
Improving LSHADE by means of a pre-screening mechanism
Mateusz Zaborski∗

M.Zaborski@mini.pw.edu.pl
Warsaw University of Technology

Warsaw, Poland

Jacek Mańdziuk∗
mandziuk@mini.pw.edu.pl

Warsaw University of Technology
Warsaw, Poland

ABSTRACT
Evolutionary algorithms have proven to be highly effective in con-
tinuous optimization, especially when numerous fitness function
evaluations (FFEs) are possible. In certain cases, however, an ex-
pensive optimization approach (i.e. with relatively low number of
FFEs) must be taken, and such a setting is considered in this work.
The paper introduces an extension to the well-known LSHADE
algorithm in the form of a pre-screening mechanism (psLSHADE).
The proposed pre-screening relies on the three following compo-
nents: a specific initial sampling procedure, an archive of samples,
and a global linear meta-model of a fitness function that consists
of 6 independent transformations of variables. The pre-screening
mechanism preliminary assesses the trial vectors and designates
the best one of them for further evaluation with the fitness function.
The performance of psLSHADE is evaluated using the CEC2021
benchmark in an expensive scenario with an optimization budget
of 102 − 104 FFEs per dimension. We compare psLSHADE with
the baseline LSHADE method and the MadDE algorithm. The re-
sults indicate that with restricted optimization budgets psLSHADE
visibly outperforms both competitive algorithms. In addition, the
use of the pre-screening mechanism results in faster population
convergence of psLSHADE compared to LSHADE.

CCS CONCEPTS
• Theory of computation→ Continuous optimization; Evolu-
tionary algorithms.

KEYWORDS
Surrogate model, LSHADE, Meta-model

1 INTRODUCTION
Evolutionary algorithms (EAs) are applicable to various global opti-
mization problems [28]. In this work, we focus on single-objective
continuous optimization, in which EAs have proven to be particu-
larly useful [6].

The widely known Differential Evolution (DE) algorithm [23]
was initially designed as a relatively simple but efficient heuris-
tic. Despite unsophisticated structure, it became the precursor
of various more advanced and specialized algorithms. For in-
stance, Adaptive Differential Evolution with Optional External
Archive [32] (JADE) introduced parameter adaptation. Then,
Success-History Based Parameter Adaptation for Differential Evo-
lution [25] (SHADE) presented a more efficient parameter adap-
tation mechanism utilizing an external memory. Afterward, the
LSHADE [27], that extends SHADE with Linear Population Size
Reduction (LPSR), has demonstrated to ameliorate the performance
even further. Also, a population restart mechanism appeared to be

∗Both authors contributed equally to this research.

beneficial in certain experimental settings [26]. Moreover, several
other algorithms enhanced certain DE mechanisms, e.g. AGSK [18],
LSHADE_cnEpSin [3], j2020 [8], IMODE [22], jDE [7], or SaDE [21].

Finally, the recently proposed MadDE algorithm [5], presented
at the CEC2021 Special Session and Competition on Single Objective
Bound Constrained Optimization, turned out to be superior to both
LSHADE and LSHADE_cnEpSin.

Besides DE-related methods there is also another family of ef-
fective global optimization algorithms that refer to the Covariance
Matrix Adaptation (CMA) method. These include CMA-ES [11],
IPOP-CMA-ES [1], or KL-BIPOP-CMA-ES [30], PSA-CMA-ES [19].

The vast majority of the above-mentioned DE- and CMA-based
algorithms are generally effective and the differences between them
often boil down to the details of the experiment scenario, e.g. the
utilized benchmarks or method parameterization.

Predominantly, the performance of an optimization algorithm
is measured with respect to a number of (true) fitness function
evaluations (FFEs). In many settings, numerous FFEs are assumed
while evaluating the algorithm’s performance (e.g. the CEC2021
benchmark assumes 2 · 105 FFEs for 10D problems). In contrast,
expensive optimization setups are limited to a relatively small num-
ber of evaluations (e.g. CEC2015 benchmark for Computationally
Expensive Numerical Optimization assumes 5 · 102 FFEs for 10D
problems). Complex surrogate models can be highly supportive in
such costly optimization, but their high computational complexity
makes them scale poorly (e.g. Efficient Global Optimization [14],
Kriging [9], DTS-CMA-ES [4]).

Surrogate-assisted optimization has received considerable atten-
tion in recent years [13]. The LS-CMA-ES [2] utilizes quadratic
approximation of the fitness function. Also, polynomials can be uti-
lized as local meta-models [16]. M-GAPSO [31] is a hybrid of PSO,
DE, and local meta-models: linear and quadratic. SHADE-LM [20]
is a new hybrid of SHADE and efficient, in terms of complexity,
local meta-models. The lq-CMA-ES [10] incorporates a quadratic
meta-model to replace fitness evaluations with surrogate estimates
to reduce unnecessary FFEs. The replacement depends on the rank
correlation measure (Kendall’s 𝜏 [15]).

This work presents and evaluates psLSHADE: the LSHADE algo-
rithm extended with a pre-screening mechanism. The pre-screening
mechanism includes a modified initial sampling procedure, an
archive of samples, and a global meta-model of a fitness function.
The meta-model is a linear combination of 6 components (indepen-
dent variable transformations). It ranks trial vectors and designates
the best one of them for further FFE.

The remainder of the paper is structured as follows. Section 2
describes the baseline LSHADE. Section 3 introduces the principles
of psLSHADE, in particular the pre-screening mechanism. Section 4
presents experimental evaluation of psLSHADE using the CEC2021

ar
X

iv
:2

20
4.

04
10

5v
2

 [
cs

.N
E

]
 1

1
A

pr
 2

02
2

Mateusz Zaborski and Jacek Mańdziuk

benchmark in expensive scenarios. Section 5 analyses the meta-
model performance. Finally, conclusions and directions for future
work are briefly described in Section 6.

2 LSHADE ALGORITHM
In this section the LSHADE algorithm is introduced based on its
original description [27]. LSHADE is a single-objective optimiza-
tion metaheuristic that extends SHADE [25] with Linear Population
Size Reduction. LSHADE includes parameter adaptation, memory,
and external archive, similar to the underlying SHADE. LSHADE
is a population-based iterative algorithm where each individual 𝑖
represents 𝐷-dimensional point 𝑥𝑥𝑥𝑔

𝑖
= [𝑥𝑔

𝑖,1, . . . , 𝑥
𝑔

𝑖,𝐷
] in assumed

solution space, where 𝑔 denotes an iteration number. In each itera-
tion 𝑔, the population 𝑃𝑔 consists of 𝑁𝑔 individuals [𝑥𝑥𝑥𝑔1, . . . ,𝑥𝑥𝑥

𝑔

𝑁𝑔]
independently subjected to subsequent phases: mutation, crossover,
and selection.

The mutation phase is responsible for random generation of
a mutated vector 𝑣𝑣𝑣𝑔

𝑖
based on randomly generated scaling factor

parameter 𝐹𝑔
𝑖
and three randomly chosen individuals (𝑥𝑥𝑥𝑔

𝑝𝑏𝑒𝑠𝑡𝑖
, 𝑥𝑥𝑥𝑔

𝑟1𝑖 ,

and 𝑥𝑥𝑥𝑔
𝑟2𝑖). The method of determining 𝐹𝑔

𝑖
is described in section 2.2.

Index 𝑝𝑏𝑒𝑠𝑡𝑖 indicates an individual randomly selected from the set
of the currently best𝑁𝑔 ·𝑝 individuals, where 𝑝 is a parameter. 𝑟1𝑖 ∈
{1, . . . , 𝑁𝑔} denotes an individual from population 𝑃𝑔 and 𝑟2𝑖 ∈
{1, . . . , 𝑁𝑔 + |𝐴|}, (𝑟2𝑖 ≠ 𝑟1𝑖) an individual from the union of the
population 𝑃𝑔 and an external archive 𝐴. The rules of constructing
the external archive 𝐴 are described in more detail in section 2.1.
The final form of the mutated vector 𝑣𝑣𝑣𝑔

𝑖
can be described as follows:

𝑣𝑣𝑣
𝑔

𝑖
= 𝑥𝑥𝑥

𝑔

𝑖
+ 𝐹

𝑔

𝑖
(𝑥𝑥𝑥𝑔

𝑝𝑏𝑒𝑠𝑡𝑖
− 𝑥𝑥𝑥

𝑔

𝑖
) + 𝐹

𝑔

𝑖
(𝑥𝑥𝑥𝑔

𝑟1𝑖 − 𝑥𝑥𝑥
𝑔

𝑟2𝑖) (1)

Next, the parent vector 𝑥𝑥𝑥𝑔
𝑖
is crossed with the mutated vector 𝑣𝑣𝑣𝑔

𝑖
,

leading to a trial vector𝑢𝑢𝑢𝑔
𝑖
= [𝑢𝑔

𝑖,1, . . . , 𝑢
𝑔

𝑖,𝐷
], in which each element

𝑢
𝑔

𝑖,𝑑
, 𝑑 = 1, . . . , 𝐷 takes either the value 𝑥𝑔

𝑖,𝑑
(with probability 𝐶𝑅𝑔

𝑖
)

or 𝑣𝑔
𝑖,𝑑
, otherwise. The way the 𝐶𝑅𝑔

𝑖
is determined is described in

section 2.2. Furthermore, one randomly chosen element 𝑢𝑔
𝑖,𝑑𝑟𝑎𝑛𝑑

is
crossed regardless of the probabilistic outcome, i.e.

