain and executed using the blockchains Π𝑖 , 𝑖 ∈ [𝑘], with validator
setsU𝑖 and quorum systems Q𝑖 . Suppose only the validators of Π𝑖 𝑗 ,
𝑗 ∈ [𝑘 ′], check the data availability of the blocks in the Π𝐼 chain.
Then, ∀𝑄 ∈ Q𝐼 , it holds that ∃ 𝑗 ∈ [𝑘 ′], 𝑖 𝑗 ∈ 𝑓𝑄 (𝑄).

Formal proofs of the Theorems 7.4, 7.5 and 7.6 are given in

Appendix B.2.

We finally characterize a (potentially loose) upper-bound on

the tuples of quorum and fail-prone systems of pareto-optimal

12

Interchain Timestamping for Mesh Security

interchain protocols (Definition 7.3). If achievable by any interchain

protocol, tuples identified below correspond to the quorum and

fail-prone systems of all pareto-optimal interchain protocols.

Definition 7.7 (Upper-Boundary of Quorum and Fail-Prone Sys-
tems). A tuple (Q,B𝑠 ,B𝑎) of quorum and fail-prone systems is an

upper-boundary point under partial synchrony if they satisfy the

conditions in Theorems 7.4,7.5 and 7.6, and there is no tuple of quo-

rum and fail-prone systems (𝑄 ′,B′𝑠 ,B′𝑎) dominating (Q,B𝑠 ,B𝑎)
and satisfying the same theorems.

7.4 Property Based Security

In this section, we present a method to list all upper-boundary

points, which will later be useful for arguing their achievability.
Towards this goal, we define the property systems DQ, D𝑠 and

D𝑎 that map quorum and fail-prone systems of blockchains to as-

sumptions on their safety and liveness, and thus constitute meta
quorum and fail-prone systems (i.e., property systems) for the inter-

chain protocol executed on top of these chains. These meta systems

enable proving security of the interchain protocol as if it is an

SMR protocol run by validators that correspond to the constituent

chains.

Akin to Q, B𝑠 and B𝑎 , ∀𝐷1, 𝐷2 ∈ DQ,D𝑠 ,D𝑎 , 𝐷1 ⊄ 𝐷2. Given

the adversarial validators, let𝑄 denote the set of constituent chains

that satisfy liveness (w.o.p.) for all PPT A. Similarly, let 𝐹𝑠 denote

the set of chains that do not satisfy safety with non-negligible

probability for some PPT A. Then, Π𝐼 is said to be DQ-live if it
is live (w.o.p.) for all PPT A iff ∃𝐷𝑄 ∈ DQ : 𝐷𝑄 ⊆ 𝑄 . Similarly,

Π𝐼 is said to be D𝑠 -safe if it is safe (w.o.p.) for all PPT A iff ∃𝐷𝑠 ∈
D𝑠 : 𝐹𝑠 ⊆ 𝐷𝑠 . It is D𝑎-slashably-safe if after every safety violation,

∃𝐷𝑎 ∈ D𝑎 such that for all 𝑖 ∈ 𝐷𝑎 , adversarial validators in a set

𝐵𝑖𝑎 ∈ B𝑖𝑎 are irrefutably identified as protocol violators, and no

honest validator is ever identified (w.o.p.).

The following theorem shows that the security properties of all

pareto-optimal interchain protocols can be expressed by a tuple

of property systems. It uses generalizations of the functions 𝑓𝑄 , 𝑓𝑠
and 𝑓𝑎 , now applied to sets of sets to output sets of quorums of

blockchain indices.

𝑓𝑄 (Q) = {𝑓𝑄 (𝑄) : 𝑄 ∈ Q}
𝑓𝑠 (B𝑠) = {𝑓𝑠 (𝐵𝑠) : 𝐵𝑠 ∈ B𝑠 }
𝑓𝑎 (B𝑎) = {𝑓𝑎 (𝐵𝑎) : 𝐵𝑎 ∈ B𝑎}

Theorem 7.8.

(1) No tuple of quorum and fail-prone systems achievable by an
interchain protocol Π𝐼 can dominate an upper-boundary point.

(2) If the quorum and fail-prone systems of an interchain protocol
Π𝐼 is an upper-boundary point, then Π𝐼 is pareto-optimal.

(3) The quorum and fail-prone systems (Q,B𝑠 ,B𝑎) of an interchain
protocol Π𝐼 is an upper-boundary point iff there exists a tuple of
property systems (DQ,D𝑠 ,D𝑎 ⊆ 2[𝑘]) such thatΠ𝐼 isDQ-live,
D𝑠 -safe, D𝑎-slashably safe, and the property systems satisfy the
following upper-boundary conditions (i.e. the tuple is an upper-

boundary property point):
(a) ∀𝐷𝑄1, 𝐷𝑄2 ∈ DQ, 𝐷𝑠 ∈ D𝑠 : 𝐷𝑄

1 ∩ 𝐷𝑄2 ⊈ 𝐷𝑠 .
(b) ∀𝐷𝑄1, 𝐷𝑄2 ∈ DQ, 𝐷𝑎 ∈ D𝑎 : 𝐷𝑄

1 ∩ 𝐷𝑄2 ⊄ 𝐷𝑎 .

(c) Suppose only the validators of the protocols Π𝑖 𝑗 , 𝑗 ∈ [𝑘 ′],
check for the data availability of the Π𝐼 blocks. Then, ∀𝐷𝑄 ∈
DQ, it holds that ∃ 𝑗 ∈ [𝑘 ′] : 𝑖 𝑗 ∈ 𝐷𝑄 .

(d) No tuple of property systems satisfying (a)-(b)-(c) above dom-
inates (DQ, D𝑠 , D𝑎).

Then, DQ = 𝑓𝑄 (Q), D𝑠 = 𝑓𝑠 (B𝑠) and D𝑎 = 𝑓𝑎 (B𝑎).

Proof of Theorem 7.8 is stated in Appendix B.3. It follows from

the Definitions 7.3 and 7.7 and Theorems 7.4, 7.5 and 7.6.

Theorem 7.8 separates the quorum and fail-prone systems of

interchain protocols achieving upper-boundary points into a tuple

of property systems (DQ𝐼 ,D𝐼
𝑠 ,D𝐼

𝑎 ⊆ 2[𝑘]), satisfying the con-

ditions (a)-(b)-(c)-(d), and the quorum and fail-prone systems of

the constituent blockchains. These conditions enable enumerating
all tuples of property systems constituting the upper-boundary

property points for interchain protocols instantiated with a given

collection of blockchains Π𝑖 , 𝑖 ∈ [𝑘]. Hence, Theorem 7.8 makes

it possible to list all upper-boundary points for such interchain

protocols through all upper-boundary property points. However, it

leaves open whether all upper-boundary points are achievable by

an interchain protocol.

7.5 Optimality of Timestamping

Timestamping is Optimal for Two Blockchains. To close the

achievability gap, we first show that all upper-boundary points for

interchain protocols Π𝐼 with two blockchains Π1 and Π2 can be

achieved by either trivial protocols or the timestamping protocol:

Theorem 7.9. All upper-boundary property points for interchain
protocols instantiated with two blockchains are achievable by ei-
ther trivial interchain protocols (i.e., empty ledger, using only one
blockchain) or the timestamping protocol. Hence, all quorum and
fail-prone systems achievable by pareto-optimal interchain protocols
with two blockchains can be achieved by either the trivial protocols
or the timestamping protocol.

Proof of Theorem 7.9. For 𝑘 = 2, potential values for DQ are

∅, {{0}}, {{1}}, {{0}, {1}} and {{0, 1}}. When DQ = {{0}, {1}},
there is no property system D𝑠 , for which condition (a) can be

satisfied, implying that no Π𝐼 can be DQ-live for this DQ. This
leaves us with the sets DQ = ∅, {{0}}, {{1}}, {{0, 1}}. Given
these sets, the tuples (DQ,D𝑠 ,D𝑎) that satisfy conditions (a)-(b)-

(c) and are dominated by no other tuple are given by (∅, {{0, 1}},⊥),
({{0}}, {{1}}, {{0}}), ({{1}}, {{0}}, {{1}}) and more interestingly

({{0, 1}}, {{0}, {1}}, {{0, 1}}). Here, the first three tuples of prop-
erty systems are respectively achieved by the following trivial pro-

tocols: empty ledger, Π𝐼 = Π0 and Π𝐼 = Π1. The last one is the

protocol that requires the liveness of both constituent chains for live-

ness, and remains safe as long as either one is safe. By Theorem 5.1,

the timestamping protocol has exactly this security guarantee.

Finally, since all upper-boundary property points (DQ,D𝑠 ,D𝑎)
for two blockchains are satisfied by the interchain timestamping

protocol (or trivial protocols), by Theorem 7.8, all upper-boundary

points for two blockchains can be achieved by either the times-

tamping protocol or trivial protocols. Then, again by Theorem 7.8,

quorum and fail-prone systems of all pareto-optimal interchain pro-

tocols with two blockchains are upper-boundary points and can be

13

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

achieved by either trivial interchain protocols or the timestamping

protocol. □

Timestamping Has the Best Slashable Safety Guarantee. The

timestamping protocol achieves the strongest slashable safety guar-

antee among interchain protocols with the best possible liveness

resilience:

Theorem 7.10. For any interchain protocolΠ𝐼 with the blockchains
Π𝑖 , 𝑖 ∈ [𝑘], and the quorum and fail-prone systems Q and B𝑎 , the
quorum and fail-prone systems Q̃ and B̃𝑎 of the timestamping proto-
col Π̃𝐼 with the same blockchains satisfies cl(B̃𝑎) ⊇ cl(B𝑎). Moreover,
the timestamping protocol is pareto-optimal.

