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ABSTRACT

Developing human-like conversational agents is a prime area in HCI
research and subsumes many tasks. Predicting listener backchan-
nels is one such actively-researched task. While many studies have
used different approaches for backchannel prediction, they all have
depended on manual annotations for a large dataset. This is a bot-
tleneck impacting the scalability of development. To this end, we
propose using semi-supervised techniques to automate the process
of identifying backchannels, thereby easing the annotation process.
To analyze our identification module’s feasibility, we compared the
backchannel prediction models trained on (a) manually-annotated
and (b) semi-supervised labels. Quantitative analysis revealed that
the proposed semi-supervised approach could attain 95% of the for-
mer’s performance. Our user-study findings revealed that almost
60% of the participants found the backchannel responses predicted
by the proposed model more natural. Finally, we also analyzed
the impact of personality on the type of backchannel signals and
validated our findings in the user-study.
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1 INTRODUCTION & RELATION TO PRIOR
WORK

Human conversations, even the most casual ones, have a lot of
complexity associated with them. Two people actively engaged
in a conversation frequently respond to each other, not only with
respect to the content of the conversation, but also to behavioral
aspects, such as facial expressions and prosody. Developing Embod-
ied Conversational Agents (ECAs) [9] and spoken dialogue systems
capable of incorporating these complex elements to converse nat-
urally is a challenging task and has been a constant focus of the
Artificial Intelligence and Human Computer Interaction research
communities. Of these complex conversational constructs, dyadic
components like listener backchannels are among the most crucial
for modeling virtual humans and are also the main focus of this
study.

In a peer-to-peer conversation, a backchannel occurs when one
of the participants is speaking, and the other (the listener) interjects
a short response to the former [41]. These responses do not inter-
rupt the flow of the conversation; rather, they convey the listener’s
state-of-mind about the speaker’s dialog. They also reflect coopera-
tion and understanding between the two parties [17]. Backchannels
can be verbal, non-verbal (visual) or both. Vocalisations like ’hmm’
or “uh-huly’, gestures such as head nods or head shakes, and a com-
bination of verbal and non-verbal responses are common examples
of backchannels.

In the past few years, the research community has shown a keen
interest in modeling the listener’s backchanneling behavior. A large
number of such studies on backchannel prediction have focused
on the use of rule-based classifiers. Ward [38], Truong et al. [36],
Ward and Tsukahara [39] utilized different acoustic features of the
speaker such as pitch, pausal information, etc. to predict backchan-
nel opportunities. A recent study by Park et al. [29] on backchannel

! A teaser video demonstrating our work can be found in the video figure section of
the submission. It illustrates a virtual listener that emits backchannels to the speaker’s
context using the models proposed with this work.
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prediction for children also used similar prosodic features and hand-
crafted rules. Expanding the feature set, Moubayed et al. [1] used
both visual and prosodic speaker features.

Transitioning towards data-driven automatic prediction from
hand-crafted rules, Solorio et al. [34] used prosodic features with
locally weighted linear regression to predict backchannel oppor-
tunities. Morency et al. [27] used multimodal (visual and acoustic)
speaker features and a hidden markov model to predict backchan-
nels. More recently, many researchers also used deep learning tech-
niques for predicting backchannels. Ruede et al. [32] used Long
short-term memory (LSTM) based model with acoustic features.
Hara et al. [16] also used LSTMs to predict turn-taking, filler words,
and backchannels in a multitask learning paradigm. In a recent
study, Goswami et al. [15] used state of the art machine learning
and deep learning-based time-series classification techniques to
model backchannel opportunities in children with multimodal fea-
tures. Inspired by prior work, we too explore the use of machine
learning and deep learning based time series models and include
several similar multimodal features in our analysis.

All these studies, although well-founded, have the following
limitations:

(1) Most of them have focused only on the backchannel opportu-
nity prediction task, with a very few involving the next step
of the problem i.e., predicting the type of backchanneling
signals.

(2) All studies in the literature have relied on data with anno-
tated backchannel instances during their modeling phase,
where they develop a backchannel predictor using the speaker
context. For instance, the datasets used by prior works, in-
cluding the Switchboard Dialog Act Corpus (SwDA) [23],
Iraqi Arabic [40], P2PStory [33], data collected by Morency et
al. [27], and many others, had to be manually annotated for
listener backchannels by multiple coders. This annotation
process can be extremely time-consuming, depending on the
amount of data present. Furthermore, this approach also does
not scale well when trying to expand the scope of develop-
ment by collecting more data. For instance, in many studies,
including the ones cited above, the datasets used cover a
relatively small population size. The size of the dataset used
is primarily constrained by the amount of time it will take
to annotate it, which further impacts the generalizability of
the study. Similar challenges are faced when considering
conversations from low-resource languages, which may be
harder to annotate by virtue of their limited resources. This
is one of the major issues we address in the present study
i.e., can we automate the process of identifying when and
how the listener backchannels from the data, thereby easing
the annotation process?

Our novel contributions include:

(1) Use of self-training based semi-supervision for labeling the
instances in a dataset for the presence or absence of listener
backchannels, and therefore, exploring computational tech-
niques to guide the development of conversational agents.
This identification model partly replaces the human anno-
tator, and therefore uses the listener’s multimodal features
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to detect his/her backchannel responses. In addition to iden-
tifying backchannel opportunities, this step also identifies
the type of signals (verbal, visual or both) associated with
the backchannels. To analyze the feasibility of automating
the labeling process via semi-supervision, we compare the
backchannel prediction models trained on the labels assigned
by the semi-supervised identification process, with the mod-
els trained on the ground truth labels (from the annotators).
Inspired by Bevacqua et al.’s work [4] on personality con-
tingent listener backchannels, we statistically analyzed how
people with varying personalities emit different types of
backchannel responses. In particular, we study the impact
of the extraversion trait of a subject on their preference of
modality [5] for their backchannel response.

