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Model transformations are key elements of model-driven engineering, where they are used to automate the manipulation of
models. However, they are typed with respect to concrete source and target meta-models, making their reuse for other (even
similar) meta-models challenging.

To improve this situation, we propose capturing the typing requirements for reusing a transformation with other meta-
models by the notion of typing requirements model (TRM). A TRM describes the prerequisites that a model transformation
imposes on the source and target meta-models to obtain a correct typing. The key observation is that any meta-model pair that
satisfies the TRM is a valid reuse context for the transformation at hand.

A TRM is made of two domain requirement models (DRMs) describing the requirements for the source and target
meta-models, and a compatibility model expressing dependencies between them. We define a notion of refinement between
DRMs, and see meta-models as a special case of DRM. We provide a catalogue of valid refinements and describe how to
automatically extract a TRM from an ATL transformation. The approach is supported by our tool TOTEM. We report on two
experiments – based on transformations developed by third parties and meta-model mutation techniques – validating the
correctness and completeness of our TRM extraction procedure and confirming the power of TRMs to encode variability and
support flexible reuse.

Categories and Subject Descriptors: [Software and its engineering]: Model-driven software engineering; Domain-specific
languages; System modeling languages; Reusability
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1. INTRODUCTION
Model-driven engineering (MDE) employs models as the main assets during the software devel-
opment life cycle [Schmidt 2006; Whittle et al. 2014]. Models are typically constructed using
domain-specific languages (DSLs) tailored to a particular domain. In MDE, the abstract syntax of a
DSL is specified through a meta-model, which describes the structure of the models considered valid.
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A:2 J. de Lara et al.

Therefore, meta-models proliferate in MDE as a means of formalising application domains [van
Deursen et al. 2000]. Sometimes, meta-models are variants of known languages like state-machines
or workflow languages [Pescador et al. 2015], for which services, like transformations, already exist.

Model transformations are key to MDE because they leverage automation in model manipulation.
However, MDE frequently relies on domain-specific modelling, which fosters the creation of meta-
models for the domain at hand, even on a per-project basis. Unfortunately, in general, it is not possible
to reuse a transformation developed for a meta-model with a different one, even if they are similar.
For example, the ATL zoo (an open repository of transformations) contains different transformations
to calculate metrics for UML class diagrams and for KM3 models1 [Sánchez Cuadrado et al. 2014a].
Both transformations provide essentially the same functionality but were created separately because
they apply to different meta-models, even though UML class diagrams and KM3 share many concepts.
With proper reuse techniques, just one transformation would be applicable to both languages, and
to other similar ones. Developing non-trivial transformations is typically complex, time-consuming
and error-prone [Troya et al. 2018; Sánchez Cuadrado et al. 2017]. Hence, mechanisms to enhance
transformation reusability are needed [Basciani et al. 2014; Kusel et al. 2015; Bruel et al. 2018] to
scale MDE techniques to industrial use.

Model transformations are typed with respect to source and target meta-models. Therefore, reusing
transformations is difficult because they are not immediately applicable to other meta-models different
from the ones they were initially conceived for. In previous works, we proposed transformation reuse
based on concepts to express meta-model requirements [de Lara and Guerra 2011]. Concepts can be
bound to meta-models, which permits obtaining a new version of the transformation adapted to the
bound meta-models. However, concepts have limitations: on the one hand, they have to be manually
created, and on the other, they present limited expressiveness to describe variability (e.g., when a
required field can be typed according to a set of allowed types). Other approaches extract effective
meta-models [Sen et al. 2009] by pruning unused typing information from the source/target meta-
models according to the syntactical needs of the transformation. Similarly to concepts, requirements
based on effective meta-models have limited expressiveness, although their computation can be partly
automated.

Contributions. In this paper, we propose a novel automated approach to model transformation reuse
that relies on a transformation typing requirements model (TRM) to express the syntactical needs of
a transformation with respect to its source and target domains. This way, the TRM becomes the reuse
interface for a model-to-model transformation. A TRM contains two domain requirement models
(DRMs) declaring requirements to be satisfied by the source and target meta-models over which
the transformation is to be reused. DRMs support variability regarding the type for attributes, the
allowed target for references, the inheritance relations between classes, or the existence of classes
with certain features but for which the class name is irrelevant. In addition, the TRM captures the
dependencies between the two DRMs by means of a feature model [Kang et al. 1990]. In this way, a
transformation can be reused with any pair of meta-models that conform to the TRM. We show that
this conformance relation can be expressed as a refinement relation and that meta-models can be seen
as a special case of DRM. Moreover, we identify refinement operations useful to constrain a TRM
while ensuring that the original transformation remains applicable to the meta-models conforming to
the refined TRM.

The advantages of TRMs with respect to existing techniques for transformation reuse are the
following: i) TRMs can be automatically extracted from transformations by means of a static analysis
that is agnostic of the declared meta-models (i.e., source and target meta-models are not needed to
define TRMs); ii) TRMs are more expressive than current techniques to represent requirements (e.g.,
they allow expressing variability), leading to improved reuse possibilities; iii) our method is able to
extract the dependencies cross-linking requirements over the source and target meta-models, and
express those in terms of feature models.

1KM3 is a meta-modelling notation similar to class diagrams [Jouault and Bézivin 2006].
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TRMs can be employed with any transformation language, but we illustrate their use for the Atlas
Transformation Language (ATL) [Jouault et al. 2008], one of the most widely used transformation
languages nowadays. For this purpose, we provide an algorithm to automatically build a TRM from
an ATL transformation, so that the transformation can be reused as-is with any pair of meta-models
conforming to the extracted TRM. The extraction of a TRM from an ATL transformation is supported
by our tool TOTEM2, which also permits graphical visualization and refinement of the extracted TRMs,
and conformance checking of meta-models with respect to TRMs.

Finally, we report on an evaluation of our approach with the aim of answering the following
research questions:

RQ1: Is the TRM extraction mechanism from ATL transformations correct and complete?
RQ2: To what extent does the variability encoded in the extracted TRMs enable transforma-
tion reuse?

To this end, we have considered seven ATL transformations developed by third-parties. In particular,
we have extracted the TRM of these transformations, and have built more than 26,000 variants of
their source and target meta-models using model mutation. Then, we have empirically assessed the
correctness and completeness of our method by measuring the degree in which the transformation
is correctly typed with meta-models conformant to the TRM, and incorrectly with meta-models
not conformant to the TRM. The obtained results are very positive, confirming that TRMs are a
suitable technique to automate transformation reuse in MDE. Using the extracted TRMs, a second
experiment evaluates their power to encode variability and support flexible reuse. Overall, we found
that TRM constructs like anonymous classes and untyped features contribute to express variability
in comparison to plain meta-models, while the extracted compatibility models were able to capture
hundreds of thousands of valid feature combinations (i.e., of reuse contexts).

This is an extended version of our preliminary work in [de Lara et al. 2017]. Specifically, we have
extended the formal theory of our approach, providing proofs of refinement correctness supported
by Alloy [Jackson 2006]3. We have recast meta-models as special cases of DRMs and defined a
catalogue of formally proven correct refinements. We have improved our tool to support refining
TRMs and visualize the dependencies of source and target DRMs as a feature model. We have also
extended the evaluation with new transformations, whose result strengthens the confidence in our
method, and report on an additional experiment evaluating the power of TRMs to express variability.

Paper organization. Section 2 introduces the ATL model transformation language and a running
example, and Section 3 discusses applicability scenarios of our reuse approach. Next, Section 4
defines DRMs, and Section 5 introduces the notion of refinement, proposing a catalogue. Section 6
presents TRMs, and extends the notions of refinement for them. Then, Section 7 explains how to
extract TRMs from ATL transformations, and provides hints on how to generalize the procedure to
other languages. Section 8 introduces our tool TOTEM. Section 9 validates the approach over a set
of transformations developed by third parties. Finally, Section 10 compares with related work, and
Section 11 draws some conclusions and lines for future work. The appendix contains the proofs of
the main results presented in the paper.

2. BACKGROUND AND RUNNING EXAMPLE
Model transformations are the main mechanism for achieving automation in MDE [Sendall and
Kozaczynski 2003], whether it be code generation, traceability, or model management. Transforma-
tions are typically used to generate new models starting from existing ones, and they are often used
in toolchains that automate complex tasks within modelling environments [Di Ruscio et al. 2012;

2Tool and source code available at http://github.com/MDEGroup/totem.
3Alloy specifications available at http://miso.es/trms/
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Basciani et al. 2014]. If we restrict our attention to unidirectional transformations, we cannot neglect
one of the most prominent transformation languages represented by ATL [Jouault et al. 2008].

ATL provides a mixture of declarative and imperative constructs to develop model-to-model
transformations, being the source model read-only, and the target model write-only. The listing to the
left of Figure 1 shows our running example, based on a transformation from the ATL Zoo4 (a public
repository of model transformations written in ATL). Given a piece of Java code represented as a
model, the transformation creates a table with the number of times each Java method is called from
any declared method. The transformation is defined by a module specification consisting of a header
section (lines 1–2), a helper (lines 4–8), and transformation rules (lines 10–27). The header specifies
the source and target models of the transformation together with their corresponding meta-models.
This way, the JavaSource2Table module is a transformation that generates a target model conforming
to the Table meta-model from a source JavaSource model (see line 2). For convenience, Figure 1 shows
both involved meta-models to the right.

1module JavaSource2Table;
2create OUT : Table from IN : JavaSource;
3
4helper context JavaSource!MethodDefinition def:
5 computeContent(col : JavaSource!MethodDefinition) : String =
6 self.invocations->select(i |
7 i.method.name = col.name
8 and i.method.class.name = col.class.name)->size().toString();
9

10rule Table {
11 from s : JavaSource!ClassDeclaration
12 to t : Table!Table ( rows <- s.methods )
13}
14
15rule MethodDefinition {
16 from m : JavaSource!MethodDefinition
17 to row : Table!Row (
18 cells <- Sequence{JavaSource!MethodDefinition.allInstances()
19 ->collect(md | thisModule.DataCells(md, m))}
20 )
21}
22
23lazy rule DataCells {
24 from md: JavaSource!MethodDefinition,
25 m: JavaSource!MethodDefinition
26 to cell: Table!Cell ( content <- m.computeContent(md) )
27}

source meta-model
(JavaSource)

target meta-model
(Table)

Table

Row

rows 1..*

Cell

cells 1..*

Document

tables *

content: String

JavaSource

NamedElement
name: String

ClassDeclaration

MethodDefinition

classes 1..*

superclass

0..1

methods *

invocations *

MethodInvocation

method 1

JavaPackage

sources *

Fig. 1: Fragment of a sample ATL transformation (left) and its source and target meta-models (right).

Helpers and rules are the main ATL constructs to specify the transformation behaviour. The source
pattern of rules (e.g., line 11) consists of types from the source meta-model. Thus, a rule gets applied
for any instance of the given source types that satisfies the optional OCL [Object Management Group
2005] rule guard. Each rule also specifies a target pattern (e.g., line 12) indicating the target objects
to be created, and a set of bindings to initialize their features (attributes and references). In case of
references, a binding may assign them objects of the source model. In that case, a binding resolution
mechanism takes place, which assigns to the reference the target objects created by some rule from
the specified source objects. For example, the binding rows ← s.methods in line 12 initializes the
reference rows of the Table object with the target objects created by rule MethodDefinition from the
source elements (of type MethodDefinition) referred by s.methods.

The rule MethodDefinition (lines 15–21) creates a target Row from each source MethodDefinition. The
binding in this rule assigns to reference cells a sequence of objects created by an OCL expression.
This expression selects all source MethodDefinition objects and applies on them the lazy rule DataCells.

4http://www.eclipse.org/atl/atlTransformations/#Java2Table
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Differently from matched rules like Table and MethodDefinition, lazy rules are executed only when
explicitly called, and use the received parameters. The DataCells lazy rule (lines 23–27) takes two
MethodDefinition objects as input and generates a target Cell containing a number calculated by the
helper computeContent. Helpers are auxiliary operations that permit defining complex model queries
using OCL. In particular, the computeContent helper (lines 4–8) returns a string with the number of
occurrences of the received MethodDefinition object.

The transformation so defined can be applied to instances of the specified meta-models. In the
following section, we present scenarios that require reusing a transformation for meta-models
different from the specified ones and outline our proposal to tackle these scenarios.

3. MOTIVATING SCENARIOS
Model transformations can be complex and, therefore, they require from development techniques
akin to traditional software artefacts. Consequently, for increasing both the development productivity
and the model transformation quality, advanced reuse mechanisms are necessary [Chechik et al.
2016]. Even though over the last years there have been several proposals to deal with the problem
of model transformation reuse [Bruel et al. 2018], it is a problem still far from being satisfactorily
solved [Kusel et al. 2015]. In this paper, we describe mechanisms to cope with the following two
reuse scenarios (cf. Figure 2):

— Transformation reuse via meta-model querying and synthesis: Instead of building a new transfor-
mation from scratch, a more cost-effective solution is to reuse an existing transformation from a
public repository like GitHub or Bitbucket. Unfortunately, such repositories are not specialized in
managing the dependencies among transformations and meta-models. Thus, it might happen that
the developer wants to reuse an available transformation T :MMs →MMt but it is not clear for
which other meta-models T is reusable. It might even be the case that the definitions of MMs and
MMt are missing (e.g., a process which is mining a software repository). To be able to reuse the
transformation, it is important to extract the requirements expected from potential meta-models,
in order to understand whether it would work with other alternative meta-models. Hence, in this
scenario illustrated in Figure 2(a), the developer retrieves from a repository a set of meta-model
pairs that can be used instead of MMs and MMt to execute the transformation T . Alternatively,
such a meta-model pair could be synthesized on purpose.

— Transformation reuse via transformation querying: In this scenario, illustrated by Figure 2(b), a
developer looks in a repository for transformations that fulfil a set of given requirements. The
typical example is a developer that has built a meta-model, and now wants to collect existing
transformations applicable to it. To eventually select one among all applicable transformations, the
developer may perform several searches, each time refining the previous requirements to gradually
discard transformations from the retrieved set.

MM 
repository

T: MMs → MMt

{MMs,1 ,MMs,2 , …, MMs,m } 
{MMt,1 ,MMt,2 , …, MMt,n }

1. requirements for T

{T1 , T2 , …, Tn}

Which meta-models can I reuse
transformation T with?

1. transformation

2. compatible meta-models 2. compatible transfs.

Which transformations are 
available with these requirements?

TRM

MT 
repository

(a) Transformation reuse via meta-model querying/synthesis

MM 
repository

T: MMs → MMt

{MMs,1 ,MMs,2 , …, MMs,m } 
{MMt,1 ,MMt,2 , …, MMt,n }

1. requirements for T

{T1 , T2 , …, Tn}

Which meta-models can I reuse
transformation T with?

1. transformation

2. compatible meta-models 2. compatible transfs.

Which transformations are 
available with these requirements?

TRM

MT 
repository

(b) Transformation reuse via transformation querying

Fig. 2: Motivating scenarios for transformation reuse.
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In the remaining of this section, we outline our approach to tackle these two scenarios.

3.1. Transformation reuse via meta-model querying and synthesis
Model transformations are typed with respect to source and target meta-models. However, these
meta-models might not be available (e.g., for transformations found in code repositories), or we
might want to reuse a transformation with meta-models different from the ones the transformation
was designed for [Bruel et al. 2018]. To tackle both cases, we propose the approach depicted in
Figure 3. Given an existing transformation T , we extract its so-called typing requirements model
(TRM, see label 1 ) which describes the structural requirements that meta-models have to fulfil to be
used as source or target of the transformation. A TRM consists of three parts: the requirements for the
source and target meta-models – named source and target domain requirement models (DRMs) – and
a compatibility model specifying dependencies between them. The transformation T can be reused
with any meta-model satisfying the TRM, and not just with the ones used for its definition. Please
note that in general, a transformation may involve more than two models. For simplicity, we restrict
to the case of transformations between two meta-models, but our approach could be applicable to
transformations involving more meta-models as well.

In this scenario, the TRM can be used to query a meta-model repository to find meta-model pairs
conforming to the TRM (see 2a ). In this paper, we provide a conformance test between meta-model
pairs and TRMs5. In this way, any meta-model pair 〈MMs,MMt〉 conforming to the TRM can be
used as source/target of the transformation. Moreover, the TRM can also be used to generate suitable
meta-model pairs (see 2b ), so that the transformation can be executed on instances of them (see 3 ).
This last possibility is useful when no meta-model is available, but the engineer wants to execute the
transformation to understand its behaviour.

extract 
TRM 

T: M-to-M 
transform. 

source 
MM reqs 

target 
MM reqs 

compatibility 
 
 

TRM 

discover 
compatible 

meta-models 

generate 
compatible 

meta-models MMs MMt 

execute 
transformation 

«conforms» 

1 2a 

2b 

3 

MM  
repository 

Fig. 3: Proposed approach to support the scenario transformation reuse via meta-model querying and synthesis.

As an example, from rule Table in lines 10–13 of Listing 1, our approach would extract a TRM
consisting of two DRMs and one compatibility model specifying the following requirements, among
others detailed later in the paper:

— Source DRM: The meta-models that can be source of the transformation must contain a class named
ClassDeclaration due to the source input pattern of rule Table. As the rule defines the binding rows←
s.methods, ClassDeclaration must have a feature named methods. The transformation does not provide
enough information to statically identify if this feature is a reference or an attribute. Thus, the DRM
represents this variability point and permits both possibilities;

— Target DRM: The meta-models that can be target of the transformation must contain a class Table
with a feature rows, requirements which are derived from the output pattern and binding in rule
Table. Again, it is not possible to determine whether rows is an attribute or a reference. In any case,
it has to be compatible with the type of feature s.methods, because the binding assigns one to the
other. This dependency justifies the need for compatibility models as discussed below;

5Actually, we provide a notion of refinement between TRMs, and consider a meta-model pair as a special case of TRM.
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— Compatibility model: This model declares the dependencies between the source and target DRMs.
In this example, it establishes a dependency between the types of features rows in class Table and
methods in class ClassDeclaration. If the developer resolves the variability related to feature methods,
e.g., by indicating that it is a string attribute, then rows needs to have the same type.

Sections 4–6 will provide the definitions of DRM, compatibility model and TRM, while Section 7
will detail the algorithm to extract a TRM from an ATL transformation.

3.2. Transformation reuse via transformation querying
While the previous scenario implies the automated extraction of TRMs from existing transformations,
developers can also define TRMs by hand with the aim of querying existing repositories of reusable
transformations (see 1 in Figure 4). In this case, the TRM would be the input to a discovery
mechanism that selects all transformations compatible with the TRM (see 2 ). Intuitively, a model
transformation T :MMs →MMt is compatible with a TRM if the meta-model pair 〈MMs,MMt〉
conforms to the DRMs in the TRM and satisfies the conditions in its compatibility model (see 2a ).
The result of this exploration is a set of transformations compatible with the TRM. If this set is too
large to be inspected by the developer, the TRM can be refined by adding more requirements and
thus reducing the number of candidate transformations (see 3 ). This refinement operation induces a
hierarchy of TRMs, as we will discuss in Sections 5 and 6.

The described scenario starts with a general TRM that is used to find transformations Ti whose
input and output meta-models are more specific than the TRM (variant 2a in Figure 4). Alternatively,
we may wish to find transformations Ti whose TRM is more general than a given input meta-model
pair. In such a case, the input TRM would consist of a pair of meta-models with no variability and
no compatibility model (variant 2b in Figure 4), and the result would consist of all transformations
that can be reused with the given meta-model pair. As a meta-model pair is a special case of TRM,
the two variants of this scenario amount to either extracting the most specific reuse interface of a
transformation (the meta-model pair) and then checking the extracted TRM against a more general
input TRM; or extracting the most abstract reuse interface of a transformation (the TRM) and then
checking the extracted TRM against a more specific input TRM.

define
TRM

transformations
compatible with TRM

source
MM reqs

target
MM reqs

compatibility

TRM

discover compatible transformations

refine 
TRM

1

3

MT 
repository

2

no

yes

T1: MMs1→MMt1T1: MMs1→MMt1Ti: MMsi→MMti

exploration2a

Ti: MMsi→MMti

extract

conforms?

<MMsi, MMti>

TRM

reuse for mms2b

Ti: MMsi→MMti

extract

conforms?

TRMi

TRM=<mms,mmt>

reduce 
result set?

transformations
compatible with mms

T1: MMs1→MMt1T1: MMs1→MMt1Ti: MMsi→MMti

Fig. 4: Proposed approach to support the scenario transformation reuse via transformation querying.

In both scenarios, we assume a syntactical approach to reuse, that is, we look for compatible
meta-models or transformations which together are syntactically correct. However, in some cases, it
is useful to express expectations on the semantics of the source and target languages – e.g., using
transformation intents [Salay et al. 2016] – to discard semantically meaningless reuse attempts. We
leave the investigation of the combination of TRMs and intents for future work.
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4. DOMAIN REQUIREMENTS MODELS
Next, we introduce the notion of domain requirement model (DRM) as an abstraction mechanism to
decouple model operations from concrete meta-models. A DRM describes the typing requirements
that a given model operation (a transformation) needs from the meta-model it is typed on.