Proof of Theorem 7.10. Since the tuple of property systems of

the timestamping protocol is an upper-boundary property point,

by Theorem 7.8, the timestamping protocol is pareto-optimal. By

Theorem 5.1, there is a safety violation in Π̃𝐼 iff safety is violated

in all of the constituent blockchains. Therefore, D̃𝑎 = [𝑘], which is

the largest property system for slashable safety among all upper-

boundary property points. Then, by Theorem 7.8, 𝐷𝑎 = 𝑓𝑎 (𝐵𝑎) and
the protocol also has the largest fail-prone system B̃𝑎 for slashable

safety among all upper-boundary points. This implies cl(B̃𝑎) ⊇
cl(B𝑎) for all interchain protocols Π𝐼 . □

Optimality of Timestamping for Multiple Blockchains. We

next highlight a situation with multiple blockchains that is com-

monly observed within multichain ecosystems like Cosmos. Sup-

pose only the Π0 validators check for the data availability of the

Π𝐼 blocks, and the cost of corrupting validators is the same for

the adversary A across all blockchains, with a total budget of 𝑓

adversarial validators. We then replace the quorum and fail-prone

systems of Π𝐼 with numbers 𝑓ℓ and 𝑓𝑠 such that Π𝐼 is live and safe

(w.o.p.) for all PPT A iff 𝑓 < 𝑓ℓ and 𝑓 < 𝑓𝑠 respectively. Here, 𝑓𝑎
is defined as the number of adversarial validators identified across

all chains in the event of a safety violation. This formulation is

essentially a projection of the fail-prone systems onto a line, where

each system is mapped to the cardinality of the smallest set in

it. Consider pareto-optimal interchain protocols Π𝐼 instantiated

with the blockchains Π𝑖 , 𝑖 ∈ [𝑘], each running Tendermint with

𝑛𝑖 = 3𝑓𝑖 +1 validators and a quorum of 𝑞𝑖 = 2𝑓𝑖 +1 such that 𝑓0 ≤ 𝑓𝑖
for all 𝑖 ∈ [𝑘]. In this case, we observe that all quorum and fail-

prone systems of non-trivial pareto-optimal interchain protocols

are achieved by the timestamping protocol:

Theorem 7.11. Consider interchain protocols Π𝐼 instantiated with
the blockchains Π𝑖 , 𝑖 ∈ [𝑘], each running Tendermint with 𝑛𝑖 =

3𝑓𝑖 + 1 validators and a quorum of 𝑞𝑖 = 2𝑓𝑖 + 1 such that 𝑓0 ≤ 𝑓𝑖
for all 𝑖 ∈ [𝑘]. Suppose only the Π0 validators check for the data
availability of the Π𝐼 blocks. Then, no interchain protocol can achieve
a liveness resilience larger than 𝑓0. Similarly, no interchain protocol
can achieve a slashable safety resilience larger than 𝑘 + ∑𝑖∈[𝑘] 𝑓𝑖 .
The timestamping protocol instantiated with these 𝑘 + 1 blockchains
achieves 𝑓0-liveness and 𝑘 +

∑
𝑖∈[𝑘] 𝑓𝑖 -slashable-safety.

Proof of Theorem 7.11. Since only the Π0 validators check for

data availability, by condition (c) of Theorem 7.8, Π𝐼 is live only if

Π0 is live, i.e. only if 𝑓 ≤ 𝑓0. Moreover, for any given 𝑖 ∈ [𝑘], Π𝑖 is

live (w.o.p., for all PPTA) iff 𝑓 ≤ 𝑓𝑖 . Hence, as 𝑓0 ≤ 𝑓𝑖 for all 𝑖 ∈ [𝑘],

liveness of Π𝐼 implies liveness of Π𝑖 for all 𝑖 ∈ [𝑘] (w.o.p., for all
PPT A), and Π𝐼 cannot achieve a larger liveness resilience than 𝑓0.

By Theorem 7.8, the only such upper-boundary property point is

DQ = {[𝑘]}, D𝑠 = {{0}, {1}, . . . , {𝑘}} and D𝑎 = {[𝑘]}. We know

from Theorem 5.1 that the timestamping protocol instantiated with

these 𝑘 + 1 blockchains satisfies this tuple of property systems, and

achieves 𝑓0-liveness,
∑
𝑖∈[𝑘] 𝑓𝑖 -safety, and 𝑘 +

∑
𝑖∈[𝑘] 𝑓𝑖 -slashable-

safety. □

7.6 Closing the Achievability Gap

Unlike the case with two blockchains, there are upper-boundary

points for three or more blockchains such that their quorum and

fail-prone systems cannot be achieved by the timestamping protocol

instantiated with these blockchains. Can these points be achieved

by any other interchain consensus protocol such as Trustboost [46]?

For instance, in the case of three blockchains, the interchain times-

tamping protocol is secure iff all three constituent blockchains are

live and at least one of them is safe. Trustboost, in turn, is secure

only if over two-third of the constituent blockchains are secure.

Therefore, in the case of three blockchains, Trustboost is secure iff

all constituent blockchains are both safe and live. Thus, neither the

interchain timestamping protocol nor Trustboost can achieve the

tuple of property systems DQ = {{0, 1}, {0, 2}, {1, 2}}, D𝑠 = ∅,
D𝑎 = {{0}, {1}, {2}} (an upper-boundary property point), i.e., the
protocol is live iff at least two of the constituent blockchains are live,

and safe iff all blockchains are safe (for all adversaries A, w.o.p.).

This leaves us with an achievability gap.

Recall that in Trustboost, each constituent blockchain emulates a

validator of a partially synchronous consensus protocol run on top

of these blockchains (this protocol is not necessarily the same as the

protocol executed by the validators of each individual blockchain).

We argue that the achievability gap can be closed by changing the

quorum of the partially synchronous consensus protocol used in

Trustboost. More specifically, we can replace the threshold rule

with the quorum systems. For instance, suppose Trustboost uses

HotStuff, and the quorum certificate of HotStuff requires votes from

over two-thirds of the constituent blockchains. Then, to achieve

the upper-boundary point (Q,B𝑠 ,B𝑎), we remove the threshold

rule and allow any set of blockchains within DQ = 𝑓𝑄 (Q) to act

as a quorum certificate of HotStuff. In the above example, it would

be any two chains out of the three chains.

We conjecture that the modified protocol achieves any desired

upper-boundary point. A smart contract on a constituent blockchain

without safety behaves like an equivocating validator, whereas a

smart contract on a blockchain without liveness behaves like a

validator with omission faults. Therefore, if all three blockchains

are safe, then none of them equivocates, so HotStuff is safe, imply-

ing the safety of the Trustboost ledger. If two blockchains are live,

HotStuff can always create a quorum certificate of two votes, so

HotStuff is live, implying the liveness of the Trustboost ledger. This

argument can be generalized for any 𝑘 > 2:

Theorem 7.12. For any positive integer 𝑘 , all upper-boundary
points for interchain protocols instantiated with 𝑘 blockchains can be
achieved by a Trustboost protocol instantiated with HotStuff and the
same blockchains. Hence, all quorum and fail-prone systems achiev-
able by pareto-optimal interchain protocols with 𝑘 blockchains can

14

Interchain Timestamping for Mesh Security

be achieved by a Trustboost protocol instantiated with HotStuff and
the same blockchains.

Proof of Theorem 7.12 is given in Appendix B.2.

The complexity of Trustboost highlighted in Section 2.3 raises

the question whether there is an interchain protocol that retains

the simplicity of timestamping, yet achieves all upper-boundary

points.

8 CROSS-STAKING

Finally, we analyze general cross-staking solutions, where valida-

tors are not restricted to the quorum systems of their blockchains

as in interchain protocols, but can form arbitrary quorum systems.

8.1 Optimality for SMR Protocols

We first identify the limits of quorum and fail-prone systems achiev-

able by any SMR protocol under partial synchrony.

Theorem 8.1 (Safety-Liveness Trade-off under Partial Syn-

chrony). For every SMR protocol Π that is Q-live and B𝑠 -safe under
partial synchrony, it holds that ∀𝑄1, 𝑄2 ∈ Q and 𝐵𝑠 ∈ B𝑠 : 𝑄1 ∩
𝑄2 ⊈ 𝐵𝑠 .

Theorem 8.2 (Slashable Safety-Liveness Trade-off). For ev-
ery SMR protocol Π that is Q-live and B𝑎-slashably-safe, it holds that
∀𝑄1, 𝑄2 ∈ Q and 𝐵𝑎 ∈ B𝑎 : 𝑄1 ∩𝑄2 ⊄ 𝐵𝑎 .

Theorem 8.1 applies the techniques used in the proof of [31,

Theorem 4.4] to the setting of quorum and fail-prone systems. The-

orem 8.2 applies the techniques used in the proof of [44, Theorem

B.1] to the setting of quorum and fail-prone systems. The result

holds under both synchrony and partial synchrony.

When all validators are not checking for the data availability

of the blocks, we further require the following condition for the

quorum system.

Theorem 8.3. Consider an SMR protocol with a quorum system
Q. Suppose only the validators in some set U ′ ⊆ U check for the
data availability of the output blocks. Then, for all 𝑄 ∈ Q, it holds
that 𝑄 ∩U ′ ≠ ∅.

Proofs of the Theorems 8.1,8.2 and 8.3 are given in Appendix B.4.

8.2 Closing the Achievability Gap

Theorem 8.4. Any tuple of quorum and fail-prone systems (Q,B𝑠 ,
B𝑎) achievable by a pareto-optimal protocol under partial synchrony
can be achieved by HotStuff executed with the quorums in Q.

Theorem 8.4 give a construction achieving all pareto-optimal

SMR protocols under partial synchrony. Its proof is the same as
the security proof for HotStuff [47] except that the quorums are

changed to be the sets in Q. General results under a synchronous
network can be found in Appendix A.

8.3 Gap between the Interchain and SMR

Protocols

The pareto-optimal interchain protocols constitute a strict subset of

the pareto-optimal SMR protocols executed with the same set of val-

idators (under partial synchrony as well). The easiest example of the

gap between them arises in the case of an interchain protocol with

two constituent blockchains Π0 and Π1, each running Tendermint

with 𝑛 = 3𝑓 +1 validators and a quorum of 2𝑓 +1. Whereas the only

non-trivial pareto-optimal interchain protocol instantiated with

these blockchains (and achievable by the timestamping protocol)

satisfies 𝑓 -liveness and 2𝑓 +2-slashable-safety, the (pareto-optimal)

HotStuff protocol executed by these 2𝑛 validators with a quorum

of 4𝑓 + 2 satisfies 2𝑓 -liveness and 2𝑓 + 2-slashable-safety, and the

closure of its quorum and fail-prone systems subsume those of the

interchain protocol.

ACKNOWLEDGEMENTS

We thank Yifei Wang and Dionysis Zindros for several insightful

discussions on this work. Ertem Nusret Tas is supported by the

Stanford Center for Blockchain Research.