Finally, unlike most prior works, in addition to predicting
the backchannel opportunities, we also predict the signal for
the listener agent. The signal prediction task itself is way
more challenging than the opportunity prediction task as
the signals may vary significantly from person to person. We
approach this task by first predicting the type of signal to
emit (visual, verbal, or both). Then, based on our findings in
(2) and depending on what personality we want our virtual
listener to embody, we select the exact signal combination
for it to express.
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With this work, unlike most of the past studies that have focused
on English datasets, we are also amongst the first to use peer-to-
peer conversations in Hindi, which is a low-resource language, for
listener backchannels?. In particular, we use the conversational
dataset collected by Khan et al. [24], and annotate it for analyzing
backchannels. Our quantitative and subjective evaluations reveal
that:

(i) By leveraging semi-supervision for identification of listener
backchannels, we were able to detect the presence of backchan-
nels ~ 90% of the times, and the type of signals associated
~ 85% of the times, with only a small subset (25%) of labeled
data.
Comparing the prediction models trained on the labels gen-
erated by the identification models, with those trained on
manually-annotated labels: the former setting is able to reach
~ 93% of the latter’s performance in case of opportunity pre-
diction, and ~ 96% for signal category prediction. Note that
the cost performance is significantly less for the former as
it needs only a small amount of labeled data, thereby sub-
stantially reducing the efforts required in annotating the
data.

(iii) Subjective analysis in the form of a user study with twenty
seven participants supported our quantitative observations.
Approximately 75% of the subjects found the backchannels
produced by our proposed model more or equally natural
to the responses by the model trained on annotated labels.
The participants also confirmed our observations of person-
ality impacting the preference of modality for backchannel
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responses.

2However, this does not entail that the techniques we propose cannot be used for
datasets from other languages
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The rest of this paper has been organized as follows: Section 2
discusses the dataset used in this work, the annotation process,
and the initial data analysis. In Section 3, we formally describe the
problem statements for the identification and prediction tasks and
discuss how we model them. Additionally, this section also briefly
discusses the features used for modeling these tasks. Section 4
begins by detailing the complete experimental setup and follows
with a quantitative evaluation of all the tasks. The section also
discusses the observations of a user study, performed to analyze the
efficacy of our models in real-time. Finally, we conclude the paper
with Section 6, which discusses the future scope of this work.

2 DATASET

In this work, we use Vyaktitv, a peer-to-peer Hindi conversations
dataset, curated by Khan et al. [24]. The dataset provides audio and
video recordings of participants involved in a dyadic conversation.
There are a total of 25 conversations (50 individual recordings) with
each one lasting 16 minutes and 6 seconds on an average. A total
of 38 subjects (24 Male, 14 Female) were a part of the dataset. It
also provides the Big Five personality traits [10] for all the subjects.
Note that, to the best of our knowledge, no work has used Hindi
conversations so far for analysing listener backchannels.

2.1 Annotating Listener Backchannels

The audio and visual feeds for the individual speakers were anno-
tated for verbal and visual activity based backchannels. Specifically,
three annotators used the ELAN annotation software [8] with a
custom tier template to mark the onset and offset time for different
backchannel signals including- nod, head-shake, mouth, eyebrow,
and short-utterance (Table 1). The overall agreement amongst the
annotators with respect to the presence of backchannels (i.e., if
any backchannel activity was present in a particular time range)
was near perfect with a Fleiss’ x of 0.86. For the individual signals
(k): substantial agreement was observed for nod (0.71), head-shake
(0.64), and mouth (0.63), and moderate agreement in case of eyebrow
(0.45) and short-utterance (0.49). Similar values were also reported
by other dataset annotators, like [1, 33]. A primary reason for rel-
atively low values of annotator agreement in such datasets is the
subjective nature of backchannels.

A consensus strategy was adopted to combine the three sets
of annotations from different coders. In particular, we assigned a
positive label to an instance, provided at least two annotators agreed
upon the existence of backchannel activity during that time frame.
The feedback signals associated with these backchannel instances
(like a nod, smile, etc.) were also decided in a similar fashion using
consensus voting, where a particular feedback signal is included in
the final annotation if at least two annotators observed that signal’s
presence. Figure 1 depicts this strategy using an example where
two annotators agree upon the existence of backchannel activity.

Note that the onset and offset times annotated by the three coders
were bound to have slight variation even for the same instance.
Therefore, to resolve this issue while combining the annotations,
any two instances from different annotation sets (labeled by differ-
ent coders) whose onset and offset time were less than 1 second
apart, were considered to point to the same instance. The final
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Figure 1: Sample depicting the consensus strategy adopted
for combining the annotations from different coders.

BC Signal Labels (Default) N | Mean Freq. | Mean Dur. (s)
Nod none, nod 2037 42.4 1.7
Head-shake none, head-shake 207 4.3 1.7
Mouth neutral, smile/laugh, frown | 227 4.7 1.8
Eyebrow neutral, raise, frown 27 0.6 2.1
none, short-utterance
Utterance « 1y o« ” 1161 24.2 1.4
(eg: “ohh", “okay")

Table 1: Backchannel Signals and their Descriptive Statistics.
(after taking consensus) N represents the total number of
a particular feedback signal observed across the complete
dataset. Mean Freq. is the average number of times a partic-
ipant emits a particular signal during a conversation. Mean
Dur. is the average duration of the signals in seconds (s).

value for the onset and offset time was taken as the average of the
timestamps by different annotators.

2.2 Data Analysis

A total of 2781 backchannel instances were observed across all the
participants in the dataset. In Table 1, we present a descriptive anal-
ysis for these instances in terms of the type of feedback signals. In
particular, we record the total number (N), average frequency per
participant (Mean Freq.), and the average duration (Mean Dur.)
for each signal type. Note that a backchannel instance could have
multiple feedback signals (eg., nod, and smile), and therefore, has
been included in each of the possible signal categories. Observa-
tions from the analysis reflect how all the participants frequently
used nods and short utterances. On the other hand, backchanneling
via head-shakes, mouth, and eyebrow movements was not com-
mon. In particular, instances of backchanneling through eyebrow
movements were scarce in the dataset (only 27), and therefore, we
refrained from considering them in our predictive analysis. Fur-
thermore, the average duration for all these backchanneling signals
was around 1.8 seconds.