We start by providing an overview of the rationale and use of DRMs in Section 4.1. This overview
will be used to structure the following sections. Then, Section 4.2 defines DRMs.

4.1. Using DRMs: Overview
The left of Figure 5 depicts a schema of the usage of DRMs for transformation reuse. Given a model
operation q defined over a meta-model MM , we derive a DRM that: (i) slices the portion of MM
required by q and (ii) abstracts the elements of the slice to the minimum typing requirements from
the point of view of q. A (possibly infinite) set of meta-models, including MM , are said to refine
this DRM. While q was originally defined over MM , it can now be seen as defined over the DRM,
and applicable to every meta-model refining the DRM. We will show how to extract a DRM given an
ATL model transformation in Section 7.

DRM

(1)

refinedBy

��

q
defined //

defined

..

=

DRM

refinedBy

��
q

defined //

defined

00

=

MM MM ′

M

type

QQ

type∗

ff

=

Fig. 5: DRMs as abstractions for model operations (left). Correctness property for DRMs (right).

We say that operation q can be used as if defined over the DRM (denoted qDRM ), as for every model
M typed over MM , we can find a typing type∗ from M to the DRM such that qDRM (M) = q(M).
This is so as any instance model M of a meta-model MM that conforms to a DRM can be typed
over the DRM. The existence of this typing type∗, which makes the triangle (1) in the left of Figure 5
commute, provides the semantics of our notion of refinement between a meta-model and a DRM.

The right part of Figure 5 depicts the correctness property that is expected from the DRM of an
operation q, namely, q is well-defined over any meta-model MM ′ refining the DRM.

In the remainder of this section, we introduce the notion of DRM. Refinement between DRMs
(relation refinedBy in Figure 5) is presented in Section 5.1. Section 5.2 defines extra conditions
enabling the composition of atomic refinements and provides a catalogue of refinement operations.
This catalogue is useful to developers aiming at transformation reuse via querying (Figure 4) to
increasingly refine an initial DRM. Then, in Section 5.3, we make the observation that meta-models
can be seen as a special case of DRM. Finally, Section 5.4 gives a semantics of refinement in terms
of instantiation, and proves the existence of the type∗ relation in the diagram of Figure 5.

4.2. Defining DRMs
We use the meta-model in Figure 6 to represent structural requirements for single meta-models.
Its instances, called DRMs, resemble meta-models but some decisions can be left open if they are
irrelevant for the transformation at hand, like class names, attribute types, the target of references, or
the cardinality of features. This way, a potentially infinite set of meta-models may refine a DRM.
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mandatoryAllowed: boolean 
subsAllowed: boolean 
isAbstract: UBoolean 

Feature 

name: String * 

feats 

Reference 

Cardinality 

Number 

value: int 
allowLess: boolean 
allowMore: booolean 

Any 
Cardinality 

Many 

min 1 

max 1 

Attribute 

* 

targets 

DataType 

Boolean 

Real Integer 

String AnyDT Enum 

Literal 

name: String 

name: String[0..1] 

* literals 

dtype 

1 

ancs 

* 

antiancs 

* 

FeatureType 
* 

isOrdered: UBoolean 
isUnique: UBoolean 

<<enum>> 
UBoolean 

True 
False 
Any 

Anonymous 
Class 

types 

context Class  
   inv i1: ancs->closure(ancs)->excludes(self) 
   inv i2: Set{self}->closure(ancs)->forAll(c1, c2|  
 c2.antiancs->closure(antiancs)->excludes(c1)) 
context Feature  
   inv i3: not min.oclIsTypeOf(Many) 
   inv i4: types->select(oclIsTypeOf(Reference))->forAll(r1,r2|r1.open=r2.open) 
context Number inv i5: value>=0 
context DRM inv i6: classes->select(oclIsKindOf(NamedClass))->isUnique (name) 

Numeric 

Class 

Named 
Class 

name: String 

open: boolean 

invariants 

DRM 

classes * 

dTypes: DataType[*] 

Fig. 6: Meta-model to define domain requirements models.

We consider two kinds of classes: named and anonymous. While the former have a name (which is
assumed unique, cf. constraint i6), the name of the latter is irrelevant, meaning that the class is allowed
to have any name. Classes have a flag isAbstract with a three-valued enum type UBoolean, which allows
stating whether a class is abstract, concrete or any of both. A class defines a collection of features.
The flag mandatoryAllowed permits a class to have more mandatory features than those indicated
in collection feats, while there is no constraint on the number of extra non-mandatory features. A
class may defer the conformance checking to all its concrete subclasses, which is indicated by the
subsAllowed flag. A class may be required to inherit (directly or indirectly) from another class, and
this is specified through relation ancs. Conversely, a class is forbidden to inherit from those in relation
antiancs. More precisely, if B ∈ A.antiancs, then we reject meta-models in which B is an ancestor of A,
or both share a common (direct or indirect) subclass. The meta-model invariants on Class ensure that
ancs is acyclic; and there is no class with two ancestor classes one of which is antiancestor of the
other. The latter constraint also entails that ancs and antiancs are disjoint, and antiancs irreflexive.

Features have minimum and maximum cardinality, which can be either a number (class Number),
an indication of many cardinality ( Many), or we might allow any cardinality ( AnyCardinality). If the
maximum is many, features can also indicate whether they are ordered or unique using UBoolean
values. For the case of a number, it can be specified whether the cardinality is allowed to be lower (
allowLess) or higher ( allowMore) than this number. Features always have a name, and optionally, they
may have a set of compatible types, which can be References, Attributes or both.

Attributes can specify their data type, or it can be left open using the AnyDT class.
References can indicate the admissible compatible target types (collection targets), some of which

can be anonymous classes. The flag open permits defining whether a reference has open or closed
semantics, being the difference that open references can have a larger set of targets than specified in
collection targets, while closed ones can have less targets. This flag is useful to distinguish when a
reference is being read (closed) or written (open) by the transformation. We require each compatible
Reference of a given Feature to have the same semantics (invariant i4 in Figure 6). Section 5.4 will
provide more details on the semantics of open/closed references.
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We have adopted a specific concrete syntax to denote the different characteristics of DRMs (see,
e.g., Figure 7). Specifically, the upper-right corner of a class shows whether i) it can be either abstract
or concrete ( AC ), only abstract ( A ), or only concrete ( C ); ii) it can defer the conformance checking
to its subclasses (encircled inheritance-like triangle); and iii) it forbids extra mandatory features
(crossed-out circle �). The antiancestor relation is shown as a crossed-out red inheritance relation.
The arrowhead of references is filled and closed for closed references, and open for open references.

Example. Figure 7 shows three examples of DRM, instances of the meta-model in Figure 6, using the
described concrete syntax. DRM (a) has been extracted from the source domain of the transformation
in Listing 1 (Section 7 will describe the extraction procedure). The DRM requires two classes named
ClassDeclaration and MethodDefinition, which cannot inherit from each other. The latter class should
have an attribute name whose type can be any, and two references named class and invocations to
anonymous classes (i.e., their name is unimportant). The lower bound of invocations can be any. In its
turn, ClassDeclaration requires a feature methods which can be an attribute or a reference (we use a “?”
prefix to denote that both possibilities are allowed). The DRM also demands four anonymous classes
for which only certain features are required. These classes could be matched by the same or different
classes in concrete meta-models, or even by the same classes conforming to the named classes. All
references are closed, as the source domain of an ATL transformation is read-only.

(a)     (b)                (c) 

ClassDeclaration 

Method 
Definition Attribute 

members ?..* 

MethodDefinition 

name: AnyDT 

class ?..* invocations 

method 

name: AnyDT name: AnyDT 
class 

Class 
Declaration 

? methods 

1 

1 

1 

Table 

Row 

Cell 

? rows 

content: String 

?..* cells 

name: AnyDT 

 C 

 C 

 C 

 C 

 C 

 C 

AC AC 

AC AC 

AC AC 

Fig. 7: (a) Source DRM of Listing 1. (b) Target DRM of Listing 1. (c) Multiple compatible reference targets.

DRM (b) has been extracted from the target domain of Listing 1. It requires three concrete named
classes. Class Table requires a feature rows, which can be an attribute or a reference. As Section 6 will
show, the transformation requires the types of Table.rows and ClassDeclaration.methods in DRM (a) to
be correlated, for which we will introduce a compatibility model. None of the classes are allowed to
have extra mandatory features, which is represented with a crossed-out circle. The rationale is that, as
the transformation creates objects of these classes, should the classes had more mandatory attributes,
the transformation would not initialize them, producing ill-formed models. Reference Row.cells is
open because the target domain of an ATL transformation is write-only.

DRM (c) shows that a reference can be required to be compatible with several target types. In
a concrete meta-model, this could be realized by reference members targeting a (possibly indirect)
common superclass of MethodDefinition and Attribute.

In subsequent sections, we use a semi-formal treatment of DRMs. Hence, we represent them using
an algebraic structure derived from the meta-model in Figure 6. In the following, we use Str to denote
the set of all possible strings, Bool = {true, false} for the possible boolean values, UBoolean =
Bool ∪ {any} for the three-valued boolean values, Numeric = {Real, Integer} for the supported
numeric types, and DataType = {AnyDT, String,Boolean,Numeric,Real, Integer} for the
supported data types.
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Definition 4.1 (DRM). A domain requirements model (DRM) is a tuple

RM = 〈NC,AC,F,R,A,Number,Many,
ancs, antiancs, feats, targets, types,
name,mandatoryAllowed, subsAllowed, isAbstract,
min,max, value, allowLess, allowMore, dtype, open〉

made of:

— Sets NC of named classes, and AC of anonymous classes. We define the set C = NC ∪AC.
— Sets F of features, R of reference types, and A of attribute types. We define the set FT = R ∪A.
— Sets Number of numeric cardinalities, and Many of multiple cardinalities. We define the set
Card = Number ∪Many ∪ {AnyCardinality}.

— Relations ancs ⊆ C × C; antiancs ⊆ C × C; feats ⊆ C × F ; targets ⊆ R × C; and
types ⊆ F × FT . Relation ancs must be acyclic, and relations feats and types are restricted to
be injective (left definite).

— Functions name : NC ∪ F → Str; mandatoryAllowed, subsAllowed : C → Bool;
isAbstract : C → UBoolean; min,max : F → Card; value : Number → N0;
allowLess, allowMore : Number → Bool; dtype : A → DataType; and open : R → Bool.
We demand name|NC to be injective.

such that the following conditions hold:

(1) ∀c ∈ C, ∀c1, c2 ∈ c.ancs∗ • c1 /∈ c2.antiancs+
(2) ∀f ∈ F •min(f) /∈Many
(3) ∀f ∈ F, ∀r1, r2 ∈ f.types • {r1, r2} ⊆ R =⇒ r1.open = r2.open

The previous definition omits enums and the ordered and uniqueness features of Many for simplicity.
Analogously to the meta-model of Figure 6, the definition requires ancs to be acyclic (as invariant i1
in the meta-model) while conditions (1-3) in the definition are equivalent to invariants i2, i3, and i4 in
the meta-model. Condition 1 implies that antiancs is irreflexive and does not overlap with ancs. The
injectivity of name|NC (the restriction of function name to NC) results in unique names for named
classes (as required by constraint i6 in the meta-model).

Given a tuple RM , we will use RMC to refer to set C, and similarly for the other sets. In the
following, we use an “object-oriented” notation for functions and relations. For example, given an
element c ∈ NC, we use c.name instead of name(c). Moreover, given a relation or a function, we
use + to denote its transitive closure, and ∗ for its reflexive-transitive closure. For example, c.ancs∗
denotes the set of all direct and indirect ancestors of c, and c itself. The encoding of all definitions
and theorems in the paper using Alloy is available at http://miso.es/trms.

Example. Figure 8 shows the encoding of a DRM RM using Definition 4.1. The DRM has one
named class (set NC), one anonymous class (set AC) and three features ( f1, f2 and f3 in set F ).
Among the three features, f3 has reference type (set R), while f1 and f2 have attribute type (set A).

MethodDefinition 

name: AnyDT 

AC 

class 1 

name: AnyDT 

AC 

RM RM =  NC = {MD}, AC = {AC1}, F = {f1, f2, f3}, R = {r1}, A = {a1, a2}, Number = {one}, Many = {},  
     ancs = {}, antiancs = {}, feats = {(MD, f1), (AC1, f2), (MD, f3)}, targets = {(r1, AC1)}, 
     types = {(f1, a1), (f2, a2), (f3, r1)}, 
     name = {(MD, “MethodDefinition”), (f1, “name”), (f2, “name”), (f3, “class”)}, 
     mandatoryAllowed = subsAllowed = {(MD, true), (AC1, true)}, 
     isAbstract = {(MD, any), (AC1, any)}, 
     min = {(f1, one), (f2, one), (f3, one)}, max = {(f1, one), (f2, one), (f3, one)}, 
     value = {(one, 1)}, allowLess = {(one, false)}, allowMore = {(one, false)}, 
     dtype = {(a1, AnyDT), (a2, AnyDT)}, open = {(r1, false)}  

Fig. 8: Formal encoding of an excerpt of the DRM in Figure 7(a).
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5. REFINEMENT, COMPOSITION AND SEMANTICS OF DOMAIN REQUIREMENT MODELS
Once we have defined DRMs, next we introduce a refinement relation between them (Section 5.1),
and then strengthen this relation to make it composable, presenting a catalogue of useful refinements
(Section 5.2). Then, we show that meta-models can be seen as a special kind of DRM (Section 5.3),
and finish presenting a semantics of refinement in terms of typing (Section 5.4).

5.1. Refinement of domain requirement models
Next, we introduce a notion of refinement between DRMs. This is useful to understand the modifi-
cations that can be done to a DRM to obtain a more refined DRM, as well as to be able to narrow
the (possibly infinite) set of meta-model pairs that can be used with a given transformation, as the
scenario described in Section 3.2 requires (cf. Figure 4).

Refinement between DRMs is a special kind of mapping ref : RM → RM ′ from a DRM RM to
a more refined one RM ′. The more general notion of mapping between two DRMs maps classes to
classes, features to features, references to references, and attributes to attributes. We consider two
kinds of mappings for classes, mC and mS , which will impose different conditions in refinement
mappings. Classes must be mapped using either one of the mappings, and so mC ∪mS (the union
of both mappings) is a total function. Features should be mapped only if they belong to classes
mapped through mC . The mappings for references (mR) and attributes (mA) are also partial. This is
necessary as a feature in RM may declare several feature types, and we do not demand all of them
to be mapped, but finding just a compatible one in RM ′ is enough.

Definition 5.1 (DRM mapping). A DRM mapping m : RM → RM ′ from a DRM RM to a
DRM RM ′ is a tuple m = 〈mC ,mS ,mF ,mR,mA〉 made of:

— Two partial functions mC ,mS : RMC 7→ RM ′C mapping classes to classes, such that:
(1) their union mCS = mC ∪mS is a total function
(2) ∀C ∈ RMC • mS(C) is defined =⇒ C.subsAllowed = true ∧ ∀Cs ∈ C.subs •

mS(Cs) is defined
— A partial function mF : RMF 7→ RM ′F mapping features to features, where:

(1) ∀C ∈ RMC • mC(C) is defined =⇒ ∀f ∈ C.feats •mF (f) is defined
— A partial function mR : RMR 7→ RM ′R mapping reference types to reference types
— A partial function mA : RMA 7→ RM ′A mapping attribute types to attribute types

As we will see in Definition 5.2, the mapping mC will be used to check refinement of a class C by
the mapped class mC(C), while mS will be used to check refinement of a class C by each concrete
subclass ofmS(C). The latter checking requires thatC permits subclasses (C.subsAllowed = true),
and that all subclasses of C are mapped via mS (we use predicate subs to denote the set of direct
and indirect subclasses). Classes mapped via mC can have any value for subsAllowed.
Example. Figure 9 shows a DRM mapping example. Function mS maps class MethodDefinition in
RM to Method in RM ′, while function mC maps the anonymous class in RM to the named class
ClassDeclaration in RM ′. Since mCS (the union of mC and mS) must be a total function, the domain
of mS and mC cannot overlap (as we would obtain a relation instead of a function), and all classes
in RM must be mapped either by mS or mC (otherwise mCS would not be total). The definition of
a DRM mapping comprises the mapping of both features (mF ) and feature types (mA for attribute
data types, and mR for reference targets). In the figure, we depict mF as links between the names of
the mapped features, mA as links between attribute datatypes, while mR is empty in this case. mF

only needs to map features of classes that have been mapped through mC (i.e., feature name from the
anonymous class in the example). This is so as classes mapped via mS will be checked structurally
against a set of subclasses (in the figure, MethodDefinition against PublicMethod and InnerMethod), and
we want to avoid mapping features multiple times (reference class in RM to both references class in
RM ′).

A DRM refinement is a special kind of mapping, which satisfies a number of conditions, as we
show in next definition.
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MethodDefinition

name: AnyDT

AC

class1

name: AnyDT

AC

Method

Public
Method

Inner
Method

name: String

Class
Declaration

name: String

class1

class1

A

C CC

RM RM’

mS

mC

mF

mA

mS Mapping with
subclass checking

mC Mapping with
class checking

mF Mapping between
features

Mapping between
attribute types

mA

Legend

mR Mapping between
reference types

Fig. 9: DRM mapping example.

Definition 5.2 (DRM refinement). Given two DRMs RM and RM ′, a DRM mapping m =
〈mC ,mS ,mF , mR,mA〉 : RM → RM ′ is a refinement if the following predicate holds:

refinement(m) ,
name refinement(m) ∧ abstract refinement(m) ∧
ancs preservation(m) ∧ antiancs preservation(m) ∧
mand allowed refinement(m) ∧ feature refinement(m) ∧
feature type commut(m) ∧ feature type refinement(m) ∧
subs refinement(m)

If m : RM → RM ′ is a DRM refinement, then we say that RM ′ refines, or is a refinement of, RM .

The definition relies on nine predicates that we introduce next. In all of them, we assume that
a DRM mapping m = 〈mC ,mS ,mF ,mR,mA〉 : RM → RM ′ between DRMs RM and RM ′ is
given. The predicates are defined over the DRM structure presented in Definition 4.1.

. class name refinement: this predicate requires that each named class C in RM that is mapped
through mC , is mapped to a class in RM ′ with the same name. The name of the class an anonymous
class is mapped to does not matter.

Predicate: Class name refinement

name refinement(m) ,
∀C ∈ RMNC •mC(C) is defined =⇒ mC(C).name = C.name

Example. The mapping m in Figure 9 satisfies name refinement(m) because the only class for
which mC is defined is anonymous, and hence, it can be mapped to a class with any name.

. abstractness refinement: this predicate requires mapping abstract classes to abstract classes, and
concrete classes to concrete ones. Classes where isAbstract is any can be mapped to either abstract or
concrete classes.

Predicate: Abstractness refinement

abstract refinement(m) ,
∀C ∈ RMC • C.isAbstract = any ∨mCS(C).isAbstract = C.isAbstract

Example. The mapping m in Figure 9 satisfies abstract refinement(m) as both classes in RM
have any as required abstractness.

. ancestor preservation: this predicate requires preserving the structure of the ancestor relationship:
if Ca is an ancestor of the class C, then Ca should be mapped to an ancestor of the class C is mapped
to, or be this latter class.
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Predicate: Ancestor preservation

ancs preservation(m) ,

∀C,Ca ∈ RMC • Ca ∈ C.ancs+ =⇒ mCS(Ca) ∈ mCS(C).ancs
∗

Example. The mapping in Figure 10 satisfies the predicate ancs preservation because class Method-
Definition is an ancestor of PublicMethod in RM , and this relation is preserved by mC . The predicate
would allow mapping both classes into the same one as well.

MethodDefinition

Public
Method

RM RM’

mC

AC

MethodDefinition

Public
Method

A

C

Instance
Method

C

mC

AC

Fig. 10: DRM mapping example illustrating ancestor preservation.

. antiancestor preservation: similar to the previous predicate, this one demands preserving any
forbidden ancestor relationship: if Ca cannot be an ancestor of C (i.e., Ca ∈ C.antiancs+), then
Ca should be mapped to an antiancestor of the class mapped to C.

Predicate: Antiancestor preservation

antiancs preservation(m) ,

∀C,Ca ∈ RMC • Ca ∈ C.antiancs+ =⇒ mCS(Ca) ∈ mCS(C).antiancs
+

The antiancs relation enables a fine-grain control of the types of objects that transformation rules
can match, as a rule from class Ca, where Ca ∈ C.antiancs+, is applicable to Ca objects but not to
C objects. If a refinement maps classes Ca and C to C ′a and C ′ such that C ′a is an ancestor of C ′,
the rule would become applicable to the instances of both C ′a and C ′, hence not preserving the rule
behaviour. This predicate avoids this problem. As Section 7 will show, DRMs extracted from ATL
for source meta-models typically contain antiancs relations between the source classes of the rules.

