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ABSTRACT
As we approach the exascale era, the size and complexity of HPC
systems continues to increase, raising concerns about their man-
ageability and sustainability. For this reason, more and more HPC
centers are experimenting with fine-grained monitoring coupled
with Operational Data Analytics (ODA) to optimize efficiency and
effectiveness of system operations. However, while monitoring is a
common reality in HPC, there is no well-stated and comprehensive
list of requirements, nor matching frameworks, to support holis-
tic and online ODA. This leads to insular ad-hoc solutions, each
addressing only specific aspects of the problem.

In this paper we propose Wintermute, a novel generic frame-
work to enable online ODA on large-scale HPC installations. Its
design is based on the results of a literature survey of common
operational requirements. We implement Wintermute on top of
the holistic DCDB monitoring system, offering a large variety of
configuration options to accommodate the varying requirements of
ODA applications. Moreover, Wintermute is based on a set of logi-
cal abstractions to ease the configuration of models at a large scale
and maximize code re-use. We highlight Wintermute’s flexibility
through a series of practical case studies, each targeting a different
aspect of the management of HPC systems, and then demonstrate
the small resource footprint of our implementation.

KEYWORDS
High-Performance Computing, Monitoring, Operational Data Ana-
lytics, System Management, Online Analysis

1 INTRODUCTION
The computational requirements of modern scientific research grow
steadily, and High-Performance Computing (HPC) systems are de-
signed accordingly with ever-increasing scale and parallelism, tak-
ing us to the brink of the exascale era, with systems capable of
computing a billion billion operations per second. However, the
enormous and intricate complexity of these systems resulting from
the adoption of heterogeneous architectures, novel cooling sys-
tems, as well as complex management software to support modern

applications and workflows, makes both their deployment and pro-
duction use a challenge. Further, concerns about excessive power
consumption [45] and high failure rates [11] question their feasibil-
ity. To counter these challenges, it will be more important than ever
before to treat HPC machines as dynamic, complex systems them-
selves whose efficiency and effectiveness must be proactively and
continuously monitored, analyzed and improved [5]: in other words,
the operation of all available resources must be orchestrated at all
times in a systematic, holistic and automated manner. This does
not only include compute resources, but also memory, network, I/O
and infrastructure resources among others.

Analyzing the operation of an HPC system to gain insight into
its behavior is the purpose of Operational Data Analytics (ODA), as
defined by Bourassa et al. [9]. ODA is driven by the large amounts
of data produced by monitoring frameworks, which capture and
store data at fine granularity from a large number of sensors in
hardware and software components. These sensors are located
across the entire HPC facility, from the infrastructure down to the
compute node level, and can be used to infer knowledge about
system behavior, enabling system control via the implementation of
a proactive control loop. If implemented in an online fashion, such
a control loop allows to automate the tuning of system knobs that
otherwise would be fixed or manually set, allowing for significant
improvements in terms of energy efficiency, system reliability and
total cost of ownership, among other aspects [7].

Monitoring and ODA are therefore two key aspects in the design
of future HPC systems. However, while monitoring is an established
reality in most supercomputing centers [2], ODA is still far from
it: many experimental solutions address individual issues ranging
from node resiliency to infrastructure management and energy
efficiency, but they are insular and rarely adopted in production. As
shown in a survey conducted by the Energy Efficient HPCWorking
Group, in fact, most HPC sites use ODA in a visualization context,
relying on general-purpose frameworks and without automating
system control [10]. The main reason for this lies in the absence of
comprehensive frameworks founded on well-defined requirements,
which could then enable the wider adoption of ODA approaches
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on HPC systems and facilities. Due to the wide variety of needs
inherent to specific ODA techniques, a framework of this kind must
be designed to cope with the extreme volumes of data associated
with monitoring a wide and diverse set of sensors, as well as the
tight latency and overhead constraints of real-time system control.

Related Work. The problem of enabling ODA on HPC systems
in a generic, holistic way is still an open research question. The
Lightweight Distributed Metric Service (LDMS) [1] has been recently
enhanced to support ODA features on top of standard HPC mon-
itoring [26]. However, due to its pull-based architecture, it is not
suitable for in-band, fine-grained ODA applications that require
live data with minimal overhead and latency. Moreover, LDMS
currently lacks global configuration abstractions to simplify the
instantiation of models on large-scale HPC systems.

The Examon [8] framework is shown to be suitable for ODA
applications, being based on the MQTT protocol [31] and thus
compatible with out-of-band tools such as Apache Spark. However,
this reliance on the use of external tools to process data results in
a complex software stack that needs to be tuned ad-hoc for each
specific use case, as well as in non-optimal data retrieval perfor-
mance. The OMNI [7] framework has a similar architecture, but is
more oriented towards visualization of data and misses the abstrac-
tions necessary for control. The GUIDE [43] framework combines
monitoring and ODA features, but it is mostly log-oriented and
the semantics of its data analytics features are not clear. Elastic
Stack1 supports the post-processing of data ingested from external
sources, thus enabling data analytics for monitoring frameworks
such as Ganglia [32]. The analysis, however, is centralized at the
server level, which limits scalability for large HPC installations.

Many other tools propose basic applications of ODA specifically
tailored for HPC and implement simple feedback loops between the
monitoring component and the resource manager (e.g., the Energy-
Aware Runtime (EAR) [13] or IBM LoadLeveler [4]). Similarly, tools
like SPar [22] provide user-friendly interfaces for runtime tuning.
These efforts, however, tackle specific issues of resource manage-
ment in HPC systems, and customization for other purposes is not
trivial. Further, due to the lack of coordination mechanisms, using
multiple systems of this kind concurrently to address multiple re-
sources can even be counterproductive. The Global Extensible Open
Power Manager (GEOPM) [15] provides a plugin-oriented and exten-
sible interface for resource and power management in HPC systems,
but its monitoring capabilities are limited. Alongside the open-
source solutions discussed above, there are also many commercial
and closed-source products, such as Zenoss2 or Splunk3, offering
extensive data analytics capabilities. However, these products are
often designed solely for loosely-coupled data center environments
and are not suitable for use in HPC centers.