With Figure 2(i), we aim to dig deeper by assessing the signals
that co-occur frequently. In this study, we refer to a backchannel
instance as multimodal if it has multiple associated signals; else, it
is a unimodal instance. Note how unimodal nods and utterances
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Figure 2: (i) Frequency of different combinations of
backchannel signals emitted together by the subjects (across
all subjects). (ii) Probability density distribution plot depict-
ing the relation between extroversion and the ratio of mul-
timodal to unimodal backchannel instances (r) emitted by
the subjects.

were amongst the top frequent signals emitted. Furthermore, most
of the frequent multimodal instances included at least either a nod
or an utterance. Multimodal signals where more than three types
of signals co-occurred were infrequent.

Finally, we utilize the Big Five traits provided in the dataset to
analyze if personality traits influenced the type of signals (multi-
modal or unimodal) emitted by the subjects. For our analysis, we
defined the variable 7 as the ratio of the number of multimodal to
unimodal backchannel instances emitted by a subject. Then, we
used a two-sample Kolmogorov-Smirnov (K-S) test, with the null
hypothesis that the distribution of 7 for the two categories of partic-
ipants (based on a particular personality trait) was similar. The test
presented an interesting insight in terms of the subjects’ preference
for multimodal and unimodal feedbacks. Of the five traits, the tests
suggested a significant difference in the distribution of 7 when con-
sidering the extraversion trait. The probability density distribution
in Figure 2 (ii) shows how subjects with low extraversion scores
(introverts) tended to have a lower value for 7, indicating their
preference for unimodal signals, while extroverts used multimodal
feedback more often. Quantitatively, the average probabilities of
an extrovert emitting multimodal or unimodal backchannels were
0.51 and 0.49, respectively. The same values for an introvert were
0.35 and 0.65, respectively. This observation has been utilized later
in this study while deploying the backchannel prediction mod-
els to a virtual-agent, thereby lending it a ‘personality’ based on
which it can choose to emit multimodal or unimodal feedbacks in a
probabilistic fashion (Section 4.3).

2.3 Negative Samples

Negative samples are the instances from the conversations where
the listener did not emit any backchannel. Specifically, we evaluated
the following two conditions while extracting such instances:

(1) the listener is not speaking, and
(2) the listener is not backchanneling in that time frame.

Vidit Jain, Maitree Leekha, Rajiv Ratn Shah, and Jainendra Shukla

We used the Audacity tool® to extract the voice-activity of the
listener. Combining the voice-activity and the annotations, we ex-
tracted regions from the conversations that met the above two con-
ditions. We sampled disjoint instances from these regions, where
the length of each instance (in seconds) was taken as a random
floating-point number in the range [1.06, 5.43]. This range also
determined the lengths of the backchannel instances, and hence the
choice. Using this approach, we sampled a total of 2670 negative
instances.

3 METHODOLOGY

This section elaborates on the two-step methodology followed in
the present study. We begin with the backchannel opportunity
and signal identification module, which utilizes the listener’s fea-
tures to automatically classify the instances into different categories
based on the presence or absence of backchannel activity. This step
employs a semi-supervised training paradigm and aims to simplify
the manual annotation task. Next, we discuss the prediction mod-
ule, which uses the speaker’s contextual features to predict these
backchannels. The training step of this latter module makes use of
the labels generated by the former semi-supervised step. Figure 3
summarises this workflow.

3.1 Semi-Supervision for Backchannel
Opportunity and Signal Identification

Task Formulation. We begin this module by first formally defin-
ing the task of identifying backchannel opportunities and signals.
Consider a time frame T;;, which starts at the ith second and ends
at the jth, and let L;; represent the listener’s visual and acoustic
features in that time frame. Then, our aim for the backchannel
opportunity identification task is to learn a function ¥, mapping
a time series in the listener’s feature space to the corresponding
backchannel opportunity label 80;; (binary label signifying the
presence or absence of backchannels in the time T;;), i.e.,

Fbe(Lij) = BOij (1)

We model (identify and predict) the backchannel signals differ-
ently from the literature. Instead of identifying the different signals
(like nod, head-shake, etc.) individually, we categorize them into
two types- visual (nod, mouth, head-shake) and verbal backchan-
nels (utterances). This is done because the task of predicting the
exact backchannel signal that a listener must emit based on the
speaker’s context (i.e., the signal prediction task) is challenging,
primarily because of the subjective nature of these signals. For
instance, subject A may emit a smile to a particular speaker con-
text, whereas another subject B may emit a nod in response to the
same. Grouping signals together into visual and verbal categories
simplifies the tasks at hand.

A backchannel instance could be associated with visual, verbal,
or both kinds of signals. Therefore, the signal identification task
aims at finding the type of signal the listener emits whenever s/he
backchannels. The goal is to learn a mapping function ¥sig from
the listener’s feature space to one of the three signal categories
(verbal, visual, both) (BS;)), i.e.,

Shttps://www.audacityteam.org/
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Figure 3: Methodology: (i) Semi-supervised learning for identifying backchannels and type of signals emitted using a subset
of labeled data. (ii) Learning to predict these instances and signals using the speaker’s context.

Fsig(Lij) — BSij (2

It is important to note that both the identification tasks make use
of only the listener’s features. This is a crucial distinction from the
prediction module. The identification module identifies backchan-
nel opportunities and signals much like a human annotator, by
paying attention to the listener. On the other hand, as expected, the
prediction module would use only the speaker’s contextual features
to predict these backchannels.

Modelling: Semi-Supervised Learning. Annotating large datasets
is a tedious task, and researchers have long been exploring ways
to ease out and automate this manual process [2, 6, 19, 31]. Even
in the context of the present study, the annotation process took
around 90 hours*, where the three annotators viewed and labeled
all the conversations. This indeed is a bottleneck! To the best of
our knowledge, this challenge in developing ECAs, specifically for
modeling the backchannel behavior of an active listener, is an open
research gap that has not been investigated by prior literature. The
identification module of our workflow is a step towards tackling
this challenge.