Example. Figure 11 shows a mapping that violates the predicate antiancs preservation. It does
not preserve the antiancs relation because MethodDefinition in RM ′ is an ancestor of FieldDeclaration
and not an antiancestor, as required. If this mapping were allowed, a rule for MethodDefinition would
become unexpectedly applicable on FieldDeclaration. This predicate forbids this undesirable situation.

MethodDefinition 

Field 
Declaration 

RM RM’ 

mC 

AC 

MethodDefinition 

Field 
Declaration 

 A 

C 

Query 
C 

mC 

AC 

Fig. 11: Mapping violating antiancestor preservation.

. mandatory features refinement: if a class C does not permit more mandatory features than the ones
it already defines or inherits (i.e., C.mandatoryAllowed = false), then this predicate ensures that
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the class C is mapped to has the same number of mandatory features as C. A feature is mandatory if
its minimum cardinality is bigger than 0. This condition only applies to classes mapped by mC .

Predicate: Mandatory features refinement

mand allowed refinement(m) ,
∀C ∈ RMC •mC(C) is defined ∧ C.mandatoryAllowed = false =⇒
|{f | f ∈ C.feats∗ ∧ isMand(f)}| = |{f | f ∈ mC(C).feats

∗ ∧ isMand(f)}|

with

isMand(f : Feature) , f.min ∈ Number∧
f.min.value > 0 ∧ f.min.allowLess = false

Typically, for ATL, classes in DRMs of source meta-models have mandatoryAllowed =
true as their objects are read-only, while classes in DRMs of target meta-models have
mandatoryAllowed = false as their objects are write-only. If we allowed target classes with
more mandatory features than those specified in the DRM, the transformation may produce ill-
formed models.

Example. Figure 12 shows a DRM mapping that violates the predicatemand allowed refinement.
The reason is that class Table in RM has no mandatory features and does not allow any (indicated
by the crossed-out circle); however, class Table in RM ′ has one mandatory feature ( name) inherited
from NamedElement.

Table 
 C 

Table 
mC 

RM RM’ 

 C 

name: String [1] 

NamedElement 
 A 

Fig. 12: DRM mapping example illustrating a violation of mandatory features refinement.

. feature refinement: this predicate requires each feature defined in a class C to be mapped to
an equally named feature owned or inherited by the class C is mapped to, provided that C is
mapped through mC . The cardinality interval of the mapped feature in RM ′ should be the same or a
refinement of the cardinality interval of C’s feature, if the latter cardinality is specified.

Predicate: Feature refinement

feature refinement(m) ,
∀C ∈ RMC • mC(C) is defined =⇒
∀f ∈ C.feats • mF (f) ∈ mC(C).feats

∗∧
f.name = mF (f).name ∧ refinescard(f,mF (f))
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with

refinescard(f, f
′ : Feature) , refinesmin(f.min, f

′.min) ∧ refinesmax(f.max, f ′.max)
refinesmin(c, c

′ : Card) , c = AnyCardinality ∨ refinesnum(c, c′)

refinesmax(c, c
′ : Card) , c = AnyCardinality ∨ refinesnum(c, c′) ∨ refinesmany(c, c′)

refinesnum(c, c′ : Card) , c ∈ Number ∧
((c′ ∈ Number ∧

(c.value = c′.value ∨
(c.value > c′.value ∧ c.allowLess = true) ∨
(c.value < c′.value ∧ c.allowMore = true))) ∨

(c′ ∈Many ∧ c.allowMore = true))

refinesmany(c, c
′ : Card) , c ∈Many ∧ c′ ∈Many

Predicate refinescard receives two features – f and f ′ – and yields true if the minimum and
maximum cardinality of f ′ refine those of f . This is so if either the minimum (resp. maximum)
cardinality of f is AnyCardinality, if both f and f ′ have the same minimum (resp. maximum)
cardinality, or if the minimum (resp. maximum) cardinality of f ′ is different but it respects the
flags of f allowLess (i.e., it can be smaller) and allowMore (i.e., it can be bigger). Checking the
maximum cardinality admits a fourth possibility that arises when f has cardinality Many.

Example. Given a feature f with cardinality 1..10 and flags allowLess = false and allowMore =
true for both the minimum and maximum cardinality values, predicate feature refinement allows
its mapping to a feature f ′ with the same name and cardinalities 1..10, 1..∗, or 2..20, but not to a
feature with cardinality 1..1 or 0..∗.

. feature type commutativity: this is a well-formedness condition for the partial mapping of feature
types. It states that if an attribute or reference type is mapped, then it is mapped to one of the types of
the mapped feature.

Predicate: Feature type commutativity

feature type commut(m) ,
∀f ∈ RMF , ∀ft ∈ f.types • mA(ft) is defined =⇒ mA(ft) ∈ mF (f).types ∧

mR(ft) is defined =⇒ mR(ft) ∈ mF (f).types

. feature type refinement: this predicate checks that feature types are refined correctly, taking into
account that a feature can declare several potential compatible types, either attribute types or reference
types (see meta-model in Figure 6). In case of attribute types (predicate refinesAttr), AnyDT
can be refined by (i.e., mapped to) any type, Numeric can be refined by Real and Integer, and
otherwise the data type must be preserved. In the case of reference types (predicate refinesRef ),
there are two semantics depending on whether the reference types are open or closed. Let r be a
reference type in RM that is mapped to a reference type r′ in RM ′. Then, if r is open, all target
classes of r must be mapped into targets of r′. This means that r can be refined to include more
compatible classes. If r is closed, then all target classes of r′ must receive a mapping from some
target of r. This means that r can be refined to a more restricted set of admissible target classes.
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Predicate: Feature type refinement

feature type refinement(m) ,
∀f ∈ RMF • mF (f) is defined =⇒ ((f.types = ∅) ∨

(mF (f).types 6= ∅ ∧ ∀ft′ ∈ mF (f).types ∃ft ∈ f.types •
(mA(ft) = ft′ ∧ refinesAttr(ft, ft′)) ∨
(mR(ft) = ft′ ∧ refinesRef (ft, ft′))))

with

refinesAttr(a, a
′ : FT ) , a ∈ A ∧ a′ is defined ∧

(a.dtype = AnyDT ∨ a.dtype = a′.dtype

∨ (a.dtype = Numeric ∧ a′.dtype ∈ Numeric))
refinesRef (r, r

′ : FT ) , r ∈ R ∧ r′ is defined ∧
(r.open = true =⇒
∀c ∈ r.targets •mCS(c) ∈ r′.targets) ∧

(r.open = false =⇒
∀c′ ∈ r′.targets • ∃c ∈ r.targets • mCS(c) = c′)

Example. Figure 13(a) illustrates the refinement of closed references. We depictmF as links between
the names of the mapped features, and mR (i.e., the mapping of reference types) as links between
the reference arrow ends. The reference members in RM declares two reference types, though only
one of them is mapped (the one pointing to Attribute). This is possible because mappings mR and
mA can be partial. Given the reference members in RM , the predicate feature type refinement
iterates on all targets of the reference members in RM ′ (only class Attribute in this case) and checks
that they are mapped from some target of the reference members in RM . In this case, Attribute in
RM ′ is mapped from Attribute in RM , therefore, this is a valid refinement. This predicate is useful to
characterize read-only source meta-models, as it guarantees that all objects stored in a reference of
RM ′ are compatible with the original reference in RM .

ClassDeclaration

Attribute

?..*

C

C

ClassDeclaration

Method
Definition Attribute

members?..*

C

C

C

members

Method
Definition

C

mC

mC

mC

mF

(a) (b)

ClassDeclaration

Attribute

?..*
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mC
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Fig. 13: DRM mapping examples illustrating feature type refinement. (a) Closed references. (b) Open references.

Figure 13(b) illustrates the semantics of open references, which is the converse. In this case,
the predicate iterates on all target classes of the reference in RM , and checks that the reference
mapped to it in RM ′ has compatible target classes for them. The refined reference may declare
more compatible classes, as is the case in the figure (see MethodDefinition in RM ′). This is useful to
characterize write-only target meta-models.

. subclass refinement: this predicate requires that a class mapped by mS is refined by all concrete
subclasses of the class is mapped to. Recall from Definition 4.1 that a class can only be mapped by
mS if its flag subsAllowed is true.
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Predicate: Subclass refinement

subs refinement(m) ,
∀C ∈ RMC • mS(C) is defined⇒ | conc subs(mS(C)) | > 0 ∧
∀C ′ ∈ conc subs(mS(C)) •

mand allowed refinement(C,C ′) ∧
∀f ∈ C.feats ∃f ′ ∈ C ′.feats∗ • feats refinement(f, f ′)

with:

conc subs(c : Class) , {c′ ∈ c.subs ∪ {c} | c′.isAbstract 6= true}
feats refinement(f, f ′ : Feature) , feature refinement(f, f ′) ∧

feature type commut(f, f ′) ∧
feature type refinement(f, f ′)

The predicate checks that every non-abstract subclass of class C is mapped to refine the fea-
tures of C. It also ensures that mS(C) has a non-empty set of non-abstract subclasses, or is itself
non-abstract. The actual class refinement is assessed by predicates mand allowed refinement( , ),
feature refinement( , ), feature type commut( , ), and feature type refinement( , ). These predicates
are analogous to the previous versions which receive a mapping as a parameter, but performing the
checkings over particular pairs of classes or features.

Example. The mapping in Figure 14 satisfies subs refinement. This is so as mS

maps NamedElement to Element, and hence, the predicate checks that every non-abstract
subclass of Element refines NamedElement regarding its mandatory features (predi-
cate mand allowed refinement), features (feature refinement) and feature types
(feature type commut and feature type refinement). These predicates hold because
both ClassDeclaration and MethodDefinition declare an attribute ident compatible with NamedElement.ident.

RM RM’ 

ident: AnyDT 

NamedElement 
 A 

Element 
 A 

Class 
Declaration 

Method 
Definition 

ident: String ident: int 

mS 

 C  C 

Fig. 14: DRM mapping example illustrating subclass refinement.

Once we have defined the predicates involved in DRM refinements, we illustrate this notion
through an example.

Example. Figure 15 shows examples of correct (a, b, c) and incorrect (d) DRM refinements with
respect to DRM (a) in Figure 7 (repeated on top of Figure 15 for convenience). In the figure, we have
indicated the mapping of classes using equal numbers, while the mapping of features can be deduced
by the equality of their names.

The mapping to DRM (a) is a refinement because it correctly maps the named classes Method-
Definition and ClassDeclaration (demanded by the name refinement predicate). None of these two
classes is an ancestor of the other, and the antiancs relation is preserved (antiancs preservation
predicate). Both MethodDefinition and ClassDeclaration have features with the same name and cardi-
nality as the DRM classes they refine (feature refinement predicate). Among these features, the
attribute name is inherited from an anonymous class, and its type is refined from AnyDT to String
(feature type refinement predicate). In addition, MethodInvocation in DRM (a) also refines one
of the anonymous classes in the DRM, while MethodDefinition refines another anonymous class, and
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Fig. 15: Correct and incorrect DRM refinements with respect to DRM (a) in Figure 7.

ClassDeclaration refines two of them. Feature ClassDeclaration.methods in the DRM on top, which can
be either a reference or an attribute, is refined by reference ClassDeclaration.methods in DRM (a).

The mapping to DRM (b) is also a refinement. All the classes in DRM (b) are concrete, as the
classes they refine allow any abstractness (permitted by predicate abstract refinement). In this
case, the name attribute is directly owned by the classes and has different types, both of which are
proper refinements of the more general AnyDT . The four anonymous classes in the DRM on top
are refined by just two classes. Some reference cardinalities in the refined and refining DRMs are
different, such as the minimum cardinality of invocations that has been refined from AnyCardinality
to 1, which is allowed by predicate feature refinement.

The mapping to DRM (c) is a refinement because all concrete subclasses of the abstract class
MethodDefinition in DRM (c), structurally conform to the class MethodDefinition in the upper DRM
(as required by predicate subs refinement). This abstract class defines the mandatory attribute
params that does not appear in the upper DRM, but predicate mand allowed refinement allows
this because class MethodDefinition on top allows extra mandatory attributes in the refining classes.

Mapping (d) is not a refinement because the antiancestor relation is not preserved (predicate
antiancs preservation fails). Class NestedMethod inherits from both MethodDefinition and ClassDecla-
ration, and so with reference to the transformation in Figure 1, NestedMethod objects would be matched
by rules Table and MethodDefinition, causing a runtime error.

5.2. Refinement composition
Transformation reuse via transformation querying requires being able to perform a stepwise re-
finement of a DRM, likely concatenating simple refinement steps (see scenario in Section 3.2).
However, the predicate refinement(m) in Definition 5.2 is too weak to ensure compositionality
of refinements. We need to strengthen it to ensure the value of flags mandatoryAllowed, allowLess,
allowMore and open is preserved. The next three predicates capture this.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:20 J. de Lara et al.

Predicate: Mandatory allowed preservation

mand allowed preservation(m) ,
∀C ∈ RMC • C.mandatoryAllowed = false⇒ mCS(C).mandatoryAllowed = false

Predicate: Cardinality preservation

card preservation(m) , ∀C ∈ RMC , ∀f ∈ C.feats •
mF (f) is defined⇒ same bounds(f,mF (f)) ∧
mF (f) not defined⇒ ∀C ′ ∈ conc subs(mS(C)), ∃f ′ ∈ C ′.feats∗ •

feats refinement(f, f ′) ∧ same bounds(f, f ′)

with:

same bounds(f, f ′ : Feature) , f.min ∈ Number ∧ f ′.min ∈ Number =⇒
f.min.allowLess = f ′.min.allowLess ∧
f.min.allowMore = f ′.min.allowMore (and similar for f.max)

Predicate: Reference semantics preservation

ref sem preservation(m) , ∀f ∈ RMF , ∀rt ∈ f.types •
mR(rt) is defined⇒ rt.open = mR(rt).open ∧
mR(rt) not defined⇒ mS(f.owner) is defined =⇒

∀C ′ ∈ conc subs(mS(f.owner)), ∃f ′ ∈ C ′.feats∗ •
feats refinement(f, f ′) ∧ ∀ rt′ ∈ f ′.types •
refinesRef (rt, rt

′)⇒ rt.open = rt′.open

Predicates card preservation and ref sem preservation have two parts. The first one checks
cardinality (resp. reference semantics) preservation for those features mapped via mF , which means
their owner classes were mapped through mC . The second part checks the same conditions for those
features owned by classes mapped via mS . As those features are not explicitly mapped, the checks
need to use predicate feats refinement.

Next, we introduce the notion of strong refinement as a special type of refinement.

Definition 5.3 (DRM strong refinement). Given two DRMs RM and RM ′, the mapping m =
〈mC , mS ,mF ,mR,mA〉 : RM → RM ′ is a strong refinement if the following predicate holds:

srefinement(m) , refinement(m) ∧mand allowed preservation(m) ∧
card preservation(m) ∧ ref sem preservation(m)

Example. In Figure 15, refinements (b) and (c) are strong. Refinement (a) is not strong because
reference class does not preserve its semantics (it is closed in the DRM on top, and open in DRM
(a)). Refinements (b) and (c) are strong because they preserve the semantics of references and
mandatoryAllowed. Please note that strong refinements are not required to preserve subsAllowed.

The following definition describes when two DRM mappings are composable and how to compose
them. Then, Lemma 5.5 states that composing two DRM mappings yields a well-formed DRM
mapping. Finally, Theorem 5.6 defines the conditions under which the composition of two strong
refinements leads to a strong refinement.

Definition 5.4 (DRM mapping composition). Given two DRM mappings m1 = 〈m1
C ,m

1
S ,m

1
F ,

m1
R,m

1
A〉 : RM → RM ′ and m2 = 〈m2

C ,m
2
S ,m

2
F ,m

2
R,m

2
A〉 : RM ′ → RM ′′ such that:

∀C ∈ RMC • m2
S(m

1
C(C)) is defined⇒ (C.subsAllowed = true ∧

∀Cs ∈ C.subs • m1
S(Cs) is defined ∨ m2

S(m
1
C(Cs)) is defined)
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the composition m2 ◦ m1 yields the DRM mapping m = 〈mC ,mS ,mF ,mR,mA〉 : RM → RM ′′

defined componentwise as follows:

—mX = m2
X ◦m1

X for X ∈ {C,F,R,A}
—mS = m2

S ◦m1
S ∪m2

S ◦m1
C ∪m2

C ◦m1
S

The composition of DRM mappings is calculated componentwise. The composability condition in
the definition ensures on the one hand that the resulting function mS is only defined for classes with
subsAllowed = true, as required by the definition of DRM mapping (cf. Definition 5.1). On the
other hand, it also ensures that if the resulting mS is defined for a class C, it is also defined for all its
subclasses Cs, as also required by the definition of DRM mapping.

Example. Figure 16 shows an example of DRM mapping composition. In the composed mapping,
ClassDeclaration in RM is mapped to ClassDeclaration in RM ′′ via mC , while the anonymous classes
are mapped into DataMember and DataType via mS .
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 C  C  C m2
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 C 

 C  C 

type 
1..1 

Fig. 16: Example of DRM mapping composition.

Before proving properties of refinement compositions, we deal with a more basic property of
composed DRM mappings: that they are well-formed (i.e., they fulfil the conditions in Definition 5.1).

LEMMA 5.5 (COMPOSITION OF DRM MAPPINGS IS WELL-FORMED).
Given two composable DRM mappings m1 : RM → RM ′ and m2 : RM ′ → RM ′′, then m2 ◦
m1 : RM → RM ′′ is a well-formed DRM mapping.

PROOF. In Appendix A.1.

Finally, we are ready to characterize when the composition of two strong refinements yields
a strong refinement. We use cod(m) to refer to the codomain of the mapping m (i.e., the target),
and dom(m) for its domain (i.e., the source). This theorem is important as it enables the stepwise
refinement of DRMs.

THEOREM 5.6 (COMPOSITION OF STRONG REFINEMENTS IS STRONG REFINEMENT).
Given two composable DRM mappings m1 : RM → RM ′ and m2 : RM

′ → RM ′′ such that

cod(m1
S) ∩ dom(m2

CS) = ∅
we have that

srefinement(m1) ∧ srefinement(m2)⇒ srefinement(m2 ◦m1)

PROOF. In Appendix A.2.
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Example. Mappings m1 and m2 in Figure 16 are strong refinements, and no class in RM ′ belongs
to both the codomain of m1

S and the domain of m2
CS ; hence, their composition m = m2 ◦ m1

is a strong refinement. This means that the predicate name refinement holds for m because
the name of both ClassDeclaration and mC( ClassDeclaration) is the same; class ClassDeclaration
is concrete in both RM and RM ′′, and the abstractness of both anonymous classes in RM is
any; ancs preservation and antiancs preservation hold because ancs and antiancs are empty
in RM ; mand allowed refinement and mand allowed preservation hold because all classes
have the flag mandatoryAllowed set to true; feature refinement holds because members in RM
is mapped to a feature named analogously in RM ′′, and their owner classes are mapped as well;
feature type commut and feature type refinement hold because the type of members is pre-
served; subs refinement holds because the subclasses of DataMember and DataType in RM ′′ refine
the anonymous classes in RM and their features type and name; ref sem preservation holds be-
cause all references have close semantics; and card preservation holds because allowLess and
allowMore are preserved (even though Figure 16 does not represent this information visually).

Example. Figure 17 shows the composition of two strong refinements that does not fulfil the
precondition to obtain a strong refinement, as DataType in RM ′ belongs to both the codomain of m1

S
and the domain of m2

C . This composition is not a refinement because it maps DataType in RM to
DataType in RM ′′ using mS (see Definition 5.4); however, Numeric is a concrete subclass of DataType
that does not own or inherit a feature defValue, as needed.

DataType 
m1

S 

RM RM’ RM’’ 

m2
C 

m2
C 

defValue: AnyDT 

DataType 
  A 

Integer 
  C 

defValue: Integer 

DataType 
  A 

Integer 
  C 

defValue: Integer 

Numeric 
  C 

 AC 

m2
F 

m2
A 

Fig. 17: Composition of strong refinements that violates the precondition to yield a strong refinement (cod(m1
S)∩

dom(m2
CS) is not empty).

5.2.1. Refinement operations. In the following, we present a catalogue of refinement operations
that can be successively applied to a given DRM, and ensure that the resulting DRM is a strong
refinement of the initial one. This is relevant for the scenario described in Section 3.2, where
TRMs are refined to reduce the number of retrieved transformations. The proposed catalogue is not
exhaustive, but other refinements are possible and can be added to our catalogue if proved to be
strong refinements. Figure 18 gives minimal examples of each refinement operation in the catalogue,
while the appendix contains the proofs of correctness for each of them.