REFERENCES

[1] Komodo. Advanced blockchain technology, focused on freedom. https://docs.

komodoplatform.com/whitepaper/introduction.html.

[2] Ics ?: Recursive tendermint. Website, 2019. https://github.com/cosmos/ibc/issues/

547.

[3] Today’s cryptocurrency prices by market cap. Website, 2021. https://

coinmarketcap.com/.

[4] Axelar. Website, 2023. https://axelar.network/.

[5] Composable finance. Website, 2023. https://www.composable.finance/.

[6] cosmos/cosmos-sdk: A Framework for Building High Value Public Blockchains.

Website, 2023. https://github.com/cosmos/cosmos-sdk.

[7] cosmos/relayer: An IBC relayer for IBC-Go. Website, 2023. https://github.com/

cosmos/relayer.

[8] Electron Labs. Website, 2023. https://www.electronlabs.org/.

[9] Example transaction for updating an IBC client. Web-

site, 2023. https://www.mintscan.io/cosmos/txs/

271e872f0ca7b247d0685b51a390b891a8d42eb179db2dc3e8bdcc7836cea850.

[10] Frequency of light client updates v.s. IBC packets. Website, 2023.

https://github.com/cosmos/relayer/blob/main/docs/advanced_usage.md#auto-

update-light-client.

[11] GraphQL | A query language for your API. Website, 2023. https://graphql.org/.

[12] IBC Token Transfer | Cosmos Developer Portal. Website, 2023. https://tutorials.

cosmos.network/academy/3-ibc/5-token-transfer.html.

[13] Map of zones - Cosmos network explorer. Website, 2023. https://mapofzones.

com/.

[14] Mesh security. Youtube, 2023. https://www.youtube.com/watch?v=GjX4ejD_

cRA&t=4670s.

[15] Mesh security. Website, 2023. https://github.com/osmosis-labs/mesh-security.

[16] Mintscan - Cosmos Blocks. Website, 2023. https://www.mintscan.io/cosmos/

blocks.

[17] NetworkX: Network Anlaysis in Python. Website, 2023. https://networkx.org/.

[18] Polymer Labs. Website, 2023. https://www.polymerlabs.org/.

[19] Replicated vs. Mesh Security (blog post from Informal Systems). Website, 2023.

https://informal.systems/2022/11/04/replicated-vs-mesh-security.

[20] Source code for mesh security analysis. Website, 2023. https://github.com/

SebastianElvis/mapofzones-crawler.

[21] Transport, Authentication, and Ordering Layer - Clients. Website, 2023. https:

//tutorials.cosmos.network/academy/3-ibc/4-clients.html#updating-a-client.

[22] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync

hotstuff: Simple and practical synchronous state machine replication. In IEEE
Symposium on Security and Privacy, pages 106–118. IEEE, 2020.

[23] Mustafa Al-Bassam. Lazyledger: A distributed data availability ledger with

client-side smart contracts. arXiv:1905.09274, 2019.
[24] Sarah Azouvi and Marko Vukolic. Pikachu: Securing pos blockchains from long-

range attacks by checkpointing into bitcoin pow using taproot. arXiv:2208.05408,
2022.

[25] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains,

2016.

[26] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT

consensus. arXiv:1807.04938, 2018.
[27] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.

arXiv:1710.09437, 2019.
[28] Christian Cachin and Björn Tackmann. Asymmetric distributed trust. In OPODIS,

volume 153 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019.

15

https://docs.komodoplatform.com/whitepaper/introduction.html
https://docs.komodoplatform.com/whitepaper/introduction.html
https://github.com/cosmos/ibc/issues/547
https://github.com/cosmos/ibc/issues/547
https://coinmarketcap.com/
https://coinmarketcap.com/
https://axelar.network/
https://www.composable.finance/
https://github.com/cosmos/cosmos-sdk
https://github.com/cosmos/relayer
https://github.com/cosmos/relayer
https://www.electronlabs.org/
https://www.mintscan.io/cosmos/txs/271e872f0ca7b247d0685b51a390b891a8d42eb179db2dc3e8bdcc7836cea850
https://www.mintscan.io/cosmos/txs/271e872f0ca7b247d0685b51a390b891a8d42eb179db2dc3e8bdcc7836cea850
https://github.com/cosmos/relayer/blob/main/docs/advanced_usage.md#auto-update-light-client
https://github.com/cosmos/relayer/blob/main/docs/advanced_usage.md#auto-update-light-client
https://graphql.org/
https://tutorials.cosmos.network/academy/3-ibc/5-token-transfer.html
https://tutorials.cosmos.network/academy/3-ibc/5-token-transfer.html
https://mapofzones.com/
https://mapofzones.com/
https://www.youtube.com/watch?v=GjX4ejD_cRA&t=4670s
https://www.youtube.com/watch?v=GjX4ejD_cRA&t=4670s
https://github.com/osmosis-labs/mesh-security
https://www.mintscan.io/cosmos/blocks
https://www.mintscan.io/cosmos/blocks
https://networkx.org/
https://www.polymerlabs.org/
https://informal.systems/2022/11/04/replicated-vs-mesh-security
https://github.com/SebastianElvis/mapofzones-crawler
https://github.com/SebastianElvis/mapofzones-crawler
https://tutorials.cosmos.network/academy/3-ibc/4-clients.html#updating-a-client
https://tutorials.cosmos.network/academy/3-ibc/4-clients.html#updating-a-client

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

[29] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI,
pages 173–186. USENIX Association, 1999.

[30] Benjamin Y. Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains.

In AFT, pages 1–11. ACM, 2020.

[31] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the

presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[32] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ledger com-

biners for fast settlement. In TCC (1), volume 12550 of Lecture Notes in Computer
Science, pages 322–352. Springer, 2020.

[33] Thomas Hepp, Patrick Wortner, Alexander Schönhals, and Bela Gipp. Securing

physical assets on the blockchain: Linking a novel object identification concept

with distributed ledgers. In CRYBLOCK@MobiSys, pages 60–65. ACM, 2018.

[34] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.
[35] Andrew Lewis-Pye and Tim Roughgarden. How does blockchain security dictate

blockchain implementation? In Conference on Computer and Communications
Security, CCS ’21. ACM, 2021.

[36] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed
Comput., 11(4):203–213, 1998.

[37] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.

org/bitcoin.pdf, 2008.

[38] Joachim Neu, Ertem Nusret Tas, and David Tse. Snap-and-Chat protocols: System

aspects. arXiv:2010.10447, 2020.
[39] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A

resolution of the availability-finality dilemma. In IEEE Symposium on Security
and Privacy, pages 446–465. IEEE, 2021.

[40] Joachim Neu, Ertem Nusret Tas, and David Tse. The availability-accountability

dilemma and its resolution via accountability gadgets. In Financial Cryptography,
volume 13411 of Lecture Notes in Computer Science, pages 541–559. Springer, 2022.

[41] Rafael Pass and Elaine Shi. The sleepy model of consensus. In ASIACRYPT 2017,
pages 380–409. Springer, 2017.

[42] Maxwell Sanchez and Justin Fisher. Proof-of-proof: A decentralized, trustless,

transparent, and scalable means of inheriting proof-of-work security. Website,

2018. https://veriblock.org/wp-content/uploads/2018/03/PoP-White-Paper.pdf.

[43] Suryanarayana Sankagiri, Xuechao Wang, Sreeram Kannan, and Pramod

Viswanath. Blockchain CAP theorem allows user-dependent adaptivity and

finality. In Financial Cryptography (2), volume 12675 of Lecture Notes in Computer
Science, pages 84–103. Springer, 2021.

[44] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod

Viswanath. BFT protocol forensics. In CCS, pages 1722–1743. ACM, 2021.

[45] Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, and Mohammad Ali

Maddah-Ali. Bitcoin-enhanced proof-of-stake security: Possibilities and impossi-

bilities. arXiv:2207.08392, 2022. To appear in IEEE S&P 2023.

[46] Xuechao Wang, Peiyao Sheng, Sreeram Kannan, Kartik Nayak, and Pramod

Viswanath. Trustboost: Boosting trust among interoperable blockchains. IACR
Cryptol. ePrint Arch., page 1428, 2022.

[47] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abra-

ham. Hotstuff: BFT consensus with linearity and responsiveness. In PODC, pages
347–356. ACM, 2019.

[48] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-

Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and William J. Knottenbelt.

Sok: Communication across distributed ledgers. In Financial Cryptography (2),
volume 12675 of Lecture Notes in Computer Science, pages 3–36. Springer, 2021.

A CROSS-STAKING UNDER SYNCHRONY

Limits of quorum and fail-prone systems achievable by any SMR

protocol under synchrony is given below:

Theorem A.1 (Safety-Liveness Trade-off under Synchrony).

For every SMR protocol Π that is Q-live and B𝑠 -safe under synchrony,
it holds that ∀𝑄 ∈ Q and 𝐵𝑠 ∈ B𝑠 : 𝑄 ⊈ 𝐵𝑠 .

The corresponding achievability result is stated by the following

theorem:

TheoremA.2. Any tuple of quorum and fail-prone systems (Q,B𝑠 ,
B𝑎) achievable by a pareto-optimal SMR protocol under synchrony
can be achieved by Sync HotStuff [22] executed with the quorums in
Q.

Theorem A.2 gives a construction achieving all pareto-optimal

SMR protocols under synchrony. Its proof is the same as the security

proof for Sync HotStuff [22], except that the quorums are changed

to be the sets in Q.

B PROOFS

B.1 Proof of Theorem 5.1

Proof of Theorem 5.1. We first prove the theorem for 𝑘 = 2.
Safety: Suppose the consumer blockchain is safe (w.o.p.) for all

PPT A. Then, C𝐶,c1
𝑟1 ⪯ C𝐶,c2

𝑟2 or vice versa (i.e., consumer chains

are prefixes) for any two clients c1 and c2 and rounds 𝑟1 and 𝑟2, im-

plying that the union T𝐶 of all finalized consumer blocks observed

by the clients across all rounds is a chain. In this case, for any two

valid timestamps ckpt𝑖 and ckpt𝑗 with the consumer blocks 𝐵𝑖 and

𝐵 𝑗 at the preimages of their hashes, it holds that either 𝐵𝑖 ⪯ 𝐵 𝑗 or

vice versa. Hence, for any client c and round 𝑟 , the timestamped

ledger Lc
𝑟 is a chain within T𝐶 . This implies that Lc1

𝑟1 ⪯ L
c2
𝑟2 or

vice versa for any two clients c1 and c2 and rounds 𝑟1 and 𝑟2.