𝑢
𝑔

𝑖,𝑑
=

{
𝑣
𝑔

𝑖,𝑑
, if 𝑟𝑎𝑛𝑑 (0, 1) ≤ 𝐶𝑅

𝑔

𝑖
or 𝑑 = 𝑑𝑟𝑎𝑛𝑑

𝑖

𝑥
𝑔

𝑖,𝑑
, otherwise

(2)

where 𝑟𝑎𝑛𝑑 (0, 1) denotes a uniformly selected random number from
[0, 1) and 𝑑𝑟𝑎𝑛𝑑

𝑖
∈ {1, . . . , 𝐷} is a randomly selected index. Both

𝑟𝑎𝑛𝑑 (0, 1) and 𝑑𝑟𝑎𝑛𝑑
𝑖

are generated independently for each 𝑖 .
Finally, the trial vector𝑢𝑢𝑢𝑔

𝑖
is subject to the selection phase. Tech-

nically, it is evaluated using fitness function 𝑓 , and its value 𝑓 (𝑢𝑢𝑢𝑔
𝑖
) is

compared with the value 𝑓 (𝑥𝑥𝑥𝑔
𝑖
) of the parent vector 𝑥𝑥𝑥𝑔

𝑖
. The better

vector is promoted to the next generation population (𝑔 + 1). The
selection phase can be formally expressed as follows:

𝑥𝑥𝑥
𝑔+1
𝑖

=

{
𝑢𝑢𝑢
𝑔

𝑖
, if 𝑓 (𝑢𝑢𝑢𝑔

𝑖
) < 𝑓 (𝑥𝑥𝑥𝑔

𝑖
)

𝑥𝑥𝑥
𝑔

𝑖
, otherwise

(3)

LSHADE utilizes a Linear Population Size Reduction (LPSR)
mechanism, which results in changing in time population size 𝑁𝑔

during an optimization run. The LPSR mechanism requires 𝑁𝑖𝑛𝑖𝑡

and 𝑁𝑚𝑖𝑛 parameters, indicating the initial and minimal (termi-
nal) population sizes, resp. In each iteration 𝑔, after the selection

phase, the population size 𝑁𝑔+1 for the next iteration is obtained
as follows:

𝑁𝑔+1 = 𝑟𝑜𝑢𝑛𝑑

((
𝑁𝑚𝑖𝑛 − 𝑁𝑖𝑛𝑖𝑡

𝑀𝐴𝑋_𝑁𝐹𝐸

)
· 𝑁𝐹𝐸 + 𝑁𝑖𝑛𝑖𝑡

)
(4)

where 𝑀𝐴𝑋_𝑁𝐹𝐸 indicates the optimization budget and 𝑁𝐹𝐸 is
the number of fitness function evaluations made so-far. If the pop-
ulation size is reduced, the worst individuals, in the sense of fitness
function value, are removed.

2.1 External archive
LSHADE utilizes an external archive 𝐴 that extends the current
population with the individuals (parent vectors) that have been
replaced with better offsprings (trial vectors) in the selection phase.
The archive is of size |𝐴| = 𝑎 · 𝑁𝑔 , where 𝑎 is a parameter. If the
archive is full, a randomly selected element is removed to allow
an insertion of a new one in its place. Likewise, when the archive
size is shrunk due to population size reduction, randomly selected
elements are removed.

2.2 Parameter adaptation
The scaling factor 𝐹

𝑔

𝑖
utilized in the mutation phase (1), and

crossover rate 𝐶𝑅𝑔
𝑖
utilized in the crossover phase (2) are desig-

nated using the memory. The purpose of the memory is to store
historical values of 𝐹𝑔

𝑖
and 𝐶𝑅

𝑔

𝑖
that succeeded in the selection

phase, i.e. the trial vector 𝑢𝑢𝑢𝑔
𝑖
was better than the parent vector

𝑥𝑥𝑥
𝑔

𝑖
. The memory consists of 𝐻 pairs of scaling factor entries𝑀𝑔

𝐹,𝑘

and crossover rate entries 𝑀𝑔

𝐶𝑅,𝑘
, 𝑘 = 1, . . . , 𝐻 . In each iteration,

after the selection phase, all successful values of 𝐹𝑔
𝑖
and 𝐶𝑅𝑔

𝑖
are

recorded in sets 𝑆𝐹 and 𝑆𝐶𝑅 , resp. Then, both sets are transformed
using a weighted Lehmer mean so that two values,𝑚𝑒𝑎𝑛𝑊𝐿

(𝑆𝐹)
and𝑚𝑒𝑎𝑛𝑊𝐿

(𝑆𝐶𝑅), are obtained. The following equation describes
the weighted Lehmer transformation:

𝑚𝑒𝑎𝑛𝑊𝐿
(𝑆) =

∑ |𝑆 |
𝑘=1𝑤𝑘𝑆

2
𝑘∑ |𝑆 |

𝑘=1𝑤𝑘𝑆𝑘

, 𝑤𝑘 =
Δ𝑓𝑘∑ |𝑆 |
𝑙=1 Δ𝑓𝑙

(5)

where the improvement Δ𝑓𝑝 , 𝑝 ∈ {𝑘, 𝑙} is a difference between the
fitness function value of the parent vector (𝑓 (𝑥𝑥𝑥𝑔

𝑖
)) and the fitness

function value of the trial vector (𝑓 (𝑢𝑢𝑢𝑔
𝑖
)).

The memory entries𝑀𝑔

𝐹,𝑘
and𝑀

𝑔

𝐶𝑅,𝑘
are updated sequentially

with values𝑚𝑒𝑎𝑛𝑊𝐿
(𝑆𝐹) and𝑚𝑒𝑎𝑛𝑊𝐿

(𝑆𝐶𝑅), from 𝑘 = 1 to 𝑘 = 𝐻 .
After updating the last entry (𝑘 = 𝐻), the updating procedure starts
again from 𝑘 = 1.

In addition, if all𝐶𝑅𝑔
𝑖
values in set 𝑆𝐶𝑅 are equal to 0, the memory

updating procedure permanently marks the entry𝑀
𝑔

𝐶𝑅,𝑘
with the

terminal value ⊥ (instead of𝑚𝑒𝑎𝑛𝑊𝐿
(𝑆𝐶𝑅)).

At the beginning of each iteration, a random index 𝑟𝑖 of memory
entry is determined, independently for each individual. The values
𝐹
𝑔

𝑖
and𝐶𝑅𝑔

𝑖
are generated randomly using Cauchy distribution and

Normal distribution, resp. with 𝑀
𝑔

𝐹,𝑟𝑖
and 𝑀

𝑔

𝐶𝑅,𝑟𝑖
(taken from the

memory) being the parameters of these distributions. In summary,
𝐹
𝑔

𝑖
and 𝐶𝑅𝑔

𝑖
are generated in the following way:

𝐹
𝑔

𝑖
= 𝑟𝑎𝑛𝑑𝐶𝑎𝑢𝑐ℎ𝑦 (𝑀

𝑔

𝐹,𝑟𝑖
, 0.1) (6)

Improving LSHADE by means of a pre-screening mechanism

𝐶𝑅
𝑔

𝑖
=

{
0 if𝑀𝑔

𝐶𝑅,𝑟𝑖
= ⊥

𝑟𝑎𝑛𝑑𝑁𝑜𝑟𝑚𝑎𝑙 (𝑀
𝑔

𝐶𝑅,𝑟𝑖
, 0.1) otherwise

(7)

If 𝐹𝑔
𝑖
> 1, 𝐹 is truncated to 1, and if 𝐹𝑔

𝑖
≤ 0, a random generation

is repeated. In case the generated 𝐶𝑅𝑔
𝑖
value is outside [0, 1], it is

truncated to the limit value of 0 or 1, resp.