(1) Adding new class. Given a DRM RM , adding a new class C ′ yields a modified DRM RM ′

which strongly refines RM .

PROOF. In Appendix A.4.

(2) Assigning fresh name to anonymous class. Given a DRM RM with an anonymous class C,
assigning a fresh name to the class yields a modified class C ′ (which therefore becomes a named
class) and a modified DRM RM ′, which strongly refines RM .

PROOF. In Appendix A.5.
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Fig. 18: Cheat sheet with refinement operations.

(3) Setting class to abstract or concrete, provided it allows any abstractness. Given a DRM RM
with a class C such that C.isAbstract = any, changing isAbstract to true or false yields a
modified class C ′ and a modified DRM RM ′, which strongly refines RM .

PROOF. In Appendix A.6.

(4) Adding feature to class, which must be optional if the class does not allow mandatory features.
Given a DRM RM and a class C, adding a new feature f to C.feats yields a modified class C ′
and a modified DRM RM ′, which strongly refines RM . If C.mandatoryAllowed = false,
then f.min must be a Number n with n.value = 0 and n.allowMore = false.

PROOF. In Appendix A.7.

(5) Refining the possible types of a feature. Given a DRMRM with a feature f such that |f.types| =
0 (meaning that f can have any type), adding a feature type to f.types yields a modified DRM
RM ′, which strongly refines RM . This effectively implies that f is refined into an attribute or a
reference (see Figure 18). Conversely, if |f.types| > 1, then deleting one element from f.types
yields a modified DRM RM ′, which strongly refines RM .

PROOF. In Appendix A.8.

(6) Refining type of attribute. We consider the refinement of untyped and numeric attributes. In
the first case, given a DRM RM with an attribute f such that f.dtype = AnyDT , the opera-
tion changes f.dtype to a datatype from the set {String,Boolean,Numeric,Real, Integer,
Enum}, yielding a modified attribute f ′ and a modified DRM RM ′, which strongly refines
RM . In the second case, f.dtype = Numeric, and the operation changes the datatype by one
from the set {Real, Integer}, which also yields a strong refinement.
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PROOF. In Appendix A.9.

(7) Splitting class in hierarchy. Given a DRM RM with a class C, creating a new class Csuper
which is added to C’s ancestors yields a modified class C ′ and a modified DRM RM ′, which
strongly refines RM . Optionally, any feature f ∈ C.feats can be pushed up to Csuper, yielding
a modified feature f ′. As an example, Figure 18 (7) shows a class C that is split, and its feature
f1 is moved to the new superclass.

PROOF. In Appendix A.10.

(8) Adding/deleting target of reference. This effectively implies refining the type of a reference.
Given a DRM RM with a reference r such that r.open = true, adding a new or existing class to
r.targets yields a modified reference r′ and a modified DRM RM ′, which strongly refines RM .
Conversely, given a reference r such that r.open = false ∧ |r.targets| > 1, removing a class
from r.targets also yields a strong refinement. Even though the condition for closed references
to have more than one target is not needed according to predicate feature type refinement,
we require it because closed references without targets cannot be further refined, and hence, no
meta-model (in which all references have exactly one target) would “conform” to the DRM.

PROOF. In Appendix A.11.

(9) Adding subclass consistent with antiancs. Given a DRM RM with classes RC and C s.t.
∀Ca ∈ C.ancs∗•(@Cs ∈ Ca.antiancs∗ • Cs ∈ RC.ancs∗∧

@Cs ∈ RC.ancs∗ • Ca ∈ Cs.antiancs∗)
adding RC to C.ancs yields a DRM RM ′ which strongly refines RM . If the subclass C is new,
we also obtain a strong refinement. Figure 18 (9) shows two examples of subclassing, the upper
one corresponding to a valid refinement, and the second one not because the subclass C inherits
from a class RCA that belongs to RC.antiancs.

PROOF. In Appendix A.12.

(10) Refining minimum cardinality. Given a DRM RM with a feature f , any of the following
changes yields a modified feature f ′ and a modified DRM RM ′ that strongly refines RM :
if f.min = AnyCardinality, assigning to f.min any Number n; if f.min = Number ∧
f.min.allowLess = true, assigning a lower value to f.min.value; and if f.min = Number∧
f.min.allowMore = true, assigning a higher value to f.min.value.

PROOF. In Appendix A.13.

(11) Refining maximum cardinality. Given a DRM RM with a feature f , any of the following
changes yields a modified feature f ′ and a modified DRM RM ′ that strongly refines RM :
if f.max = AnyCardinality, assigning to f.max any Number n or Many; if f.max =
Number ∧ f.max.allowLess = true, assigning a lower value to f.max.value; if f.max =
Number ∧ f.max.allowMore = true, assigning either a higher value to f.max.value or
Many to f.max.

PROOF. In Appendix A.14.

5.3. Meta-models as domain requirement models
Regular meta-models can be considered a special case of DRM. This observation permits unifying
the notions of DRM refinement and conformance of meta-models to DRMs, by a unique relationship
between DRMs. The following definition enumerates the features that an encoding of meta-models
as DRMs yields.

Definition 5.7 (Meta-model). A DRM RM is called a meta-model if:

(1) classes have a name: AC = ∅

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



Typing requirements models A:25

(2) classes are either abstract or concrete: ∀c ∈ C • ¬c.isAbstract = any
(3) features are either references or attributes: ∀f ∈ F • |f.types| = 1
(4) features have a concrete cardinality value: ∀f ∈ F • {f.min, f.max} ⊆ Number ∪Many
(5) attributes have a concrete type: ∀a ∈ A • ¬a.dtype = AnyDT ∧ ¬a.dtype = Numeric
(6) references have exactly one target type: ∀r ∈ R • |r.targets| = 1
(7) references are closed: ∀r ∈ R • r.open = false
(8) cardinalities are strict: ∀n ∈ Number • n.allowLess = false ∧ n.allowMore = false
(9) all possible antiancestors are declared: ∀c1, c2 ∈ C • c1 /∈ c2.ancs

∗ ∧ c2 /∈ c1.ancs
∗ =⇒

((c1 ∈ c2.antiancs ∧ c2 ∈ c1.antiancs) ∨ ∃c′ ∈ C • {c1, c2} ⊆ c′.ancs∗)

These conditions are necessary to faithfully capture the instantiation semantics of meta-models,
which for example requires named classes and features with a defined type. The last condition reflects
the fact that, implicitly, meta-models declare all possible antiancestors (i.e., those not conflicting
with the ancs relation, so that the meta-model is a valid DRM according to Definition 4.1). This is
because, in the standard meta-model semantics, an object o cannot be typed by two classes, unless
one is subclass of the other. The antiancs relation is used in this case to make explicit this restriction.
As we will see in Section 5.4, general DRMs admit objects typed by several classes not related by
inheritance, provided the antiancs relation is not violated. In meta-models, references are closed, as
a link typed by a certain reference can only contain instances of the target classes of the reference.
The definition does not state any conditions on subsAllowed or mandatoryAllowed, as these express
expectations on other refining DRMs, and hence any value is allowed.

Example. In Figure 15, only DRM (b) is a meta-model. DRM (a) is not a meta-model because it
contains an anonymous class, some classes have no defined abstractness, some references are open,
and some cardinalities are not concrete (i.e., min or max have the value AnyCardinality). DRM
(c) is not a meta-model because several antiancs relations are missing. DRM (d) is not a meta-model
either because it contains open references.

5.4. Semantics of refinement
Similarly to the instantiation relationship of models with respect to meta-models (type :M →MM ),
we can type models with respect to DRMs (type∗ : M → DRM ). This way, a transformation q
defined over a DRM can be applied to any model typed by the DRM (see left of Figure 5). This
typing is in general non-constructive due to the variability that DRMs entail. Moreover, whereas the
typing of models by meta-models is normally total, their typing with respect to DRMs is partial, as
DRMs have open-world semantics. This is so as models are allowed to contain objects that are not
typed by any DRM class, and objects can assign a value to features not declared by the object’s class.
Some typing rules for DRMs are also less strict than those for meta-models. For instance, in DRMs,
the typing of objects is nominal for named classes but structural for anonymous ones, the checking
of cardinalities is not performed for features that admit any cardinality, the validity of reference and
attribute values is not checked unless the DRM specifies their type (recall that the DRM can omit the
type of features if it is unimportant for the associated transformation), and objects may be typed by
an abstract class. The latter is needed as an abstract class in a DRM may abstract away a hierarchy of
classes via mS .

Example. Figure 19 shows a model M typed by a meta-model MM (encoded as a DRM), and its
retyping type∗ with respect to a DRM RM of which MM is a refinement. Object m is retyped by
the named class MethodDefinition and provides a value to its attribute name. The type of such attribute
is String in the type to MM , but becomes AnyDT in the typing to RM . Object c is retyped by both
anonymous classes, AC1 and AC2, because ClassDeclaration is mapped from both classes. Object c
provides a value to both attributes name using a single slot which is typed by both name attributes.
Object p gets no type from RM because class Package is not mapped from any class in RM .

Next, we capture this intuition formally. First, we define a simple notion of model.

Definition 5.8 (Model). A model is a tuple M = 〈O,F, L, slots, target〉 made of:
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Fig. 19: Retyping a model with respect to a DRM.

— A set O of objects.
— Sets F and L of fields and links. We use S = F ∪ L to denote the set of slots.
— An injective relation slots ⊆ O × S assigning slots to objects.
— A function target : L→ O assigning target objects to links.

For simplicity, the previous definition abstracts away field values, as they are not essential for our
purposes. Given a model M , we write MO to refer to its set of objects (and similar for sets F , L,
and S). We use the auxiliary function owner : S → O to return the object owning a given slot. As
before, we sometimes use an “object-oriented” notation for functions and relations (e.g., o.owner
instead of owner(o)).

Next, we define the typing of a model by a DRM.

Definition 5.9 (Model typing). Given a model M and a DRM RM , a model typing type : M →
RM is a mapping type = 〈typeobjs, typeslots〉 made of two relations:

— typeobjs ⊆MO ×RMC mapping objects to classes
— typeslots ⊆MS ×RMF mapping slots to features

This definition permits objects with zero, one or multiple typings. The latter is needed when an
object is typed by two or more classes, each describing a different object facet. For example, object
c in Figure 19 receives two types from RM because ClassDeclaration in MM is mapped from two
classes in RM ( AC1 and AC2). Similarly, slots may receive no typing, one, or many. In the figure,
slot c.name is typed both by the name attribute of the two anonymous classes in RM .

Next, we provide the well-formedness conditions for model typings.

Definition 5.10 (Well-formed model typing). A typing type : M → RM is well-formed iff:

(1) Objects are not typed by two classes such that one class is antiancestor of any ancestor of the
other:

∀o ∈MO, ∀c1, c2 ∈ RMC • {c1, c2} ⊆ typeobjs(o) =⇒
@c′1 ∈ c1.ancs∗ • c′1 ∈ c2.extantiancs

with extantiancs(c : Class) ,{c′ : Class | ∃d ∈ c.ancs∗ • c′ ∈ d.antiancs+}

(2) Slots are typed by features owned or inherited by some of the object types:
∀s ∈MS , ∀f ∈ typeslots(s) • ∃c ∈ typeobjs(s.owner) • f ∈ c.feats∗
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(3) The type of every slot is not contradictory with that of the feature:

∀s ∈MS , ∀f ∈ typeslots(s) • s ∈MF =⇒ f.types = ∅ ∨ ∃a ∈ f.types • a ∈ RMA ∧
s ∈ML =⇒ f.types = ∅ ∨ ∃r ∈ f.types • r ∈ RMR

(4) Slots obey the minimum cardinality of their types:

∀o ∈MO, ∀c ∈typeobjs(o), ∀f ∈ c.feats∗ •
f.min ∈ Number ∧ f.min.allowLess = false =⇒

|{s ∈ slots(o) | f ∈ typeslots(o)}| ≥ f.min.value

(5) Slots obey the maximum cardinality of their types:

∀o ∈MO, ∀c ∈typeobjs(o), ∀f ∈ c.feats∗ •
f.max ∈ Number ∧ f.max.allowMore = false =⇒

|{s ∈ slots(o) | f ∈ typeslots(o)}| ≤ f.max.value

(6) Every link target is coherent with its type:

∀f ∈ RMF , ∀l ∈ML • f ∈ typeslots(l) =⇒
∀r ∈ f.types • r.open = false =⇒

∀c′ ∈ typeobjs(l.target) • c′.ancs∗ ∩ r.targets 6= ∅

A typing is called write well-formed if in addition it satisfies the following condition:

(7) Objects do not have an abstract typing:

∀o ∈MO, ∀c ∈ RMC • c ∈ typeobjs(o) =⇒ c.isAbstract 6= true

Next, we show how a model typed by a DRM RM ′ can be retyped with respect to another DRM
RM that is refined byRM ′. The scheme to the left of Figure 5 showed the usefulness of this retyping
in our context: a model is typed by a meta-model over which a transformation q is defined, and then
it gets retyped by the DRM extracted from the transformation.

Definition 5.11 (Retyping by refinement). Given a DRM refinement m : RM → RM ′ and a
well-formed model typing type : M → RM ′, we can retype M w.r.t. RM by applying a function
back to type, yielding back(type) = type∗ : M → RM , where type∗ = 〈type∗objs, type∗slots〉 is
calculated as follows:

type∗objs = {(o, c) ∈ objBck(type,m) | (mC(c) is defined =⇒
∀ d ∈ RMC • (o, d) ∈ objBck(type,m) ∧
c ∈ d.ancs+ =⇒ mS(d) is defined) ∧

(mS(c) is defined =⇒
(@d ∈ RMC • (o, d) ∈ objBck(type,m) ∧
d ∈ c.ancs+ ∧mC(d) is defined) ∧

(@d ∈ RMC • (o, d) ∈ objBck(type,m) ∧
c ∈ d.ancs+ ∧mS(d) is defined))}
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type∗slots = {(s, f) | s ∈MS ∧ f ∈ RMF ∧mF (f) is defined ∧
mF (f) ∈ typeslots(s) ∧ ∃d ∈ type∗objs(s.owner) ∧ f.owner ∈ d.ancs∗} ∪

{(s, f) | s ∈MS ∧ f ∈ RMF ∧mF (f) not defined ∧
∃da ∈ type∗objs(s.owner) • f.owner ∈ da.ancs∗∧
∃t ∈ typeobjs(s.owner) • mS(f.owner) ∈ t.ancs∗∧
∃f ′ ∈ t.feats∗ • (f ′ ∈ typeslots(s) ∧ feature refinement(f, f ′) ∧
feature type refinement(f, f ′) ∧ feature type commut(f, f ′)) ∧
(f.max ∈ Number ∧ f.max.allowMore = false) =⇒
|{s ∈ o.slots | type∗slots(s) = f}| < f.max.value}

with:

objBck(type,m) , m−1C ◦ typeobjs ∪
{(o, c) | o ∈MO ∧ c ∈ RMC ∧ o /∈ dom(m−1C ◦ typeobjs) ∧
∃d′ ∈ typeobjs(o) • mCS(c) ∈ d′.ancs∗}

The retyping of objects uses the auxiliary function objBck. This function obtains the classes
in RMC by inverting the mC map, and for those objects that remain untyped, it adds the classes
mapped to an ancestor of any of the object’s types. Then, to build type∗objs for a given object o,
from all candidate classes in objBck, we take either a class c mapped via mC for which all its
subclasses (compatible with o) are mapped via mS , or else we take a class c mapped via mS having
no compatible ancestor mapped via mC and no compatible subclass mapped via mS . This means
that mC has preference over mS to build type∗objs, and then, we take the most specific mC or mS .

For slots, we consider two cases. The first one is for slots typed by features of classes mapped
through mC ; in such cases, mF should be defined, and the mapping traverses it back. The second
one is for slots typed by features of classes mapped through mS ; in such cases, there is no ex-
plicit mapping of features, so we reconstruct it using the predicates required by subs refinement
(feature refinement, feature type refinement, feature type commut) and ensuring proper
maximum cardinality.
Example. Figure 20 illustrates how a model M typed by a DRM RM ′ is retyped to a more abstract
DRM RM . The figure depicts the refinement m : RM → RM ′ using dashed arrows, and the typing
type : M → RM ′ as a set of tuples, the first two belonging to typeobjs and the rest to typeslots.
The objects in M also show the type received by the typing type. The typing type∗ : M → RM
is calculated by applying the function back of Definition 5.11. For slots, it amounts to “following”
typeslots to RM ′, and then the arrows from RMF to RM ′ backwards. In addition, both objects get
retyped by the anonymous class (identified by “a”). This is so as the refinement maps both classes in
RM to ClassDeclaration in RM ′, and then, the retyping assigns the most specific one (which is the
anonymous class) as the type of the objects.

Retyping through arbitrary refinements does not necessarily yield a well-formed typing. Instead,
as the following theorem states, we require the refinement to be strong, or the target DRM to be a
meta-model. This result is exactly the one we need as, in practice, we will start with a model typed by
a meta-model, and then extract a DRM of which the meta-model is a refinement. In order to retype
the model using more abstract DRMs, strong refinements are required.

THEOREM 5.12 (RETYPING IS WELL-FORMED). Given a DRM refinement m : RM → RM ′

and a write well-formed model typing type : M → RM ′, back(type) : M → RM is well-formed if:

(a)RM ′ is a meta-model, or
(b) srefinement(m) holds

PROOF. In Appendix A.15.
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Fig. 20: Retyping a typed model to a more abstract DRM.

6. TRANSFORMATION TYPING REQUIREMENTS MODELS
A DRM describes the possible choices for a meta-model (or more generally another DRM) to satisfy
the source/target typing requirements of a transformation. However, a choice for an open element
of the source (resp. target) DRM may forbid some options of the target (resp. source) DRM in case
such options break the syntactic correctness of the transformation. For instance, in the transformation
shown in Figure 1, the binding rows← s.methods constrains the possible types of the rows and methods
fields to those that yield a non-faulty execution.

Hence, we gather the dependencies between the source and target DRMs in a compatibility model
which makes explicit how the choices for one DRM restrict the choices in the other DRM. We
represent this compatibility model as a feature model where the different choices are depicted as
nodes and the compatibility requirements are dependencies between leaf nodes so that the occurrence
of a leaf node forces the presence of the dependent nodes.

For this purpose, we first provide the definition of a feature model.

Definition 6.1 (Feature model). A feature model FM = (F, φ) consists of a set of features
F = {f1, ..., fn} and a propositional formula φ that defines relations between them.

Example. The upper part of Figure 21 shows an excerpt of the compatibility model for the run-
ning example using the classical feature diagram notation [Kang et al. 1990], and the bottom
includes the propositional formula φ implied by the model. The compatibility model focuses on
the admissible types for attributes (i.e., data types) and references (i.e., target classes). Feature
ClassDeclaration.methods can be either an attribute or a reference, as it is only used in line 12 of the
transformation in Figure 1 as part of a binding. If it is an attribute, then it can have any data type
(the figure only shows Integer and Real for simplicity). However, the particular selection restricts the
choices for feature Table.rows in the target DRM to keep the transformation syntactically correct.
Similarly, if methods is a reference with type MethodDefinition, then the type of Table.rows must be Row
because, otherwise, the binding will assign an incorrect target value. Such dependencies are visually
depicted as compatibility rules in the feature diagram, and formally expressed as terms in the formula
φ. As the compatibility rules illustrate, dependencies also work from target to source.

A feature model permits selecting configurations of features. Each configuration is a subset of
features that makes the formula φ true. Moreover, configurations can be partial, that is, not all
independent features of the model may have been selected.

Definition 6.2 (Feature configuration). A valid feature configuration ρ of a feature model FM
is a subset of its features that satisfies φ, i.e., φ evaluates to true when each variable f ∈ φ
is substituted by true when f ∈ ρ, and by false otherwise. We use P = {ρi}i∈I to denote
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Fig. 21: Excerpt of the compatibility model for the running example.

the set of all valid configurations. A feature configuration ρ is called a partial configuration if
ρ 6∈ P ∧ ∃ ρi ∈ P • ρ ⊆ ρi.
Example. The excerpt of the feature model in Figure 21 admits the following five configurations (we
only show leaf features, i.e., with no children): P = {〈 Integer-1, Integer-2〉, 〈 Integer-1, Real-2〉, 〈 Real-1,
Real-2〉, 〈 MethodDefinition, Row〉, 〈 ClassDeclaration, Table〉}. These configurations represent the type
choices for ClassDeclaration.methods and Table.rows that yield a well-typed transformation.