Several Al techniques based on Semi-Supervision [14, 21] and
Weak-Supervision [11, 26] have been utilized to decrease the an-
notation costs in different application domains. Here we explore
self-training based semi-supervised learning paradigm [37] for iden-
tifying listener backchannel instances and the signals associated
with them, using only a small subset of the manually annotated
data. The following steps summarise the general approach to self-
training based semi-supervision adopted here (Figure 3):

(1) We start with the labeled portion of the dataset (£) to train
an initial classifier (C) that learns to identify the backchannel

430 hours each annotator, taking the average time to annotate one side of a conversation
as 35 minutes. The total amount of recorded content being ~ 13.5 hours long.

instances and the signals associated based on the listener’s
features.

(2) C is then used to predict the labels for the unlabeled data
(U).

(3) Of these predictions, the instances which meet a specific
selection criterion are removed from U and added, along
with their predicted pseudo labels, to the training set. This
updated training set comprising the initially labeled (£) and
the newly added pseudo labeled instances are used to train
the classifier C again.

(4) The cycle continues until no new instance matches the se-
lection criteria.

In the present study, we have the labels for the complete dataset
(D). Therefore, in our context, £ and U are disjoint subsets of
5. Furthermore, as selection criteria for Step-3, we use a high
threshold value of 0.90 on the predicted class probability. Note that
after Step-4, we use the trained classifier C to predict the pseudo
labels for all the remaining instances from U. Our experiments
revealed that such instances were very few in number.

3.2 Backchannel Opportunity and Signal
Prediction

The formal definition for the backchannel opportunity prediction
task is similar to the one proposed in prior literature [15]. Consider
a time window Tj;, and let S;; be the speaker’s visual and acoustic
features for that period. The backchannel opportunity prediction
task entails predicting whether the listener would backchannel
after T;; (i.e., the label B8O;j.) using only the speaker’s features
(context). Similarly, the signal prediction task aims to predict the
type of feedback signal (visual, verbal, or both) (i.e, 8S;;+) that
will be emitted by the listener using the speaker’s context. The
following function mappings represent these tasks:

5This notion becomes more apparent as we discuss the experimental setup in Section 3.4
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Gpc(Sij) = B0 (3

Gsig(Sij) = BSij+ 4)

Inspired by literature [15, 28] we extract a 3 second context
window before each instance in our dataset and use the speaker’s
visual and acoustic features for that time frame to predict listener
backchannels.

The prediction tasks are performed in a supervised fashion, with
the labels derived from the semi-supervision based identification
module. Since the identification module used the listener’s channel
(features), the prediction module is essentially learning based on
cross-channel semi-supervised labels.

3.3 Feature Extraction

This section elucidates all the features extracted from the dataset
for modeling the identification and prediction tasks. Table 2 sum-
marises these visual and prosodic features. In particular, inspired
by prior work [15, 22] we use OpenFace [3] to extract- 18 facial
action units (FAUs), velocity and acceleration of gaze, translational
and rotational head velocities and accelerations, blink rate, pupil
location, and smile ratio. Additionally, we also find the gaze state
as a categorical variable, taking up three values- left, right, or
blinking®. These features from the listener’s channel are used
for backchannel opportunity, and signal identification tasks and
the prediction tasks utilize the corresponding features from the
speaker’s channel.

As prosodic features, in addition to the voice activity (discussed
in Section 2.3), we also extract the fundamental frequency (F0),
the energy, and the first 13 Mel-Frequency Cepstral Coefficients
(MFCC) using the pyAudioAnalysis library [13]. All of them are
used for the identification as well as the prediction tasks.

3.4 Experimental Setup

We now discuss the experimental settings for our work. Since each
task can be analyzed and evaluated based on several dimensions,
such as the type of features used (multimodal vs. unimodal), and
the amount of initial ‘labeled’ data in semi-supervision (£), we
could theoretically have had a combinatorial number of settings
corresponding to all pairs of values for these variables. However,
we follow a more structured pattern to limit the number of settings
and draw focus on the most crucial elements.

3.4.1 Backchannel Opportunity and Signal Identification. Separate
models were trained for backchannel opportunity and signal iden-
tification tasks. We tried several different machine learning algo-
rithms for training the classifier C in a semi-supervised paradigm
described in Section 3.1. Specifically, we experimented with Random
Forests (RF), Support Vector Machine Classifier (SVC), K-Nearest
Neighbour Classifier (KNN), AdaBoost (ADA), and ResNet (ResNet).
ResNet is the state-of-the-art deep learning model for time series
classification [12]. Additionally, we also experimented with the
widely used Label Spreading algorithm (LSpread, implemented as

The following GitHub repository was used for the same: https://github.com/
antoinelame/GazeTracking

Vidit Jain, Maitree Leekha, Rajiv Ratn Shah, and Jainendra Shukla

Features Description
Visual Features
FAUs Regressive values of 18 Facial Action Units:
AUQT_r, AU@2_r, AU@4_r, AUQ5_r, AUQ6_r,
AUQ7_r, AUQ9_r, AU1@_r, AUT2_r, AUT4_r,
AU15_r, AU17_r, AU20_r, AU23_r, AU25_r,
AU26_r, AU28_r, AU45_r
gaze_vel, Velocity and acceleration of eye gaze
gaze_acc
gaze_state Categorical feature signifying the direction of
gaze as- left, right, blinking
head_vel_T, Translational velocity and acceleration of head
head_acc_T
head_vel_R, Rotational velocity and acceleration of head
head_acc_R
blink_rate First order differential of Eye Aspect Ration
pupil Location of the pupils.

Stretch of the smile calculated as the ratio of
two characteristic dimensions of the mouth [1]

smile_ratio

Prosodic Features

Fo The fundamental frequency of the speech signal
energy The sum of squares of the signal values, normal-
ized by the respective frame length
mfcc Mel-Frequency Cepstral Coefficients 1-13

voice_activity Binary state characterizing whether the person
is speaking or not, based on acoustic signals.

Table 2: Visual and vocal prosodic features used in the study.

a part of the scikit-learn python library [30]) for semi-supervised
learning as a baseline. All but for the ResNet model were trained
using the mean and standard deviation aggregates of the time se-
ries based listener features. ResNet was trained using the detailed
time series features for the complete time window. Finally, for the
proportion (x) of the dataset D taken as the initial ‘labeled’ data
(£) for training C, we experimented with all values in the range
(5%, 100%) with a step size of 5%. Although semi-supervision is
applicable only when the amount of unlabelled data exceeds the
labeled, experimenting with the whole range helps in the analyzing
the models’ sensitivity, i.e., how the performance changes when we
approach the fully supervised setting (by increasing x).