In summary, to the best of our knowledge, there is no generic
and comprehensive solution addressing the problem of online ODA
on HPC systems, and hence we need a novel approach to tackle
ODA on next-generation supercomputers.

1https://www.elastic.co/products/
2https://www.zenoss.com/
3https://www.splunk.com/

Contributions. In this paper we tackle this research gap in the
ODA field and presentWintermute, a novel framework to enable on-
line and holistic operational data analytics on HPC systems, capable
of processing data and taking decisions at any level of the system.
We designed Wintermute following an extensive literature review
and requirements analysis, as well as based on previous experiences
in single-point ODA solutions at our supercomputing center, which
allowed us to identify the main functional and operational require-
ments for a generalized ODA framework. Wintermute’s workflow
accommodates most real-world ODA applications, while at the
same time its small resource footprint renders it suitable for appli-
cations in which overhead and latency are critical. We implement
Wintermute within the Data Center Data Base (DCDB) monitoring
system [36]. Our contributions are the following:

• We propose a taxonomy of ODA techniques for HPC systems
based on a literature survey, classify them according to their
modes of operation, and extract common requirements.

• We introduce the Wintermute framework, which enables
the analysis of data and control at all levels in the hierarchy
of an HPC system, and implement it within DCDB.

• We introduce an approach, called the block system, to aid in
the instantiation of ODAmodels on large-scale HPC systems
using a tree representation of the sensor space.

• We demonstrate the applicability and scalability of Winter-
mute through a series of case studies carried out on an HPC
system at the Leibniz Supercomputing Center (LRZ).

Organization. The paper is organized as follows. In Section 2 we
outline the design requirements for our framework. In Section 3 we
describe the architecture ofWintermute, alongside its integration in
DCDB in Section 4. In Section 5 we discuss the block system, while
in Section 6 we present a series of case studies we implemented. In
Section 7 we conclude the paper.

2 ANALYSIS OF REQUIREMENTS
First we present the use case analysis for the design of the Win-
termute framework, following a literature survey and extracting
common functional and operational requirements.

2.1 Uses of Operational Data Analytics
Even though ODA techniques are emerging for managing many
aspects of HPC systems, they have not been systematically classified
and typical functional requirements are still not clear, to the best
of our knowledge. This, however, is a fundamental prerequisite
for the design of a generic framework: for this reason we propose
a non-exhaustive taxonomy, depicted in Figure 1, identifying the
most common use cases associated with ODA on HPC systems.
This list is based on recent and relevant works, and reflects the
trends in ODA at most HPC sites, including the experiences at LRZ.
In particular, we identify the following main usage scenarios:

• Infrastructure Management: optimizing the operation of
infrastructure and facility-wide systems (e.g., cooling or
power distribution), as well as adapting to environmental
changes [12, 21, 27, 28].

https://www.elastic.co/products/
https://www.zenoss.com/
https://www.splunk.com/
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• Scheduling and Allocation: improving the placement of
user jobs on an HPC system by supplying additional infor-
mation (e.g., system energy budgets, thermal limits or I/O
features) to the scheduler [6, 25, 40, 44].

• Prediction of Job Features: using heuristic or learning
techniques to predict the duration of user jobs and their sub-
mission patterns, improving the effectiveness of scheduling
policies and reducing queuing times [16–18, 33, 35].

• Application Fingerprinting: optimizing management de-
cisions by predicting the behavior of user jobs and correlat-
ing this to historical data to characterize features such as
power consumption and network usage [3, 19, 34, 48, 50].

• Fault Detection: detecting and predicting anomalous states
in hardware and software components to improve the re-
siliency of HPC systems, preventing in turn unmasked fail-
ures and other catastrophic events [23, 39, 41, 42].

• Runtime Tuning: predicting the behavior of applications
and components in compute nodes for dynamic tuning using
system knobs (e.g., CPU frequency) [13, 15, 30, 46].

2.2 Taxonomy of Operational Data Analytics
The list of use cases above demonstrates that ODA is needed at
all levels of an HPC system, as well as at different time scales; all
techniques, however, rely directly on monitoring data and some
applications, such as those associated with job analysis, may further
require additional data (e.g., job id or wall time). Based on our
observations, we derive four classes of ODA techniques, according
to the type of data they use and their mode of operation. On one
hand, we identify two types of data sources:

• In-band: data sampled and consumed within a specific com-
ponent in an HPC system, usually a compute node. Tech-
niques using such data sources often operate at a fine tem-
poral scale (i.e., greater than 1Hz) and require low analysis
overhead and latency in gathering data.

• Out-of-band: data potentially coming from any available
source in the system, including historical or asynchronous
facility data. In a few cases, job-related data may be used as
well. For techniques using this type of data, operation often
has to be at coarse scale (e.g., in the order of minutes) and
must be explicitly synchronized (e.g., through time-stamps),
but latency and overhead are less of a concern.

On the other hand, we group ODA techniques according to the
two following modes of operation:

• Online: continuous operation, producing an output resem-
bling a time series, which can then be re-used to drive man-
agement decisions and thus produce a feedback loop.

• On-demand: operation triggered at specific times (e.g., job
submission) to steer management decisions that require cer-
tain information about the system’s status.

Using these characteristics we can classify the use cases pre-
sented in Section 2.1 as shown in Figure 1, leading us to a taxonomy,
which we use in the following to guide our design of Wintermute.

In-band data Out-of-band data

On
lin

e
On

-d
em

an
d

Runtime
Tuning

Prediction of
Job Features

Fault Detection

Application Fingerprinting

Infrastructure 
Management

Scheduling and Allocation

Figure 1: A taxonomy of common ODA applications in HPC
systems. Use cases spanning multiple classes can be em-
ployed in eithermode depending on their specific scenarios.

2.3 Functional Requirements
In light of our taxonomy of ODA techniques, we extract a series of
functional and operational requirements that must be taken into
account when designing any generic online ODA framework for
HPC systems, including our Wintermute framework:

• Holism: an ODA framework must provide a holistic view of
an HPC system’s sensor space, exposing available data in the
way that is most fitting to the current scenario. An in-band
ODA model will benefit from in-memory processing of local
sensor data, for optimal latency and overhead. Conversely, an
out-of-band model performing coarse-grained analysis may
require large amounts of data (e.g., historical) that cannot be
maintained within local memory and thus must be fetched
from remote storage.