3 PROPOSED PRE-SCREENING MECHANISM
The core of this paper is the proposal of incorporation of the
pre-screening mechanism into LSHADE, which results in the
psLSHADE method. The mechanism assumes that each individual 𝑖
will generate more than one trial vector, but only the most promis-
ing one, according to the meta-model evaluation, will be evaluated
using the (true) fitness function. The proposed pre-screening mech-
anism includes a modified initial sampling procedure, an archive of
samples that stores already evaluated samples, and a global meta-
model re-estimated in each iteration. Moreover, all three phases
(mutation, crossover and selection) of the underlying LSHADE al-
gorithm have been modified to generate an increased number of
trial vectors.

A pseudocode of the psLSHADE algorithm is presented in Algo-
rithm 1. A source code is available in the public repository 1.

3.1 Initial population
The initial population 𝑃𝑔 in psLSHADE is generated using Latin
Hypercube Sampling [12] to ensure better coverage of the search
space compared to purely uniform random sampling.

3.2 Genetic operators
Themodifiedmutation phase generates𝑁𝑠 mutated vectors𝑣𝑣𝑣𝑔,𝑗

𝑖
, 𝑗 =

1, . . . , 𝑁𝑠 , per individual 𝑖 . All randomly generated values utilized in
LSHADE are now designated independently for each of 𝑁𝑠 mutated
vectors 𝑣𝑣𝑣𝑔,𝑗

𝑖
. The generation principles, however, remain unchanged,

including𝑀𝑔

𝐹,𝑟𝑖
parameter in 𝐹𝑔,𝑗

𝑖
distribution (9), which is constant

in all generation procedures related to individual 𝑖 in iteration 𝑔. In
summary, the mutated vector 𝑣𝑣𝑣𝑔,𝑗

𝑖
is obtained as follows:

𝑣𝑣𝑣
𝑔,𝑗

𝑖
= 𝑥𝑥𝑥

𝑔

𝑖
+ 𝐹

𝑔,𝑗

𝑖
(𝑥𝑥𝑥𝑔,𝑗

𝑝𝑏𝑒𝑠𝑡𝑖
− 𝑥𝑥𝑥

𝑔

𝑖
) + 𝐹

𝑔,𝑗

𝑖
(𝑥𝑥𝑥𝑔,𝑗

𝑟1𝑖 − 𝑥𝑥𝑥
𝑔,𝑗

𝑟2𝑖) (8)

where 𝐹𝑔,𝑗
𝑖

is generated using the Cauchy distribution:

𝐹
𝑔,𝑗

𝑖
= 𝑟𝑎𝑛𝑑𝐶𝑎𝑢𝑐ℎ𝑦 (𝑀

𝑔

𝐹,𝑟𝑖
, 0.1) (9)

Then, for each individual 𝑖 ,𝑁𝑠 trial vectors𝑢𝑢𝑢
𝑔,𝑗

𝑖
= [𝑢𝑔,𝑗

𝑖,1 , . . . , 𝑢
𝑔,𝑗

𝑖,𝐷
],

𝑗 = 1, . . . , 𝑁𝑠 , are designated using the same 𝐶𝑅𝑔
𝑖
and 𝑑𝑟𝑎𝑛𝑑

𝑖
values.

Also, the value 𝑟𝑎𝑛𝑑 (0, 1) for individual 𝑖 is generated once for all
𝑁𝑠 trial vectors. Consequently, each element 𝑢𝑔,𝑗

𝑖,1 is described by
the following equation:

𝑢
𝑔,𝑗

𝑖,𝑑
=

{
𝑣
𝑔,𝑗

𝑖,𝑑
, if 𝑟𝑎𝑛𝑑 (0, 1) ≤ 𝐶𝑅

𝑔

𝑖
or 𝑑 = 𝑑𝑟𝑎𝑛𝑑

𝑖

𝑥
𝑔

𝑖,𝑑
, otherwise

(10)

where ∀𝑗 ∈{1,...,𝑁𝑠 } 𝐶𝑅
𝑔

𝑖
= 𝑐𝑜𝑛𝑠𝑡 ., 𝑑𝑟𝑎𝑛𝑑 = 𝑐𝑜𝑛𝑠𝑡 ., and 𝑟𝑎𝑛𝑑 (0, 1) =

𝑐𝑜𝑛𝑠𝑡 .

1https://bitbucket.org/mateuszzaborski/pslshade/

After the crossover phase, the meta-model’s coefficients are es-
timated. The principles of a global meta-model are described in
detail in section 3.5. Then, all 𝑁𝑔 · 𝑁𝑠 trial vectors 𝑢𝑢𝑢

𝑔,𝑗

𝑖
are evalu-

ated using the meta-model to obtain 𝑁𝑔 · 𝑁𝑠 surrogate function
values 𝑓 𝑠𝑢𝑟𝑟 (𝑢𝑢𝑢𝑔,𝑗

𝑖
). Afterward, the best trial vector 𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡

𝑖
is cho-

sen, independently for each individual 𝑖 , based on the 𝑓 𝑠𝑢𝑟𝑟 (𝑢𝑢𝑢𝑔,𝑗
𝑖

)
values. Finally, 𝑁𝑔 best trial vectors are evaluated using the fitness
function, and each of them undergoes the selection phase:

𝑥𝑥𝑥
𝑔+1
𝑖

=

{
𝑢𝑢𝑢
𝑔,𝑏𝑒𝑠𝑡

𝑖
, if 𝑓 (𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡

𝑖
) < 𝑓 (𝑥𝑥𝑥𝑔

𝑖
)

𝑥𝑥𝑥
𝑔

𝑖
, otherwise

(11)

3.3 Archive
The archive of samples stores at most 𝑁𝑎 pairs of already evaluated
trial vectors 𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡

𝑖
(or vectors 𝑥𝑥𝑥0

𝑖
generated by initial sampling)

and their respective function values 𝑓 (𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡
𝑖

) (𝑓 (𝑥𝑥𝑥0
𝑖
), resp.). A new

pair (𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡
𝑖

, 𝑓 (𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡
𝑖

)) is unconditionally inserted if the archive
contains less than 𝑁𝑎 elements. If the archive is full, the worst pair
in terms of the fitness function value is removed from the archive,
and a new pair is inserted. Removing the worst pair and insertion
of a new one is not executed if the worst pair from the archive is
better than the new pair. In order to ensure numerically correct
estimation of meta-model parameters, an additional anti-duplicate
condition is met. Removing and inserting is not executed if the
archive already contains a pair that is similar to a new pair. The
pairs are treated as similar when their trial vectors are equal or
fitness function values are equal. The accepted numerical tolerance
of equality is 10−12.

3.4 Parameter adaptation
The parameter adaptation procedure remains unchanged compared
to LSHADE. Utilization of pre-screening is transparent for the mem-
ory. All successful pairs (𝐹𝑔,𝑏𝑒𝑠𝑡

𝑖
,𝐶𝑅

𝑔,𝑏𝑒𝑠𝑡

𝑖
) that replaced (𝐹𝑔

𝑖
,𝐶𝑅

𝑔

𝑖
)

are collected in sets 𝑆𝐹 and 𝑆𝐶𝑅 , resp. The remaining steps are
analogous to those employed in LSHADE.

Algorithm 1 Pre-screening LSHADE high-level pseudocode
1: Set all parameters 𝑁𝑖𝑛𝑖𝑡 , 𝑁𝑚𝑖𝑛, 𝑀𝐹 , 𝑀𝐶𝑅 , 𝑝, 𝑎,𝐻, 𝑁𝑎, 𝑁𝑠 (Section 4.2)
2: Initialize𝑀0

𝐹,𝑘
and𝑀0

𝐶𝑅,𝑘
memory entries with default values of𝑀𝐹 and𝑀𝐶𝑅

3: Initialize 𝑃0 = [𝑥𝑥𝑥0
1, . . . ,𝑥𝑥𝑥

0
𝑁
] with 𝑁 = 𝑁𝑖𝑛𝑖𝑡 using Latin Hypercube Sampling

4: Update sequentially the archive of samples with all individuals from 𝑃0

5: 𝑔 = 1
6: while evaluation budget left do
7: Generate 𝑁𝑔 · 𝑁𝑠 mutated vectors 𝑣𝑣𝑣𝑔,𝑗

𝑖
using eq. (8)

8: Generate 𝑁𝑔 · 𝑁𝑠 trial vectors𝑢𝑢𝑢𝑔,𝑗
𝑖

using eq. (10)
9: Estimate meta-model parameters (Table 1)
10: Calculate 𝑁𝑔 · 𝑁𝑠 surrogate values 𝑓 𝑠𝑢𝑟𝑟 (𝑢𝑢𝑢𝑔,𝑗

𝑖
)

11: For each individual 𝑖 designate the best trial vector𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡
𝑖

12: for i = 1 to 𝑁𝑔 do
13: Do selection of𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡

𝑖
using eq. (11)

14: Add𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡
𝑖

and 𝑓 (𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡
𝑖

) to the archive of samples
15: end for
16: Update memory with𝑀

𝑔

𝐹,𝑘
and𝑀𝑔

𝐶𝑅,𝑘
using eq. (5)

17: Set new population size 𝑁𝑔+1 using eq. (4)
18: 𝑔 = 𝑔 + 1
19: end while

https://bitbucket.org/mateuszzaborski/pslshade/

Mateusz Zaborski and Jacek Mańdziuk

3.5 Meta-model characteristic
The meta-model utilized in the pre-screening mechanism is a global
linear model that consists of 6 independent transformations of vari-
ables: constant, linear, quadratic, modeling interactions, inverse
linear, and inverse quadratic. All transformations, including their
form and the number of degrees of freedom, are described in Ta-
ble 1. The final form of the meta-model is a linear combination of
6 transformations. The meta-model coefficients are estimated using
Ordinary Least Squares [29]. The meta-model is constructed when
the archive of samples contains at least 𝑑 𝑓𝑚𝑚 samples. Thus, the
archive size should equal at least 𝑑 𝑓𝑚𝑚 .