We have defined the meta-model shown in Figure 22 by following the previous definitions of
feature model and feature configuration. It allows expressing the kind of feature models our approach
needs, which produces compatibility rules of the form F 1 =⇒ F 2 ∨ ...∨Fn (see Figure 21). Class
CompatibilityRule in the meta-model permits declaring this kind of dependencies among source and
target features, like “ MethodDefinition requires Row” (given by the formula MethodDefinition =⇒ Row) ,
which specifies that in case MethodDefinition is selected as target for feature ClassDeclaration.methods in
the source DRM, then Row must be selected as target for Table.rows in the target DRM.
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Fig. 22: Compatibility meta-model.

Each valid configuration identifies a consistent set of choices among the open options in the
source and target DRMs of a transformation. To ensure the transformation remains syntactically
correct, each choice can be implemented as a refinement operation, like those proposed in Section
5.2.1. This relation between choices and corresponding refinements is captured by the notion of
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typing requirements model (TRM). This is made of a feature model, source and target DRMs, and a
specification of the refinement operation to be executed on the source or target DRM when a certain
feature is selected.

Definition 6.3 (Typing requirements model). A typing requirements model is a tuple TRM =
〈FM,RMs, RMt, µs, µt〉 made of:

— A feature model FM = (F, φ),
— Two DRMs RMs and RMt called source and target,
— Two functions µs : F → OP and µt : F → OP from features of FM to strong refinement

operations over RMs and RMt respectively. Each strong refinement operation in µs (resp. µt)
must be independent of each other.

A TRM assigns a refinement operation to each feature in the compatibility model. If selecting a
feature should not produce any effect on a DRM, the identity refinement operation (which does noth-
ing) can be assigned to that feature. This approach is conceptually similar to delta modelling [Clarke
et al. 2015], a transformative approach to product lines. In our setting, the transformations that the
product line applies to our products (the DRMs) are strong refinements.

Our notion of TRM can be easily generalized to capture requirements of transformations with
multiple input and output models by enabling a set of DRMs (instead of two) and a set of functions
µ (instead of two).
Example. The TRM for the running example contains a feature model of which Figure 21 is an
excerpt, and functions µs and µt assign the following refinement operations to its features:
— Integer-1, Integer-2: “refining type of attribute to integer” ◦ “assigning attribute type to open feature”
— Real-1, Real-2: “refining type of attribute to real” ◦ “assigning attribute type to open feature”
— MethodDefinition, ClassDeclaration, Table, Row: “assigning reference type to open feature”
— rest of features: “identity refinement”

For illustration, we have associated the composition of two refinement operations (numbers 5 and
6 in our catalogue, see Figure 18) to features Integer-1, Integer-2, Real-1 and Real-2. This is allowed
as, by Theorem 5.6, the composition of two strong refinements is a (strong) refinement. Regarding
non-leaf features, they typically (but not necessarily) imply the identity refinement, not modifying
the DRMs.

Given a TRM and a feature configuration, we apply the refinement operations associated with the
selected features in order to synchronously refine both DRMs in the TRM in a consistent way. This is
called a configuration-based TRM refinement. The selected feature configuration can be partial (i.e.,
leaving open choices). The DRMs in a TRM can also be refined independently from each other, but
in that case, the performed refinements cannot interfere with the choices captured in the compatibility
model. This is called a free TRM refinement. In both cases, the resulting DRMs have reduced open
choices, hence contributing to the transformation querying scenario presented in Section 3.2, which
requires the ability to refine TRMs (see Figure 4).

Definition 6.4 (TRM refinement). Given a TRM = 〈FM = (F, φ), RMs, RMt, µs, µt〉, a

TRM refinement TRM ′ through a refinement step TRM
ref
=⇒ TRM ′, where ref = 〈refs : RMs →

RM ′s, reft : RMt → RM ′t〉 is a tuple of strong DRM refinements, is built in one of the following
two ways:

(1) free TRM refinement: TRM ′ = 〈FM,RM ′s, RM
′
t , µs, µt〉, where refs : RMs → RM ′s and

reft : RMt → RM ′t are two DRM refinements obtained by applying to RMs and RMt strong
refinement operations that are not in conflict with those in µs and µt.

(2) configuration-based TRM refinement: given a (possibly partial) configuration ρ ∈ P , we build
TRM ′ = 〈FM ′ = (F, φ ∧

∧
f∈ρ f), RM

′
s, RM

′
t , µ
′
s, µ
′
t〉, where RM ′s is obtained by applying

the operations associated to each feature f0, ..., fn ∈ ρ in sequence: RMs
µs(f0)
=⇒ ...

µs(fn)
=⇒ RM ′s,
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and refs is built by concatenating the DRM strong refinements produced by these operations.
RM ′t and reft are obtained analogously. µ′s(f) is the identity refinement for f ∈ ρ, and µs(f)
otherwise. µ′t(f) is defined analogously.

We write TRM
ref∗

=⇒ TRM ′ to denote zero or more refinement steps.

While configuration-based TRM refinements perform the coupled evolution of DRMs in order to
deal with dependent open choices, free TRM refinements permit refining each DRM independently
from the other. A configuration-based refinement not only modifies the DRMs, but in addition, it
modifies the formula of the feature model by conjoining the name of the features in the configuration.
This forces the selection of those features in any valid configuration of the refined TRM. Moreover,
those features get assigned the identity refinement in place of the originally associated operations, as
they have just been applied.

Note that we model the selection of features by a (partial) configuration ρ as the conjunction of
each feature in the set with the formula (φ ∧

∧
f∈ρ f ). This is enough for the type of feature models

we produce (a tree of alternative choices, where exactly one choice is needed per open type). For
more general feature models, we should also conjoin the negation of the features not selected by the
configuration. For clarity of presentation, we have opted for the simpler formulation.

Example. Figure 23 shows two TRM refinements for excerpts of the source and target DRMs of the
running example (Figure 7 contains the complete DRMs). First, the user has selected the configuration
〈 MethodDefinition, Row〉 in the feature model, and hence, its associated refinement operations are
triggered. These assign a reference type to features methods and rows in the source and target DRMs,
the former with MethodDefinition as target, and the latter targeting class Row. Since this is a configuration-
based refinement, the formula of the feature model is conjoined MethodDefinition ∧Row, and
its features MethodDefinition and Row get assigned the identity refinement (represented as having no
associated operation). The figure shows a second refinement, which is free, where the user has refined
the source DRM by making its classes concrete and assigning a concrete type to attribute name.
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Fig. 23: Examples of configuration-based and free TRM refinements.

We say that a TRM is ground if no configuration-based refinement step is possible because all
features in its feature model have been selected. Since Definition 6.4 models feature selection by
conjoining the feature to the formula, a TRM is ground if @f ∈ F • SAT (φ ∧ f) ∧ SAT (φ ∧ ¬f),
with SAT a predicate that holds if the formula is satisfiable. This means that there is no feature left
for which we can either select it or not, and hence the selected configuration is total.

A TRM defines a language, which consists of all TRMs that can be obtained from it by zero or
more TRM refinement steps.
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Definition 6.5 (TRM language). Given a transformation requirements model TRM , the lan-

guage generated by TRM is given by L(TRM) = {TRM ′ | TRM ref
=⇒

∗
TRM ′}.

The meta-model querying scenario presented in Section 3.1 and Figure 3 requires the ability to
determine whether two meta-models (or more generally two DRMs) conform to the TRM extracted
from a transformation. For this purpose, next we define the notion of conformance between TRMs,
which states that a TRM conforms to another if the former TRM belongs to the language of the latter.

Definition 6.6 (TRM conformance). Given TRMs TRM1 and TRM2, we say that TRM1 con-
forms to TRM2 iif TRM1 ∈ L(TRM2).

Assessing if an arbitrary DRM pair 〈DRMs, DRMt〉 conforms to a given TRM TRM (as the sce-
nario in Section 3.1 demands) amounts to checking whether there is a ground TRM ′ ∈ L(TRM) and
a strong refinement pair 〈refs : RM ′s → DRMs, reft : RM

′
t → DRMt〉. For technical reasons, we

cannot check conformity by building a TRM TRM ′′ = 〈FM = (∅, true), DRMs, DRMt, {}, {}〉
out of the DRM pair, and then assessing TRM ′′ ∈ L(TRM), because in general the feature models
of TRM and TRM ′′ may not be related as required by Definition 6.4.

7. EXTRACTING TYPING REQUIREMENTS MODELS FROM ATL TRANSFORMATIONS
So far, we have presented our method to define and use TRMs independently from any transformation
language. This section explains the procedure for extracting TRMs out of existing ATL transfor-
mations, hence demonstrating the applicability of the method in practice (Section 7.1). Then, in
Section 7.2, we discuss how to generalize the extraction to other transformation languages.

7.1. Extracting TRMs from ATL
To describe the extraction of TRMs from ATL transformations, we rely on the Attribute Grammar
formalism, which is an elegant and powerful mechanism to describe computations over syntax
trees [Slonneger and Kurtz 1995]. Attribute grammars extend context-free grammars by associating
attributes with the symbols of the underlying context-free grammar. The values of such attributes are
computed by rules, which are executed while traversing the syntax tree as needed. More formally, let
G = (N,T, P, S) be a context-free grammar for a language LG where N is the set of non-terminals,
T is the set of terminals, P is the set of productions, and S ∈ N is the start symbol. An attribute
grammar AG is a triple (G,A,AR) where G is a context-free grammar, A associates each grammar
symbol X ∈ N ∪ T with a set of attributes, and AR associates each production R ∈ P with a set
of attribute computation rules. While traversing syntax trees, values can pass from a node to its
parent by means of synthesized attributes (SAs), or from a node to its children by means of inherited
attributes (IAs). Attribute values can also be assigned, modified, and checked at any node in the
syntax tree.

Viewing an ATL transformation as a parse tree, AG can pass values from a node to its parent using
a SA, or from the current node to a child using an IA. In addition to passing attribute values up or
down the parse tree, they can be assigned, updated, and checked at any node in the derivation tree.

Table I shows a fragment of the ATL attribute grammar (AGATL) we have developed to create
TRMs while traversing the syntax tree of an ATL transformation. It is important to remark that
we show a simplification of the real grammar to give a flavour of how the proposed extraction
mechanism works, without compromising the readability of the explanation. Anyhow, the developed
tool available online6 considers all the productions defined for the actual AGATL, which implements
all the concepts presented in Sections 4 and 6.

For each production rule in Table I, we add attributes whose value is set using values of the parent
or children nodes. The table shows some productions and their associated attribute computation
rules. The computations infer the value of the attribute type for the parsed elements and update the

6http://github.com/MDEGroup/totem
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# Productions Computation Rules
p1 〈matchedRule〉::=

rule ID { 〈inPattern〉 〈outPattern〉* }
p2 〈inPattern〉::= from 〈inPatternElement〉*
p3 〈InPatternElement〉::=

ID:〈oclModelElement〉
type(〈InPatternElement〉)←

addClassToSourceDRM(type(〈oclModelElement〉))
p4 〈outPattern〉::= to 〈outPatternElement〉
p5 〈OutPatternElement〉::=

ID:〈oclModelElement〉 (〈binding〉*)
type(〈OutPatternElement〉)←

addClassToTargetDRM(type(〈oclModelElement〉))
p6 〈binding〉::= ID ’<-’ 〈oclExpression〉; leftFeature← createFeature(name(ID), 〈binding〉.parent)

rightFeature← type(〈oclExpression〉)
type(〈binding〉)← addClassToTargetDRM(leftFeature.parent)
addCompatibilityAlternatives(leftFeature, rightFeature)

p7 〈oclModelElement〉::= ID1!ID2 type(〈oclModelElement〉)← createClass(name(ID2))
p8 〈oclExpression〉::=

〈navigationOrAttributeCallExp〉 |
〈oclModelElement〉 | ...

p9 〈navigationOrAttributeCallExp〉::=
〈oclExpression〉.ID;

type(〈oclExpression〉)←
if (isNavigationOrAttributeCallExp(〈oclExpression〉) then

createReference(type(〈oclExpression〉), “AnonymousClass”)
type(〈navigationOrAttributeCallExp〉)←

if (isOperation(name(ID))) then
createFeatureByOperation(name(ID), getReferenceClass(〈oclExpression〉))

else
createFeature(name(ID), getReferenceClass(〈oclExpression〉))

Table I: Fragment of the developed ATL attribute grammar (AGATL).

TRM (DRMs and compatibility model) accordingly. The attribute type behaves both as inherited
and synthesized, thus it is initialized during a top-down phase, and updated during a subsequent
bottom-up phase. When the parsing is complete, a pair of source and target DRMs together with a
compatibility model linking them is produced.

For explanatory purposes, Figure 24 shows a sketch of a graph transformation specification [Ehrig
et al. 2006] describing the productions in Table I. Rules show objects of the parse tree of the ATL
transformation with coloured background, and elements of the TRM in white. Elements created
by the rules are tagged as new, and modified attributes are tagged as modified. The type attribute is
represented as a link between the parse tree objects and the TRM elements. Overall, rule p7 creates
classes, rules p3 and p5 insert such classes in either the source or the target DRM, p6 creates features
given a binding, and p9 creates features given a NavigationOrAttributeCallExpression.

Figure 25 shows a fragment of the AGATL parse tree corresponding to the rule Table of the
transformation in Figure 1. Each node of the tree is decorated with the corresponding attribute
computation rules according to the grammar in Table I. The Figure also shows the effects of
execution of the computations ( createClass, addClassToSourceDRM, addClassToTargetDRM) on the source
(RMs) and target (RMt) DRMs being built.

The computation rules make use of the following auxiliary functions, which create and update
elements (conforming to the DRM and compatibility meta-models shown in Figures 6 and 22) in the
TRM while traversing the syntax tree:

. createClass(name: String): it creates and returns a new class named name. The function is used in
the production p7 to manage the non-terminal 〈oclModelElement〉 like JavaSource!ClassDeclaration and
Table!Table of the sample ATL transformation. The DRM where the created class should be included
is decided later in the process while traversing the tree bottom-up.

. addClassToSourceDRM(c: Class) and addClassToTargetDRM(c: Class): they add a new class
of type c to the source and target DRM, respectively. The type of the class is inferred from the
non-terminal 〈oclModelElement〉, and is added to the source or target DRM depending on whether
the non-terminal appears in an 〈inPattern〉 or an 〈outPattern〉. Accordingly, the production p3 uses
addClassToSourceDRM to manage the non-terminal 〈InPatternElement〉, like JavaSource!ClassDeclaration,
and p5 uses addClassToTargetDRM to manage 〈OutPatternElement〉, like Table!Table. In both cases, the
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Fig. 24: Sketch of graph transformation rules representing the behaviour of the attribute grammar in Table I.
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Fig. 25: A sample AGATL parse tree.

classes previously created by the function createClass (e.g., ClassDeclaration and Table) are added to
the corresponding DRM. Attributes mandatoryAllowed and subsAllowed are true for classes added to
the source DRM, and false for classes in the target DRM. The attribute isAbstract is Any for classes in
the source DRM, and false otherwise. The antiancs relation is set between any two named classes of
the source DRM created by the production p2 from input patterns with only one 〈InPatternElement〉.

. isNavigationOrAttributeCallExp(o : OclExpression): since the non-terminal element 〈oclExpression〉
can be matched in several cases (see production p8), this function checks if the input OCL expres-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:36 J. de Lara et al.

sion is a 〈navigationOrAttributeCallExp〉. Examples of 〈navigationOrAttributeCallExp〉 are i.method.name and
s.methods, which use the infix “.” operator to call properties and to navigate across association ends.

. isOperation(c: String): it checks if the input string is the name of an OCL operation (e.g., size,
sum, and exists) defined over OCL data types. The function is used in the production p9 to check if
the last part of the matched 〈navigationOrAttributeCallExp〉 is an operation. If it is not (e.g., name in the
expression i.method.name) then a new feature is added in the class that is being created because of
the matched 〈oclExpression〉 element (e.g., i.method). If isOperation returns true, then a new feature is
created by means of the createFeatureByOperation function (see below).

. createFeature(name: String, c: Class): it creates a new feature in the input class c. It is
used in the productions p6 and p9. The former production manages the non-terminal 〈binding〉,
like rows ← s.methods at line 12 in Figure 1. The latter production handles the non-terminal
〈NavigationOrAttributeCallExp〉, like i.method.name at line 7. In the case at line 12, a new feature named
rows is added in the target DRM. Its possible types are inferred from the type of the OCL expression
s.methods, which is handled by operation addCompatibilityAlternatives. In the case at line 7, p9
matches i.method with 〈oclExpression〉 and name with ID. Since name is not an operator, a new feature
named name is created in the class referred by i.method. Concerning the cardinality of the created
feature, when a Number element is created, its attribute allowMore is true if it is a min cardinality of the
source DRM or a max cardinality of the target DRM, while its attribute allowLess is true if it is a max
cardinality of the source DRM or a min cardinality of the target DRM.

. createFeatureByOperation(opName: String, c: Class): it creates a new feature and its cardinality is
specified according to the operation name given as input. For instance, if the operation is size, then it
means that the matched expression refers to a collection and, consequently, the max cardinality of the
created feature is Many.

. createReference(f: Feature, target: Class): given a previously created feature as input, it spe-
cializes it as a Reference with target target. It is used in p9 in case the matched 〈oclExpression〉 is a
〈navigationOrAttributeCallExp〉. In such a case, the feature is specialized to a reference typed with a new
AnonymousClass.

. addCompatibilityAlternatives(left: Feature, right: Feature): it is used in the production p6 for
building the compatibility model, assigning refinements to compatible types to left and right features
of a binding. It does a case analysis between the left and right features, checking compatibility
issues like cardinality consistency or types of resolving rules. Then, it creates the corresponding
choices in the compatibility model. The compatibility model conforms to the meta-model shown
in Figure 22, which allows defining several alternative configurations for the source and target
DRMs. For instance, as the compatibility model in Figure 21 shows, the alternatives for feature
ClassDeclaration.methods in the source DRM are either being an attribute or being a reference with
MethodDefinition or ClassDeclaration as target.

7.2. Extracting TRMs from other transformation languages
The procedure just described targets ATL, one of the most used transformation languages nowa-
days. However, other transformation languages exist, like the Epsilon Transformation Language
(ETL) [Kolovos et al. 2008] or languages of the QVT family [Object Management Group 2016].

ETL is a language similar to ATL. It is rule-based and supports imperative constructs. ETL rules
are similar to ATL rules, but their source pattern can only contain one element, and several rules
can be applied to the same object. There is no implicit binding resolution, but it must be explicitly
invoked using the equivalent() operation or the special assignment ::=. Any model involved in an ETL
transformation can be read or written. These features imply the following considerations in the
extraction of the TRM:
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— Imperative creation of objects. ETL can include imperative constructs to create objects in the
source model. Hence, the corresponding class in the DRM need to set the flags mandatoryAllowed,
subsAllowed and isAbstract to false.

— Antiancs relation. ETL permits applying more than one rule on the same object. This means that
no antiancs relations have to be created.

— Reference compatibility. Bindings can make use of the operator ::= or the operation equivalent() to
compute the compatible target classes for the references involved in the binding. This explicit
binding resolution is essentially the same as for ATL, but taking into account that source objects
can be transformed by several rules.

— Read and written references. A reference can be both read and written by an ETL program. While
our DRMs support either open or closed references, we would need both at the same time to
consider this case. Our approach does not support this currently, but for refinement, it would just
imply preservation of the target classes (i.e., neither adding nor deleting target classes would be
refinements).

— Cardinality of read and written features. A feature can be both read and written by an ETL
program. If the feature has a Number cardinality, then neither allowMore nor allowLess can be true.

Overall, on the one hand, the possibility of having both read and written features restricts the
possibilities to reuse (i.e., of finding refinements) because the cardinalities and the reference semantics
are more restricted. On the other, the fact that no antiancs relations are created enhances the reuse
possibilities using our approach.

Other languages, like QVT relational, can provide more detailed typing information. For example,
relations in QVT can declare typed variables, which then can be assigned to object features; and there
is no binding resolution neither implicit nor explicit, but explicit parameter passing between relations.
Both characteristics facilitate type inference. We leave further investigation about the generalization
of our approach to other languages to future work.

8. TOOL SUPPORT
The presented approach is fully supported by an Eclipse-based tool called TOTEM. The tool is freely
available at http://github.com/MDEGroup/totem, including the source code, a screencast showing
the tool at work, and the results of the evaluation presented in the next section. In the following, we
provide details of the supported functionality in Section 8.1, and describe the tool architecture in
Section 8.2.

8.1. Tool functionality
TOTEM offers support for the following functionalities:

— Extraction of TRMs from ATL transformations. Developers having an ATL transformation can use
TOTEM to automatically extract its TRM as explained in Section 7. For this purpose, they have to
select the ATL transformation of interest and trigger the action “TOTEM→ Extract TRM”. In the
example shown in Figure 26, the developer has selected the transformation JavaSource2Table.atl
(labels 1 and 2). Subsequently, the source and target DRMs (panels with labels 3 and 4) and the
compatibility model linking them (panel with label 5) are generated. Technology-wise, DRMs are
EMF models conformant to the meta-model in Figure 6, and can be visualized either using a tree
editor (upper-right in Figure 26) or a user-friendly graphical concrete syntax similar to the one
used throughout the paper (Figure 27).