• Flexibility: both online and on-demand operations must be
supported to address the necessities of different techniques
driven by the various components of an HPC system.

• Scalability: ODA models must be able to scale up to thou-
sands of inputs and very fine time scales. At the same time,
an ODA framework must exhibit a light resource footprint,
to not interfere with HPC applications when used in-band.

• Abstraction: manual configuration of ODA is prohibitive
when a large amount of independent models (e.g., one per
CPU core of an HPC system) must be deployed together,
both in-band and out-of-band. For this reason, abstraction
constructs are necessary to simplify and automate the con-
figuration of ODA models at scale.

• Modularity: as knobs and sensors in HPC systems are often
controlled via a set of common and pre-defined protocols
(e.g., IPMI or SNMP), an ODA framework must be modular
and able to integrate a wide range of external interfaces.
Further, as ODA techniques often rely on similar processing
steps (e.g., regression), it must allow the pipelining of several
analysis and control stages so as to maximize code re-use.
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Figure 2: Ahigh-level overviewof the suggested architecture
for an online ODA framework integrated in a monitoring
system, showing the main components and actors involved.

Careful system design is needed to address the requirements
above. Most recent efforts in ODA for HPC systems (e.g., Exa-
mon [8]) rely on the use of tools such as Apache Spark or Elastic
Stack: these allow for scalability and holism, but not the needed flex-
ibility. Further, the support of in-band models is severely limited,
addressing only part of the problem. To overcome these limita-
tions and to address all requirements, we require a tight integration
of ODA with the components of an holistic monitoring system
specifically targeting HPC: monitoring interacts with most HPC
components addressed by ODA naturally, providing efficient and
convenient interfaces for control as well as streaming data access.

Figure 2 shows how ODA can be implemented within an ex-
isting monitoring system: integration with monitoring daemons
in compute nodes enables in-band operation, close to where data
is sampled, whereas management nodes are used for out-of-band
operation. In the latter case, ODA can interact with a monitoring
data broker, gaining access to streamed cluster-wide data, as well
as remote persistent storage. This approach covers all use cases and
requirements laid out in this section.

3 ARCHITECTURE OF WINTERMUTE
Following the design guidelines laid out in Section 2 we introduce
Wintermute, a novel ODA framework driven by our requirements
analysis. We first provide an overview ofWintermute’s architecture,
and then describe in detail the components comprising it.

3.1 Architecture Overview
Wintermute provides an ODA framework with generic interfaces
and is designed in a way that it can be integrated into any HPCmon-
itoring system as an additional software component. In Figure 3 we
show its modular architecture: it is based on operator plugins sup-
plying analysis capabilities, which follow an agnostic code interface
and are used to instantiate operators. Operators represent the actual
computational entities performing all ODA tasks asynchronously,
by relying on a flexible local thread pool. Each operator works on a
set of blocks, which are container data structures representing phys-
ical components (e.g., compute nodes or racks) or logical entities
(e.g., user jobs) in an HPC system: a block has a set of sensors that
are used as inputs for the analysis (input sensors), as well as a set of
outputs, which store the results of the ODA operation and are, again
in the form of sensors, to be consumed by the monitoring system
or by other operators (output sensors). In our terminology, a sensor

defines an atomic monitoring entity (e.g., power, temperature, CPU
counter or ODA output) that captures system information. Each
sensor reading is identified by a numerical value (in a unit given
by the sensor’s definition) and a time-stamp. We will return to the
concept of blocks with greater detail in Section 5.

Operator plugins are supported by two central components, the
query engine and the operator manager, which provide input data
to operators and expose their output respectively. These are de-
signed to isolate the plugins from the location in which they are
instantiated, meaning that a plugin can be deployed to the different
locations of a monitoring system (or different monitoring systems
altogether) without alterations. The last set of components, de-
picted at the bottom of Figure 3, belongs to the monitoring system
in which Wintermute is integrated: the sensor input and sensor
output components describe the interfaces through which Winter-
mute obtains sensor data and exposes analysis results respectively.
The configuration component is responsible for initialization and
will grant Wintermute access to its designated configuration files,
which are indicated in the global monitoring system’s configuration.
The remote interface component, finally, represents the interface
exposed by the monitoring daemon, through which Wintermute
can in turn expose its remote control and data retrieval features.
While a RESTful API is our preferred interface type, Wintermute
is not dependent on this choice and can easily be adapted to work
with other interface types (e.g., remote shells).

3.2 Components of the Architecture
In the following we describe the core components that compose
the Wintermute architecture, as well as their interactions with the
surrounding monitoring system.

Operator Manager. The operator manager is the central entity
responsible for loading requested Wintermute operator plugins,
exposing the associated configuration files to them and managing
their life cycle. As such, it is themain interface betweenWintermute
and the monitoring system and allows users to specify which sen-
sors to read. Additionally, the operator manager acts as a front-end
for all remote interface requests (e.g., via a RESTful API), exposing
available actions implemented within the framework. For example,
these requests can be used to start, stop or load plugins dynamically,
as well as trigger specific actions on a per-plugin basis (e.g., training
a machine learning model) and retrieve recent sensor data.

Query Engine. The query engine is a singleton component that
exposes the space of available sensors to operator plugins. In partic-
ular, it gives access to a sensor navigator object, which maintains a
tree-like representation of the current sensor space using the block
system described in Section 5, allowing Wintermute plugins to
discover which sensors are available and where in the hierarchical
structure they stand. The query engine’s uniform interface enables
queries based on sensor names and time-stamp ranges. Access to
low-level sensor data structures is achieved by means of a callback
function, which is set at startup by the monitoring entity in which
the Wintermute framework is running. Access to job data and other
metadata can be enabled by setting similar callback functions.

Operator Plugins. Operator plugins implement the specific logic
to perform analysis processes of a certain kind, complying to the
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Figure 3: Architecture of Wintermute. We abstract from its
integration in amonitoring system, and only show the exter-
nal components withwhich it interacts. Components linked
by dashed or dotted lines are integration-dependent.