Next, suppose the provider blockchain is safe (w.o.p.) for all PPT

A. Then, without loss of generality, C𝑃,c1
𝑟1 ⪯ C𝑃,c2

𝑟2 (i.e., provider
header chains are prefixes) for any two clients c1 and c2 and rounds
𝑟1 and 𝑟2. Let ckpt𝑖 , 𝑖 ∈ [𝑚1], and ckpt𝑗 , 𝑗 ∈ [𝑚2], 𝑚1 ≤ 𝑚2,

denote the sequence of valid timestamps in c1’s and c2’s views at
rounds 𝑟1 and 𝑟2 respectively. Note that the sequence observed by

c1 is a prefix of c2’s sequence.
Starting from the genesis consumer block, let 𝐵1 denote the first

consumer block in Lc1
𝑟1 that is not available or finalized in c2’s view

at round 𝑟2, and define 𝑖1 as the index of the first valid timestamp

whose preimage block has 𝐵1 in its prefix (if there is no such block

𝐵1, let 𝑖1 = ∞). Similarly, let 𝐵2 denote the first consumer block in

Lc2
𝑟2 that is not available or finalized in c1’s view at round 𝑟1, and

define 𝑖2 as the index of the first valid timestamp whose preimage

block has 𝐵2 in its prefix (if there is no such block 𝐵2, let 𝑖2 = ∞).
By the collision-resistance of the hash function and the security

of the pre-commit signatures, for any valid timestamp ckpt𝑖 , 𝑖 ∈
[𝑚1], with index 𝑖 < min(𝑖1, 𝑖2), the condition at Line 7 of Alg. 1 is

false for c1 if and only if it is false for c2. Similarly, the clients must

have obtained the same timestamped ledger L at Line 10 before the

stalling condition is triggered at Line 7 for the client that stalls at

the earlier timestamp. Moreover L ⪯ Clean(L,C) for all ledgers
L and chains C. Thus, if 𝑖1 = ∞, Lc1

𝑟1 ⪯ L
c2
𝑟2 . If 𝑖1 < ∞, then

𝑖2 = ∞, due to Line 7 being triggered earlier for c2. Thus, if 𝑖1 < 𝑖2,

then Lc2
𝑟2 ≺ L

c1
𝑟1 , and if 𝑖2 ≤ 𝑖1, then Lc1

𝑟1 ⪯ L
c2
𝑟2 , concluding the

safety proof.

If both constituent blockchains are not safe with non-negligible

probability for some PPT A, then two clients observing conflict-

ing consumer and provider chains output conflicting timestamped

ledgers with non-negligible probability.

Slashable Safety: As shown by the proof above, the timestamp-

ing protocol satisfies safety (w.o.p.) for a given set of adversarial

validators iff at least one of the constituent blockchains is safe

(w.o.p.) for all PPTA. Thus, if safety is violated, it must be the case

that safety is violated in all of the constituent blockchains.

Liveness: Suppose both constituent blockchains are live (w.o.p.)

for all PPT A. Then, any transaction tx input to Π0 at round 𝑟 ap-

pears in the finalized consumer chain in the view of all online clients,

including honest validators, at all rounds 𝑟 ′ ≥ max(GST, 𝑟) +𝑇𝐶 .
16

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://veriblock.org/wp-content/uploads/2018/03/PoP-White-Paper.pdf

Interchain Timestamping for Mesh Security

By roundmax(GST, 𝑟) +𝑇𝐶 , each honest validator sends a valid

timestamp for the finalized consumer block containing tx in its

prefix. All of these timestamps appear in the provider chains in

the view of all online clients at all rounds 𝑟 ′ ≥ max(GST, 𝑟) +
𝑇𝐶 +𝑇𝑃 . Moreover, for any chain C and ledger L, if tx ∈ C, then
tx ∈ Clean(L,C). Hence, for any online client c and round 𝑟 ′ ≥
max(GST, 𝑟) +𝑇𝐶 +𝑇𝑃 , tx ∈ Lc

max(GST,𝑟)+𝑇𝐶+𝑇𝑃 , concluding the

liveness proof.

If one of the constituent blockchains is not livewith non-negligible

probability for some PPTA, thenA can ensure that a client always

outputs an empty chain for the blockchain that is not live, thus

violate the liveness of the timestamping protocol.

Generalizing to k + 1 blockchains: We iteratively apply the

proof for the case of 2 blockchains to 𝑘 + 1 blockchains. If any of

the constituent blockchains (e.g., Π𝑖∗) is safe (w.o.p.) for all PPT A,

then the timestamped ledger of Π𝑖∗ is safe by the proof above. By

the same proof, the timestamped ledger of Π𝑖∗−1 is also safe, and so

on, implying the safety of the timestamped ledger of Π0, i.e. the Π𝐼

chain. In contrast, if all blockchains are live (w.o.p.) for all PPT A,

then by the liveness proof above, the timestamped ledger of Π𝑘−1
is live, and so on, implying the liveness of the timestamped ledger

of Π0, i.e., the Π𝐼 chain. □

B.2 Proofs for Section 7

Proof of Theorem 7.4. Towards contradiction, suppose there

exists an interchain protocol executed using the blockchains Π𝑖 , 𝑖 ∈
[𝑘], with validator setsU𝑖

, quorum systems Q𝑖 and fail-prone sys-

tems B𝑖𝑠 such that ∃𝑄1, 𝑄2 ∈ Q𝐼 and 𝐵𝑠 ∈ B𝐼𝑠 : 𝑓𝑄 (𝑄1)∩ 𝑓𝑄 (𝑄2) ⊆
𝑓𝑠 (𝐵𝑠). We will consider the following worlds, and through an in-

distinguishability argument, show the existence of a world with a

safety violation.

Let 𝑈 1
and 𝑈 2

denote the validators belonging to the chains in

𝑓𝑄 (𝑄1)\𝑓𝑄 (𝑄2) and 𝑓𝑄 (𝑄2)\𝑓𝑄 (𝑄1) respectively. Let 𝑈3 denote

the validators belonging to the chains in 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2).

World 1:

Setup. All messages sent by the honest validators are delivered

to their recipients in the next round. There is a single client c1.
Validators in 𝑄1

are honest and the rest are adversarial. The en-

vironment inputs a single transaction tx1 to the validators in 𝑄1

at round 0. The adversarial validators do not communicate with

those in 𝑄1
, and do not respond to c1. They also ensure that for all

𝑖 ∈ [𝑘], 𝑖 ∉ 𝑓𝑄 (𝑄1), all clients of Π𝑖 , including c1 and the validators
in𝑈 1

, output empty ledgers for Π𝑖 at all times (w.o.p.).

Output. By liveness, c1 outputs the ledger ⟨tx1⟩ by round 𝑇fin
(w.o.p.).

World 2:

Setup. All messages sent by the honest validators are delivered

to their recipients in the next round. There is a single client c2.
Validators in 𝑄2

are honest and the rest are adversarial. The en-

vironment inputs a single transaction tx2 to the validators in 𝑄2

at round 0. The adversarial validators do not communicate with

those in 𝑄2
, and do not respond to c2. They also ensure that for all

𝑖 ∈ [𝑘], 𝑖 ∉ 𝑓𝑄 (𝑄2), all clients of Π𝑖 , including c2 and the validators
in𝑈 2

, output empty ledgers for Π𝑖 at all times (w.o.p.).

Output. By liveness, c2 outputs the ledger ⟨tx2⟩ by round 𝑇fin
(w.o.p.).

World 3:

Setup. World 3 is a hybrid world. There are two client c1 and c2.
At round 0, the environment inputs the transaction tx1 to the valida-
tors in𝑄1

and tx2 to the validators in𝑄2
. Validators in𝑄1\(𝑈3∩𝐵𝑠)

and𝑄2\(𝑈3 ∩ 𝐵𝑠) are honest, those in𝑈3 ∩ 𝐵𝑠 are adversarial, and
the rest have crashed. All messages from the validators in 𝑈 1

to

c2 and𝑈 2
, and from those in𝑈 2

to c1 and𝑈 1
are delayed by the

adversary until after round 𝑇fin. Similarly, all messages from the

validators in𝑄1\𝑄2
to c2 and𝑄2\𝑄1

, and from those in𝑄2\𝑄1
to

c1 and 𝑄1\𝑄2
are delayed by the adversary until after round 𝑇fin.

The adversary ensures that for all 𝑖 ∈ [𝑘], 𝑖 ∉ 𝑓𝑄 (𝑄1) ∪ 𝑓𝑄 (𝑄2),
all clients of Π𝑖 , including c1 and c2 and the validators in𝑈 1 ∪𝑈 2

,

output empty ledgers for Π𝑖 at all times (w.o.p.), since the valida-

tors belonging to 𝑄1\𝑄2
and those belonging to 𝑄2\𝑄1

on these

blockchains are isolated from each other, and do not constitute a

quorum by themselves. Similarly, c1 and the validators in𝑈 1
out-

put empty ledgers for Π𝑖 , 𝑖 ∈ 𝑓𝑄 (𝑄2)\𝑓𝑄 (𝑄1); whereas c2 and the

validators in 𝑈 2
output empty ledgers for Π𝑖 , 𝑖 ∈ 𝑓𝑄 (𝑄1)\𝑓𝑄 (𝑄2),

until round𝑇fin. As 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2) ⊆ 𝑓𝑠 (𝐵𝑠), the adversarial val-
idators in𝑈3 ∩𝐵𝑠 emulate a split-brain attack via a safety violation

on the protocols Π𝑖 , 𝑖 ∈ 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2): One brain simulates the

execution in world 1 towards c1 and the validators in𝑈 1 ∩𝑄1
with

transaction tx1, and the other simulates the execution in world 2

towards c2 and the validators in𝑈 2 ∩𝑄2
with transaction tx2.