— Conformance checking of a meta-model to a DRM. TOTEM permits checking whether a given
meta-model refines a DRM. The DRM may have been extracted from a transformation as ex-
plained above, or it may have been specified manually. Checking refinement entails inspecting all
conditions presented in Section 5, and the outcome of the analysis is reported to the user.

— Graphical editing and free refinement of DRMs. TOTEM includes a graphical editor to visualize,
specify and modify DRMs (see Figure 27). The editor provides the catalogue of refinement
operations presented in Section 5.2.1, via contextual menus. This permits performing free strong
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2 3 4

5

1

Fig. 26: Extraction of a TRM from an input ATL transformation.

refinements either on the source or the target DRM of a TRM (cf. Definition 6.4). For this purpose,
the developer must select the element to be refined, and the editor filters the refinement operations
by showing only those that can be applied to the selected context. For instance, Figure 27 shows the
graphical representation of the source DRM extracted from the JavaSource2Table.atl transformation,
as well as a contextual menu with the refinements that can be applied on the selected anonymous
class u3.

Fig. 27: Visualization and refinement of the input DRM using TOTEM.

— Visualization of compatibility models as feature models, and configuration-based TRM refinement.
TOTEM supports the visualization of compatibility models in terms of feature models, as panel 5 of
Figure 26 illustrates. In addition, users can select feature configurations in the compatibility model,
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and consequently, perform the associated configuration-based TRM refinements as described in
Definition 6.4. In this way, both the source and target DRMs of a TRM can be synchronously
refined in a consistent way.

8.2. Tool architecture
TOTEM is an Eclipse plugin, and Figure 28 shows its component-based, layered architecture. The
existing components that TOTEM relies on are depicted in white, whereas those that we have developed
are depicted in grey. In particular, the graphical DRM editor enabling the visualization and editing
of DRMs is based on the Eclipse Sirius project [Sirius 2018]. The editor permits interacting with
the TRM extractor and conformance checker components, which have been implemented atop the
Eclipse Modeling Framework (EMF) [Steinberg et al. 2008]. The conformance checker also relies
on some languages of the Epsilon family (in particular, on the Epsilon Transformation Language
(ETL) [Kolovos et al. 2008] and the Epsilon Object Language (EOL) [Kolovos et al. 2006]) to
generate auxiliary meta-model-specific functions for checking the conformance of meta-models with
respect to DRMs. The compatibility model editor makes use of model transformations written in
ATL to generate FeatureIDE [Meinicke et al. 2017] feature models out of TRMs.

conformance 
checker 

compatibility  
model editor 

                         DRM editor      

New components 

Existing components 

TRM 
extractor 

Fig. 28: Layered architecture of TOTEM.

9. EVALUATION
In this section, we evaluate our approach with the aim of answering the research questions RQ1
(“Is the TRM extraction mechanism from ATL transformations correct and complete?”) and RQ2
(“To what extent does the variability encoded in the extracted TRMs enable transformation reuse?”)
introduced in Section 1.

To answer RQ1, a formal proof of correctness and completeness of the TRM extraction method
would be desirable; however, ATL is an unformalised language. Even though some efforts exist to
express the execution semantics of ATL by compilation into Maude [Troya and Vallecillo 2011],
formal typing rules for ATL, including OCL, are unavailable. Therefore, we opt for an empirical
evaluation based on seven transformations developed by third parties. This has the advantage
of validating the approach in practice, testing the specificities of real transformations and the
particularities of the EMF framework (e.g., opposite references, compositions, etc.). Other aspects of
the proposal, like the correctness of the refinement catalogue (Section 5.2.1), the composability of
strong refinements (Theorem 5.6), and the correctness of model retyping through refinement relations
(Theorem 5.12), are proved formally in the appendix.

In the following, we describe the common evaluation setup in Section 9.1, report on the evaluation
of the research questions in Sections 9.2 and 9.3, and discuss threats to validity in Section 9.4. The
materials used for the evaluation, including the used transformations, extracted TRMs, mutants and
raw data, are available at http://miso.es/trms/eval.html.

9.1. Evaluation setup
Our evaluations consider the following seven ATL transformations: JavaSource2Table (the original
version of the running example), PetriNet2PNML (a translation from Petri nets to the PNML document
format), KM32EMF (a conversion between OO formalisms), Ant2Maven (a mapping between tasks of
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different build systems), Class2Relational (a simple object-relational mapping), HSM2FSM (a flattening
of hierarchical state machines), and UML2Intalio (a transformation from UML Activity Diagrams to
Intalio BPMN).

The selection criterion was to choose transformations written by a third-party (except UML2Intalio),
with no typing errors (or very easily fixable ones) to avoid introducing a bias. The first five trans-
formations are publicly available in the ATL Zoo, HSM2FSM is used as a case study in [Cheng et al.
2018] to validate a verification method for model transformations, and UML2Intalio is used in [Sánchez
Cuadrado et al. 2018] to assess the validity and completeness of a catalogue of quick fixes for ATL.
These transformations cover 71% of the ATL constructs, measured by extracting the footprint of
the transformation definitions with respect to the underlying ATL meta-model. The main missing
features are action blocks (the imperative part of ATL), called rules, tuples and maps.

Table II summarizes the main features of the transformations used in the evaluation. We have used
the number of nodes in the abstract syntax tree as a measure of the complexity of bindings, filters,
and helpers. For example, an expression like self.classes→ isEmpty() counts as two nodes.

JavaSource2Table HSM2FSM PetriNet2PNML KM32EMF Ant2Maven Class2Relational UML2Intalio
Classifiers (src/tar) 6/4 6/6 9/13 15/20 48/59 6/5 248/20
Attributes (src/tar) 1/1 3/3 3/4 10/33 93/98 3/1 106/14
References (src/tar) 7/3 6/8 12/14 17/48 28/35 6/5 481/31
ATL matched rules 3 7 10 10 30 7 9
ATL lazy rules 2 0 0 0 0 1 0
ATL rule filters 1 5 2 2 2 5 5
Bindings 8 18 29 40 98 20 14
ATL context helpers 1 0 0 1 0 2 6
ATL global helpers 1 0 0 0 0 1 0
Lines of code 68 81 96 128 269 101 98
Avg binding complexity 6.38 1.78 29 2.28 2.04 4.95 2.64
Avg filter complexity 4.00 11.20 0 9.50 9.50 6.60 11.20
Avg helper complexity 17.50 0 0 24.00 0.00 5.00 8.50

Table II: Testbed transformations in the evaluation and their characteristics.

9.2. RQ1: Correctness and completeness of the ATL extraction mechanism
To answer RQ1, we consider the seven transformations abovementioned, together with their source
and target meta-models. First, we use TOTEM to extract the TRM of each transformation (i.e., source
and target DRMs and compatibility model). Then, we generate first-order mutants of the source and
target meta-models by systematically applying the meta-model modifications identified in [Cicchetti
et al. 2008] (cf. Table III). Our aim is to generate many slightly different variants of the original
meta-models, so that some break the transformation, while others do not. Finally, we assess whether
a meta-model mutant is a refinement of the extracted TRM when the transformation can use it safely,
and it is not a refinement otherwise. To determine if a meta-model mutant can be safely used with a
transformation, we use the ANATLYZER [Sánchez Cuadrado et al. 2017] ATL static type checker as an
oracle of the typing relation between the mutated meta-model and the transformation. If ANATLYZER

does not report any errors, then it means that the mutant does not break the transformation, and it
should be a refinement of the extracted TRM. Otherwise, the mutant breaks the transformation, and
it should not be a refinement of the TRM.

Altogether, for each meta-model mutant, we may obtain one of the following results: i) the mutant
refines the TRM and does not break the transformation (true positive, TP); ii) the mutant refines
the TRM but breaks the transformation (false positive, FP); iii) the mutant does not refine the TRM
and breaks the transformation (true negative, TN); or iv) the mutant does not refine the TRM but
does not break the transformation (false negative, FN). Then, we compute precision (an indicator of
correctness) as #TP

#TP+#FP , and recall (an indicator of completeness) as #TP
#TP+#FN .

Table IV summarizes the obtained results. There are no false negatives, and thus recall is 100%,
signifying that the extracted TRMs correctly exclude the meta-models that cannot be used with
the transformations (i.e., such meta-models are not refinements of the TRM). There are some false
positives though, meaning that some meta-models are refinements of the extracted TRM, but the
transformation may raise runtime errors if executed with them. Nevertheless, the overall precision is
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Kind Meta-model modification
Additive Add obligatory / non-obligatory metaclass

Add obligatory / non-obligatory metaproperty
Generalize metaproperty
Pull metaproperty
Extract abstract / non-abstract superclass

Subtractive Eliminate metaclass
Eliminate metaproperty
Push metaproperty
Flatten hierarchy
Restrict metaproperty

Updative Rename metaelement
Move metaproperty
Extract/inline metaclass

Table III: Meta-model modification operators used in the evaluation.

still high (97%). An example of false positive occurs in the expression i.method.name of the running
example (line 7). In the original meta-model, the attribute name is compulsory, but one meta-model
mutant relaxes its cardinality to 0..1. The extracted TRM does not put any cardinality restriction to this
attribute, however ANATLYZER signals this typing problem, and thus it is reported as a false positive.
We have observed that the reported false positives are due to limitations in the TRM extraction
process, though they are not a shortcoming of the general method itself. To solve these cases, we
plan to combine our TRM extraction mechanism with information from ANATLYZER’s static analysis.
However, this is only possible if the source and target meta-models are available. We will discuss in
more detail some limitations of the TRM extraction method in Section 9.2.1.

JavaSource2Table HSM2FSM PetriNet2PNML KM32EMF Ant2Maven Class2Relational UML2Intalio Total
Mutants 144 314 305 2,480 18,535 256 4,753 26,787
True positives 70 148 169 1,751 6,986 103 4,437 13,664
True negatives 66 154 131 690 11,254 139 270 12,704
False positives 8 12 5 39 295 14 46 419
False negatives 0 0 0 0 0 0 0 0
Precision 90% 93% 97% 98% 96% 88% 99% 97%
Recall 100% 100% 100% 100% 100% 100% 100% 100%
Reusable MMs 70 148 169 1,751 6,986 103 4,437 13,664
Non-reusable MMs 74 166 136 729 11,549 153 316 13,123
Incompatible 4 11 18 6 400 4 13 456

Table IV: Evaluation results.

To analyse whether the evaluation thoroughly tested all aspects of our refinement relation, we
have manually revised the extracted TRMs and some mutants. We found several interesting cases.
For instance, PetriNet2PNML exercised the subsAllowed flag (illustrated in Figure 14 for the running
example), since some features of an abstract class Arc were located in all subclasses. Meta-model
modifications like pull metaproperty, push metaproperty, inline metaclass and flatten hierarchy
generate mutants which require structural typing in the refinement. All these cases were correctly
handled by our refinement checking mechanism.

To analyse the effect of the mutations, the second and third last rows of Table IV show the number
of meta-models for which the transformation is reusable, or it is not. In this way, the row “reusable
MMs” is calculated as TP+FN, while “non-reusable MMs” is TN+FP. Notably, there is a high
number of meta-models – different from the ones used to develop the transformations – for which the
transformations are reusable (13,664) and our method identifies all of them. The transformations are
not reusable with more than 13,000 meta-models, and our method identifies 97% of these cases. Non-
reusability can be discovered either because there is no DRM refinement, or because the conditions
implied by the compatibility model fail. The last row of the table details how many meta-models
individually refine the DRMs but do not satisfy the compatibility model (456 in total). This shows the
usefulness of the compatibility model to increase the precision of the refinement relation by ruling
out configurations which would lead to ill-behaved transformations.
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9.2.1. Limitations of the TRM extraction algorithm. The evaluation shows that the extraction algo-
rithm is complete (no false negatives), in the sense that the extracted TRMs gather all the information
needed to guarantee that if a meta-model does not refine the TRM, then it will break the transfor-
mation. This is because the extraction algorithm over-approximates the actual meta-model used by
the transformation (i.e., the typing is as flexible as possible). However, this is at the cost of some
precision loss, as in a few cases, there may be meta-models which break a transformation even if
they are valid refinements of its TRM. In the evaluation, this happened in 3% of cases. Most of these
false positives could be solved by using information of the meta-models (if available) during the
TRM extraction process. We leave this improvement for future work and, in the following, discuss
the most relevant limitations found in the Class2Relational case study. Figure 29 shows excerpts of this
transformation and its source meta-model.

1module Class2Relational;
2create OUT : Relational from IN : Class;
3
4helper context Class!NamedElt def: nameOrEmpty : String =
5 if self.name.oclIsUndefined() then ’’
6 else self.name endif;
7
8helper context Class!Attribute def: multiValuedOrFalse : Boolean =
9 if self.multiValued.oclIsUndefined() then false

10 else self.multiValued endif;
11
12rule Class2Table {
13 from c : Class!Class ( not c.isAbstract )
14 to out : Relational!Table (
15 name <- c.name,
16 col <- Sequence {key}->union(
17 c.atts->select(e | not e.multiValuedOrFalse)),
18 ...
19 ), key : Relational!Column ( ... )
20}
21
22rule MultiValuedClassAttribute2Column {
23 from a : Class!Attribute (
24 a.type.oclIsKindOf(Class!Class) and a.multiValuedOrFalse )
25 to t : Relational!Table (
26 name <- a.owner.nameOrEmpty + ’_’ + a.name,
27 ...
28 )
29}

source  
meta-model 

(excerpt) 

NamedElt 

name: String 

Classifier 

1 
owner 

* 
Class 

atts 

Attribute 

multiValued: boolean 

Fig. 29: Excerpts of the Class2Relational transformation (left) and its source meta-model (right).

A first limitation is due to the fact that ATL can emulate meta-model attributes by transformation
helpers (e.g., nameOrEmpty in line 4, multiValuedOrFalse in line 8). Since ATL helpers are not added
to the DRMs, some problems may arise. As an example, Figure 30 shows an excerpt of the source
DRM of the transformation, and two meta-models MM1 and MM2 that refine the DRM but cannot
be used safely with the transformation. MM1 is similar to the source meta-model, but changing the
name of class NamedElt to BaseElt. MM1 refines the DRM because NamedElt in the DRM matches all
subclasses of BaseElt in MM1; however, using the transformation with MM1 yields an error because line
4 declares a helper over class NamedElt, which does not exist in MM1. Similarly, MM2, where the type
of Class.atts is NamedElt, is a refinement of the DRM; however, using the transformation with MM2
leads to an error in line 17 because the helper multiValuedOrFalse is invoked on NamedElt objects, but
the helper is defined over class Attribute. The extraction algorithm could avoid these problems being
more conservative. For example, it could detect these scenarios in order to set the flag subsAllowed of
NamedElt in the DRM to false. However, this would lead to a false negative illustrated in MM3, where
the attribute name has been moved from NamedElt to its subclasses. If NamedElt had subsAllowed set to
false, no class in MM3 would refine it (i.e., structural typing would not apply), and MM3 would not be

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



Typing requirements models A:43

considered a refinement of the DRM, which is incorrect. Hence, regarding helpers, our extraction
algorithm favours recall over precision.

source  
DRM 

(excerpt) 

NamedElt 

? name 

AC 
Class 

? name 
? atts [?..*] 

AC Attribute 
name: {String, Integer, Real} 
? multiValued 
? owner 

AC 

MM1 
(excerpt) 

BaseElt 

name: String 

Classifier 

1 
owner 

* 
Class 

atts 

Attribute 

multiValued: boolean 

MM3 
(excerpt) 

NamedElt 

name: String 

Classifier 

1 
owner 

* 

Class 
atts 

Attribute 

multiValued: boolean 
name: String 

MM2 
(excerpt) 

NamedElt 

name: String 

1 o
w

n
er

 * 

Class 

atts 

Attribute 

multiValued: boolean 

m1 m3 m2 

helper context Class!NamedElt a.atts->select(e|not e.multiValuedOrFalse) 

Fig. 30: Examples of false positives in the Class2Relational transformation.

As previously mentioned, a second limitation of the TRM extraction mechanism concerns the
precision of cardinalities. For example, the target DRM includes a class Table with a feature keys of
unknown cardinality. A meta-model containing Table.keys with cardinality 1..* would be a refinement
of this DRM, but would make rule MultiValuedDataTypeAttribute2Column incorrect as it creates a Table
with no key (mandatory in the meta-model).

In summary, the TRM extraction algorithm is complete according to our experiments (100%
recall), and has high precision (97% precision) up to some limitations regarding cardinalities and
ATL helpers. Improving precision, e.g., using meta-model information, is up to future work.

9.3. RQ2: Variability support in TRMs
A TRM gathers requirements that meta-models need to fulfil to be able to use them safely with a given
transformation. To reuse a transformation with as many meta-models as possible, its TRM needs
to represent the allowed meta-model variability. In this experiment, we look at the power of TRMs
to encode this variability. For this purpose, we analysed the TRMs of the seven transformations,
measuring the elements helping in expressing variability. For the DRMs, we measured the ratio of
anonymous vs. named classes, and the ratio of untyped features (which can become either attributes
or references) vs. typed fields (actual attributes or references). In the compatibility models, we
computed the size of the feature model (both total number of features and leaf features), and the
number of valid configurations. Table V summarizes the results.

Transformation
Source DRM Target DRM Compatibility model

Anonymous/
Total classes

Untyped fields/
Total fields

Anonymous/
Total classes

Untyped fields/
Total fields

Total
Features

Leaf
Features Configs

JavaSource2Table 5/8 [62.5%] 5/10 [50%] 0/4 [0%] 2/4 [50%] 174 99 > 1,402,192
HSM2FSM 0/6 [0%] 6/10 [60%] 0/4 [0%] 8/8 [100%] 307 192 > 325,647
PetriNet2PNML 12/16 [75%] 12/12 [100%] 0/8 [0%] 21/22 [95%] 637 410 > 953,959
KM32EMF 1/11 [9%] 31/32 [97%] 0/10 [0%] 32/34 [94%] 1,576 1,125 > 666,127
Ant2Maven 1/32 [3%] 79/80 [99%] 0/32 [0%] 83/85 [98%] 7,447 6,304 > 133,701
Class2Relational 0/5 [0%] 9/10 [90%] 0/4 [0%] 6/8 [75%] 266 157 > 1,610,020
UML2Intalio 4/15 [27%] 10/13 [77%] 0/6 [0%] 5/8 [62.5%] 306 187 > 1,086,476
Average 23/93 [24.7%] 152/167[91%] 0/68 [0%] 157/169 [93%] 1,530.4 1,210.6 > 355,787

Table V: Indicators of the variability in the TRMs.

First, we notice that anonymous classes only appear in source DRMs. This is expected as the target
domain is write-only and ATL lacks navigation expressions for the target domain. Most transforma-
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tions (5 out of 7) have source DRMs with anonymous classes, and overall around 25% of classes
are anonymous. Anonymous classes are common in source DRMs because most transformations
contain some navigation expression in the rule filters, helpers or bindings. Anonymous classes help
in encoding variability as they can be matched to classes with an arbitrary name. If we compare with
the original source meta-models (see Table VI), we can see that DRMs enhance flexibility because
they reduce significantly the number of named classes. This reduction depends on the meta-model
percentage that a transformation uses. An extreme case is UML2Intalio, which only requires a small
fragment of UML (the part of activity diagrams) and so the resulting DRM has 11 named classes,
while the meta-model has 248 classes. Typically, source DRMs also achieve a reduced number
of named classes compared to meta-model footprint techniques, which derive a meta-model slice
containing only those elements touched by the transformation [Sen et al. 2009; Burgueño et al. 2015;
Jeanneret et al. 2011]. The reason is that DRMs do not enforce class hierarchies but just express
structural requirements, sometimes using anonymous classes; while sliced meta-models may contain
intermediate classes in inheritance hierarchies. Still, meta-model footprints are normally used in
combination with other reuse techniques, e.g., based on concepts [de Lara and Guerra 2011; Sánchez
Cuadrado et al. 2014a] or model types [Steel and Jézéquel 2007; Guy et al. 2012]. Anyhow, as
Table VI shows, such footprints are typically less flexible than DRMs regarding classes.

Transformation Named classes
in DRM

Classes
in Meta-model

Reduction
DRMs vs. MMs

Classes
in Footprint

Reduction
DRMs vs. Footprints

JavaSource2Table 3 6 50% 6 50%
HSM2FSM 6 6 0% 6 0%
PetriNet2PNML 4 9 55,5% 7 42,8%
KM32EMF 10 15 33,3 % 14 28,6%
Ant2Maven 31 48 35,4% 45 31,1%
Class2Relational 5 6 16,7% 6 16,7%
UML2Intalio 11 248 95,6% 32 65,6 %

Table VI: Named classes in DRMs, meta-models and footprints for the source domain, and reduction ratio of
named classes when using DRMs.