Wintermute plugin interface. Operator plugins perform analysis by
taking as input sensor data alone. Job operator plugins are an exten-
sion of normal operator plugins which can also use job-related data
(e.g., user id or node list), producing output associated to a specific
job. Plugins consist of the following main internal components:

• Operator: operators are objects performing the required
analysis tasks. Each operator has assigned a set of blocks,
each referencing a set of input and output sensor objects.
Whenever computation is invoked for an operator, it will
iterate through its blocks and perform an analysis for each
of them, querying the respective input sensors through the
query engine, processing the obtained readings, and storing
the result in the output sensors. When performing analysis
for a certain block, access to the operator’s other blocks is
allowed for correlation purposes.

• Configurator: a configurator is responsible for reading a
plugin’s own configuration file, exposed by the operator
manager, and instantiating operators together with their
blocks: the process to generate the latter is controlled by a
series of template-based constructs that allow users to easily
instantiate a large number of blocks (e.g., one per CPU core
in a large-scale HPC cluster), each with their own unique
sets of input and output sensors. This mechanism is dis-
cussed in detail in Section 5.4, and more resources about the
configuration can be found in DCDB Wintermute’s GitLab.

4 WINTERMUTE INTEGRATION INTO DCDB
As discussed in Section 3, Wintermute must be tightly coupled
with a corresponding monitoring framework tasked with providing

sensor data and allowing transport and storage of results. In our
concrete implementation, we integrate Wintermute with the DCDB
monitoring framework [36], which is used at LRZ: we first briefly
describe DCDB, followed by the integration of Wintermute into it,
and finally present the resulting workflow and associated options.
Like DCDB, Wintermute is implemented in C++11, and all source
code is freely available under the GNU GPL license via its GitLab
repository4. It also includes a series of end-to-end examples, demon-
strating the simplicity of Wintermute’s configuration process. Due
to the abstract and generic nature of Wintermute’s architecture,
our C++11 implementation can be re-used and integrated into any
other monitoring system with little effort.

4.1 Architecture of DCDB
DCDB is a holistic solution for continuous monitoring in HPC
systems [36]. It comprises several components in order to achieve
a distributed and scalable architecture, which is summarized in
Figure 4: Pushers perform the sampling of sensors on monitored
components, using a plugin-based architecture that allows to easily
add new data sources. All collected data is sent via the MQTT pro-
tocol [31] to Collect Agents, which act as data brokers and forward
the data to a Storage Backend, currently implemented using Apache
Cassandra. Alongside a series of interfaces for visualizing and re-
trieving data from Storage Backends, DCDB also exposes a RESTful
API for control in every component, as well as sensor caches for
fast in-memory access to recent readings.

4.2 Workflow of Wintermute
Wintermute is included in Pushers and Collect Agents as an addi-
tional plugin-based software component that enhances them by
supplying ODA capabilities, as described in Section 3. Figure 4
shows the integration of Wintermute in the existing DCDB archi-
tecture: it has access to all resources in a Pusher or Collect Agent,
including sensor caches, RESTful APIs and data output methods
(i.e., MQTT or Storage Backend). The arrows directed in and out
of the Wintermute components define the inputs and outputs for
sensor data in each location. In the following we discuss the result-
ing available options that allow the configuration of Wintermute’s
workflow to accommodate the use cases laid out in Section 2.

Operator Location. As Wintermute is included in Pushers and
Collect Agents, operators can be instantiated in both locations by
loading the appropriate plugins. In a Collect Agent, access to the
entire system’s sensor space is available. If possible, data is retrieved
from the local sensor cache or otherwise queried from the Storage
Backend, to which the outputs of operators are also written. This
location is optimal for system or infrastructure-level analysis and
feedback loops. In a Pusher, on the other hand, operators have
only access to locally sampled sensors and their sensor cache data.
This location is optimal for runtime models requiring data liveness,
low latency and horizontal scalability. For example, a regression
operator used to predict power consumption for CPU frequency
tuning [37] can be deployed in a Pusher so as to leverage in-memory
processing for minimal latency.

4https://dcdb.it
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In both scenarios, the query engine gives higher priority to data
in the local sensor caches, which is faster to retrieve compared to
querying the Storage Backend. Moreover, queries can be performed
in two modes, affecting how the caches are accessed: in the first,
relative time-stamps are supplied as an offset against the most
recent reading, and the cache view to be returned can be computed
inO(1) time. In the second, absolute time-stamps are used, resulting
in a binary search with O(loд(N )) time complexity.

Operational Modes. In the native Wintermute implementation,
operators can be configured to work in two different ways depend-
ing on their requirements. In online mode, an operator is invoked
at regular time intervals, resulting in continuous analysis and thus
producing time series-like sensor data as its output. This is ideal
for applications such as fault detection or runtime tuning. In on-
demand mode, on the other hand, an operator’s capabilities must
be explicitly invoked via the RESTful API, by querying a specific
block. Output data is propagated only as a response to the RESTful
request. This mode is ideal for scheduling applications, which can
be triggered at arbitrary times. For example, a resource manager
could contact an on-demand fault detection operator at scheduling
time [42] to determine the current status of each idle compute node
and thus optimize allocation decisions.

Block Management. When using the online mode, the blocks of
a single operator can be arranged with respect to the underlying
model: as sequential, all blocks share the same operator, and are
processed sequentially at each computation interval to avoid race
conditions; as parallel, one distinct operator is created for each block,
allowing us to parallelize computation and improve scalability. For
example, an application fingerprinting operator [3] deployed in a
Collect Agent with a large number of blocks, one per compute node
in an HPC cluster, could make use of the parallel option for optimal
ODA performance.

Analysis Pipelines. As the output data produced by online op-
erators shares the same format and is identical to all other sensor
data in DCDB, operators can use the output of other operators
as input. This, in turn, allows us to create pipelines, in which the
multiple stages of a complex analysis are divided among several
operators. This can be used to split computational load between
multiple locations (e.g., Pusher and Collect Agent) or to achieve
complex analyses with few, general-purpose plugins. Furthermore,
this method allows us to implement feedback loops in an HPC sys-
tem, via control operators at the end of a pipeline that use processed
data to tune knobs. For example, an operator which estimates the
optimal inlet cooling water temperature for an HPC cluster based
on sensor data [12] could feed its predictions to a second operator,
devoted to issuing SNMP requests to tune the cooling system.