Output. The worlds 1 and 3 are indistinguishable in c1’s view
and the views of the honest validators in𝑈 1 ∩𝑄1

(w.o.p.). Hence,

c1 outputs the ledger ⟨tx1⟩ by round 𝑇fin. Similarly, the worlds 2

and 3 are indistinguishable in c2’s view and the views of the honest

validators in𝑈 2∩𝑄2
(w.o.p.). Hence, c2 outputs the ledger ⟨tx2⟩ by

round 𝑇fin. However, this implies a safety violation when only the

validators in𝑈3 ∩ 𝐵𝑠 are adversarial, which is a contradiction. □

Proof of Theorem 7.5. Proof follows the outline of the proof

of [44, Theorem B.1]. Towards contradiction, suppose there exists

an interchain protocol executed using the blockchains Π𝑖 , 𝑖 ∈ [𝑘],
with validator setsU𝑖

, quorum systems Q𝑖 and fail-prone systems

B𝑖𝑎 such that ∃𝑄1, 𝑄2 ∈ Q𝐼 and 𝐵𝑎 ∈ B𝐼𝑎 : 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2) ⊂
𝑓𝑎 (𝐵𝑎). We will consider the following worlds, and through an

indistinguishability argument, show the existence of a world where

a client identifies an honest validator as a protocol violator. We

assume a synchronous network throughout the following worlds.

Let 𝑈 1
and 𝑈 2

denote the validators belonging to the chains in

𝑓𝑄 (𝑄1)\𝑓𝑄 (𝑄2) and 𝑓𝑄 (𝑄2)\𝑓𝑄 (𝑄1) respectively. Let 𝑈3 denote

the validators belonging to the chains in 𝑓𝑄 (𝑄1)∩ 𝑓𝑄 (𝑄2). Suppose
𝑓𝑄 (𝑄1) ∪ 𝑓𝑄 (𝑄2) = [𝑘] (if not, we can redefine 𝑄2

to be a large

enough quorum to cover the blockchains not in the union).

World 1:

Setup. There is a single client c1. Validators in 𝑈 1 ∪ 𝑄1
are

honest and the rest are adversarial. The environment inputs a single

transaction tx1 to the validators in𝑈 1
at round 0. The adversarial

validators do not communicate with those in𝑈 1 ∪𝑄1
, and do not

respond to c1. They also ensure that for all 𝑖 ∈ [𝑘], 𝑖 ∉ 𝑓𝑄 (𝑄1), all
17

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

clients of Π𝑖 , including c1 and the validators in𝑈 1
, output empty

ledgers for Π𝑖 at all times (w.o.p.).

Output. By liveness, c1 outputs the ledger ⟨tx1⟩ by round 𝑇fin
(w.o.p.).

World 2: There is a single client c2. Validators in 𝑈 2 ∪ 𝑄2
are

honest and the rest are adversarial. The environment inputs a single

transaction tx2 to the validators in𝑈 2
at round 0. The adversarial

validators do not communicate with those in𝑈 2 ∪𝑄2
, and do not

respond to c2. They also ensure that for all 𝑖 ∈ [𝑘], 𝑖 ∉ 𝑓𝑄 (𝑄2), all
clients of Π𝑖 , including c2 and the validators in𝑈 2

, output empty

ledgers for Π𝑖 at all times (w.o.p.).

Output. By liveness, c2 outputs the ledger ⟨tx2⟩ by round 𝑇fin
(w.o.p.).

World 3:

Setup. There is a single client c1. Validators in 𝑈 1
are honest

and the rest are adversarial. At round 0, the environment inputs

the transaction tx1 to the validators in𝑈 1
and tx2 to the validators

in𝑈 2
.

The adversarial validators in 𝑈 2
do not communicate with c1

and the honest validators in 𝑈 1
, and ignore all messages sent by

them. The adversary ensures that c1 and the honest validators

in 𝑈 1
output empty ledgers for Π𝑖 , 𝑖 ∉ 𝑓𝑄 (𝑄1). The adversarial

validators in 𝑈3 emulate a split-brain attack via a safety violation

in the blockchains Π𝑖 , 𝑖 ∈ 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2): One brain simulates

the execution in world 1 towards c1 and the honest validators in

𝑈 1
with transaction tx1, and the other simulates the execution in

world 2 with the adversarial validators in𝑈 2
and transaction tx2.

Output. Theworlds 1 and 3 are indistinguishable in c1’s view and

the views of the honest validators in𝑈 1
(w.o.p.). Hence, c1 outputs

the ledger ⟨tx1⟩ by round𝑇fin. Since the adversarial validators in𝑈 2

simulate the execution in world 2, by emulating the client of world

2, an adversarial validator outputs the ledger ⟨tx2⟩ by round 𝑇fin.

Since this is a safety violation, a new client 𝑐3 asks the validators for

their transcripts, upon which the adversarial validators in𝑈 2
reply

with transcripts that omit the messages received from those in𝑈 1
.

The client c3 then runs the forensic protocol with these transcripts.

Since 𝑓𝑄 (𝑄1) ∩ 𝑓 (𝑄2) ⊂ 𝑓𝑎 (𝐵𝑎), c3 outputs a proof that identifies

at least one adversarial validator in𝑈 2
.

World 4:

Setup. There is a single client c2. Validators in 𝑈 2
are honest

and the rest are adversarial. At round 0, the environment inputs

the transaction tx2 to the validators in𝑈 1
and tx2 to the validators

in𝑈 2
.

The adversarial validators in 𝑈 1
do not communicate with c2

and the honest validators in 𝑈 2
, and ignore all messages sent by

them. The adversary ensures that c2 and the honest validators

in 𝑈 2
output empty ledgers for Π𝑖 , 𝑖 ∉ 𝑓𝑄 (𝑄2). The adversarial

validators in 𝑈3 emulate a split-brain attack via a safety violation

in the blockchains Π𝑖 , 𝑖 ∈ 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2): One brain simulates

the execution in world 2 towards c2 and the honest validators in

𝑈 2
with transaction tx2, and the other simulates the execution in

world 1 with the adversarial validators in𝑈 1
and transaction tx1.

Output. As 𝑓𝑄 (𝑄1) ∩ 𝑓𝑄 (𝑄2) ⊆ 𝑓𝑠 (𝐵𝑠), the worlds 2 and 4 are

indistinguishable in c2’s view and the views of the honest validators

in 𝑈 2
(w.o.p.). Hence, c2 outputs the ledger ⟨tx2⟩ by round 𝑇fin.

Since the validators in 𝑈 1
simulate the execution in world 1, by

emulating the client of world 1, an adversarial validator outputs

the ledger ⟨tx1⟩ by round 𝑇fin. Since this is a safety violation, a

new client 𝑐3 asks the validators for their transcripts, upon which

the adversarial validators in 𝑈 1
reply with transcripts that omit

the messages received from those in 𝑈 2
. Note that the worlds 3

and 4 (and the transcripts received therein) are indistinguishable in

the view of c3 (w.o.p.). Thus, upon running the forensic protocol

with these transcripts, c3 outputs a proof that identifies at least one

validator in 𝑈 2
. However, the validators in 𝑈 2

are honest in world

4, which is a contradiction.

Finally, we prove the second part of the theorem by contradiction.

Suppose∃𝐵𝑎 ∈ B𝑎, 𝑗 ∈ [𝑘] : ∃𝐵 𝑗
𝑎 ∈ B

𝑗
𝑎, 𝐵𝑎∩U 𝑗 ⊃ 𝐵

𝑗
𝑎 . Consider the

world, where the validators in the set 𝐵𝑎 are adversarial and cause

a safety violation in Π𝐼 . Since the validators from Π 𝑗 are irrefutably

identified by a forensic protocol after this safety violation, there

must also have been a safety violation in Π 𝑗 .

Now, consider a world where the validators in 𝐵′𝑎 = 𝐵
𝑗
𝑎 ∪

(𝐵𝑎\U 𝑗) are adversarial. In this newworld, the validators in (𝐵𝑎\U 𝑗)
emulate their execution from the previous world. The validators in

𝐵
𝑗
𝑎 again cause a safety violation in Π 𝑗 in the same way as in the

previous world. Hence, there is again a safety violation in Π𝐼 . How-

ever, the set 𝐵′𝑎 of adversarial validators is a subset of 𝐵𝑎 , implying

that the set of adversarial validators identified by the forensic pro-

tocol has to be a strict subset of 𝐵𝑎 . Thus, 𝐵
′
𝑎 ∈ B𝑎 and 𝐵′𝑎 ⊂ 𝐵𝑎 ,

which is a contradiction. □

Proof of Theorem 7.6. Towards contradiction, suppose ∃𝑄 ∈
Q𝐼 : ∀𝑗 ∈ [𝑘 ′], 𝑖 𝑗 ∉ 𝑓𝑄 (𝑄). Consider the execution, where all valida-
tors in 𝑄 belonging to the chains in 𝑓𝑄 (𝑄) are honest and the rest

have crashed. Note that these validators can still finalize Π𝐼 blocks

since the adversary can ensure that all chains not in 𝑓𝑄 (𝑄) output
empty ledgers in the views of all clients even when all validators in

𝑄 are honest. Since these validators do not check for the availability

of the proposed blocks, an adversarially proposed valid, yet unavail-

able block can be output as part of the chain of an honest validator.

However, in this case, the external clients checking for the data and

receiving this chain lose liveness, implying that the protocol Π𝐼

cannot satisfy liveness even when all validators in 𝑄 belonging to

the chains in 𝑓𝑄 (𝑄) are honest. This is a contradiction. □

Proof of Theorem 7.12. Consider an upper-boundary point (Q,B𝑠 ,B𝑎)
for the 𝑘 blockchains Π𝑖 , 𝑖 ∈ [𝑘] and a Trustboost protocol [46]

based on HotStuff [47], with quorums determined byDQ = 𝐹𝑄 (Q)
and consisting of these 𝑘 blockchains. Let (DQ,D𝑠 ,D𝑎) denote
the upper-boundary property point determined by DQ.

In Trustboost, each blockchain Π𝑖 simulates a validator of Hot-

Stuff via a smart contract, and the validators simulated by the

chains exchange messages via the CCC abstraction. In this par-

adigm, a blockchain with safety corresponds to a validator that

never commits a violation of the HotStuff protocol rules such that

their violation would provably identify the validator as a protocol

18

Interchain Timestamping for Mesh Security

violator (cf. [44, 47] for a list of these rules). An example of such vio-

lations is signing and broadcasting prepare votes for two conflicting

proposal within the same view. Then, the HotStuff instance run by

these validators provides D𝑎-slashable safety by a generalization

of HotStuff’s accountability proof in [38, 44]. As accountable safety

implies safety, HotStuff also satisfies safety (w.o.p., for all PPT A)

when all chains in a set within D𝑠 are safe (w.o.p., for all PPT A).