Table 1: A description of transformations and the finalmeta-
model (mm.) The estimated coefficients applied to each vari-
able are omitted for the sake of readability.

Name Form DoF

Constant 𝑋𝑐 = [1] 𝑑 𝑓𝑐 = 1
Linear 𝑋𝑙 = [𝑥1, . . . , 𝑥𝐷] 𝑑 𝑓𝑙 = 𝐷

Quadratic 𝑋𝑞 = [𝑥21 , . . . , 𝑥
2
𝐷
] 𝑑 𝑓𝑞 = 𝐷

Interactions 𝑋𝑖 = [𝑥1𝑥2, . . . , 𝑥𝐷−1𝑥𝐷] 𝑑 𝑓𝑖 =
𝐷 (𝐷−1)

2
Inv. linear 𝑋𝑖𝑙 = [1

𝑥1
, . . . , 1

𝑥𝐷
] 𝑑 𝑓𝑖𝑙 = 𝐷

Inv. quad. 𝑋𝑖𝑞 = [1
𝑥2
1
, . . . , 1

𝑥2
𝐷

] 𝑑 𝑓𝑖𝑞 = 𝐷

Final mm. [𝑋𝑐 + 𝑋𝑙 + 𝑋𝑞 + 𝑋𝑖 + 𝑋𝑖𝑙 + 𝑋𝑖𝑞] 𝑑 𝑓𝑚𝑚 = 𝐷2+7𝐷
2 + 1

4 EXPERIMENTAL EVALUATION
We evaluated psSHADE on the recent popular CEC2021 Special Ses-
sion and Competition on Single Objective Bound Constrained Numeri-
cal Optimization benchmark suite, described in technical report [17],
henceforth referred to as CEC2021. CEC2021 consists of 10 bound-
constraint functions belonging to the following four categories:
unimodal functions (𝐹1), basic functions (𝐹2 - 𝐹4), hybrid functions
(𝐹5 - 𝐹7), and composition functions (𝐹8 - 𝐹10). Each function is
defined for both 10 and 20 dimensions.

In addition, three function transformations are proposed in
CEC2021: bias (B), shift (S), and rotation (R). Besides the baseline
case without transformations applied, the following four combi-
nations of transformations (applied to each function) are tested: S,
B+S, S+R, and B+S+R.

By default CEC2021 assumes the following optimization budget:
2 · 105 ·𝐷 FFEs for 10D problems and 106 ·𝐷 FFEs for 20D problems.
Please refer to [17] for explicit function definitions. Since surrogate-
assisted algorithms, such as psLSHADE, are generally designed
for expensive scenarios, i.e. restricted optimization budgets, we
present the results based on the smaller budgets: 102 ·𝐷 , 103 ·𝐷 , and
104 ·𝐷 . Employing three different budgets helps to determine when
incorporating the pre-screening mechanism is the most effective.

Each experiment is repeated 30 times. A search range is
[−100, 100]𝐷 and is the same for all functions, dimensions, and
transformations. In summary, for each optimization budget the
entire evaluation process included 10× 5× 30× 2 = 3000 (functions
× transformations × repetitions × dimensions) independent runs.

The performance of the two competing algorithms (baseline
LSHADE andMadDE) was examined under the same conditions and
in the same manner. The implementations of LSHADE and MadDE
were taken from [24]. In addition, we made sure that psLSHADE
implementation without pre-screening exactly matches the imple-
mentation of LSHADE.

4.1 Performance metrics
The evaluation metrics are adopted from the aforementioned tech-
nical report [17]. The final score is calculated in the few following
steps. First, the 𝑆𝑁𝐸 value is calculated:

𝑆𝑁𝐸 = 0.5
5∑︁

𝑚=1

10∑︁
𝑖=1

𝑛𝑒10𝐷𝑖,𝑚 + 0.5
5∑︁

𝑚=1

10∑︁
𝑖=1

𝑛𝑒20𝐷𝑖,𝑚 (12)

where 𝑛𝑒𝑑𝑖𝑚
𝑖,𝑚

is a normalized error value (13) for function 𝐹𝑖 , trans-
formation𝑚, and dimension 𝑑𝑖𝑚 (for the sake of clarity we omit
the indices):

𝑛𝑒 =
𝑓 (𝑥𝑥𝑥𝑏𝑒𝑠𝑡) − 𝑓 (𝑥𝑥𝑥∗)

𝑓 (𝑥𝑥𝑥𝑏𝑒𝑠𝑡)𝑚𝑎𝑥 − 𝑓 (𝑥𝑥𝑥∗) (13)

where 𝑓 (𝑥𝑥𝑥𝑏𝑒𝑠𝑡) is the algorithm’s best result out of 30 trials (repe-
titions), 𝑓 (𝑥𝑥𝑥∗) is the function’s optimal value, and 𝑓 (𝑥𝑥𝑥𝑏𝑒𝑠𝑡)𝑚𝑎𝑥 is
the largest (the worst) 𝑓 (𝑥𝑥𝑥𝑏𝑒𝑠𝑡) among all algorithms.

The Score1 value is calculated as follows:

𝑆𝑐𝑜𝑟𝑒1 =

(
1 − 𝑆𝑁𝐸 − 𝑆𝑁𝐸𝑚𝑖𝑛

𝑆𝑁𝐸

)
× 50 (14)

where 𝑆𝑁𝐸𝑚𝑖𝑛 is the minimal 𝑆𝑁𝐸 among all algorithms. Then the
𝑆𝑅 value is obtained:

𝑆𝑅 = 0.5
5∑︁

𝑚=1

10∑︁
𝑖=1

𝑟𝑎𝑛𝑘10𝐷𝑖,𝑚 + 0.5
5∑︁

𝑚=1

10∑︁
𝑖=1

𝑟𝑎𝑛𝑘20𝐷𝑖,𝑚 (15)

where 𝑟𝑎𝑛𝑘𝑑𝑖𝑚
𝑖,𝑚

is the algorithm’s rank among all algorithms for a
given function 𝑖 , transformation𝑚, and dimension 𝑑𝑖𝑚, using the
mean error value from all trials.

The Score2 value is computed in the following way:

𝑆𝑐𝑜𝑟𝑒2 =

(
1 − 𝑆𝑅 − 𝑆𝑅𝑚𝑖𝑛

𝑆𝑅

)
× 50 (16)

where 𝑆𝑅𝑚𝑖𝑛 is the minimal sum of 𝑟𝑎𝑛𝑘𝑖,𝑚 among the compared
algorithms.

The final 𝑆𝑐𝑜𝑟𝑒 measure is the sum of (14) and (16):

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒1 + 𝑆𝑐𝑜𝑟𝑒2 (17)

For auxiliary measures 𝑆𝑁𝐸 and 𝑆𝑅, lower values indicate better
performance, whereas for 𝑆𝑐𝑜𝑟𝑒1, 𝑆𝑐𝑜𝑟𝑒2, and 𝑆𝑐𝑜𝑟𝑒 , higher values
correspond to better results. The maximum value of 𝑆𝑐𝑜𝑟𝑒 is 100.