These options provide effective ways to implement a lightweight
and reliable data analytics infrastructure: for example, on-demand
operation can be used to minimize overhead and data volume; care-
ful planning of operator pipelines, instead, can reduce redundancy
in processing of sensor data, by allowing multiple operators to
consume the data produced by a single one.

Pusher Collect Agent Storage 
Backend

MQTT
Server

Monitoring
Plugins

Monitoring
Plugins

Monitoring
Plugins

MQTT
Client

Wintermute
Framework

Wintermute
Framework

Sensor
Cache

Sensor
Cache

Figure 4: High-level overview of the architecture of DCDB,
highlighting the Wintermute framework’s integration in
components and the data flow.

5 THE BLOCK SYSTEM
With more and more data sources to tap into, navigating the space
of available sensors in a monitored HPC system and configuring
ODA models at scale becomes difficult and error-prone [20]. This
calls for a structured sensor specification system with the following
requirements: a) it must simplify the navigation of large sensor
spaces, with millions of entries; b) it must allow to derive the hier-
archical relationships existing between sensors; c) it must provide
template-like constructs to simplify sensor specifications for ODA
models. Here, we introduce the set of abstractions we implemented
in Wintermute to address these issues.

5.1 The Sensor Tree
In Wintermute we model the sensor space as a hierarchical sensor
tree, an example of which is depicted in Figure 5. We assume that
the keys (or topics, similarly to the MQTT standard) used to identify
sensors are forward slash-separated strings similar to file system
paths, expressing their physical or logical placement in an HPC
system. The following is an example of a sensor topic:

/rack4/chassis2/server3/power

The last segment of a topic is the name of the sensor itself, and
the preceding path elements express its placement in the system.
This representation can be exploited to construct a tree, in which
each internal node is a system component (e.g., a compute node or
a rack) and each leaf is a sensor. The constructed tree then supplies
a comprehensive view of the monitored system’s structure, as well
as a natural way to correlate hierarchically-related sensors (e.g.,
the sensors of a compute node and those of the rack it belongs to).

The structure of the sensor tree is analogous to a file system:
components of the HPC system represented by internal tree nodes
can be seen as directories whereas the sensors themselves corre-
sponding to leaves are akin to files. This approach has been already
employed in efforts such as Perftrack [29], proving its effectiveness.
Here, we extend it for the purpose of ODA model configuration.

The effectiveness of this representation depends on the level of
detail expressed by the hierarchy of topics, and the responsibility
for devising such a hierarchy lies on system administrators and de-
signers. Some HPC centers might also employ monitoring systems
with naming conventions different from the file system-like one
we discuss here. This is taken into account in our implementation,
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which is not dependent on a specific naming scheme, but also sup-
ports the definition of arbitrary hierarchy schemes supplied as lists
of regular expressions each identifying a separate tree level.

5.2 Blocks and Block Templates
In Wintermute, blocks are data structures that act as atomic con-
tainers on which analysis computations are performed. A block
represents directly a node in the sensor tree, from which it takes
its name. Then, a block references a set of input and output sensor
topics: the output sensors are used to deliver analysis results, and
are leaves of the node the block represents. Input sensors, which
provide the data for the analysis, can either be leaves of that same
node, or belong to any other node in the sensor tree connected by
an ascending or descending path to it. Figure 5 shows a generic
example for a block, named s02, a compute node in an HPC system.
In this example, the block has the output sensor healthy, and a
series of input sensors: the cycles and cache misses counters of the
CPUs in the compute node, plus the power sensor of the chassis it
belongs to. Combined with its input and output sensors, a block
corresponds to a sub-tree in the sensor tree.

While blocks can be defined by specifying actual sensor top-
ics as inputs and outputs, they may also be defined in a generic
way via templates: here, sensors are referenced via their position
in the sensor tree, expressing only their last topic segment and
omitting the components to which they belong (preceding topic
path), which are replaced by a tree level (vertical navigation) and a
filter (horizontal navigation). The set of sensor topics matched by
a sensor expression is its domain in the tree. Further, a particular
block can be instantiated from a template by specifying a node in
the sensor tree (i.e., its name), thus creating a binding: each sensor
expression is then replaced with a sensor topic from its domain that
is hierarchically-related to the block’s node. Since multiple topics
may satisfy this, one expression can produce multiple actual topics.
Conversely, if no topic satisfies it, the block cannot be built.

Recalling the similarity between the sensor tree and a file system,
describing sensors through sensor expressions can be interpreted
as defining files using relative paths: these paths can match multiple
points in the file system, and they are fully resolved in function
of the current working directory, whose analogous in this case is
the name of the block. The main difference between the two is that
the tree level of sensors in sensor expressions is defined with an
absolute level, whereas for relative file system paths it is defined as
a relative offset with respect to the current working directory.

5.3 Template Instantiation
The example block shown in Figure 5 can be built from a generic
template using the following sensor expressions:
input:

<topdown+1>power
<bottomup , filter cpu >cpu -cycles
<bottomup , filter cpu >cache -misses

output:
<bottomup -1>healthy

In sensor expressions, the topdown and bottomup keywords drive
the vertical navigation and indicate the highest and lowest level in
the tree, respectively; the root node of the sensor tree is excluded
from this representation, and other levels can be reached through
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Figure 5: The sensor tree of an HPC system, and a Winter-
mute block. Circles represent internal tree nodes, while sen-
sors are represented by rectangles. Red, non-dashed lines
highlight the nodes and sensors belonging to the block,
while other nodes are collapsed for convenience.

relative offsets. The filter keyword defines the horizontal navigation
and is used to filter the set of topics that the expression matches,
within its tree level. In this example, the block’s name is set to
/r03/c02/s02/, which identifies an HPC compute node. Once this
is set, the rest of the block is resolved: the power expression is
resolved as /r03/c02/power, since it specifies that the sensor should
be one level below the highest tree level, at c02. Conversely, the
cpu-cycles and cache-misses expressions are on the lowest level,
with two nodes (cpu0 and cpu1) belonging to their domains. As
such, sensors from both of them are added to the block. As the
healthy output sensor expression lies at the same level as s02, it is
simply resolved as /r03/c02/s02/healthy.