On the other hand, a blockchain with liveness corresponds to a

validator that emulates an honest validator in at least one execu-

tion trace of HotStuff (note that this validator might participate in

conflicting execution traces simultaneously, e.g., by double-signing

blocks). Thus, when the chains in a set withinDQ are all live, there

exists an execution trace of HotStuff such that an implementation

with only that execution trace would constitute a secure protocol.

Thus, HotStuff satisfies liveness (w.o.p., for all PPT A) when the

chains in a set within DQ are all live (w.o.p., for all PPT A).

Since the tuple of property systems (DQ,D𝑠 ,D𝑎) satisfied by

the Trustboost protocol above is an upper-boundary property point,

by Theorem 7.8, its quorum and fail-prone systems is the upper-

boundary point (Q,B𝑠 ,B𝑎) such that DQ = 𝑓𝑄 (Q), D𝑠 = 𝑓𝑠 (B𝑠)
and D𝑎 = 𝑓𝑎 (B𝑎). Hence, for any positive integer 𝑘 , all upper-

boundary points for interchain protocols with 𝑘 blockchains can

be achieved by a Trustboost protocol instantiated with HotStuff

and the same blockchains. Then, again by Theorem 7.8, quorum

and fail-prone systems of all pareto-optimal interchain protocols

are upper-boundary points and can be achieved by a Trustboost

protocol instantiated with HotStuff and the same blockchains. □

B.3 Proof of Theorem 7.8

Lemma B.1. Consider an upper-boundary point with quorum sys-
tem Q𝐼 for interchain protocols executed using the blockchains Π𝑖 ,
𝑖 ∈ [𝑘], with validator sets U𝑖 and quorum systems Q𝑖 . Then,
for all 𝑄 ∈ Q𝐼 , 𝑖 ∈ [𝑘], it holds that either 𝑄 ∩ U𝑖 ∈ Q𝑖 or
𝑄 ∩ U𝑖 = ∅. Moreover, if ∃𝑄 ∈ Q𝐼 , 𝑗 ∈ [𝑘] : 𝑄 ∩ U 𝑗 ∈ Q 𝑗 , then
∀𝑄 ′ ∈ Q 𝑗 : 𝑄 ′ ∪ (𝑄\U 𝑗) ∈ Q𝐼 .

Proof of Lemma B.1. Towards contradiction, suppose ∃𝑄 ∈
Q𝐼 , 𝑗 ∈ [𝑘] : 𝑄 ∩U 𝑗 ≠ ∅ and 𝑄 ∩U 𝑗 ∉ Q𝑖 for an upper-boundary

point 𝑃 = (Q𝐼 ,B𝐼𝑠 ,B𝐼𝑎).
Suppose ∃𝑄 𝑗 ∈ Q 𝑗 : 𝑄 ∩U 𝑗 ⊂ 𝑄 𝑗

. Consider the point 𝑃 ′ with
the same quorum and fail-prone systems as 𝑃 except that in place

of the set𝑄 , it has the set𝑄 ′ = 𝑄\U 𝑗
in its quorum system. Since 𝑃

satisfies Theorems 7.4 and 7.5, and 𝑓𝑄 (𝑄) = 𝑓𝑄 (𝑄 ′), 𝑃 ′ also satisfies
the same theorems. As 𝑄 ′ ⊂ 𝑄 , 𝑃 cannot be an upper-boundary

point.

Next, suppose ∃𝑄 𝑗 ∈ Q 𝑗 : 𝑄 ∩ U 𝑗 ⊃ 𝑄 𝑗
. Consider the point

𝑃 ′ with the same quorum and fail-prone systems as 𝑃 except that

instead of the set𝑄 , it has the set𝑄 ′ = (𝑄\U 𝑗) ∪𝑄 𝑗
in its quorum

system. Since 𝑃 satisfies Theorems 7.4 and 7.5, and 𝑓𝑄 (𝑄) = 𝑓𝑄 (𝑄 ′),
𝑃 ′ also satisfies the same theorems. As 𝑄 ′ ⊂ 𝑄 , 𝑃 cannot be an

upper-boundary point.

Finally, suppose ∃𝑄 ∈ Q𝐼 , 𝑗 ∈ [𝑘] : 𝑄 ∩ U 𝑗 ∈ Q 𝑗
, yet ∃𝑄 𝑗 ∈

Q 𝑗 : 𝑄 𝑗 ∪ (𝑄\U 𝑗) ∉ Q𝐼 . Consider the point 𝑃 ′ with the same

quorum and fail-prone systems as 𝑃 except that 𝑄 𝑗 ∪ (𝑄\U 𝑗) =
𝑄 ′ ∈ Q ′𝐼 for the quorum system Q ′𝐼 of that protocol. Since Π𝐼

satisfies Theorems 7.4 and 7.5, and 𝑓𝑄 (𝑄) = 𝑓𝑄 (𝑄 ′),Π′𝐼 also satisfies

the same theorems. As cl(Q𝐼) ⊂ cl(Q ′𝐼), 𝑃 cannot be an upper-

boundary point. □

Lemma B.2. Consider an upper-boundary point with fail-prone
system B𝐼𝑠 for interchain protocols executed using the blockchains
Π𝑖 , 𝑖 ∈ [𝑘], with validator setsU𝑖 and fail-prone systems B𝑖𝑠 . Then,
for all 𝐵𝑠 ∈ B𝐼𝑠 , 𝑖 ∈ [𝑘], it holds that either 𝐵𝑠 ∩ U𝑖 ∈ B𝑖𝑠 or
𝐵𝑠 ∩U𝑖 = U𝑖 . Moreover, if ∃𝐵𝑠 ∈ B𝐼𝑠 , 𝑗 ∈ [𝑘] : 𝐵𝑠 ∩U 𝑗 ∈ B 𝑗

𝑠 , then
∀𝐵′𝑠 ∈ B

𝑗
𝑠 : 𝐵

′
𝑠 ∪ (𝐵𝑠\U 𝑗) ∈ B𝐼𝑠 .

Proof of Lemma B.2. Towards contradiction, suppose ∃𝐵𝑠 ∈
B𝐼𝑠 , 𝑗 ∈ [𝑘] : 𝐵𝑠 ∩ U 𝑗 ≠ U 𝑗

and 𝐵𝑠 ∩ U 𝑗 ∉ B𝑖𝑠 for an upper-

boundary point 𝑃 = (Q𝐼 ,B𝐼𝑠 ,B𝐼𝑎).
Suppose ∃𝐵 𝑗

𝑠 ∈ B
𝑗
𝑠 : 𝐵𝑠 ∩U 𝑗 ⊂ 𝐵

𝑗
𝑠 . Consider the point 𝑃

′
with

the same quorum and fail-prone systems as 𝑃 except that in place of

the set 𝐵𝑠 , it has the set 𝐵
′
𝑠 = 𝐵𝑠 ∪ 𝐵 𝑗

𝑠 in its quorum system. Since 𝑃

satisfies Theorems 7.4 and 7.5, and 𝑓𝑠 (𝐵𝑠) = 𝑓𝑠 (𝐵′𝑠), 𝑃 ′ also satisfies
the same theorems. As 𝐵𝑠 ⊂ 𝐵′𝑠 , 𝑃 cannot be an upper-boundary

point.

Next, suppose ∃𝐵 𝑗
𝑠 ∈ B

𝑗
𝑠 : 𝐵𝑠 ∩ U 𝑗 ⊃ 𝐵

𝑗
𝑠 . Consider the point

𝑃 ′ with the same quorum and fail-prone systems as 𝑃 except that

instead of the set 𝐵𝑠 , it has the set 𝐵
′
𝑠 = 𝐵𝑠 ∪ U 𝑗

in its quorum

system. Since 𝑃 satisfies Theorems 7.4 and 7.5, and 𝑓𝑠 (𝐵𝑠) = 𝑓𝑠 (𝐵′𝑠),
𝑃 ′ also satisfies the same theorems. As 𝐵𝑠 ⊂ 𝐵′𝑠 , 𝑃 cannot be an

upper-boundary point.

Finally, suppose ∃𝐵𝑠 ∈ B𝐼𝑠 , 𝑗 ∈ [𝑘] : 𝐵𝑠 ∩ U 𝑗 ∈ B 𝑗
𝑠 , yet ∃𝐵

𝑗
𝑠 ∈

B 𝑗
𝑠 : 𝐵

𝑗
𝑠 ∪ (𝐵𝑠\U 𝑗) ∉ B𝐼𝑠 . Consider the point 𝑃 ′ with the same

quorum and fail-prone systems as 𝑃 except that 𝐵
𝑗
𝑠 ∪ (𝐵𝑠\U 𝑗) =

𝐵′𝑠 ∈ B
′𝐼
𝑠 for the fail-prone system B′𝐼𝑠 of that protocol. Since Π𝐼

satisfies Theorems 7.4 and 7.5, and 𝑓𝑠 (𝐵𝑠) = 𝑓𝑠 (𝐵′𝑠), Π′𝐼 also satisfies
the same theorems. As cl(B𝐼𝑠) ⊂ cl(B′𝐼𝑠), 𝑃 cannot be an upper-

boundary point. □

Lemma B.3. Consider an upper-boundary point with quorum sys-
tem B𝐼𝑎 for interchain protocols executed using the blockchains Π𝑖 ,
𝑖 ∈ [𝑘], with validator sets U𝑖 and fail-prone systems B𝑖𝑎 . Then,
for all 𝐵𝑎 ∈ B𝐼𝑎, 𝑖 ∈ [𝑘], it holds that either 𝐵𝑎 ∩ U𝑖 ∈ B𝑖𝑎 or
𝐵𝑎 ∩U𝑖 = ∅. Moreover, if ∃𝐵𝑎 ∈ B𝐼𝑎, 𝑗 ∈ [𝑘] : 𝐵𝑎 ∩U 𝑗 ∈ B 𝑗

𝑎 , then
∀𝐵′𝑎 ∈ B

𝑗
𝑎 : 𝐵

′
𝑎 ∪ (𝐵𝑎\U 𝑗) ∈ B𝐼𝑎 .