4.2 Tuning of psLSHADE parameters
4.2.1 Shared psLSHADE/LSHADE parameters. For the sake of fair
comparison, all psLSHADE parameters shared with LSHADE have
the same values in both algorithms, and follow the parameteriza-
tion used previously for benchmarking LSHADE on CEC2021 [24].
The following parameters are shared by both algorithms: initial
population size 𝑁𝑖𝑛𝑖𝑡 = 18 ·𝐷 , final population size 𝑁𝑚𝑖𝑛 = 4, initial
value of 𝑀𝐹 = 0.5, initial value of 𝑀𝐶𝑅 = 0.5, best rate 𝑝 = 0.11,
archive rate 𝑎 = 1.4, memory size 𝐻 = 5.

Improving LSHADE by means of a pre-screening mechanism

4.2.2 psLSHADE pre-screening component parameters. The two
additional psLSHADE parameters are 𝑁𝑎 and 𝑁𝑠 . The archive size
(𝑁𝑎) was selected arbitrary (with no tuning) following the lq-CMA-
ES [10] parameterization. In [10] the archive is of the size𝑚𝑎𝑥 (𝜆, 2 ·
𝑑 𝑓𝑚𝑎𝑥), where 𝜆 is the population size and 𝑑 𝑓𝑚𝑎𝑥 is the number
of degrees of freedom of the most complex meta-model. Due to
population size reduction in psLSHADE, we conditioned the archive
size on the number of degrees of freedom only.

For the number of trial vectors per individual (𝑁𝑠) the tuning
tests were performed with 103 · 𝐷 budget and the following val-
ues: 𝑁𝑠 = {2, 5, 10, 20}. psLSHADE results obtained for all four 𝑁𝑠

choices are presented in Table 2. The best performing value was
𝑁𝑠 = 5. 𝑁𝑠 = 2 was a slightly weaker choice, indicating that increas-
ing the number of trial vectors up to a certain point (𝑁𝑠 = 5 in this
case) improves performance, rendering the use of pre-screening
beneficial. Both 𝑁𝑠 = 10 and 𝑁𝑠 = 20 appeared to be inferior se-
lections. Moreover, 𝑁𝑠 = 20 performed much worse than 𝑁𝑠 = 10,
which clearly outlined a trend of decreasing performance beyond a
certain threshold.

At the same time we would like to point out that the above
tuning procedure was by no means exhaustive and we would rather
advocate for a certain qualitative performance pattern with respect
to 𝑁𝑠 , than for particular 𝑁𝑠 values. In conclusion, 𝑁𝑠 = 5 was
considered sufficient and used in further comparisons.

Table 2: Scores achieved by psLSHADE with 𝑁𝑠 = {2, 5, 10, 20}
for 103 · 𝐷 optimization budget.

Score
Algo

𝑁𝑠 = 2 𝑁𝑠 = 5 𝑁𝑠 = 10 𝑁𝑠 = 20

SNE 34.87 30.80 33.59 41.42
SR 101.25 93.75 133.75 171.25

Score 1 44.17 50.00 45.84 37.18
Score 2 46.30 50.00 35.05 27.37
Score 90.46 100.00 80.89 64.56

4.3 Comparison with LSHADE and MadDE
A comparison of psLSHADE with LSHADE and MadDE was carried
out with three optimization budgets: 102 · 𝐷 , 103 · 𝐷 , and 104 ·
𝐷 . MadDE, utilizing the same CEC2021 benchmark but with a
default optimization budget, outperformed several other algorithms
(AGSK [18], LSHADE [27], LSHADE_cnEpSin [3], j2020 [8], and
IMODE [22]) in a comparison reported by the MadDE authors [5].
Hence, due to its superior performance, MadDE presents itself
as a strong competitive method. A comparison with the baseline
LSHADE, also being a highly efficient approach, directly verifies
the value of the proposed pre-screening enhancement.

The comparison results for all three optimization budgets are
shown in Table 3. psLSHADE distinctly outperforms both LSHADE
and MadDE with the smallest budget of 102 ·𝐷 . The differences are
significant, especially when looking at the partial measures 𝑆𝑁𝐸

and 𝑆𝑅𝐸. Moreover, being superior in non-expensive optimization
budgets, MadDE is in this case less efficient than baseline LSHADE.
A highly restricted optimization budget might induce the mediocre

performance of MadDE due to instability of some of its adaptation
procedures.

In the regime of 103 · 𝐷 budget the results are qualitatively
similar to those obtained for 102 ·𝐷 budget. psLSHADE still outper-
forms both competitors, although its advantage is not so prevailing.
MadDE remains the least efficient approach.

The 104 · 𝐷 optimization budget can be classified as a borderline
between expensive and non-expensive scenarios. In this case, all
algorithms perform at a similar level, with MadDE being slightly
less effective than the remaining two methods. Considering the
Score metrics, psLSHADE seems to be marginally less efficient than
LSHADE, however, its 𝑆𝑁𝐸 value outperforms that of LSHADE. A
relatively weaker psLSHADE performance for larger budgets may
be caused by the decreasing model fit, as the number of evaluations
increases. This phenomenon is illustrated further in Section 5.

Table 3: Scores achieved byMadDE, LSHADE and psLSHADE
with 𝑁𝑠 = 5 and 102 · 𝐷 , 103 · 𝐷 , 104 · 𝐷 optimization budgets.

O. b.
Algo Score MadDE LSHADE psLSHADE

102 · 𝐷

SNE 41.72 32.38 19.58
SR 131.00 110.50 58.50

Score 1 23.46 30.23 50.00
Score 2 22.33 26.47 50.00
Score 45.79 56.70 100.00

103 · 𝐷

SNE 37.92 25.38 20.36
SR 125.75 104.50 69.75

Score 1 26.85 40.10 50.00
Score 2 27.73 33.37 50.00
Score 54.58 73.48 100.00

104 · 𝐷

SNE 28.50 26.81 26.37
SR 105.50 94.00 100.50

Score 1 46.26 49.18 50.00
Score 2 44.55 50.00 46.77
Score 90.81 99.18 96.77

To sum up, psLSHADE is highly effective in scenarios with re-
stricted FFE budgets (102 · 𝐷 and 103 · 𝐷), leaving both competi-
tors: LSHADE and MadDE behind. In the case of 104 · 𝐷 budget,
psLSHADE is narrowly worse than LSHADE and slightly more
effective than MadDE.

4.4 Computational complexity
All experiments were conducted using the following system setup.
OS:Windows 10, CPU: Intel Core i7-4700MQ (2.40Ghz), RAM: 16GB,
Language: Matlab R2020a, Compiler: MinGW64 C/C++ Compiler.

psLSHADE and LSHADE complexity was computed according
to the CEC2021 technical report [17] and is presented in Table 4.
Computational complexity of psLSHADE is clearly higher than that
of LSHADE (by a factor of 25.8 and 72.8 for 10D and 20D functions,
resp.) which is caused by additional operations stemming from
pre-screening utilization.

Mateusz Zaborski and Jacek Mańdziuk

At the same time, it should be underlined that psLSHADE com-
plexity does not increase with the number of FFEs. Since the meta-
model utilizes the archive of samples of limited size of 𝑁𝑎 , after the
first 𝑁𝑎 FFEs, all algebraic operations related to meta-model esti-
mation maintain a constant complexity. Therefore, the requested
optimization time, counted in seconds, is linearly dependent on the
FFE budget.

On a general note, the “overhead” of psLSHADE optimization
time (excluding the time of FFEs) with 2 · 105 FFEs, equals approx.
34𝑠/83𝑠 for a 10𝐷/20𝐷 function, resp. (𝑇2 −𝑇1 in Table 4). Consid-
ering the perspective of expensive optimization (where FFEs are
typically costly), the reported times seem acceptable.

Table 4: Computational complexity of psLSHADE and
LSHADE calculated according to [17] (i.e. for one bench-
mark representative). 𝑇0 is the time of a test program run.
𝑇1 - time of pure 2 · 105 FFEs of 𝐹1 function. 𝑇2 - the average
running time of the algorithm for 𝐹1 with 2 · 105 evaluation
budget. (𝑇2 −𝑇1)/𝑇0 is the final complexity.

𝐷 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑇0 [𝑠] 𝑇1 [𝑠] 𝑇2 [𝑠] (𝑇2 −𝑇1)/𝑇0

10 psLSHADE

0.004841

11.3341 44.8177 6916.6669
LSHADE 0.2027 1.5016 268.3196

20 psLSHADE 10.9902 93.9839 17143.9248
LSHADE 0.2040 1.3442 235.5063

4.5 Convergence of psLSHADE
The experimental results indicate that the pre-screeningmechanism
is most advantageous in the case of 102 · 𝐷 optimization budget.
However, for the sake of generality of the presented observations,
in further analysis of psLSHADE performed in the reminder of the
paper a bigger (i.e. less favourable) budget of 103 · 𝐷 is considered.

