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ABSTRACT
Semantic Backpropagation (SB) is a recent technique that promotes

effective variation in tree-based genetic programming. The basic

idea of SB is to provide information on what output is desirable for

a specified tree node, by propagating the desired root-node output

back to the specified node using inversions of functions encountered

along the way. Variation operators then replace the subtree located

at the specified node with a tree for which the output is closest to

the desired output, by searching in a pre-computed library. In this

paper, we propose two contributions to enhance SB specifically for

symbolic regression, by incorporating the principles of Keijzer’s

Linear Scaling (LS). In particular, we show how SB can be used in

synergy with the scaled mean squared error, and we show how

LS can be adopted within library search. We test our adaptations

using the well-known variation operator Random Desired Operator

(RDO), comparing to its baseline implementation, and to traditional

crossover and mutation. Our experimental results on real-world

datasets show that SB enhanced with LS substantially improves

the performance of RDO, resulting in overall the best performance

among all tested GP algorithms.
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1 INTRODUCTION
Semantic Backpropagation (SB) is a recent technique in tree-based

Genetic Programming (GP) [14, 20] which enables the design of

novel variation operators [19, 26]. For any tree node, given a target

output for the tree, SB determines what the desired output for that
node is. If the node were to be replaced with a subtree that delivers

the desired output, then the outputs of the ancestor nodes would

also change, ultimately making the root deliver the target output.

The application of SB-based GP algorithms has been shown to be

particularly effective in supervised learning applications such as

Boolean circuit synthesis and symbolic regression [8, 15, 19].

SB-based variation operators modify trees by replacing nodes

with subtrees that match desired outputs as closely as possible.

The Random Desired Operator (RDO) is perhaps the most known

among them, as it has been shown to perform best on a variety of

problems [19, 26]. Key components of RDO are the use of a library

of trees with pre-computed outputs, and a library search procedure

to retrieve the tree which most closely matches the desired output.

As to the library, two traditional ways exist to build it [19]. The

first way is to generate all possible trees within a maximum tree

height, and to retain one tree for each unique output (the tree with

less nodes is kept). Clearly, this method cannot scale with the num-

ber of dimensions, nor with the sampling of real-valued constants.

In [19], for problems with a single feature, a maximum height of 3

already results in hundreds of thousands of trees. The second way

is to dynamically refresh the library every generation, by including

all subtrees with unique output as observed in the population. The

downside of this approach is that the expressiveness of the library

may be limited, as it is biased by how the population evolves.

Linear Scaling (LS) is an interesting existing technique to mini-

mize the mean squared error of a GP tree by applying an optimal

linear transformation to the output of the tree [12, 13]. While typi-

cally used to improve the fitness, LS can more generally be applied

to scenarios where a (monotonic transformation of the Euclidean)

distance between two outputs needs to be minimized. As SB-based

GP operates by matching desired outputs, it stands to reason that

some form of LS can be integrated to benefit the algorithm. This

is precisely the topic of this paper: we study how to best integrate

and how to best observe the impact of LS on SB-based GP.

We propose, for the first time, the use of LS as (i) A separate,

but synergetic mechanism, to work with SB; and (ii) A joint mech-

anism, to use within SB-based GP, namely during library search.
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Much previous work solely considered synthetic benchmark func-

tions with few variables, and generational computation budgets

(see Sec. 3). The latter choice arguably favors SB-based GP when

compared to other forms of GP (e.g., traditional GP that swaps and

mutates subtrees randomly [14]), in that the computational time

taken by SB itself, library construction, and library search, is not

considered [19]. For this reason, in our experiments, we assess the

effectiveness of the proposed LS-enhanced, SB-based GP in terms

of both number of generations and time. Moreover, we test the

algorithms on realistic small- to medium-sized regression problems,

using ten established real-world benchmark datasets.

2 SEMANTIC BACKPROPAGATION
Given a target output t for the tree (i.e., for its root), SB computes a

desired output dN for one specific node N . This information can

then be used to replace N with a subtree that has output as close

as possible to dN . It is expected that, the closer the output of the

subtree is to dN , the closer the output of the root will be to t.
Let D be the depth of N . Then N has D ancestors. Let Ak be the

ancestor of N at depth k . Similarly, let Sk = {S1

k , S
2

k , . . . } be the

(possibly empty) set of sibling nodes of Ak . For the sake of brevity,
we now use the same notation used to refer to a node to also identify

the function implemented by that node. E.g.,Ak (x, Sk+1
) represents

the application of the function of nodeAk on x, and on (the outputs

of) the nodes Sk+1
. Therefore, we can say that SB computes:

dAk+1 = A−1

k

(
dAk , Sk+1

)
, (1)

where A−1

k represents the inversion of the function Ak . SB starts

from the root by setting its desired output to the target, i.e. dA0
:= t.

The recursive computation of the desired output for N (at depth D)

then follows: dN = A−1

D−1

(
dAD−1 , SD

)
. Fig. 1 shows an example.