5.4 Configuring Blocks in Wintermute
Templates are used in Wintermute’s plugin configurators to instan-
tiate the blocks operators work on, as explained in Section 3.2. In
detail, the block generation process works in the following steps,
starting from a block template defined in a configuration file:

(1) based on the current sensor tree, the set of topics matching
the output sensors’ expressions (their domain) is computed;

(2) one block is created for each retrieved node in the domain;
(3) for each block, its set of input and output sensors is resolved

according to the domains of the respective expressions.
On top of block-level outputs, users may also define a set of

operator-level outputs that can, for example, store the average er-
ror of a model applied to a set of blocks. Recalling the example
of template in Section 5.3, applying the configuration algorithm
described above will result in as many blocks as compute nodes in
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the HPC system (e.g., /r03/c02/s[01-04]/ ). This demonstrates how
the block system enables instantiation of thousands of independent
ODA models in a large-scale HPC system, each with its own set
of sensors, by using only a small configuration file. Moreover, con-
figurations are independent from the location to which a model is
deployed (e.g., Pusher or Collect Agent), as the blocks are resolved
automatically from the available sensor tree. It should be noted,
however, that a block template is not guaranteed to be portable
across HPC systems with different sensor hierarchies. For exam-
ple, if we wanted to port the template in Section 5.3 to a system
whose hierarchy has an additional level close to the root of the
tree, with block names such as /i01/r03/c02/s02/, the expression
<topdown+1>power must become <topdown+2>power.

6 CASE STUDIES
In this section we present several case studies showing the capabili-
ties of Wintermute, alongside an analysis of the required resources
and overheads. These case studies were not chosen for their novelty
and represent (on purpose) typical ODA techniques in the literature,
so as to showWintermute’s flexibility and suitability for large-scale
HPC installations: without a framework such as Wintermute, carry-
ing out these case studies would be difficult and would require the
development of a substantial amount of dedicated, non-reusable
code to retrieve sensor data, place and control the analysis and to
expose its output. All experiments described in this section were
carried out on the CooLMUC-3 system at LRZ5. This cluster is com-
posed of 148 compute nodes, each equipped with a 64-cores Intel
Xeon Phi 7210-F Knights Landing CPU, 96GB of RAM and an Intel
Omni Path Architecture (OPA) interconnect. DCDB runs continu-
ously on this system in production, with Pushers in compute nodes
sampling data from the Perfevent, SysFS, ProcFS and OPA plugins
and with a single Collect Agent forwarding the data to a dedicated
Storage Backend.

6.1 Power Consumption Prediction
The first study shows the use of Wintermute for predicting the
power consumption of a compute node (precisely, overall node
power measured at the power supply) in CooLMUC-3, which can
be used to steer online control decisions in the power and run-
time systems. An example of this is DVFS CPU frequency tuning,
which can be exploited in an automated way to save significant
amounts of energy without sacrificing application performance. In
this scenario data is collected in-band, at a fine time scale, and is
immediately re-used for control purposes. The model represents
an online implementation of the one proposed by Ozer et al. [37].

6.1.1 Configuration. In a Pusher, we instantiate a single operator
from a plugin, called Regressor, which implements a generic ran-
dom forest-based online regression model. Its input data consists
of a set of performance metrics and sensors, and both sampling
and regression operate at a 250ms interval. The plugin, which is
based on the OpenCV library6, works in the following way: at each
computation interval, for each input sensor of a certain block, a
series of statistical features (e.g., mean or standard deviation) are

5https://doku.lrz.de/display/PUBLIC/CoolMUC-3
6https://opencv.org
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Figure 6: Performance of our power consumption prediction
model in terms of time series behavior and relative error.
Average relative error is 6.2%.

computed from its recent readings. These features are then com-
bined to form a feature vector, which is fed into the random forest
model to perform regression and output a sensor prediction for the
next 250ms. The training of the model, which is shared by all blocks
of an operator, is performed automatically: feature vectors are ac-
cumulated in memory until a certain training set size is reached,
alongside the responses from the sensor to be predicted. In this
case, the responses come from the power sensor, with the model
set to predict its value in the next 250ms. With the Pusher running,
we execute the Kripke, AMG, Nekbone and LAMMPS proxy HPC
applications from the CORAL-27 suite, with as many threads as
physical cores, while the regression operator builds its training set.
Here the operator has only one block, corresponding to the com-
pute node, and the training set size is set to 30,000. Once training
is complete, we evaluate the regression with new DCDB data.

6.1.2 Results. Figure 6 summarizes the results of the model. It
shows a small excerpt from the time series of the real and predicted
power sensors: we see that the time series of the predicted power
consumption follows the measured time series closely, capturing
status changes and periodic behaviors before they occur. However,
the predicted time series fails to capture some short spikes or oscil-
lations in power consumption, and presents itself like a smoothed
version of the measured one. These events are difficult to predict,
as they are usually related to the CPU’s power management policy,
which may exhibit short-term spikes for throughput improvement
(e.g., Turbo mode on Intel CPUs) or may be related to electrical
or sensor noise. The phenomena described above are even more
7https://asc.llnl.gov/coral-2-benchmarks

https://doku.lrz.de/display/PUBLIC/CoolMUC-3
https://opencv.org
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apparent in Figure 6b, which shows the average relative prediction
error for each real power band, together with the fitted probability
density function (PDF) of the latter. It can be seen that prediction
is worse for higher power values; as it can be observed from the
PDF, these values represent a minimal portion of the distribution,
and have negligible impact on the overall error. Moreover, this im-
balance in the distribution translates directly to an imbalance in
the training set of the model, which does not have enough data to
capture this type of behavior. Similarly, some low-power states that
are relatively rare are not predicted well by the model. However, in
the regions of the distribution where most of the data concentrates,
error is always close to 5%, proving the model’s effectiveness.

We obtained comparable average relative error values when
sampling and predicting power consumption at a time interval of
125ms (10.4%) and 500ms (6.7%). In the work by Ozer et al. [37], the
offline validation of this approach shows comparable results to the
ones presented here, proving its generality. While specialized tech-
niques such as PRACTISE [49] could yield more accurate prediction,
this example shows that very good results can be obtained with
general-purpose plugins, and with little effort.