Manifold evaluation for the identification tasks can be easily
understood from Figure 4. First, we randomly create 5 folds from
the data (D). Four of these folds are used for training C via semi-
supervision; i.e., a random x% sample of the data from these four
folds serve as the initial ‘labeled’ set (L), while the rest is termed as
‘unlabelled’ (U). Once the model has been trained, it is evaluated
on the 5th fold, i.e., the pseudo labels produced by the identification
models are compared against the ground truth labels. To ensure that
our models do not over-fit to a particular random split, we run 10
simulations of training and evaluation for each pair of values of C
and x, and report the average results across all the simulations’. As
evaluation metrics, we use the weighted average precision, recall,
F1-score, and overall accuracy, for both the opportunity and signal
identification tasks.

"The results for each simulation were taken as the average of all 5 folds.


https://github.com/antoinelame/GazeTracking
https://github.com/antoinelame/GazeTracking

Exploring Semi-Supervised Learning
for Predicting Listener Backchannels

F5 F4 F3 F2 F1

Test T
Set Unlabeled Labelled

(100 - x%) (x%)

Figure 4: 5-Fold evaluation of semi-supervised models for
backchannel opportunity and signal identification.
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Figure 5: Multimodal RNN Fusion based architecture for
backchannel opportunity prediction model.

3.4.2  Backchannel Opportunity and Signal Prediction. We begin
evaluating the prediction experiments by first analyzing the im-
pact of using different sets of features i.e., unimodal vs. multimodal
features. This is done by using the supervised (manually anno-
tated) labels for both training and evaluation. Inspired by Tavabi
et al. [35], we use a multimodal RNN fusion-based architecture for
backchannel opportunity prediction, shown in Figure 5. In essence,
the time-series features for video and audio modalities are first
individually passed through LSTM encoders. Following this, the
encoders’ outputs are concatenated and again passed through a
recurrent layer, enabling the model to learn the temporal dependen-
cies between modalities. The latent representation from this fusion
layer is finally passed to a softmax layer through a fully-connected
layer to predict feedback opportunities. The two unimodal models
simply include a softmax layer after the encoder to output predic-
tions.

The signal prediction task was more complex, as the labels for
the task also suffered from a serious class imbalance (visual: 1593,
verbal: 326, both: 835) which was adversely impacting the predic-
tive performance of the models®. Therefore, we use the mean and
standard deviation aggregates of the time series based speaker con-
text features, along with SYM-SMOTE [7] to handle this imbalance’.
Note that signal prediction was made using only the feature set
(unimodal/multimodal) that performed the best for the opportu-
nity prediction task. Using the upsampled data'?, we tried several

8Note that though the same data was also used for the signal identification task, the
imbalance did not cause a degradation in the performance there.

9SMOTE takes data of the shape (n_samples, n_features) as input, and therefore,
time-series data had to be aggregated. This also eliminated the utility of models like
ResNet for the task.

190nly the training set was upsampled i.e., the test set remained as is.
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models for signal prediction, including Random Forests (RF), Sup-
port Vector Machine Classifier (SVC), AdaBoost (ADA), K-Nearest
Neighbors (KNN), and a Multi-Layered Perceptron model (MLP)!!.
The next set of experiments analyze the feasibility and the perfor-
mance to cost trade-off when adopting semi-supervision to label the
dataset. For this, we compare the prediction tasks in two paradigms:

(1) A complete supervised setting, using true labels provided
by the annotators during the training and evaluation phases.
Note that previous evaluations of the prediction tasks already
produced the results for this setting.

(2) The proposed setting using labels generated by the semi-
supervised identification modules for training, while eval-
uating on the true labels. For this, we use only the best
feature set (unimodal/multimodal) found via the previous
evaluations, along with the pseudo labels produced by the
best-found pair of C and x from the identification tasks.

With these two paradigms, we assessed how far semi-supervised
backchannel identification fetches in comparison to human anno-
tations for the downstream prediction tasks.

For evaluating the backchannel prediction models, several recent
works have used the leave-one-subject-out approach [22]. In the
present study, we use a slightly modified version of this technique
to evaluate our prediction models in different paradigms. Instead
of having the data from each subject comprise a test fold, we di-
vide the subjects into 6 groups, and data from each of these groups
form a test fold, i.e., leave-one-group-out. This modification was
primarily done because some subjects had very few backchannel
instances in their conversations. Combining instances from multi-
ple subjects to form a test set helped in better analyzing the model
predictions and keeping the number of folds tractable. As metrics
for the backchannel opportunity prediction task, we report the
positive class’ precision, recall, and F1-score, as well as the overall
accuracy. For signal prediction, we report the weighted average pre-
cision, recall, and F1-score, the overall accuracy, and the confusion
matrices.

4 RESULTS
4.1 Identification Tasks

In Figure 6, we have the sensitivity analysis in terms of accuracy of
all the models we tried for the backchannel opportunity and signal
identification tasks. Each curve in these plots represents how the
performance of a particular classifier (C) for the identification task
changes as we increase the amount of initial labeled data available
(x) for semi-supervision. Using this information, we looked for the
best possible pair of values for C and x. However, in addition to
achieving high performance, we also wanted to limit x. For this, we
manually found the elbow point for the best performing classifier
in each task. The elbow value for x is one where decreasing it fur-
ther would cause a drastic drop in performance, while increasing it
would not change the performance significantly. Ideally, we also
wanted x to be less than 50%, where we could have more unla-
belled than labeled data for semi-supervision, thereby improving
the annotation cost trade-off.

!please refer the supplementary material for details on the hyper-parameters used
for all the different models in the identification and prediction tasks



CHI ’21, May 8-13, 2021, Yokohama, Japan

1.0 1.0
0.9
/\—\/—/\/-4 0.9
0.8
507+ 5
§ | e e SS=S SRS SSS
< =k <
0.6 W 0.7
0.5
0.6

0.4
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion of Labelled Dataset

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion of Labelled Dataset

(i) Opportunity Identification
®  Label Spreader = SVM 4 KNN
Ada Boost

(ii) Signal Identification
Random Forests +- ResNet

Figure 6: Sensitivity Analysis using accuracy as the met-
ric for semi-supervised backchannel opportunity and signal
identification models. The shaded portion represents stan-
dard deviation.