Following [17] we recorded 16 error values (𝑓 (𝑥𝑥𝑥) − 𝑓 (𝑥𝑥𝑥∗)) for
each optimization run after certain FFE counts. For each function,
we obtained 150 vectors (5 transformations × 30 repetitions) of
error values. Figure 1 presents the convergence of psLSHADE and
LSHADE, calculated as the average error value after each FFE count
point, separately for each 20D function. The respective plots for
10D functions are presented in the supplementary material.

In 77 of 100 test cases (functions × transformations × di-
mensions), the difference between psLSHADE and LSHADE was
significant (Mann–Whitney test, p-value=0.05). In none of the
cases psLSHADE was significantly worse than LSHADE. The re-
sults demonstrate that superior convergence of psLSHADE over
LSHADE can be observed for 9 out of 10 functions. It is worth
noting that an improved convergence is especially noticeable in the
initial optimization phase, depending on the function until 5000-
15000 FFEs. In the final optimization phase, the difference starts to
diminish, on average.

The most notable increase of convergence occurs for function 𝐹1,
whereas for function 𝐹2 the advantage is negligible. The 2D versions
of both functions are presented in Figure 2. 𝐹1 is unimodal and
smooth, while 𝐹2 is multi-modal with a huge number of local optima.
Moreover, 𝐹2 does not possess a visible global structure, making the

global meta-model not so much useful in this case. Nevertheless,
the meta-model does not lead to premature convergence, which is
always a risk with such ill-conditioned functions.

The convergence based on error values is a key performance
indicator, however, it does not explain how the pre-screening mech-
anism affects the population. Hence, we designed an experiment in
which we measured the hyper-volume (h-v) of the population in
each generation 𝑔. The h-v represents the volume of a hyperrect-
angle spanning a population and helps to estimate the population
dispersion. Formally, the h-v is calculated as follows:

ℎ𝑔 =

𝐷∏
𝑑

(
𝑚𝑎𝑥 (𝑥𝑔

𝑖,𝑑
) −𝑚𝑖𝑛(𝑥𝑔

𝑖,𝑑
)
)

(18)

Figure 3 demonstrates changes of the h-v sizes of psLSHADE and
LSHADE during an optimization run for 𝐹1 and 𝐹2. Measurements
were collected in each generation, but for consistency, the figure
refers to the number of FFEs made so far in each generation. For
each function, in a given generation, the h-v value represents the
average of 150 values (5 transformations × 30 repetitions). The
figure confirms that significant convergence increase in psLSHADE
vs. LSHADE (presented in Figure 1) is strongly correlated with the
h-v decrease. For function 𝐹1, with a substantial global structure,
the use of pre-screening results in generally faster convergence of
each individual (to the global optimum), which results in the h-v
reduction. No significant change of h-v is observed for 𝐹2, which
confirms the assumption that in this case the pre-screening did not
cause premature convergence to a local optimum, i.e. the search
ability of psLSHADE has been preserved. The respective figures for
the remaining functions in both 10D and 20D versions are included
in the supplementary material.

5 META-MODEL PERFORMANCE
Consistent with the experimental evaluation, the usefulness of
incorporating the pre-screening mechanism into LSHADE has
been demonstrated. Notwithstanding, the convergence plots signify
some issues with the meta-model in the final optimization phase.
For most functions, the advantage accumulated earlier begins to
diminish at the end of 103 ·𝐷 optimization budget. Two hypotheses
regarding this phenomenon emerge. The first one assumes that
the global-meta model is well-fitted at the beginning due to the
regular dispersion of the initial population. However, as the popu-
lation loses regularity during the optimization run, the meta-model
becomes not fitted correctly, i.e. its selection of trial vectors be-
haves more randomly. Please recall that the meta-model utilizes the
archive containing 𝑁𝑎 best-so-far evaluated samples. Consequently,
the global meta-model may tend towards the local model.

The other conjecture is a more pessimistic version of the first
one and assumes that the meta-model not only tends to behave
randomly, but at some point may even start to select worse-than-
average trial vectors.

In order to verify these conjectures, we examined the accuracy
of the meta-model during an optimization run. In a dedicated ex-
periment we recorded whether the trial vector𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡

𝑖
selected from

all 𝑁𝑠 trial vectors𝑢𝑢𝑢
𝑔,𝑗

𝑖
for FFE was, indeed, the best one in terms

of the fitness function value (not only the meta-model estimation).
Each iteration generated 𝑁𝑔 logical values: true or false, referring

Improving LSHADE by means of a pre-screening mechanism

F6 F7 F8 F9 F10

F1 F2 F3 F4 F5

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

1e+03

1e+05

1e+07

1e+09

1e+03

3e+03

1e+04

1e+02

1e+04

1e+06

1e+08

5e+02

1e+03

2e+03

1e+02

3e+02

1e+03

1e+02

3e+02

1e+03

3e+03

5e+02

1e+03

3e+03

5e+03

1e+03

1e+05

1e+07

1e+09

1e+02

1e+05

1e+08

1e+11

1e+01

1e+02

1e+03

1e+04

f-evals

A
vg

. e
rr

or

Figure 1: The averaged convergence of psLSHADE (blue line) and LSHADE (red line) by function in 20Dwith 103 ·𝐷 optimization
budget. The x-axis represents the number of FFEs, and the y-axis the average error (a difference from the optimum).

(a) Bent Cigar Function (b) Shifted and Rotated Schwefel’s
Function

Figure 2: The 3D maps of 2𝐷 versions of functions 𝐹1 (a) and
𝐹2 (b). The figures are reprinted from [17].

F1 F2

0 5000 10000 15000 200000 5000 10000 15000 20000

1e-56

1e-28

1e+00

1e+28

f-evals

A
vg

. h
yp

er
vo

lu
m

e

Figure 3: The hyper-volume (h-v) of psLSHADE (blue line)
and LSHADE (red line) for 𝐹1 and 𝐹2 in 20D with 103 ·𝐷 opti-
mization budget. The x-axis represents the number of FFEs,
and the y-axis the average h-v in each generation.

to 𝑁𝑔 individuals. For each function and each iteration, there were
150 · 𝑁𝑔 (5 transformations × 30 repetitions ×𝑁𝑔) logical values
obtained. Calculating the share of true values in all gathered val-
ues leads to the average meta-model accuracy per function and

iteration. Figuratively speaking, the perfect meta-model will gain
the average accuracy of 1 in each iteration. In contrast, an entirely
random meta-model will achieve the average accuracy 1

𝑁 𝑠 .
Figure 4 presents the average meta-model accuracy for functions

𝐹1, 𝐹2, 𝐹8 and 𝐹9 in 20D. For 𝐹1, the accuracy is close to 1 in most
iterations and never falls below the randomness threshold (0.2).
However, a significant drop of nearly 0.7 after 1.2 · 104 evaluations
can be observed. This decline may be caused by the convergence of
some trials to global optimum earlier than after 103 · 𝐷 , in which
case the meta-model has become irrelevant.

For 𝐹2, the meta-model accuracy is as expected. The proposed
global meta-model was not able to estimate the ill-conditioned
function properly and pre-screen samples better than randomly.
Towards the end, the average accuracy began to increase. The
reason for this phenomenon may be convergence to some local
optimum.

𝐹8 and 𝐹9 were chosen because their convergence plots indicated
a notable decrease in meta-model accuracy in the final phase of the
optimization run. The meta-model accuracy for 𝐹8 remains signifi-
cantly above the randomness threshold until approx. 1.4 · 104 FEEs.
Contrasting this observation with the convergence plot (Figure 1),
we observe a similar point (≈ 1.4 · 104) when the convergence,
compared to LSHADE, starts to decline. Regardless, the accuracy of
the model after 1.5 · 104 FFEs is concerning. It decreased below the
randomness threshold. At the end of the budget, the convergence
plots of psLSHADE and LSHADE almost meet.

For 𝐹9, a significant reduction in meta-model accuracy occurred
earlier, so the convergence advantage of psLSHADE over LSHADE
also started to decline earlier.

The real-time evaluation of the meta-model performance could
be beneficial for two reasons. Firstly, deactivation of useless, in
particular cases, pre-screening can reduce the computational com-
plexity (see Table 4). Secondly, the 𝐹8 case showed that meta-model
predictionsmight sometimes be worse than random, so deactivation
of the meta-model seems even more reasonable in this case.

Mateusz Zaborski and Jacek Mańdziuk

F8 F9

F1 F2

0 5000 10000 15000 20000 0 5000 10000 15000 20000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

f-evals

A
vg

. a
cc

ur
ac

y

Figure 4: The average accuracy of meta-model selections in
each generation for functions 𝐹1, 𝐹2, 𝐹8 and 𝐹9 in 20D with
103 · 𝐷 optimization budget. The x-axis represents the num-
ber of FFEs and the y-axis the average accuracy.