6.2 Analysis of Job Behavior
In the second case study, we useWintermute to produce aggregated
performance metrics on a per-job basis, which can be visualized
to gain insight about application behavior. We combine two dif-
ferent plugins, showing how pipelines can be used in Wintermute
to perform complex analyses and split computational load. The
plugins discussed here represent a re-implementation of the Per-
Syst framework [24]: their purpose is to enable online visualization
of job performance data for HPC users, allowing them to quickly
adapt configurations and spot issues. Because of its online and user-
oriented nature, this approach differs from others like the roofline
model [47], which are more suited for offline analysis.

6.2.1 Configuration. We deploy two distinct operator plugins, im-
plementing a pipeline as described in Section 4. The first Perfmetrics
plugin, instantiated in the Pushers, takes as input CPU and node-
level data and computes as output a series of derived performance
metrics, such as the cycles per instruction (CPI), floating point opera-
tions per second (FLOPS) or vectorization ratio, which are useful to
evaluate application performance. A second Persyst job operator
plugin is instantiated in the main Collect Agent: at each computing
interval, it queries the set of running jobs on the HPC system, and
for each of them it instantiates a block according to its configuration.
In this case, blocks have as input one of the Perfmetrics derived
metrics from all compute nodes on which the job is running. From
these, the operator computes a series of job-level statistical indi-
cators (e.g., median) as output. In the Pushers and Collect Agent,
sampling and computation are performed at 1s intervals.

We executed four jobs, each on 32 CooLMUC-3 nodes and run-
ning the Kripke, AMG, Nekbone and LAMMPS proxy applications.
The job runs were repeated multiple times and under different node
configurations to ensure consistency. Here we focus on the CPI
metric: thus, we configured the Perfmetrics plugin to have an oper-
ator with one block per CPU core, each producing as output its CPI
value. Then, we use a Persyst operator, which outputs the deciles
of the job-level CPI distribution at each time point, as computed by
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Figure 7: Deciles of the aggregated per-core CPI values in
function of time, for four jobs running different Coral-2 ap-
plications on CooLMUC-3.

aggregating the corresponding input values for each job. Since the
latter are computed per-core, each decile is aggregated from 2048
samples at a time. This allows us to gain an overall understanding
of the behavior of the applications running on the HPC system,
whereas the full extent of available metrics allows us to characterize
their performance profile and bottlenecks.

6.2.2 Results. Figure 7 shows the results of our analysis: for each
job, we show the time series for deciles 0, 2, 5, 8 and 10 of the
aggregated per-core CPI values while running the corresponding
Coral-2 codes; deciles 0, 5 and 10 correspond to the minimum,
median and maximum CPI values respectively. It can be seen that
the applications exhibit distinctly different behaviors depending on
the underlying computational workload: LAMMPS shows low CPI
values averaging at 1.6, with minimum spread in the distribution,
which is due to itsmostly compute-bound nature. A similar behavior
can be observed with AMG, with low CPI values up to decile 5:
however, deciles 8 and 10 show spikes up to CPI values of 30. As
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AMG is a network and memory-bound application based on fine-
grained synchronization, this behavior could be caused by network
latency affecting I/O, as well as load imbalance.

Kripke has a very distinctive profile: it is possible to separate
each single iteration thanks to the increase and decrease in CPI
values across all deciles. Similarly to AMG, Kripke is also a net-
work and memory-bound application, and is thus characterized
by relatively high CPI values. Finally, Nekbone shows the most
interesting behavior: low CPI values can be observed in the first
part of the application run, which is expected as Nekbone is a
compute-bound application. In the second part of the run, however,
the spread across deciles increases dramatically, with at least 20%
of the CPUs exhibiting higher CPI values. Our hypothesis is that,
as Nekbone performs a batch of tests on increasing problem sizes,
the application becomes memory-limited as soon as it grows past
the 16GB-High-Bandwidth Memory available in CooLMUC-3 nodes.
This is a typical example of how visualization of performance met-
rics can be used to spot bottlenecks in HPC applications.

6.3 Identification of Performance Anomalies
For the final case study, we conduct a long-term analysis on coarse-
grained monitoring data from all compute nodes in CooLMUC-3.
By applying unsupervised learning techniques, we characterize
the performance of the entire HPC system and highlight variance
between compute nodes, as well as identify outliers and anomalous
behaviors: this can be used to automatically raise alerts to system
administrators or to improve resource allocation decisions.

6.3.1 Configuration. We use a single Clustering plugin employing
Bayesian Gaussian mixture models in the main Collect Agent. This
plugin is configured to have one operator with as many blocks as
compute nodes, each having as input a node’s power, temperature
and CPU idle time sensors, and as output a label of the cluster to
which it belongs. More precisely, at every computation interval
the operator computes 2-week averages for the input sensors of
each block. Then, each block is treated as a data point in a three-
dimensional space, and clustering is applied to them. Sampling in
Pushers is performed every 10s and clustering every hour.

We adopt a Bayesian Gaussian mixture model because, unlike
ordinary Gaussian mixture models, they are able to determine the
optimal number of clusters from data [38]. This is useful in an online,
continuous scenario, where the diverse states of an HPC system
can be captured without manual tuning of the model’s parameters.
The number of input sensors to the clustering algorithm (and thus
the number of dimensions) can be changed at will in the plugin’s
configuration, as well as the length of the averages’ aggregation
window. Since the job runtime limit is set to 2 days on CooLMUC-3,
we choose a value of 2 weeks to extract the performance profile of
each node without knowledge of running jobs.

6.3.2 Results. Figure 8 shows the result of the clustering process
for a single time window. The points in the scatter plot correspond
to compute nodes in CooLMUC-3, whose coordinates are their 2-
week power, temperature and CPU idle time averages. First, it can
be observed that the three metrics are strongly correlated, and the
compute nodes describe a clear linear trend: this is expected, as a
compute node will consume less power if idling, and its temperature
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Figure 8: Bayesian Gaussian mixture clustering applied to
CooLMUC-3. Each point represents a compute node in the
HPC system, with the associated 2-week averages of the
power, temperature and CPU idle time metrics.

will be lower as well. Most nodes concentrate in cluster 1 towards
the center of the plot, with relatively little spread.