Opportunity Signal
Model Identification Identification
Precision Recall Fil-score Accuracy | Precision Recall Fl-score Accuracy
LSpread 0.66 0.66 0.66 0.66 0.67 0.65 0.66 0.65
SsvC 0.56 0.52 0.56 0.54 0.69 0.70 0.68 0.71
KNN 0.63 0.63 0.63 0.63 0.63 0.67 0.62 0.67
ADA 0.74 0.74 0.74 0.74 0.75 0.75 0.69 0.75
RF 0.76 0.76 0.76 0.76 0.86 0.87 0.86 0.85
ResNet 0.90 0.90 0.92 0.90 0.81 0.84 0.83 0.83

Table 3: Backchannel opportunity and signal identification:
Detailed results for x = 25%.

Figure 6 (i) shows how ResNet outperforms all the other models
in terms of the listener backchannel opportunity identification task.
Observe how increasing x beyond 25% does not change the perfor-
mance a lot. It also meets all the other criteria we discussed above.
Therefore, we choose x = 25% as the final seed value (used to initial-
ize the amount of labeled data) for the opportunity identification
task. For the signal identification task (Figure 6 (ii)), we observe
that ResNet and Random Forests both have somewhat overlapping
accuracy for different values of x. However, by taking a closer look,
we analyze that for values of x < 30%, Random Forests lead ResNet.
The elbow point for Random Forests is at 25%, while that for ResNet
(with a similar accuracy value) is observed at 35%. Therefore, for
the signal identification task, our final choice is Random Forests
with x = 25%. The detailed results obtained for other classifiers
with x set to 25% for both the opportunity and signal identification
tasks are shown in Table 3.

4.2 Prediction Tasks

We begin discussing the prediction models with Table 4, which
records the results of our backchannel opportunity prediction task
performed using the annotated labels for training, while experi-
menting with different subsets of input features. The unimodal-
audio model, with positive class F1 of 0.74 and overall accuracy of
0.70, outperforms the unimodal-video model, with the correspond-
ing metric values of 0.71 and 0.66, respectively. The multimodal
model utilizing both the video and audio features beats the audio
model by a small margin, attaining an F1 of 0.75 and 0.72 accuracy.
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Feature set Precision Recall Fl1-score Accuracy
Video 0.61 0.86 0.71 0.66
Audio 0.64 0.90 0.74 0.70

Video + Audio 0.66 0.89 0.75 0.72

Table 4: Backchannel opportunity prediction model trained
trained across different sets of features using supervised
(manually-annotated) labels for training. Overall, the mul-
timodal feature set performed the best.

Labels used Precision Recall Fl-score Accuracy
Supervised 0.66 0.89 0.75 0.72
Semi-Supervised 0.62 0.82 0.70 0.66

Table 5: Backchannel opportunity prediction: comparison
of model trained using supervised manually-annotated la-
bels with the one using labels generated by the identification
module.

Supervised Semi-Supervised
Model Labels Labels
Precision Recall Fi1-score Accuracy | Precision Recall F1-score Accuracy
SsvC 0.80 0.80 0.80 0.80 0.75 0.75 0.75 0.75
KNN 0.74 0.74 0.73 0.74 0.72 0.72 0.71 0.72
ADA 0.81 0.81 0.81 0.81 0.78 0.78 0.78 0.78
RF 0.78 0.78 0.78 0.78 0.76 0.75 0.75 0.75
MLP 0.80 0.81 0.80 0.87 0.75 0.74 0.74 0.84

Table 6: Backchannel signal prediction: comparison of mod-
els trained using supervised (manually-annotated) labels,
and those using labels generated by the semi-supervised sig-
nal identification Random Forest model (with 25% initial la-
beled data).

PREDICTED PREDICTED
C1 Cc2 C3 C1 Cc2 C3
@ C1 0.71 0.07 0.23 Q C1 0.70 0.09 0.21
2C2 007 JOBA 0.06 2C2 008 O8N 0.12
B3 027 0.05 [F067 B3 023 0.06 072

(1) (i)
Table 7: Confusion matrices for the best backchannel signal
prediction model (i) trained on manually-annotated labels,
(ii) trained using labels generated by the signal identifica-
tion models. Here, C1, C2, C3 refer to the ‘visual’, ‘verbal’, and
‘both’ class labels, respectively.

Since this set has overall the best performance for the baseline op-
portunity prediction task with supervised labels, we use the same
to train and analyze models for subsequent tasks as well.

Continuing with opportunity prediction, we now discuss the
results obtained using the semi-supervised labels generated by the
opportunity identification model for training (the evaluation/test
set used the same supervised labels). Table 5 records these results.
Evidently, with the labels generated using just 25% of the annotated
data (in the identification step), we are able to achieve nearly 93% of
the supervised F1 and 92% of the supervised accuracy scores on the
opportunity prediction tasks. The values of these metrics observed
here are 0.70 and 0.66, respectively.
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Moving on to backchannel signal prediction for determining the
category of signals for the listener to emit, Table 6 shows the re-
sults obtained for all the models trained in different settings. When
using the manually-annotated labels for training, we observe that
the MLP model has the best accuracy of 0.87, however in terms of
the F1-Score, the ADA model outperforms all the others. Given the
data imbalance in the signal prediction task, we use F1-score as
the deciding metric, and choose ADA as the best performing model,
with an F1-score of 0.81. We observe a similar performance trend
when using the semi-supervised signal identification model to gen-
erate the training labels. Here as well, ADA is the best performing
model in terms of F1-score, with a value of 0.78, which is 96% of
the corresponding metric for the supervised setting. In Table 7, we
report the confusion matrices for the best (ADA) signal prediction
models found for the two settings. We used the worst-case confu-
sion matrix [25] computed using all the matrices generated across
manifold evaluation of the model. The performance for the ‘visual’
(C1) class remained almost unchanged in the two settings. The false
positives between the ‘visual’ and the ‘both’ (C3) classes reduced
when using semi-supervised labels. The ‘verbal’ (C2) class perfor-
mance dropped slightly. On the other hand, we performed better
for the class C3, but that came at the cost of a slight increase in
the false positives from C2. Overall, the performance of the model
trained using semi-supervised labels was indeed comparable with
the one trained on manually-annotated labels.