Unfortunately, the true/false accuracy measure presented above
is not suitable for real-world implementations due to the 5 times
higher number of costly FFEs. Therefore, we conducted a related
experiment but used other performance metrics. The first criterion
was the well-known coefficient of determination𝑅2 ∈ [0, 1]. In each
iteration, its value was designed after the meta-model had been
fitted. The second criterion was Kendall’s 𝜏 ∈ [0, 1], measuring the
rank correlation between 𝑁𝑔 fitness function values 𝑓 (𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡

𝑖
) and

their respective meta-models estimates 𝑓 𝑠𝑢𝑟𝑟 (𝑢𝑢𝑢𝑔,𝑏𝑒𝑠𝑡
𝑖

). Kendall’s
𝜏 , like 𝑅2, was determined in each generation. Importantly, both
measures are cost-free in terms of FFEs (no auxiliary evaluations
are required).

The results obtained for the same set of 4 functions are presented
in Figure 5. The main disadvantage of 𝑅2 is its uncertain impact
on the final performance, i.e. the meta-model can be overfitted or
inaccurate because of a small number of samples utilized in coeffi-
cient estimation. Nonetheless, for both criteria (𝑅2 and Kendall’s 𝜏)
the results are highly similar in shape to the accuracy measure.
Therefore, we assume they can potentially be helpful in conditional
disabling of the meta-model in practical applications.

6 CONCLUSION
In this paper we introduced the psLSHADE algorithm that enhances
the well-known LSHADE method with the pre-screening mech-
anism. On a popular CEC2021 benchmark, the proposed method
outperformed LSHADE and MadDE in expensive scenarios (re-
strictive budget of 102 · 𝐷 and 103 · 𝐷 FFEs). In 104 · 𝐷 budget,

F8 F9

F1 F2

0 5000 10000 15000 200000 5000 10000 15000 20000

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

f-evals
(R

2 , t
)

Figure 5: The average 𝑅2 and Kendall’s 𝜏 in each generation
for functions 𝐹1, 𝐹2, 𝐹8 and 𝐹9 in 20Dwith 103 ·𝐷 optimization
budget. The x-axis represents the number of FFEs and the y-
axis the average values of 𝑅2 and Kendall’s 𝜏 .

psLSHADE performed on par with LSHADE and continued to out-
perform MadDE.

Additionally, a comprehensive analysis of the meta-model perfor-
mance is presented, including accuracy, fit (𝑅2), and rank correlation
(Kendall’s 𝜏). We also investigate in which cases the pre-screening
is indeed beneficial and how does it affect the population in terms of
its h-v. Finally, we demonstrate that the meta-model performance
can potentially be monitored in real-time, so as to activate the
pre-screening solely when advantageous.

The future work concerns further analysis and development of
deactivation conditions of the meta-model (extending the remarks
presented at the end of section 5).

ACKNOWLEDGMENTS
Studies were funded by BIOTECHMED-1 project granted by War-
saw University of Technology under the program Excellence Initia-
tive: Research University (ID-UB).

REFERENCES
[1] Anne Auger and Nikolaus Hansen. 2005. A restart CMA evolution strategy with

increasing population size. In 2005 IEEE congress on evolutionary computation,
Vol. 2. IEEE, 1769–1776.

[2] Anne Auger, Marc Schoenauer, and Nicolas Vanhaecke. 2004. LS-CMA-ES: A
second-order algorithm for covariance matrix adaptation. In International Con-
ference on Parallel Problem Solving from Nature. Springer, 182–191.

[3] Noor H Awad, Mostafa Z Ali, and Ponnuthurai N Suganthan. 2017. Ensemble
sinusoidal differential covariancematrix adaptationwith Euclidean neighborhood
for solving CEC2017 benchmark problems. In 2017 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 372–379.

[4] Lukáš Bajer, Zbyněk Pitra, Jakub Repickỳ, and Martin Holeňa. 2019. Gaussian pro-
cess surrogate models for the CMA evolution strategy. Evolutionary computation
27, 4 (2019), 665–697.

Improving LSHADE by means of a pre-screening mechanism

[5] Subhodip Biswas, Debanjan Saha, Shuvodeep De, Adam D Cobb, Swagatam Das,
and Brian A Jalaian. 2021. Improving differential evolution through bayesian
hyperparameter optimization. In 2021 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 832–840.

[6] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. 2013. A survey on optimiza-
tion metaheuristics. Information sciences 237 (2013), 82–117.

[7] Janez Brest, Sao Greiner, Borko Boskovic, Marjan Mernik, and Viljem Zumer.
2006. Self-adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems. IEEE transactions on evolutionary
computation 10, 6 (2006), 646–657.

[8] Janez Brest, Mirjam Sepesy Maučec, and Borko Bošković. 2020. Differential evo-
lution algorithm for single objective bound-constrained optimization: Algorithm
j2020. In 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–8.

[9] Noel Cressie. 1990. The origins of kriging. Mathematical geology 22, 3 (1990),
239–252.

[10] Nikolaus Hansen. 2019. A global surrogate assisted CMA-ES. In Proceedings of
the Genetic and Evolutionary Computation Conference. 664–672.

[11] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. 2003. Reducing
the time complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evolutionary computation 11, 1 (2003), 1–18.

[12] Jon C Helton and Freddie Joe Davis. 2003. Latin hypercube sampling and the prop-
agation of uncertainty in analyses of complex systems. Reliability Engineering &
System Safety 81, 1 (2003), 23–69.

[13] Yaochu Jin. 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1, 2 (2011), 61–70.

[14] Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global
optimization of expensive black-box functions. Journal of Global optimization 13,
4 (1998), 455–492.

[15] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81–93.

[16] Stefan Kern, Nikolaus Hansen, and Petros Koumoutsakos. 2006. Local meta-
models for optimization using evolution strategies. In Parallel Problem Solving
from Nature-PPSN IX. Springer, 939–948.

[17] Ali Wagdy Mohamed, Anas A Hadi, Ali Khater Mohamed, Prachi Agrawal, Ab-
hishek Kumar, and P.N Suganthan. [n. d.]. Problem Definitions and Evaluation
Criteria for the CEC 2021 Special Session and Competition on Single Objec-
tive Bound Constrained Numerical Optimization. https://github.com/P-N-
Suganthan/2021-SO-BCO/blob/main/CEC2021%20TR_final%20(1).pdf.

[18] AliWagdyMohamed, Anas AHadi, Ali Khater Mohamed, and Noor HAwad. 2020.
Evaluating the performance of adaptive GainingSharing knowledge based algo-
rithm on CEC 2020 benchmark problems. In 2020 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 1–8.

[19] Kouhei Nishida and Youhei Akimoto. 2018. Benchmarking the PSA-CMA-ES
on the BBOB noiseless testbed. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. 1529–1536.

[20] Michał Okulewicz and Mateusz Zaborski. 2021. Benchmarking SHADE algorithm
enhanced with model based optimization on the BBOB noiseless testbed. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
1259–1266.

[21] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. 2008. Differential
evolution algorithm with strategy adaptation for global numerical optimization.
IEEE transactions on Evolutionary Computation 13, 2 (2008), 398–417.

[22] Karam M Sallam, Saber M Elsayed, Ripon K Chakrabortty, and Michael J Ryan.
2020. Improved multi-operator differential evolution algorithm for solving un-
constrained problems. In 2020 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 1–8.

[23] Rainer Storn and Kenneth Price. 1997. Differential evolution–a simple and
efficient heuristic for global optimization over continuous spaces. Journal of
global optimization 11, 4 (1997), 341–359.

[24] P.N Suganthan. [n. d.]. Code of top methods. https://github.com/P-N-Suganthan/
2021-SO-BCO/blob/main/Codes-of-top-methods%20(1).zip.

[25] Ryoji Tanabe and Alex Fukunaga. 2013. Success-history based parameter adapta-
tion for differential evolution. In 2013 IEEE congress on evolutionary computation.
IEEE, 71–78.

[26] Ryoji Tanabe and Alex Fukunaga. 2015. Tuning differential evolution for cheap,
medium, and expensive computational budgets. In 2015 IEEE Congress on Evolu-
tionary Computation (CEC). IEEE, 2018–2025.

[27] Ryoji Tanabe and Alex S Fukunaga. 2014. Improving the search performance of
SHADE using linear population size reduction. In 2014 IEEE congress on evolu-
tionary computation (CEC). IEEE, 1658–1665.

[28] Pradnya A Vikhar. 2016. Evolutionary algorithms: A critical review and its future
prospects. In 2016 International conference on global trends in signal processing,
information computing and communication (ICGTSPICC). IEEE, 261–265.