Table V also shows the ratio of fields that have a type vs. those that do not have it. Fields with
no type can be matched to both attributes and references in a meta-model, thus helping to express
variability. Most fields in the source and target DRMs are untyped, providing great reuse opportunities.
In contrast, the type of all fields in meta-models and footprints is fixed (i.e., it is a particular reference
type or data type). The compatibility model ensures that the variability in the types that source and
target features may take is coherent. Table V shows that the feature models generally admit a large
number of configurations (calculated using FeatureIDE’s best approximation with 1 hour timeout).
The number of features in the model is typically correlated with the number of untyped fields. The
substantial number of configurations shows that TRMs encode very high variability.

Overall, we can conclude that TRMs extracted from ATL transformations encode a large variability,
which ensures a flexible reuse. This can be stated of individual DRMs compared to meta-models and
footprints, and of TRMs including their compatibility model.

9.4. Threats to validity
In this section, potential threats to validity associated with the performed evaluation are discussed. In
particular, we distinguish threats among construct, internal, and external validity as follows.
Construct validity. It pertains to any factor that can compromise the validity of inferences that
observations or measurement tools actually represent or measure the construct being investigated.
One possible threat to construct validity is that the set of meta-model modification operators used
to generate the meta-model mutants might be not complete, potentially preventing exercising all
features of our refinement relation. To minimise the impact of this threat, we manually assessed that
our mutants exercise all features of our refinement checks, like subsAllowed, mandatoryAllowed, and the
different semantics of references. Another threat to construct validity can be related to the adoption
of ANATLYZER for determining if a meta-model mutant can be safely used with a transformation. Even
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though this might represent a bias since ANATLYZER was created by three co-authors of this paper, it
is important to remark that ANATLYZER has been used as was presented in the original paper [Sánchez
Cuadrado et al. 2017] without operating any specific change or adaptation that might have introduced
inferences in the experiments presented in this paper.
Internal validity. Threats to internal validity concern any confounding factor that could influence our
results. We have used a relatively low number of transformations. The reason is that our experiment
requires the seed transformations to be free of typing errors. Unfortunately, as we showed in our
previous work [Sánchez Cuadrado et al. 2017], most freely available third-party ATL transformations
contain errors, which prevents their use in our evaluation. Hence, to ascertain to what extent our
evaluation is complete, we have measured the coverage of ATL constructs in our setup with respect
to the whole language, and we cover a good part of them (around 71% of the constructs). As for
the ATL constructs not covered in our experiment, according to [Selim et al. 2017], they are not
among the most common in practice (called rules are found in around 19% of transformations of
the ATL zoo, and imperative blocks in around 23% of transformations). Besides, the number of
generated meta-model mutants is quite high (more than 26,000) which means that our TRM extraction
algorithm has been exhaustively tested. Another threat to internal validity is that the evaluation has
used ANATLYZER as an oracle to well-typedness. Although ANATLYZER has been reported to have high
precision and recall [Sánchez Cuadrado et al. 2017; 2018], it is not infallible. To avoid distortions
on the evaluation results due to possible errors in our oracle, we have manually revised the dubious
cases and have not found any incorrect result.
External validity. Threats to external validity refer to the extent to which the results of our study can
be generalized. The proposed TRM formalism and the refinement operators have been implemented
and exercised on ATL model transformations only. However, in order to ensure the applicability of
the approach also to other model transformation languages, we conceived the TRM formalism and
the corresponding refinement operators in a technology agnostic manner. The conceived theorems
and the proofs have been defined by discarding any technology specific aspects, and the theory
implementation has been done at-posteriori.

10. RELATED WORK
Over the last years, several techniques for model transformation reuse have been conceived [Kusel
et al. 2015]. These are generally classified as intra-transformation or inter-transformation reuse
approaches. The former techniques support reuse within a single transformation by means of rule
inheritance [Wimmer et al. 2012], rules with variability [Strüber et al. 2018], module superimposi-
tion [Wagelaar et al. 2010] and internal composition mechanisms like phases [Sánchez Cuadrado and
Molina 2009], hooks [Sánchez Cuadrado and Molina 2008], localized transformations [Etien et al.
2015] and unit combinators [Kleppe 2006].

In this paper, we are more interested in inter-transformation reuse, which consists of reusing
transformations that were developed for a meta-model, with a different one (i.e., reuse across meta-
models). Compared with intra-transformation reuse, inter-transformation techniques aim at a more
coarse-grained reuse – typically complete transformations – and require mechanisms to check that
the reused transformation can work properly with a different meta-model, and even automatically
adapt the transformation to the new context.

One of the distinctive aspects of inter-transformation reuse is the form of the interface for reuse,
as this is the artefact that developers need to deal with when confronted with a new reuse [Bruel
et al. 2018]. This interface can follow a black-box or a white-box style. In white-box approaches, the
reuse interface is the transformation itself, sometimes expressed in a high-level format, e.g., design
patterns [Lano and Rahimi 2014; Lano et al. 2014]. This is the case of DelTa [Ergin et al. 2016], a
high-level language to express and compose transformation design patterns. These patterns can be
adapted for particular meta-models by mapping the pattern elements to meta-model types, and it is
possible to generate transformation code from the patterns.

Black-box approaches are more common. In this case, the reuse interface describes the typing
requirements that a transformation demands from its source/target meta-models. Then, the reuser
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needs to specify how particular meta-models satisfy those requirements. In most cases, the typing
requirements are expressed in the form of a meta-model that is developed on purpose for each
reusable transformation, and that needs to be mapped to the concrete meta-model the transformation
is to be reused for [Steel and Jézéquel 2007; Guy et al. 2012; de Lara and Guerra 2011; Sánchez
Cuadrado et al. 2014a; de Lara and Guerra 2017; de Lara et al. 2015]. However, a meta-model
is a concrete realization of some design concern, and we have seen in this paper that different
meta-models may realize a specific concern in different ways (e.g., as an attribute or as a reference).
Hence, some researchers have investigated more expressive means to describe typing requirements for
transformations, for example, based on logics [Zschaler 2014]. Next, we analyse existing black-box
reuse approaches, indicating how our work improves the state of the art.

Inter-transformation approaches that use meta-models as reuse interface include model types [Steel
and Jézéquel 2007; Guy et al. 2012], concepts [de Lara and Guerra 2011; Sánchez Cuadrado et al.
2014a], a-posteriori typing [de Lara and Guerra 2017], facet-oriented modelling [de Lara et al. 2018]
and multi-level modelling [de Lara et al. 2015].

Inspired by generic programming [Gregor et al. 2006], concepts have been proposed as the reuse
interface of transformations [Sánchez Cuadrado et al. 2014a; 2014b]. In this context, concepts are
meta-models whose elements (classes, attributes, references) are interpreted as variables that need to
be bound to the elements of concrete meta-models. This binding produces an adapted transformation
that is directly applicable to the specific meta-models.

Instead of genericity, some approaches profit from polymorphism for transformation reuse. As
an example, model types [Steel and Jézéquel 2007; Guy et al. 2012] are based on establishing a
subtyping relationship or binding between the transformation meta-model and the meta-model where
the transformation is to be reused. By means of this subtyping relation, the transformation becomes
applicable to the specific meta-model. In the same vein, Boronat [Boronat 2017] proposes a method to
discover subtyping (subsumption) relations between two meta-models, considering OCL constraints
and supporting structural subtyping.

Multi-level modelling [Atkinson and Kühne 2002; de Lara et al. 2014; de Lara and Guerra 2018]
permits modelling using an arbitrary number of meta-levels. This enables the definition of families of
meta-modelling languages (e.g., for domain-specific process modelling) which can be successively
refined by instantiation. This way, transformations defined for the meta-meta-model of a language
family can be reused for any of the languages of the family [de Lara et al. 2015]. Hence, multi-level
modelling enables transformation reuse by exploiting the instantiation relation.

Another way to reuse a transformation is by retyping arbitrary models with respect to the trans-
formation meta-models [de Lara and Guerra 2017; de Lara et al. 2018]. Model retyping enables
transformation reuse because it permits seeing models as instances of the meta-models a transforma-
tion is defined on.

Overall, the common theme of these approaches is the use of a meta-model as reuse interface.
Instead, we propose TRMs as reuse interface as they are more expressive than plain meta-models
to convey transformation requirements, for two reasons. First, DRMs can express variability. For
example, it is possible to indicate that a class needs a certain feature without prematurely stating that it
should be an attribute or a reference; leave the cardinality bounds open; specify several possible target
types for a reference; or omit the name of classes. Moreover, DRMs make explicit further expectations
required for a correct typing, like the possibility for classes to have or not extra mandatory features or
the identification of classes that cannot inherit from each other. This expressivity is not possible with
a plain meta-model. Second, TRMs include a compatibility model expressing dependencies between
open options of source and target meta-models. These dependencies cannot be captured with just
two meta-models, and therefore we use a feature model for this purpose.

Different from meta-model based approaches, ours does not require binding the specific meta-
models to the transformation reuse interface; instead, a transformation can be reused with any
meta-model pair that satisfies the TRM. This brings increased usability to the approach (reuse is
automatic), and enables automatic discovery of reusable transformations for given meta-models or
TRMs. However, an explicit binding language (e.g., like [Sánchez Cuadrado et al. 2014a]) is useful
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to bridge heterogeneities between the reuse interface and the meta-models. Therefore, we plan to
investigate how to combine our approach with binding languages in future work.

Another issue is the provision of techniques to extract the reuse interface of a transformation. Meta-
model based approaches can profit from techniques to obtain the meta-model footprint [Burgueño
et al. 2015; Jeanneret et al. 2011]. This is the part of the input and output meta-models accessed by
the transformation, which is itself a meta-model. Specific methods have been developed to co-evolve
the extracted footprint and the transformation, in order to obtain a simpler, more understandable
interface [Sánchez Cuadrado et al. 2015]. While these works rely on the actual transformation
meta-models, our technique to extract the TRM does not need the meta-models. This is useful when
the meta-models are not available. Moreover, the end result is a TRM, which is more expressive than
a meta-model to specify variability and typing requirements.

Instead of using meta-models to express the reuse interface, Zschaler uses logic to express meta-
model requirements extracted from in-place transformations [Zschaler 2014]. Similar to our approach,
the goal is having more expressive means to capture typing requirements, and being able to check
if particular meta-models satisfy those requirements. However, while this can be considered the
seminal work in this area, it was not fully elaborated. For example, there are no means to specify that
features can be attributes or references, or to require anonymous classes. Instead of logics, we opted
for creating a meta-model able to express model-to-model requirements for a given transformation
and included a compatibility model because we target model-to-model transformations. Moreover,
extracting the requirements from ATL transformations is more challenging as we need to deal with
OCL expressions, automated binding resolution, and meta-model dependencies.

Other approaches focus on checking the correctness of transformation reuse. In this regard,
transformation intents [Lúcio et al. 2016; Salay et al. 2016] describe semantical properties that ensure
a correct reuse according to the designer expectations. In our case, we aim at ensuring syntactical
correctness, but it would be interesting to incorporate intents into our framework in the future.

Typing model transformations is important to ensure their correct chaining. In [Vignaga et al.
2013], a type system for mega-models assigns to transformations the types of their source and target
meta-models. Our TRMs could be integrated into this type system, with the benefit of achieving
more abstract types for transformations (the TRMs), facilitating a more flexible transformation
chaining. In [Vallecillo and Gogolla 2012], the authors argue on the need for adding behavioural
types to transformations (abstract descriptions of their behaviour), in addition to structural types. For
this purpose, they propose a contract-based approach called Tracts. Our TRMs focus purely on the
structural part. It is up to future work to combine TRMs with behavioural types.

Regarding our techniques, we have created our own meta-model to express transformation re-
quirements. Instead, we could have used uncertainty annotations [Famelis and Chechik 2019] over
standard meta-models. However, expressing concerns specific to typing requirements, like antiances-
tor relations between classes, or the fact that a class cannot have further mandatory features, may be
difficult to express using generic annotations.

Concerning refinement relations between models, several works define well-formedness rules that
can be used to check whether a UML diagram is a valid refinement of another. Their goal is either
being able to transition from more abstract views of a system to detailed representations that preserve
the semantics, or abstracting concrete models. For instance, [Faitelson and Tyszberowicz 2017]
defines a set of refinement rules for class diagrams and use case diagrams. They have a relational
semantics and interpret the subtype relation (in class diagrams) and the includes/extends relations
(in use case diagrams) as subsetting relations. This branch of works assumes a diagram and its
refinement are complete, in the sense that there is no uncertainty or variability on their elements (e.g.,
a feature must be either an attribute or a reference, this cannot be underspecified). More importantly,
their goal is different to ours, as they do not focus on (and their refinement rules do not ensure) safe
model transformation reuse.

Overall, our work advances the state of the art by proposing a more expressive means to capture
the typing requirements of model-to-model transformations. This is a novel reuse interface for model
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transformations that enables automated reuse (i.e., does not require a binding) and ensures syntactic
reuse correctness.

11. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a new approach for model transformation reuse based on TRMs.
TRMs are automatically extracted from model transformations and contain a compatibility model
constraining the possible open options in the source and target meta-models. As meta-models can be
encoded as DRMs, we have provided a theory of TRM refinements, distinguished between different
types of refinement, and proposed a catalogue of refinement operators. We have implemented
prototype tool support for ATL and presented an evaluation showing good precision and recall of the
ATL TRM extraction procedure, and confirming that the extracted TRMs encode high variability that
enables flexible reuse.

In the future, we would like to incorporate the notion of binding into our refinement relationship
to improve reusability. Such bindings may resolve heterogeneities (e.g., class renaming) between the
TRMs and the meta-models, and would induce a transformation adaptation, in the style of [Sánchez
Cuadrado et al. 2014a]. We also plan to explore heuristics for automatic meta-model generation from
TRMs. For this purpose, we may exploit techniques for optimal product selection [Hierons et al.
2016] from the feature model of dependencies specified in the TRM. As our checks are syntactical,
we aim at incorporating a notion of transformation intent and behavioural type into our approach.
Another research line is the creation of extraction procedures for other transformation languages,
like ETL or QVT. At the technical level, we plan to integrate TOTEM with model transformation
repositories [Di Rocco et al. 2016] or general-purpose repositories like GitHub, to allow powerful
means to query, discover and chain reusable transformations. Finally, we plan to exploit the notion
of DRM as a device to capture meta-model requirements in other applications, like bottom-up and
example-based modelling [Kästner et al. 2018; López-Fernández et al. 2015].
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Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and how to use multilevel modelling. ACM Trans.
Softw. Eng. Methodol. 24, 2 (2014), 12:1–12:46.

Juan de Lara, Esther Guerra, Joerg Kienzle, and Yanis Hattab. 2018. Facet-oriented modelling: Open objects for model-driven
engineering. In SLE. ACM, 147–159.
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Frédéric Jouault and Jean Bézivin. 2006. KM3: A DSL for Metamodel Specification. In Proceedings of the 8th IFIP

WG 6.1 International Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS’06).
Springer-Verlag, 171–185.

Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.
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Jesús Sánchez Cuadrado and Jesús Garcı́a Molina. 2008. Approaches for model transformation reuse: Factorization and

composition. In ICMT (LNCS), Vol. 5063. Springer, 168–182.
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Kolovos, Richard F. Paige, Marius Lauder, Andy Schürr, and Dennis Wagelaar. 2012. Surveying rule inheritance in
model-to-model transformation languages. Journal of Object Technology 11, 2 (2012), 3: 1–46.

Steffen Zschaler. 2014. Towards constraint-based model types: A generalised formal foundation for model genericity. In VAO.
ACM, New York, NY, USA, Article 11, 8 pages.

A. APPENDIX
This appendix contains the proofs of the main results in the paper. The Alloy specifications used to
support these proofs are available at http://miso.es/trms/.

A.1. Lemma 5.5: Composition of DRM mappings is well-formed (Section 5.2)
PROOF. Given two composable mappings m1 : RM → RM ′ and m2 : RM ′ → RM ′′, we need

to prove that their composition m = m2 ◦m1 : RM → RM ′′ (as in Definition 5.4) is well-formed.
According to Definition 5.1, m is well-formed if it fulfils the following conditions:

—mCS should be a total function. We have that mCS = mC ∪mS = m2
C ◦m1

C ∪ (m2
S ◦m1

S ∪
m2
S ◦m1

C ∪m2
C ◦m1

S) = m2
C ◦ (m1

C ∪m1
S) ∪m2

S ◦ (m1
S ∪m1

C) = (m2
C ∪m2

S) ◦ (m1
C ∪m1

S).
Since m2

C ∪m2
S and m1

C ∪m1
S are total functions, so is mCS .

— ∀C ∈ RMC • mS(C) is defined =⇒ C.subsAllowed = true. As we have mS =
m2
S ◦m1

S ∪m2
S ◦m1

C ∪m2
C ◦m1

S , we proceed by cases:
— For those C ∈ RMC s.t. m2

S ◦m1
S(C) or m2

C ◦m1
S(C) is defined, this condition holds because

it holds for m1
S .

— For those C ∈ RMC s.t. m2
S ◦m1

C(C) is defined, it holds because the composability condition
states: ∀C ∈ RMC • m2

S(m
1
C(C)) is defined =⇒ C.subsAllowed = true.

— ∀C ∈ RMC • mS(C) is defined =⇒ ∀Cs ∈ C.subs • mS(Cs) is defined. Again, we
proceed by cases on mS :
— For those C ∈ RMC s.t. m2

S ◦m1
S(C) or m2

C ◦m1
S(C) is defined, this condition holds because

it holds for m2
S and m1

S .
— For those C ∈ RMC s.t. m2

S ◦m1
C(C) is defined, it holds because the composability condition

states: ∀C ∈ RMC • m2
S(m

1
C(C)) is defined =⇒ ∀Cs ∈ C.subs•m1

S(Cs) is defined∨
m2
S(m

1
C(Cs)) is defined. This means that, given a Cs ∈ C.subs, if m1

S(Cs) is defined,
then mS(Cs) is defined; while if m2

S(m
1
C(Cs)) is defined, then mS(Cs) is defined.

— ∀C ∈ RMC • mC(C) is defined =⇒ ∀f ∈ C.feats • mF (f) is defined. This holds
because mC = m2

C ◦m1
C , and both m2

C and m1
C satisfy this condition.

A.2. Theorem 5.6: Composition of strong refinements is strong refinement (Section 5.2)
PROOF. Given two composable strong refinements m1 : RM → RM ′ and m2 : RM ′ → RM ′′,

we need to prove that m = m2 ◦m1 is a strong refinement. We proceed by cases, checking that every
predicate in srefinement holds for m:

(1) name refinement demands ∀C ∈ RMNC •mC(C).name = C.name. According to the
definition of DRM mapping composition (Definition 5.4), we have thatmC = m2

C ◦m1
C . As both

m1 and m2 are strong refinements, we have that ∀C ∈ RMNC • C.name = m1
C(C).name,

and ∀C ∈ RM ′NC • C.name = m2
C(C).name. Hence, we have ∀C ∈ RMNC • C.name =

(m2
C ◦m1

C)(C).name = mC(C).name as required.
(2) abstract refinement demands ∀C ∈ RMC •C.isAbstract = any∨mCS(C).isAbstract =

C.isAbstract. According to Definition 5.4,mCS = (m2
C ∪m2

S)◦ (m1
S ∪m1

C). For those classes
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C with isAbstract 6= any, isAbstract is preserved through all m1
S ,m

1
C ,m

2
S ,m

2
C . Hence, for

each class C, either C.isAbstract = any, or mCS(C).isAbstract = C.isAbstract.
(3) ancs preservation demands ∀C,Ca ∈ RMC • Ca ∈ C.ancs+ =⇒ mCS(Ca) ∈

mCS(C).ancs
∗. As ancs∗ is preserved by both m1

CS and m2
CS , it is preserved by mCS .

(4) antiancs preservation demands ∀C,Ca ∈ RMC • Ca ∈ C.antiancs+ =⇒ mCS(Ca) ∈
mCS(C).antiancs

+. As antiancs+ is preserved by both m1
CS and m2

CS , it is preserved by
mCS .