4.3 Subjective Evaluation: User Case Study

For problems like predicting listener backchannels, quantitative
evaluations based on different metrics may not be sufficient to ana-
lyze the models’ efficacy. For such cases, qualitative assessments
become extremely important. Many prior studies have used ECAs
or robots to deploy their models and assess the backchannel predic-
tions. However, in the present study, we follow a slightly different
approach, which is partly inspired by [15] and [28]. Specifically,
using Apple’s Memoji feature, we created two virtual avatars- Ar-
jun (introvert) and Karan'? (extrovert). We used the same Memoji
technology to record (as short clips) the neutral state and different
combinations of backchannel signals, mentioned in Table 8, for
each of them. Furthermore, we prepared a short video compilation
(nearly 4 minutes long) of a few speakers from the dataset used in
this work. Using our prediction models!?, along with a personality
contingent signal combination sampling technique, we recorded
the backchanneling responses that Arjun and Karan would emit
for the speakers in the compilation. Although the sampling is not
the main focus of this work, we briefly describe below the steps
followed for re-use by future works:

o After getting the predictions for backchannel opportunity,
and the signal category from our models, we use inverse
transform sampling to decide whether to emit unimodal or
multimodal signals (in case of visual and verbal categories
only) based on the personality being modeled (extrovert or

12The names used are hypothetical, and do not compromise anonymity.
13Backchannel opportunity prediction was done at an interval of 3 seconds. Depending
on the output, the signal categories were predicted. We also ensured that the mod-
els used for different speakers in the compilation were the ones where the speaker
belonged to the test set.

CHI 21, May 8-13, 2021, Yokohama, Japan

Unimodal Multimodal

Visual nod (0.83), }'fead-shake (0.08), nod + smile (0.60), head-shake + smile (0.40)
smile (0.09)

utter: top short utterances like okay,
Verbal hmm, haan (yes), etc., nod-+utter (0.80), smile+utter (0.13),
were proabbilistically sampled head-shake-+utter (0.05),
head-shake+utter+smile (0.01),
Both - nod-+utter+smile (0.01)

Table 8: Signal combinations from different categories used
in the present study. The corresponding normalized proba-
bilities inferred from the data and used while sampling the
signal combinations are also shown.

introvert). Note that the probabilities used here are calculated
from the data and are mentioned in Section 2.2.

o Now, we choose the exact signals to emit from Table 8 using
inverse transform sampling, where the probabilities for each
signal combination are calculated from the data'?.

We recorded six response videos, three for each Arjun and Karan,
using the following different prediction policies:

(1) Random Prediction Model (Random policy): A baseline model
that predicted backchannel opportunities and the signal cat-
egories at random.

Supervised Model (MA policy): The best opportunity (multi-

modal) and signal category (ADA) prediction models trained

on the manually-annotated labels.

(3) Semi-supervised Model (SSL policy): The opportunity (mul-
timodal) and signal category (ADA) prediction models trained
with the labels generated from the semi-supervised identifi-
cation models (ResNet and RF, respectively with 25% data)
used in this work.

—
N
~

With these short clips recording the backchannel responses as
predicted by different models for Arjun and Karan, we wanted to
test the following three hypotheses:

[H11: As perceived by a human watching the response videos, the
backchannels predicted by our models look more natural,
and therefore, better than those predicted by the random
policy model.

[H2]: From a user’s perspective, there is no significant difference
in the quality of backchannel responses emitted by models
in the settings 2 and 3 above, i.e., using semi-supervised
learning with a small subset of labelled data does not impact
the quality of backchannel responses generated by the final
prediction models.

[H31: Finally, to assess the extent to which backchannel responses
depend on personality, and the utility of using such person-
ality contingent signal sampling: A human can judge the
extraversion personality trait for Arjun and Karan based on
their response videos.

Twenty seven students were recruited as participants from a
university’s mailing list. They were all native Hindi speakers. As
an introduction, the participants were acquainted with the concept

4The only step that is contingent on personality is deciding on the unimodal vs.
multimodal signals. The second step of signal sampling uses common probabilities for
both characters.
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Figure 7: Stills from two of our user study videos- (i) Karan,

and (ii) Arjun
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Figure 8: Box & Whisker plot for the Likert scale ratings
(where 1 is very poor and 5 is very good) given by the partici-
pants to each of the three policies, based on (i) placement &
frequency, and (ii) signal type selection.

of listener backchannels. They were instructed to watch all six re-
sponse videos and carefully observe the virtual listeners’ backchan-
nel responses in each one. It was a blind study, i.e. the participants
knew neither about the prediction policies nor about the listeners’
personality traits in the videos.

Furthermore, to ensure that the appearance of the two avatars
did not bias the participants’ judgement, we switched the avatars
(with everything else as is) for half the participants. In other words,
for half of the participants, Arjun acted as an extrovert, and vice
versa. With this, we will be able to analyze whether backchannels
indeed depend on the extraversion personality trait.

After watching all the videos, the participants were presented
with a questionnaire meant to test the three hypotheses mentioned
above. In particular, we asked the participants to

e Rank the three policies in order based on the quality of
backchannels, taking into consideration factors like the place-
ment, frequency, and selection of backchannel signals.

e Rate each one on a Likert scale based on the above parame-
ters.

o Identify the personality traits of the avatars based on the
videos.