Despite the 2-week aggregation window we adopted, some stark
differences in node behavior can still be observed: compute nodes
belonging to cluster 0 have a higher CPU idle time, showing low
power and temperature values accordingly. Conversely, nodes in
cluster 2 were under heavier load compared to other nodes, peaking
at 200W of average power consumption for a single node. While
this behavior could simply be due to specific sequences of appli-
cations running on the nodes, it is more likely the symptom of a
job scheduling policy that does not account for workload balance
between nodes. A few points were classified as outliers when their
probability was lower than a certain threshold (0.001 in our case)
in the PDFs of all fitted Gaussian components, and the behavior
of the corresponding nodes diverges significantly from the rest
of the system. One node in particular shows a concerning trend,
consuming roughly 20% more power than other nodes with similar
CPU idle time. We are currently investigating this anomaly, and
plan to conduct a long-term root cause study. As shown, this type of
analysis is very effective at supplying a comprehensive view of an
HPC system’s behavior, and can be useful to system administrators
and researchers alike. Similarly, this can also be used to improve
scheduling policies by considering recent node behavior.

6.4 Performance and Scalability
While the previous sections validate Wintermute’s ability to run
arbitrary ODA tasks, we now focus on the evaluation ofWintermute
itself. The performance of DCDB was extensively characterized in
a previous work [36] both on small-scale and large-scale clusters,
and its overhead was found to be negligible (below 1% for most



Operational Data Analytics with DCDB Wintermute HPDC ’20, June 23–26, 2020, Stockholm, Sweden

2 10 100 500 1000
Number of Queries

10
0k

50
k

25
k

12
.5

k
0

Qu
er

y 
In

te
rv

al
 [m

s]

0.07 0.28 0.12 0.04 0.06

0.14 0.06 0.08 0.18 0.15

0.00 0.00 0.24 0.05 0.08

0.07 0.00 0.11 0.01 0.11

0.05 0.04 0.04 0.00 0.19
0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

he
ad

 [%
]

(a) Overhead in absolute mode.
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Figure 9: Heatmaps of the query engine’s median overhead
at various time ranges and sensor amounts, against the HPL
benchmark. A query interval value of 0 implies that only the
most recent value of each sensor is retrieved.

configurations). We assumeWintermute to exhibit the same scaling
patterns as DCDB and hence, here we will focus on characterizing
Wintermute’s query engine component alone.

6.4.1 Configuration. We study the performance impact of a Pusher
on the High-Performance Linpack (HPL) benchmark [14]. In this
context we use the runtime overhead, computed as the percentage
increase in execution time of HPL with a Pusher active, as opposed
to running it alone. Execution times are calculated via the date Linux
command, and we instantiate a set of operators in online mode:
these belong to a Querytest plugin and simply perform a certain
number of queries over the input sensors of their blocks. The input
monitoring data is provided by another Tester plugin, producing a
total of 1,000 monotonic sensors with negligible overhead, so as to
provide a reliable baseline. All plugins use a sampling interval of
1s and a cache size of 180s. The HPL benchmark was configured to
use as many threads as physical cores on a single node, and each
experiment was repeated 10 times, picking median results to ensure
statistical significance and remove outliers.

6.4.2 Performance Evaluation. Figure 9 presents the results of our
performance evaluation. The two heatmaps depict overhead values
when varying the number of queries performed at each analysis
interval, as well as the temporal range of each query, using the
query engine in absolute and relative mode, respectively. Overhead
is below 0.5% in all cases, with absolute mode performing slightly
worse than relative and showing higher peak overhead values: this
is expected, as absolute mode employs binary search and has a
higher computational complexity. Further, no clear trend can be
observed when increasing the amount of queried sensor data, show-
ing that the query engine has good scalability and minimal impact
on overhead. The heatmaps are considerably noisy, likely indicating
that OS noise and application variability have a larger impact on
observed overhead thanWintermute. Average per-core CPU load of
the Pusher is mostly uniform and peaks at 1.2%. Likewise, memory
usage never exceeds 25MB.

The resource footprint of Wintermute might be different when
taking into account instantiated models and the characteristics of
a production deployment. As a practical example, we measured
the overhead of Wintermute when carrying out the case study in

Section 6.1, which focuses on fine-grained power consumption pre-
diction, using the same approach discussed here. We observed that
the additional overhead of performing regression on top of standard
monitoring was below 0.1% and thus negligible, showing once again
the light resource footprint of Wintermute. Similar results were
obtained for the case study in Section 6.2, in which Wintermute
computes derived performance metrics in-band. Here, we found the
additional overhead of Wintermute to be always lower than 0.5%
for both the HPL benchmark and the Coral-2 applications executed
on 32 nodes. In this case, the overhead increases mainly due to net-
work interference associated with the high number of sensors, as
performance metrics are computed on a per-CPU core basis. On the
other hand, the case study in Section 6.3 was executed out-of-band,
and therefore overhead measurements are not applicable to it. We
also omit quantitative comparisons with other tools: as discussed in
Section 1, the insular and diverse nature of existing ODA solutions
renders tool comparability difficult, which is hence possible only
from a qualitative standpoint.

7 CONCLUSIONS
In this paper we have presented Wintermute, a framework for en-
abling online and holistic ODA on HPC systems, with the core
objective of simplifying the instantiation of complex models for
system management. Its design was conceived after an extensive
literature review and requirements analysis. As a consequence,
Wintermute is generic and can be applied to most HPC monitor-
ing solutions: in this work, we present our implementation and
integration in the DCDB monitoring system, which is employed in
our production environment. Furthermore, we adopt a novel set of
logical abstractions, denoted as the block system, to partition the
space of available sensors and simplify model configurations. We
show that our implementation of Wintermute has a small resource
footprint, making it suitable for applications in which latency and
overhead are critical. We then present a series of case studies in the
fields of runtime tuning, job analysis and performance variation:
this highlights how Wintermute can be easily and effectively ap-
plied to many usage scenarios, on the same system, that would be
otherwise difficult to implement. Wintermute is currently deployed
to perform sensor aggregation in the CooLMUC-3 and SuperMUC-
NG8 systems at LRZ. As future work, we plan to identify additional
production use cases, as well as explore solutions to simplify the
management of operators and ensure high availability.
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