(5) mand allowed refinement demands:

∀C ∈RMC •mC(C) is defined ∧ C.mandatoryAllowed = false =⇒
|{f | f ∈ C.feats∗ ∧ isMand(f)}| = |{f | f ∈ mC(C).feats

∗ ∧ isMand(f)}|

Predicate mand allowed refinement holds for m1 and m2 as both are refinements.
As they also are strong refinements, predicates mand allowed preservation(m1) and
mand allowed preservation(m2), which demand preserving the flag subsAllowed, hold
as well. Therefore, given a class C ∈ RMC with C.mandatoryAllowed = false, then
m1
C(C).mandatoryAllowed = false = m2

C(m
1
C(C)).mandatoryAllowed. This means that

|{f | f ∈ C.feats∗∧isMand(f)}| = |{f | f ∈ m1
C(C).feats

∗ ∧isMand(f)}| = |{f | f ∈
m2
C(m

1
C(C)).feats

∗ ∧ isMand(f)}|, and so mand allowed refinement(m2 ◦m1) holds.
(6) feature refinement demands:

∀C ∈ RMC • mC(C) is defined =⇒
∀f ∈ C.feats • mF (f) ∈ mC(C).feats

∗∧
f.name = mF (f).name ∧ refinescard(f,mF (f))

Assuming that feature refinement holds for m1 and m2, it is easy to see that the previous
predicate, up to f.name = m2

F (m
1
F (f)).name, holds for m2 ◦ m1. In addition, predicate

refinescard(f,m
2
F (m

1
F (f))) holds because refinesnum and refinesmany are transitive. This

is so as predicates card preservation(m1) and card preservation(m2) hold because m1 and
m2 are strong refinements. This ensures equality of the allowLess and allowMore flags.

(7) feature type commut demands:

∀f ∈ RMF , ∀ft ∈ f.types • mA(ft) is defined =⇒ mA(ft) ∈ mF (f).types ∧
mR(ft) is defined =⇒ mR(ft) ∈ mF (f).types

which holds by transitivity because mA = m2
A ◦m1

A, mR = m2
R ◦m1

R, and mF = m2
F ◦m1

F .
(8) feature type refinement demands:

∀f ∈RMF • mF (f) is defined =⇒ ((f.types = ∅) ∨
(mF (f).types 6= ∅ ∧ ∀ft′ ∈ mF (f).types ∃ft ∈ f.types •

(mA(ft) = ft′ ∧ refinesAttr(ft, ft′)) ∨
(mR(ft) = ft′ ∧ refinesRef (ft, ft′))))

The predicate holds because, given f ∈ RMF , if f.types = ∅, then
feature type refinement(m2) holds. Otherwise, if f.types 6= ∅, we need to show that
refinesAttr( , ) and refinesRef ( , ) are transitive. Predicate refinesAttr( , ) is transitive
due to the transitivity of equality. Predicate refinesRef ( , ) is transitive as well because predi-
cate ref sem preservation (which holds because both mappings are strong refinements) forces
references to be mapped with same open value. For the case of open references, mappings can
monotonically increase the allowed targets. For closed references, mappings can monotonically
decrease the allowed targets. Both cases lead to a correct composition.
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(9) subs refinement demands:
∀C ∈ RMC • mS(C) is defined =⇒ | conc subs(mS(C)) | > 0 ∧

∀C ′ ∈ conc subs(mS(C)) •
mand allowed refinement(C,C ′) ∧
∀f ∈ C.feats ∃f ′ ∈ C ′.feats∗ • feats refinement(f, f ′)

Mapping mS can be obtained by composing m2
S ◦m1

C (m2
C ◦m1

S and m2
S ◦m1

S are empty
according to the condition for composition). Hence the predicate holds, because it holds for m2

S .
(10) mand allowed preservation and card preservation hold in m due to the transitivity of

element inclusion and equality.
(11) The first part of predicate ref sem preservation (where mR is defined) holds due to the

transitivity of equality. For the second part, if m2
S of the owner classes are defined, the predicate

holds, as it holds for m2
S .

Note that the predicates for strong refinement are required for proving composition-
ality of the refinement predicates. Hence, mand allowed preservation is required
for mand allowed refinement, card preservation for feature refinement, and
ref sem preservation for feature type refinement. Other properties of DRMs, like
subsAllowed, are not required to be preserved.

A.3. Identity refinement
Given a DRM RM , we introduce an identity refinement idRM : RM → RM , which is a strong
refinement. This identity refinement will be used to prove in Appendices A.4 to A.14 that each
refinement in the catalogue presented in Section 5.2.1 are strong refinements.

LEMMA A.1 (IDENTITY REFINEMENT). Given a DRM RM, the identity refinement
idRM : RM → RM defined as idRM = 〈idC : RMC → RMC , idS = ∅, idF : RMF →
RMF , idR : RMR → RMR, idA : RMA → RMA〉 is a valid DRM mapping that satisfies
srefinement(idRM ).

Remark. For simplicity, we refrain from introducing other possible identity refinements, e.g.,
mapping through idS the subset of classes C such that C.subsAllowed = true, and satisfying
mand allowed refinement(C,Csub) for each concrete subclass Csub of C.

PROOF. We need to prove that the identity mapping idRM : RM → RM is a valid DRM mapping
and is a strong refinement. According to Definition 5.1, idRM is a valid DRM mapping if:

— idCS = idC ∪ idS is a total function (holds as idC is defined on the whole RMC , and idS empty).
— ∀C ∈ RMC • idS(C) is defined =⇒ ... (holds because idS is empty).
— ∀C ∈ RMC • idC(C) is defined =⇒ ∀f ∈ C.feats • idF (f) is defined (holds because
idF is defined on the whole RMF ).

To prove strong refinement we proceed by cases, checking that idRM satisfies every predicate in
srefinement (cf. Definition 5.2):

(1) name refinement and abstract refinement hold because classes are mapped using the
identity mapping (idC ∪ idS).

(2) ancs preservation and antiancs preservation hold because of the identity mapping of
classes, and because relations ancs and antiancs do not change.

(3) mand allowed refinement holds because the number of features in every class does not
change, and each feature is mapped to itself via the identity mapping idF .

(4) feature refinement holds because of the identity mapping idF , and noting that the auxiliary
predicates refinesnum and refinesmany hold if both Card arguments are equal.
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(5) feature type commut holds because of the identity mappings idR and idA.
(6) feature type refinement holds because of the identity mappings idR and idA, and noting

that the auxiliary predicates refinesAttr and refinesRef hold for two equal arguments of type
A or R.

(7) subs refinement holds because idS is empty.
(8) mand allowed preservation holds because of the identity mapping of classes.
(9) card preservation and reference sem preservation hold because of the identity mapping

of features and reference types.

Cases (1-7) are for refinement, and cases (8-9) are for strong refinement.

A.4. Refinement operation: Adding new class (Section 5.2.1)
PROOF. Given a DRM RM , the identity mapping idRM : RM → RM is a strong refinement

(cf. Appendix A.3). We construct a new DRM RM ′ by adding a named class with a fresh name
to RMNC , so that RM ′ = 〈RMNC ∪ {C ′}, 〉7. The mapping idRM also applies if RM ′ is in
the codomain, and is still a strong refinement as @C ∈ RMC s.t. idCS(C) = C ′. Therefore, the
evaluation of each predicate used by srefinement does not change. The same reasoning follows
when adding a new anonymous class to RMAC .

A.5. Refinement operation: Assigning fresh name to anonymous class (Section 5.2.1)
PROOF. Given a DRM RM , we construct a new DRM by giving a fresh name “X” to an anony-

mous class: RM ′ = 〈RMNC ∪ {C}, RMAC \ {C}, name ∪ {(C, “X”)}, 〉. The identity mapping
idRM applies when RM ′ is in the codomain, and it satisfies srefinement because predicate
name refinement only applies to named classes in RM but not in RM ′.

A.6. Refinement operation: Setting class to abstract or concrete (Section 5.2.1)
PROOF. Given a DRM RM and a class C ∈ RMC with C.isAbstract = any, we create a new

DRMRM ′ = 〈 , isAbstract++{(C, true)}, 〉whereC is abstract (we use “++” to denote function
overriding). The identity mapping idRM applies when RM ′ is in the codomain, and it is still a strong
refinement. This is so as predicate abstract refinement holds because C.isAbstract = any in
RM . The same reasoning applies if we set C to concrete in RM ′.

A.7. Refinement operation: Adding feature to class (Section 5.2.1)
PROOF. Given a DRM RM and a class C s.t. C.mandatoryAllowed = false, we

create a new DRM RM ′ by adding a new optional feature f to C: RM ′ = 〈RMF ∪
{f}, feats∪{(C, f)}, Number∪{n}, value∪{(n, 0)}, allowLess∪{(n, false)}, allowMore∪
{(n, false)},min ∪ {(f, n)}, 〉 (where f can have any max cardinality). The identity mapping
idRM is applicable when RM ′ is in the codomain, and it is still a strong refinement. This is so as
predicate mand allowed refinement holds because isMand(f) is false and the set of mandatory
features of C in RM and RM ′ stays the same.

If the feature f is added to a class C s.t. C.mandatoryAllowed = true, then predicate
mand allowed refinement holds regardless of whether f is mandatory or not.

A.8. Refinement operation: Refining the possible types of a feature (Section 5.2.1)
PROOF. Given a DRM RM and a feature f s.t. |f.types| = 0, we create a new DRM RM ′ by

adding an attribute type a to f : RM ′ = 〈A∪ a, types∪ {(f, a)}, 〉 (where a.dtype is unimportant).
The identity mapping idRM also applies when RM ′ is in the codomain, and it is still a strong
refinement. This is so as predicate feature type refinement holds because |f.types| = 0 in RM .
The same reasoning holds if we add a reference type to f , or a set of attribute and reference types.

7For simplicity, this and the following proofs only show the parts of the DRM tuple that change, representing the unchanged
parts as .
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Given a DRM RM , a feature f s.t. |f.types| > 1, and a feature type t ∈ f.types, we create a
new DRM RM ′ by deleting t from f.types: RM ′ = 〈types \ {(f, t)}, 〉. The identity mapping
idRM needs to be modified by removing the mappings from idR or idA to f , and it is still a
strong refinement. This is so as predicate feature type refinement holds because f.types is
not empty in RM ′, and for every remaining feature type ft ∈ f.types, refinesAttr(ft, ft) or
refinesRef (ft, ft), while the other predicates hold, as they hold for idRM .

A.9. Refinement operation: Refining type of attribute (Section 5.2.1)
PROOF. Given a DRM RM and a feature f with an attribute type a s.t. a.dtype = AnyDT ,

we create a new DRM RM ′ by changing the type of a to any element t ∈ DataType: RM ′ =
〈dtype + +{(a, t)}, 〉. The identity mapping idRM applies when RM ′ is in the codomain, and
it is still a strong refinement. This is so as predicate feature type refinement holds because
refinesAttr(RM.a,RM ′.a) holds (with RM ′.a the attribute type a in RM ′) since a.dtype =
AnyDT in RM . The proof when changing Numeric by Real or Integer is analogous.

A.10. Refinement operation: Splitting class in hierarchy (Section 5.2.1)
PROOF. Given a DRM RM and a class C ∈ RMC s.t. F1 ⊆ C.feats, we create a new DRM

RM ′ by adding a superclass Csup with fresh name to C and moving the features in F1 to Csup:
RM ′ = 〈RMC ∪{Csup}, ancs∪{(C,Csup)}, feats∪{(Csup, fi)}fi∈F1

\{(C, fi)}fi∈F1
, 〉. The

identity mapping idRM applies when RM ′ is in the codomain, and it is still a strong refinement.
This is so as predicate ancs preservation holds because the ancs relation is extended but existing
values are not modified. Predicate feature refinement also holds because the features of C in
RM can be mapped to features owned or inherited by idRM (C).

A.11. Refinement operation: Adding/deleting target of reference (Section 5.2.1)
PROOF. Given a DRM RM and a reference r s.t. r.open = true, we create a new DRM RM ′ by

adding a new target classC ∈ RMC s.t.C /∈ r.targets to r.targets:RM ′ = 〈targets∪{(r, C)}, 〉.
The identity mapping idRM applies when RM ′ is in the codomain, and it is still a strong refinement.
This is so as predicate feature type refinement holds because refinesRef (RM.r,RM ′.r) (with
RM ′.r the reference type r in RM ′) holds, since each target of r in RM is a target of r in RM ′.

Given a DRM RM with a reference r s.t. r.open = false and |r.types| > 1, we create a new
DRMRM ′ by deleting a target class C ∈ r.targets from r.targets:RM ′ = 〈targets\{(r, C)}, 〉.
The identity mapping idRM applies when RM ′ is in the codomain, and is still a strong refinement.
This is so as feature type refinement holds because refinesRef (RM.r,RM ′.r) holds, since
each target of r in RM ′ is a target of r in RM (as they are mapped via an identity mapping).

A.12. Refinement operation: Adding subclass consistent with antiancs (Section 5.2.1)
PROOF. Given a DRM RM with two classes {C,RC} ⊆ RMC s.t.

∀Ca ∈ C.ancs∗•(@Cs ∈ Ca.antiancs∗ • Cs ∈ RC.ancs∗∧
@Cs ∈ RC.ancs∗ • Ca ∈ Cs.antiancs∗)

we create a new DRM RM ′ by adding C as a subclass of RC: RM ′ = 〈ancs ∪ {(C,RC)}, 〉. The
identity mapping idRM applies when RM ′ is in the codomain, and it is still a strong refinement.
This is so as predicate ancs preservation holds because the ancs relation is extended but existing
values are not modified, and antiancs preservation holds because antiancs is not modified. If C
is a new class added to RM ′, we do not need to make any assumption on the relation between C and
RC, but ancs preservation holds because ancs is only extended.

Please note that RM ′ is a valid DRM, since condition (1) of Definition 4.1 holds: given any
C1 ∈ RC.ancs∗ and any C2 ∈ C.ancs∗, the refinement condition ensures C1 /∈ C2.antiancs

∗ and
vice versa, as required by condition (1).
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A.13. Refinement operation: Refining minimum cardinality (Section 5.2.1)
PROOF. Given a DRM RM with a feature f s.t. min(f) = AnyCardinality, we cre-

ate a new DRM RM ′ by assigning to f any n ∈ Number as cardinality: RM ′ = 〈min +
+{(f, n)}, Number ∪ {n}, 〉 (where the value of n is unimportant). The identity mapping idRM
applies when RM ′ is in the codomain, and it is still a strong refinement. This is so as predicate
feature refinement holds because refinesmin(RM.f.min,RM ′.f.min) holds. Generally, the
predicate holds when f.min is AnyCardinality, and it also supports the following refinements
when f.min is a Number: a smaller numeric value when allowLess = true, and a bigger numeric
value when allowMore = true.

A.14. Refinement operation: Refining maximum cardinality (Section 5.2.1)
PROOF. Given a DRM RM with a feature f s.t. max(f) = AnyCardinality, we cre-

ate a new DRM RM ′ by assigning to f any n ∈ Number as cardinality: RM ′ = 〈max +
+{(f, n)}, Number ∪ {n}, 〉 (where the value of n is unimportant). The identity mapping idRM
applies when RM ′ is in the codomain, and it is still a strong refinement. This is so as predicate
feature refinement holds because refinesmax(RM.f.max,RM ′.f.max) holds. Generally, the
predicate holds when f.max is AnyCardinality, and it also supports the following refinements
when f.max is a Number: a smaller numeric value when allowLess = true, and a bigger numeric
value or Many when allowMore = true.

A.15. Theorem 5.12: Retyping is well-formed (Section 5.4)
PROOF. Given a refinementm : RM → RM ′ and a write well-formed typing type : M → RM ′,

we need to show that back(type) : M → RM (in Definition 5.11) is well-formed if RM ′ is a meta-
model or srefinement(m) holds. We proceed by cases, showing that each condition for typing
well-formedness holds:

(1) Objects are not typed by two classes such that one class is antiancestor of any ancestor of the
other. As m is a refinement, antiancs preservation(m) holds, and so mCS cannot map two
antiancestor classes to classes that are not antiancestors. Assume an object typed by two classes
C1, C2 ∈ RM ′C in the codomain ofmC . Then, function objBck calculates the typing type′ using
m−1C . The only way for an object to obtain a typing from RM made of two antiancestor classes
is that C1 and C2 are neither ancestors nor antiancestors. However, antiancs preservation
forbids this.
Now assume thatC1, C2 are not in the codomain ofmC , but their ancestors receive a mapping via
mCS . Because type is well-formed, any ancestor of C1, C2 cannot be antiancestor of each other.
As antiancs preservation holds, the resulting typing classes in RMC cannot be antiancestors
of each other.

(2) Slots are typed by features owned or inherited by some of the object types. The typing type∗slots
assigns a typing in two ways. First, using mF backwards on objects typed by classes that receive
a mapping with mC . In this case, function back ensures that a feature f is selected as the type
for slot s s.t. ∃d ∈ type∗objs(s.owner) ∧ f.owner ∈ d.ancs∗, hence satisfying the property.
Similarly, for those features for which mF is not defined, back selects a feature f as the type for
s s.t. ∃da ∈ type∗objs(s.owner) • f.owner ∈ da.ancs∗, hence satisfying the property.

(3) The type of every slot is not contradictory with that of the feature. Given a field s typed by a
feature f ′, then either f ′.types is empty, or it contains an attribute a′. Now, if f ′ = mF (f), back
assigns f as the new type. However, asm is a refinement, then feature type refinement holds,
and so either f.types is empty, or it contains some attribute a s.t. refinesAttr holds. Similarly,
if @f • mF (f) = f ′, then back selects a feature f s.t. feature type refinement(f, f ′) holds.
An analogous reasoning can be done if s is a link.

(4) Slots obey the minimum cardinality of their types. This property demands the number of slots s
owned by an object o and typed by a feature f s.t. f.min.allowLess = false, to be greater or
equal than f.min.value. If RM ′ is a meta-model, all features have allowLess = false, which
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means this property is checked for every f ′ ∈ RM ′F . Now, assume we have some f ∈ RMF

s.t. mF (f) = f ′. Then, f.min.allowLess can be true or false. If it is true, then the minimum
cardinality is not checked on the feature. If it is false, according to feature refinement, we
have f.min.value = f ′.min.value, and so the property holds for f , because it holds for f ′. If
f.min.allowMore is true, according to feature refinement, we may have f.min.value ≤
f ′.min.value, in which case the property holds, as the minimum value for f ′ is lower.
If instead ofRM ′ being a meta-model, we have srefinement(m), then card preservation(m)
holds. This means that for any f ∈ RMF • f.min.allowLess = mF (f).min.allowLess
(and similar for allowMore). Hence, if the minimum cardinality of any f ′ ∈ RM ′F with
f ′.min.allowLess = false is satisfied in every object, so it is satisfied for f (withmF (f) = f ),
because by predicate feature refinement, we have f.min.value = f ′.min.value. If f ′ is not
in the codomain of mF , the condition still holds, because card preservation ensures preserva-
tion of allowLess on any feature f that can be mapped to f ′ s.t. features refinement(f, f ′).
As function back only selects as type features f ′ with features refinement(f, f ′), then the
condition holds.

(5) Slots obey the maximum cardinality of their types. This property demands the number of slots s
owned by an object o and typed by a feature f s.t. f.max.allowMore = false, to be less or
equal than f.max.value. IfRM ′ is a meta-model, all features have allowMore = false, which
means this property is checked for every f ′ ∈ RM ′F . Now, assume we have some f ∈ RMF

s.t. mF (f) = f ′. Then, f.max.allowMore can be true or false. If it is true, then the maximum
cardinality is not checked on the feature. If it is false, according to feature refinement, we
have f.max.value = f ′.max.value, and so the property holds for f , because it holds for f ′. If
f.max.allowLess is true, according to feature refinement, we may have f.max.value ≥
f ′.max.value, in which case the property holds, as the maximum value for f is higher.
For the case of srefinement(m), we have card preservation(m). This means that for any
f ∈ RMF • f.max.allowMore = mF (f).max.allowMore (and similar for allowLess).
Hence, if the maximum cardinality of any f ′ ∈ RM ′F with f ′.max.allowMore = false
is satisfied in every object, so it is satisfied for f (with mF (f) = f ), because by predicate
feature refinement, we have f.max.value = f ′.max.value. However, a class in RM may
have several features compatible with f ′, and back would try to type the slot by all of them,
with the risk of violating the maximum cardinality. To avoid overstepping this, back adds the
condition |{s ∈ o.slots | type∗slots(s) = f}| < f.max.value, hence ensuring that the maximum
cardinality holds. This fact effectively allows several valid retypings.

(6) Every link target is coherent with its type. This property demands that the objects pointed
by links typed by closed references conform to some of the reference targets. If RM ′ is a
meta-model, all its references are closed, and therefore, this property holds for every typed
link. Then, we may have r ∈ RMR mapped to r′ in RM ′R. As m is a refinement, we have
refinesRef (r, r

′). If r is open, the property does not need to be checked for r. If r is closed,
then r′ may have less targets than r, so any link end compatible with targets in r′ will be
compatible with targets in r. If srefinement(m), then we need to have r.open = r′.open due
to predicate ref sem preservation. Therefore, if r′ is closed, r is also closed and the same
reasoning applies.

Note that we require type to be write well-formed, to avoid typing any object o by an abstract class
C ′. Assume mS(C) = C ′. The mapping mS only requires conformance for non-abstract subclasses
of C ′ (or by C ′ if it is non-abstract). This means that C may have features that are not matched in C ′
(as C ′ is abstract), hence producing incorrect retypings due to the violation of minimum cardinalities.
However, starting with a typing that is write well-formed avoids this problem.
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