Post survey analysis of the participants’ responses lead to some
exciting findings which supported our hypothesis:

(1) Models from both the manually-annotated and semi-
supervised settings performed better than random: 95%
of the participants ranked our prediction models to be better
than the random prediction policy. In addition, the Likert
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scale ratings suggested that our models performed signifi-
cantly better than the random policy, both in terms of the
placement & frequency, as well as the signal selection. We
used the Wilcoxon signed-rank test, and the corresponding
p-values are [P- placement & frequency, S- signal selection,
« indicates significant difference at 95% confidence interval]:
e MA > Random: 0.0019 (P*); 0.0013 (S*)
e SSL > Random: 0.00011 (P*); 0.0001 (S*)
A box-plot for these ratings is shown in Figure 8. Notice how
the boxes for MA and SSL do not overlap with Random. This
also indicates that the former two certainly received better
ratings than the later. This validates our first hypothesis
[H1] that with a data-driven approach, we were able to emit
more natural and human-like backchannels.
(2) Prediction models trained on semi-supervised labels
produced more natural backchannels: Comparing the
ratings provided for the MA and the SSL policies, we found
that in terms of the frequency and placement (P), there was
no significant difference between the two (p-value=0.1024).
For signal selection (S), the ratings suggested that SSL was
significantly better than MA (p-value=0.0122). The box-plot in
Figure 8 also aligns with these results. In case of Placement
& Frequency, the boxes for MA and SSL overlap, with the
median line for SSL slightly above MA’s. This indicates that
there is likely to be a difference between the two sets of
ratings, even though it may not be significant (as found from
the test). For Signal Selection, the boxes do not overlap at
all, indicating a difference.
Furthermore, as a part of the questionnaire, we also asked
the participants to compare the response videos generated
by these two prediction models. Of the total, 60% of the
participants found the backchannel responses emitted by
the SSL model more natural than the MA model (SSL > MA),
and 15% observed no perceptible difference between the two
(SSL ~ MA). This also aligns with our quantitative prediction
results where the proposed SSL model was able to reach
~ 95% of the latter’s performance. Thus, the two models
were, both qualitatively and quantitatively, very similar.
This confirms our second hypothesis [H2] with most of the
participants finding the proposed model (SSL) similar (or
more natural) to the MA model.
Karan and Arjun’s extraversion traits were percepti-
ble: 80% of the participants were able to accurately identify
which of the two virtual-human characters was introvert and
extrovert. This confirms our third and final hypothesis [H3]
that the type of backchannel signals emitted by an individual
indeed depends on their personality.

—
&Y
=

5 DISCUSSION

Relation to prior work and some interesting findings: Our
quantitative and qualitative evaluations in the previous section
greatly validate how semi-supervision can be extremely useful in
designing human-like ECAs, by focusing on the task of listener
backchannel prediction. We found that with just 25% of manually
annotated data ( 175 minutes), we were able to train a backchannel
prediction system that performed comparably well, and even better



Exploring Semi-Supervised Learning
for Predicting Listener Backchannels

in terms of some parameters, as the one trained using 100% data.
Most of the prior works, even the most recent ones, including
[15, 16, 29, 32], have depended on a large amount of annotation.
We believe that this observation can significantly benefit the HCI
community. Furthermore, studies have shown that backchannel
responses vary greatly with culture [18, 42], and most of the prior
studies have focussed primarily on the American and European
population in this regard. In this work, we worked with subjects of
Indian origin, and therefore, our work holds cultural significance
as well.

A particularly interesting finding from Section 4.3 was that most
participants found the backchannel responses generated by the SSL
policy more ‘natural’ than the MA policy. We hypothesise this could
be attributed to some form of label noise: After annotations, we
only took those positive instances where at least two raters agreed,
and the rest were discarded. Our negative samples overlapped with
those instances where only 1 of the raters had annotated a positive
BC. The SSL model could be learning to predict these backchannels.
In fact, in our demo videos, we found two such instances. Starting
with a small amount of seed data, the SSL model could have been
learning these instances as well (given there are some hints of
BC), which could explain the observation that even though SSL
performed comparably with MA quantitatively, but seemed more
natural to the participants in the subjective study.

Limitations: We would also like to highlight some limitations of
our work, which can form the basis for future studies. First, we only
used the participants’ visual and acoustic features and did not in-
clude the content of the conversation itself for predicting backchan-
nels. The main reason for this was that the primary language used
in the Vyaktitv dataset was Hindi. The English translations for the
dialogues were not available, making the use of state-of-the-art
NLP techniques non-trivial. In another aspect, our qualitative user
case study involved a short 4-minute long compilation of speakers
from the Vyaktitv dataset. A more rigorous analysis could follow by
deploying the models and the avatars as a real time-system. Finally,
we did not annotate eye blinks/gaze [20] as backchannel signals,
primarily because they were not as apparent in the dataset. This
could be a cultural difference as well.

Ethical Consideration: When developing data-driven systems
leveraging data from human-subjects, it becomes imperative that
we respect their privacy boundaries. We want to state that no
Personally Identifiable Information (PII) was used while training or
evaluating the system. We also complied with the agreements in
the Vyaktitv dataset to ensure the safe use of data.

6 CONCLUSION

In this work, we confirmed the feasibility of using semi-supervised
learning to (semi-) automate the process of identifying and labeling
listener backchannel instances (both opportunities and the asso-
ciated signals) from conversations. We used a Hindi peer-to-peer
conversation-based multimodal dataset Vyaktitv, for our experi-
ments. However, the methodology proposed in the study is general
and can be adapted for other conversational datasets as well. Quan-
titative evaluation alongside a subjective analysis in the form of a
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user study strongly validated our hypothesis that- prediction mod-
els trained using semi-supervised labels performed comparably
with those using manually annotated labels. Furthermore, we sta-
tistically and qualitatively confirmed that the type of backchannel
signals emitted are intimately linked to an individual’s personality
(extraversion in particular).

Future work directions include validating the scope of semi-
supervised learning for listener backchannel prediction on other
datasets. Other parallel tasks, like listener disengagement predic-
tion, can also be similarly performed. Methodologically, future
studies could explore by devising heuristics and using weak super-
vision based techniques to identify backchannels. Our observations
from analyzing the impact of personality on the type (modality)
of backchannel response also open some new research questions;
for instance- can we also analyze if the frequency of backchannels
emitted by different individuals depend on personality [4]? Further-
more, can we use these findings to embed personality into a virtual
human further? These are some exciting lines future researchers
can look into by conducting more extensive analysis.
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