[29] Sanford Weisberg. 2013. Applied linear regression. John Wiley & Sons.
[30] Takahiro Yamaguchi and Youhei Akimoto. 2017. Benchmarking the novel CMA-

ES restart strategy using the search history on the BBOB noiseless testbed. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
1780–1787.

[31] Mateusz Zaborski, Michał Okulewicz, and Jacek Mańdziuk. 2020. Analysis of
statistical model-based optimization enhancements in Generalized Self-Adapting
Particle Swarm Optimization framework. Foundations of Computing and Decision
Sciences 45, 3 (2020), 233–254.

[32] Jingqiao Zhang and Arthur C Sanderson. 2009. JADE: adaptive differential
evolution with optional external archive. IEEE Transactions on evolutionary
computation 13, 5 (2009), 945–958.

https://github.com/P-N-Suganthan/2021-SO-BCO/blob/main/CEC2021%20TR_final%20(1).pdf
https://github.com/P-N-Suganthan/2021-SO-BCO/blob/main/CEC2021%20TR_final%20(1).pdf
https://github.com/P-N-Suganthan/2021-SO-BCO/blob/main/Codes-of-top-methods%20(1).zip
https://github.com/P-N-Suganthan/2021-SO-BCO/blob/main/Codes-of-top-methods%20(1).zip

Mateusz Zaborski and Jacek Mańdziuk

— SUPPLEMENTARY MATERIAL —

In this supplementary material we extend the results presented in the main body of the paper. Figure 6, for each 10D function from
CEC2021 [17], illustrates the convergence of psLSHADE and LSHADE calculated as the average error value after each FFE count point. This
figure is an analog of Figure 1 in the main text which shows the same plots for 20D functions. Generally speaking, the result for 10D and
20D are similar when comparing the individual functions and the conclusions drawn in the paper with respect to 20D functions are also
valid for 10D.

Figures 7 and 8 present the changes of the hyper-volumes of psLSHADE and LSHADE during an optimization run, for 10D and 20D
functions, respectively. In the main body of the paper (Figure 3), hyper-volume changes are demonstrated only for 𝐹1 and 𝐹2 in 20D. The
impact of pre-screening on the hyper-volume is visible for all functions in both dimensions (10D and 20D), however its scale varies depending
on the function.

Figures 9 and 10 present the average accuracy of the meta-model selections in each generation, for 10D and 20D functions, respectively.
The figures extend Figure 4 from the main paper which presents the same results for 20D versions of the selected 4 functions: 𝐹1, 𝐹2, 𝐹8, and
𝐹9. The general trend of diminishing accuracy of estimates is apparent for all functions and does not vary significantly between 10D and 20D
cases. The only exception is 𝐹8, for which the characteristic for 20D is slightly different than for 10D (one can observe a spike in accuracy
around 1.2 · 104 FFEs in 20D). A deeper analysis showed that this spike can be observed in all 4 transformations containing shift. The 2D
versions of 𝐹8 and its contour plot are presented in Figure 13. As can be seen in the figure, 𝐹8 is a composition multi-modal function, but
with a significant smooth area. This smooth area can be relatively well approximated by the meta-model. We hypothesize that the spike
occurs when the archive begins to contain mainly samples belonging to the smooth area, which increases the accuracy. This phenomenon
is not visible for the 10D case, most likely because the shift transformation in 10D is less severe due to the specific location of the global
optimum. A full explanation of this phenomenon is the subject of future research.

Figures 11 and 12 depict the average 𝑅2 and Kendall’s 𝜏 for functions in 10D and 20D, respectively. The results extend Figure 5 in the
main paper that relates exclusively to 20D versions of functions 𝐹1, 𝐹2, 𝐹8 and 𝐹9. Generally, there are no particular differences between the
10D and 20D plots. although function 𝐹8 again behaves a little differently between 10D and 20D cases. The reasons for this phenomenon
are most probably the same as for the case of accuracy. The unusual increase of the meta-model fit, defined by 𝑅2, further confirms the
above-presented hypothesis.

F6 F7 F8 F9 F10

F1 F2 F3 F4 F5

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

1e+02

1e+04

1e+06

1e+08

3e+02

1e+03

3e+03

1e+01

1e+03

1e+05

1e+07

3e+02

5e+02

7e+02

3e+01

1e+02

3e+02

1e+02

3e+02

1e+03

3e+03

3e+02

1e+03

3e+03

1e+02

1e+04

1e+06

1e+08

1e+01

1e+05

1e+09

1e+01

1e+02

1e+03

f-evals

A
vg

. e
rr

or

Figure 6: The averaged convergence of psLSHADE (blue line) and LSHADE (red line) for all 10D functions from CEC2021 with
103 · 𝐷 optimization budget. The x-axis represents the number of FFEs and the y-axis the average error.

Improving LSHADE by means of a pre-screening mechanism

F6 F7 F8 F9 F10

F1 F2 F3 F4 F5

0 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 10000

1e-31

1e-16

1e-01

1e+14

1e-31

1e-16

1e-01

1e+14

f-evals

A
vg

. h
yp

er
vo

lu
m

e

Figure 7: The hyper-volme of psLSHADE (blue line) and LSHADE (red line) for all 10D functions from CEC2021 with 103 · 𝐷
optimization budget. The x-axis represents the number of FFEs and the y-axis the average hypervolume size in each generation.

F6 F7 F8 F9 F10

F1 F2 F3 F4 F5

0 5000 10000 15000 200000 5000 10000 15000 200000 5000 10000 15000 200000 5000 10000 15000 200000 5000 10000 15000 20000

1e-56

1e-28

1e+00

1e+28

1e-56

1e-28

1e+00

1e+28

f-evals

A
vg

. h
yp

er
vo

lu
m

e

Figure 8: The hyper-volme of psLSHADE (blue line) and LSHADE (red line) for all 20D functions from CEC2021 with 103 · 𝐷
optimization budget. The x-axis represents the number of FFEs and the y-axis the average hypervolume size in each generation.

Mateusz Zaborski and Jacek Mańdziuk

F6 F7 F8 F9 F10

F1 F2 F3 F4 F5

0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

f-evals

A
vg

. a
cc

ur
ac

y

Figure 9: The averaged accuracy of meta-model selection in each generation for all 10D functions from CEC2021 with 103 · 𝐷
optimization budget. The x-axis represents the number of FFEs and the y-axis the average accuracy.

F6 F7 F8 F9 F10

F1 F2 F3 F4 F5

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

f-evals

A
vg

. a
cc

ur
ac

y

Figure 10: The average accuracy of meta-model selection in each generation for all 20D functions from CEC2021 with 103 · 𝐷
optimization budget. The x-axis represents the number of FFEs and the y-axis the average accuracy.

Improving LSHADE by means of a pre-screening mechanism

F6 F7 F8 F9 F10

F1 F2 F3 F4 F5

0 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 100000 2500 5000 7500 10000

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

f-evals

(R
2 , t

)

Figure 11: The average 𝑅2 and Kendall’s 𝜏 in each generation for all 10D functions from CEC2021 with 103 · 𝐷 optimization
budget. The x-axis represents the number of FFEs and the y-axis the average values of 𝑅2 and Kendall’s 𝜏 .

F6 F7 F8 F9 F10

F1 F2 F3 F4 F5

0 5000 10000 15000 200000 5000 10000 15000 200000 5000 10000 15000 200000 5000 10000 15000 200000 5000 10000 15000 20000

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

f-evals

(R
2 , t

)

Figure 12: The average 𝑅2 and Kendall’s 𝜏 in each generation for all 20D functions from CEC2021 with 103 · 𝐷 optimization
budget. The x-axis represents the number of FFEs and the y-axis the average values of 𝑅2 and Kendall’s 𝜏 .

Mateusz Zaborski and Jacek Mańdziuk

(a) The 3D maps of 2𝐷 version of composition function 𝐹8 (b) The 2D contour map of 2𝐷 version of composition function
𝐹8

Figure 13: The 3Dmaps of 2𝐷 version of composition function 𝐹1 (a) and its contourmap (b) The figures are reprinted from [17].

	Abstract
	1 Introduction
	2 LSHADE algorithm
	2.1 External archive
	2.2 Parameter adaptation

	3 Proposed pre-screening mechanism
	3.1 Initial population
	3.2 Genetic operators
	3.3 Archive
	3.4 Parameter adaptation
	3.5 Meta-model characteristic

	4 Experimental evaluation
	4.1 Performance metrics
	4.2 Tuning of psLSHADE parameters
	4.3 Comparison with LSHADE and MadDE
	4.4 Computational complexity
	4.5 Convergence of psLSHADE

	5 Meta-model performance
	6 Conclusion
	References