Proof of Lemma B.3. Towards contradiction, suppose ∃𝐵𝑎 ∈
B𝐼𝑎, 𝑗 ∈ [𝑘] : 𝐵𝑎∩U 𝑗 ≠ ∅ and 𝐵𝑎∩U 𝑗 ∉ B𝑖𝑎 for an upper-boundary
point 𝑃 = (Q𝐼 ,B𝐼𝑠 ,B𝐼𝑎).

Suppose ∃𝐵 𝑗
𝑎 ∈ B

𝑗
𝑎 : 𝐵𝑎 ∩U 𝑗 ⊂ 𝐵

𝑗
𝑎 . Consider the point 𝑃

′
with

the same quorum and fail-prone systems as 𝑃 except that in place of

the set 𝐵𝑎 , it has the set 𝐵
′
𝑎 = 𝐵𝑎 ∪𝐵 𝑗

𝑎 in its quorum system. Since 𝑃

satisfies Theorems 7.4 and 7.5, and 𝑓𝑎 (𝐵𝑎) = 𝑓𝑎 (𝐵′𝑎), 𝑃 ′ also satisfies
the same theorems. As 𝐵𝑎 ⊂ 𝐵′𝑎 , 𝑃 cannot be an upper-boundary

point.

Next, suppose ∃𝐵 𝑗
𝑎 ∈ B

𝑗
𝑎 : 𝐵𝑎 ∩ U 𝑗 ⊃ 𝐵

𝑗
𝑎 . However, this is a

violation of Theorem 7.5. Hence, 𝑃 cannot be an upper-boundary

point.

Finally, suppose ∃𝐵𝑎 ∈ B𝐼𝑎, 𝑗 ∈ [𝑘] : 𝐵𝑎 ∩ U 𝑗 ∈ B 𝑗
𝑎 , yet ∃𝐵

𝑗
𝑎 ∈

B 𝑗
𝑎 : 𝐵

𝑗
𝑎 ∪ (𝐵𝑎\U 𝑗) ∉ B𝐼𝑎 . Consider the point 𝑃 ′ with the same

quorum and fail-prone systems as 𝑃 except that 𝐵
𝑗
𝑎 ∪ (𝐵𝑎\U 𝑗) =

𝐵′𝑎 ∈ B
′𝐼
𝑎 for the quorum system B′𝐼𝑎 of that protocol. Since Π𝐼

19

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

satisfies Theorems 7.4 and 7.5, 𝑓𝑎 (𝐵𝑎) = 𝑓𝑎 (𝐵′𝑎) and 𝐵′𝑎 ∩U 𝑗 ∈ B 𝑗
𝑎 ,

Π′
𝐼
also satisfies the same theorems. Hence, as cl(B𝐼𝑎) ⊂ cl(B′𝐼𝑎), 𝑃

cannot be an upper-boundary point. □

Proof of Theorem 7.8. No tuple of quorum and fail-prone sys-

tems (Q,B𝑠 ,B𝑎) achievable by an interchain protocol Π𝐼 can dom-

inate an upper-boundary point (Q ′,B′𝑠 ,B′𝑎). To prove this, sup-

pose (Q,B𝑠 ,B𝑎) dominates (Q ′,B′𝑠 ,B′𝑎). Then, either (Q,B𝑠 ,B𝑎)
does not satisfy one of the Theorems 7.4 and 7.6 (or Theorems 7.5

and 7.6) or it satisfies both theorems. In the first case, no such tuple

of quorum and fail-prone systems (Q,B𝑠 ,B𝑎) can be achievable

by an interchain protocol by the same theorems. In the latter case,

(Q ′,B′𝑠 ,B′𝑎) cannot be an upper-boundary point per Definition 7.7,

which is again a contradiction.

By the reasoning above, if the tuple (Q,B𝑠 ,B𝑎) of quorum
and fail-prone systems of an interchain protocol Π𝐼 is an upper-

boundary point, then no tuple (Q ′,B′𝑠 ,B′𝑎) achievable by an in-

terchain protocol can dominate (Q,B𝑠 ,B𝑎), implying that Π𝐼 is a

pareto-optimal protocol.

Finally, consider such a protocol whose tuple (Q,B𝑠 ,B𝑎) of quo-
rum and fail-prone systems constitutes an upper-boundary point.

By Lemma B.1, for all𝑄 ∈ Q𝐼 , 𝑖 ∈ [𝑘], it holds that either𝑄 ∩U𝑖 ∈
Q𝑖 or 𝑄 ∩ U𝑖 = ∅. Moreover, if ∃𝑄 ∈ Q𝐼 , 𝑗 ∈ [𝑘] : 𝑄 ∩ U 𝑗 ∈ Q 𝑗

,

then ∀𝑄 ′ ∈ Q 𝑗 : 𝑄 ′ ∪ (𝑄\U 𝑗) ∈ Q𝐼 . Given these observations,

satisfiability of liveness for the protocol Π𝐼 can be expressed as a

boolean function of the predicates ℓ𝑖 , 𝑖 ∈ [𝑘], such that ℓ𝑖 becomes

true iff for a given set of adversarial validators, the protocol Π𝑖

satisfies liveness for all PPT A (w.o.p.). This implies the existence

of a property system DQ such that Π𝐼 is DQ-live, and vice-versa.

Similarly, by Lemma B.2, satisfiability of safety for Π𝐼 can be ex-

pressed as a boolean function of the predicates 𝑠𝑖 , 𝑖 ∈ [𝑘], such that

𝑠𝑖 becomes true iff for a given set of adversarial validators, the proto-

col Π𝑖 does not satisfy safety for some PPTA (with non-negligible

probability). This implies the existence of a property system D𝑠

such that Π𝐼 isD𝑠 -safe, and vice-versa. Finally, by Lemma B.3, there

exists a property system D𝑎 such that Π𝐼 is D𝑎-accountably-safe,

and vice-versa.

For the first direction of the implication, by Theorems 7.4 and 7.5,

for systems DQ = {𝑓𝑄 (𝑄) : 𝑄 ∈ Q}, D𝑠 = {𝑓𝑠 (𝐵𝑠) : 𝐵𝑠 ∈ B𝑠 }
and D𝑎 = {𝑓𝑎 (𝐵𝑎) : 𝐵𝑎 ∈ B𝑎} of Π𝐼 , it holds that ∀𝐷𝑄1, 𝐷𝑄2 ∈
DQ, 𝐷𝑠 ∈ D𝑠 , 𝐷𝑎 ∈ D𝑎 : 𝐷𝑄

1 ∩ 𝐷𝑄2 ⊈ 𝐷𝑠 (condition 1) and

𝐷𝑄1 ∩ 𝐷𝑄2 ⊄ 𝐷𝑎 (condition 2). Theorem 7.6 implies condition

3. Condition 4 follows from the fact that no tuple (Q,B𝑠 ,B𝑎) of
quorum and fail-prone systems satisfying the Theorems 7.4, 7.5

and 7.6 can dominate that of Π𝐼 .

For the other direction of the implication, the conditions (a)-(b)-

(c) imply that the tuple of quorum and fail-prone systems for Π𝐼

satisfies Theorems 7.4, 7.5 and 7.6 respectively. We have observed

that the quorum and fail-prone systems of Π𝐼 constitute an upper-

boundary point iffΠ𝐼 is characterized by a tuple of property systems.

Then, the condition (d) implies that there is no tuple of quorum and

fail-prone systems dominating that of Π𝐼 while satisfying the same

theorems above. This concludes the proof. □

B.4 Proofs for Section 8

Proof of Theorem A.1. Towards contradiction, suppose there

exists a protocol with validator setU, quorum system Q and fail-

prone system B𝑠 such that ∃𝑄 ∈ Q and 𝐵𝑠 ∈ B𝑠 : 𝑄 ⊆ 𝐵𝑠 . We will

show a safety violation when the validators in 𝐵𝑠 are adversarial

through the following worlds. Suppose there is a quorum 𝑄 ′ ∈ Q
such that𝑄 ′ ≠ 𝑄 (If there is no such quorum𝑄 ′, let𝑄 ′ = 𝑄). Then,

define 𝑃1 = 𝑄\𝑄 ′, 𝑃2 = U\𝑄 and 𝑅 = 𝑄 ∩𝑄 ′.

World 1:

Setup. There is a single client c1. Validators in 𝑃1 ∪ 𝑅 are honest

and those in 𝑃2 are adversarial. The environment inputs a single

transaction tx1 to the validators in 𝑃1∪𝑅 at round 0. The adversarial
validators do not communicate with those in 𝑃1 ∪ 𝑅, and emulate

the behavior of the honest validators in 𝑃2 in world 2 towards c1
until round 𝑇fin.

Output. By liveness, c1 outputs the ledger ⟨tx1⟩ by round 𝑇fin
(w.o.p.).

World 2:

Setup. There is a single client c2. Validators in 𝑃2 ∪ 𝑅 are honest

and those in 𝑃1 are adversarial. The environment inputs a single

transaction tx2 to the validators in 𝑃2 ∪ 𝑅 at round 𝑇fin + 1. The
adversarial validators do not communicate with those in 𝑃2 ∪ 𝑅,

and do not respond to c2.

Output. By liveness, c2 outputs the ledger ⟨tx2⟩ at some round

in (𝑇fin, 2𝑇fin] (w.o.p.).

World 3:

Setup. There are two client c1 and c2 Validators in 𝑃2 are honest

and those in 𝐵𝑠 ⊇ 𝑃1 ∪ 𝑅 are adversarial. At round 0, the environ-
ment inputs the transaction tx1 to the validators in 𝑃1 ∪ 𝑅. Until
round𝑇fin, the validators in 𝑃1 ∪𝑅 simulate the execution in world

1 towards c1. Simultaneously, validators in 𝑅 simulate the execu-

tion in world 2 towards those in 𝑃2 and the client c2 (split-brain

attack), whereas those in 𝑃1 ignore all messages from the validators

in 𝑃2, and do not communicate with them and c2. At round𝑇fin +1,
the environment inputs the transaction tx2 to the validators in

𝑃2 ∪ 𝑅. Validators in 𝑅 continue to simulate the execution in world

2 towards those in 𝑃2 and c2.

Output. Since the worlds 1 and 3 are indistinguishable in c1’s
view (w.o.p.), c1 outputs the ledger ⟨tx1⟩ at round 𝑇fin. Similarly,

as the worlds 2 and 3 are indistinguishable in c2’s view (w.o.p.), c2
outputs the ledger ⟨tx2⟩ at the same round as world 2, i.e. within
(𝑇fin, 2𝑇fin]. However, this implies a safety violation, which is a

contradiction. □

Proof of Theorem 8.1. Towards contradiction, suppose there

exists a protocol with validator setU, quorum system Q and fail-

prone system B𝑠 such that ∃𝑄1, 𝑄2 ∈ Q and 𝐵𝑠 ∈ B𝑠 : 𝑄1 ∩𝑄2 ⊆
𝐵𝑠 . We will show a safety violation when the validators in 𝐵𝑠 are

adversarial through the following worlds. Define 𝑃1 = 𝑄1\𝑄2
,

𝑃2 = (𝑄2\𝑄1) ∪ (U\(𝑄1 ∪𝑄2)) and 𝑅 = 𝑄1 ∩𝑄2
(same definition

is upheld for the case 𝑄1 = 𝑄2
).

World 1:
20

Interchain Timestamping for Mesh Security

Setup. All messages sent by the honest validators are delivered

to their recipients in the next round. There is a single client c1.
Validators in 𝑃1 ∪ 𝑅 are honest and those in 𝑃2 are adversarial. The

environment inputs a single transaction tx1 to the validators in

𝑃1 ∪ 𝑅 at round 0. The adversarial validators do not communicate

with those in 𝑃1 ∪ 𝑅, and do not respond to c1.

Output. By liveness, c1 outputs the ledger ⟨tx1⟩ by round 𝑇fin
(w.o.p.).

World 2:

Setup. All messages sent by the honest validators are delivered

to their recipients in the next round. There is a single client c2.
Validators in 𝑃2 ∪ 𝑅 are honest and those in 𝑃1 are adversarial. The

environment inputs a single transaction tx2 to the validators in

𝑃2 ∪ 𝑅 at round 0. The adversarial validators do not communicate

with those in 𝑃2 ∪ 𝑅, and do not respond to c2.

Output. By liveness, c2 outputs the ledger ⟨tx2⟩ by round 𝑇fin
(w.o.p.).

World 3:

Setup. World 3 is a hybrid world. There are two client c1 and c2.
Validators in 𝑃1 and 𝑃2 are honest and those in 𝑅 are adversarial.

At round 0, the environment inputs the transaction tx1 to the

validators in 𝑃1∪𝑅 and tx2 to the validators in 𝑃2∪𝑅. All messages

from the validators in 𝑃1 to 𝑃2 and c2 and from those in 𝑃2 to 𝑃1 and

c1 are delayed by the adversary until after round𝑇fin. Validators in

𝑅 do a split-brain attack: One brain simulates the execution in world

1 towards 𝑃1 and c1 with transaction tx1, and the other simulates

the execution in world 2 towards 𝑃2 and c2 with transaction tx2.

Output. Since the worlds 1 and 3 are indistinguishable in c1’s
view (w.o.p.), c1 outputs the ledger ⟨tx1⟩ by round 𝑇fin. Similarly,

as the worlds 2 and 3 are indistinguishable in c2’s view (w.o.p.),

c2 outputs the ledger ⟨tx2⟩ by round 𝑇fin. However, this implies a

safety violation when only the validators in 𝑅 ⊆ 𝐵𝑠 are adversarial,

which is a contradiction. □

Proof of Theorem 8.2. Proof follows the outline of the proof

of [44, Theorem B.1]. Towards contradiction, suppose there exists

a protocol with validator setU, quorum system Q and fail-prone

system B𝑎 such that ∃𝑄1, 𝑄2 ∈ Q and 𝐵𝑎 ∈ B𝑎 : 𝑄1 ∩ 𝑄2 ⊂ 𝐵𝑎 .

Through the following worlds, we will show a world, where an

honest validator is identified as a protocol violator by the forensic

protocol. Define 𝑃1 = 𝑄1\𝑄2
, 𝑃2 = (𝑄2\𝑄1) ∪ (U\(𝑄1∪𝑄2)) and

𝑅 = 𝑄1 ∩𝑄2
(same definition is upheld for the case 𝑄1 = 𝑄2

). We

assume a synchronous network throughout the following worlds.

World 1:

Setup. There is a single client c1. Validators in 𝑃1 ∪ 𝑅 are honest

and those in 𝑃2 are adversarial. The environment inputs a single

transaction tx1 to the validators in 𝑃1∪𝑅 at round 0. The adversarial
validators do not communicate with those in 𝑃1 ∪ 𝑅, and do not

respond to c1.

Output. By liveness, c1 outputs the ledger ⟨tx1⟩ by round 𝑇fin
(w.o.p.).

World 2:

Setup. There is a single client c2. Validators in 𝑃2 ∪ 𝑅 are honest

and those in 𝑃1 are adversarial. The environment inputs a single

transaction tx2 to the validators in 𝑃2∪𝑅 at round 0. The adversarial
validators do not communicate with those in 𝑃2 ∪ 𝑅, and do not

respond to c2.

Output. By liveness, c2 outputs the ledger ⟨tx2⟩ by round 𝑇fin
(w.o.p.).

World 3:

Setup. There is a single client c1. Validators in 𝑃1 are honest

and those in 𝑃2 ∪ 𝑅 are adversarial. At round 0, the environment

inputs the transaction tx1 to the validators in 𝑃1 ∪ 𝑅 and tx2 to

the validators in 𝑃2 ∪𝑅. Validators in 𝑅 do a split-brain attack: One

brain simulates the execution in world 1 towards 𝑃1 and c1 with

transaction tx1, and the other simulates the execution in world 2

with 𝑃2 with transaction tx2. Validators in 𝑃2 simulate the execu-

tion in world 2, do not communicate with those in 𝑃1 and c1, and
ignore all messages sent by them.

Output. Since the worlds 1 and 3 are indistinguishable in c1’s
view (w.o.p.), c1 outputs the ledger ⟨tx1⟩ by round 𝑇fin. Since the

validators in 𝑃2 ∪ 𝑅 simulate the execution in world 2, by emu-

lating the client of world 2, an adversarial validator outputs the

ledger ⟨tx2⟩ by round 𝑇fin. Since this is a safety violation, a new

client 𝑐3 asks the validators for their transcripts, upon which the

adversarial validators in 𝑃2 reply with transcripts that omit the

messages received from those in 𝑃1. The client c3 then runs the

forensic protocol with these transcripts and outputs a proof that

identifies at least one adversarial validator in 𝑃2 as 𝑅 ⊂ 𝐵𝑎 .

World 4:

Setup. There is a single client c2. Validators in 𝑃2 are honest

and those in 𝑃1 ∪ 𝑅 are adversarial. At round 0, the environment

inputs the transaction tx2 to the validators in 𝑃2 ∪ 𝑅 and tx1 to

the validators in 𝑃1 ∪𝑅. Validators in 𝑅 do a split-brain attack: One

brain simulates the execution in world 1 with 𝑃1 with transaction

tx1, and the other simulates the execution in world 2 towards 𝑃2
and c2 with transaction tx2. Validators in 𝑃1 simulate the execution

in world 1, do not communicate with those in 𝑃2 and c2, and ignore
all messages sent by them.

Output. Since the worlds 2 and 4 are indistinguishable in c2’s
view (w.o.p.), c2 outputs the ledger ⟨tx2⟩ by round 𝑇fin. Since the

validators in 𝑃1∪𝑅 simulate the execution in world 1, by emulating

the client of world 1, an adversarial validator outputs the ledger

⟨tx1⟩ by round 𝑇fin. Since this is a safety violation, a new client 𝑐3
asks the validators for their transcripts, upon which the adversar-

ial validators in 𝑃1 reply with transcripts that omit the messages

received from those in 𝑃2. Note that the worlds 3 and 4 (and the

transcripts received therein) are indistinguishable in the view of

c3 (w.o.p.). Thus, upon running the forensic protocol with these

transcripts, c3 outputs a proof that identifies at least one validator

in 𝑃2. However, the validators in 𝑃2 are honest in world 4, which is

a contradiction. □

Proof of Theorem 8.3. Towards contradiction, suppose ∃𝑄 ∈
Q : 𝑄 ∩U ′ = ∅. Consider the execution, where all validators in 𝑄

are honest and the rest have crashed. Since the validators in𝑄 do not

21

Ertem Nusret Tas, Runchao Han, David Tse, Fisher Yu, and Kamilla Nazirkhanova

check for the availability of the proposed blocks, an adversarially

proposed valid, yet unavailable block can be output as part of the

chain of an honest validator in𝑄 . However, in this case, the external

clients checking for the data and receiving this chain lose liveness,

implying that the protocol cannot satisfy liveness even when all

validators in 𝑄 are honest. This is a contradiction. □

22

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Interchain Timestamping
	1.3 Security Guarantees
	1.4 Design Challenges
	1.5 Interchain Timestamping for Mesh Security
	1.6 Outline

	2 Related work
	2.1 Snap-and-Chat Protocols
	2.2 Babylon
	2.3 Trustboost

	3 Preliminaries
	4 Interchain Timestamping Protocol
	4.1 Timestamping on One Provider
	4.2 Timestamping on Multiple Providers
	4.3 Interchain Timestamping via IBC

	5 Interchain Timestamping Security
	5.1 Slashable Safety-Liveness/Latency Tradeoff

	6 Mesh Security for Cosmos Zones
	6.1 Goals of Evaluation
	6.2 Data Collection and Experimental Setting
	6.3 Summary of Cosmos Zones
	6.4 Security Evaluation
	6.5 Latency and Cost Evaluation
	6.6 Comparison to Cross-Staking
	6.7 Beyond Cosmos

	7 Optimality of Interchain Timestamping
	7.1 Interchain Consensus Protocols
	7.2 Quorum and Fail-Prone Systems
	7.3 Upper Bounds on Interchain Protocols
	7.4 Property Based Security
	7.5 Optimality of Timestamping
	7.6 Closing the Achievability Gap

	8 Cross-staking
	8.1 Optimality for SMR Protocols
	8.2 Closing the Achievability Gap
	8.3 Gap between the Interchain and SMR Protocols

	References
	A Cross-staking Under Synchrony
	B Proofs
	B.1 Proof of Theorem 5.1
	B.2 Proofs for Section 7
	B.3 Proof of Theorem 7.8
	B.4 Proofs for Section 8