Note that, if non-injective functions (e.g., abs(·)) are included in

the function set, each desired output vector will grow to represent

different possible outcomes, i.e., d ∈ Rγ×n and di = {d1

i , . . . ,d
γ
i },

with i = 1, . . . ,n the indices of training examples (from now on, for

brevity, we drop the superscript N from dN ). Note that γ can be∞,

e.g., for sin. Similarly, any value may satisfy some inversions: e.g.,

for x = ×−1(0, 0), 0 × x = 0,∀x ∈ R. In such cases, we will indicate

that any value is good with ∗. We describe how di with multiple

and/or ∗ values is handled during library search in the following

Section 2.1. Conversely, some functions are not invertible (in R) in

some points (e.g., (·2)−1(−1) =
√
−1), thus some dji may not exist.

If SB is unfeasible, i.e., ∃i : di = ∅, we abort SB (as in [19]).

2.1 Library and library search
Given the desired output d, a subtree with similar output is sought.

For this purpose, typical SB-based variation operators rely on a

searchable library of pre-computed trees with unique outputs. As

aforementioned in the introduction, a way to build the library is

to pre-compute all possible trees up to a maximum height, but this

becomes intractable with already few features (terminals) [19]. The

other typical method is to collect all subtrees as observed in the

population (updated every generation) [4, 22].

In the so-called “population-based” library, if multiple subtrees

with the same output exist in the population, the one smallest in

terms of the number of nodes is retained. Furthermore, subtrees

×

Where:

d × s = t, thus d = t/s
d − s = t, thus d = t + s

9 | 0 | 10 | 16 6 | 18 | 2 | 20

−
3 | 0 | 5 | 4 2 | 2 | 1 | 5

x1

3 | 9 | 2 | 4

5

5 | 5 | 5 | 5 4 | 7 | 1 | 6
x2

2 | 5 | 0 | 1

Figure 1: Example of SB for the yellow leaf. The current out-
puts of each node are in pink. The desired outputs are in
blue. The desired output of the root is the (given) target out-
put, and the others are computed by recursive inversion on
the path down to the yellow leaf. The operations in the top
right describe the inversions used in this example.

with constant output are not considered (library search handles

constants separately, see below).

The library search procedure parses the library to find the tree of

which its output o minimizes the distance from d, e.g., in terms of

modifications of the L1 or L2 distance (or any Minkowski distance).

By modified version of the distances we mean that the multi-valued

nature of di must be accounted for. The distance can be computed by

finding the one dji that minimizes |dji − oi |
w ,∀w ∈ {1, 2, . . . } [19].

Furthermore, if ∃j : dji = ∗, then the values of di do not matter,

and it is defined to have | ∗ −oi |w = 0. By pre-sorting the dji in j , a
linearly addressable library L can be parsed in O(|L |n logγ ) [19].

With trees with a constant output being typically excluded from

the library, library search further considers the distance between a

constant value and the desired output in a separate fashion. In [19],

the values of d are considered to be candidate constant values, and

the best one is picked. The best tree found in the library, or a single-

node implementing the best constant, is finally returned by the

library search procedure, depending on which is closest to d.

2.2 Random Desired Operator
RDO works by generating an offspring tree that differs from the

parent in one subtree. The pseudocode of RDO is shown in Algo-

rithm 1. First, the offspring (O) is created as a clone of the parent (P ),
and one of its nodes N is selected. In [19], it is proposed to select

N with the equal depth probability criterion, which first samples

the depth D to consider, and then samples N among the nodes with

depth D, both uniformly at random. Second, SB is executed for

N , by setting the target for the root to the dependent variable to

regress, i.e. t := y. Note that, in general, t can be different (e.g., a

crossover operator is proposed in [15] that sets the target output

for one parent to the output of another parent). If SB is aborted

because an unfeasible d is computed, RDO returns the clone of the

parent. Otherwise, library search is performed, resulting in a tree

T that has output with minimum distance from d. Finally, RDO
returns the offspring, adapted by replacing its subtree at N with T .

2.3 Intermediate output caching
SB-based GP is particularly efficient if the output of subtrees are

cached. In particular, each recursive iteration of SB requires to
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Algorithm 1 Pseudocode of RDO.

1 function RDO(y, P, L )

2 O ← Clone(P )
3 N ← EqualDepthProbability(O )

4 d← SemanticBackpropagation(N , y)
5 if ∃i : di = ∅ then return O
6 T ← LibrarySearch(d, L )

7 O ← ReplaceSubtree(N , T )
8 return O

know the output of the sibling nodes, and library search requires

the output of the library trees. Therefore, in [19] it is proposed to

cache intermediate tree outputs, i.e., the outputs of all nodes.

Intermediate output caching not only speeds up SB-related meth-

ods, but also the traditional evaluation of trees. In fact, if a node is

changed, it is sufficient to recompute the outputs only along the

chain of ancestors, i.e., from the parent of that node upwards, to get

the output of the root. While these partial evaluations can be very

effective, especially for high-dimensional outputs, they take a toll

in terms of memory (see, e.g., the discussion on scalability in [24]).

3 RELATED WORK
Two research lines are mostly related to this paper, namely the one

on LS, and the one on SB. As to LS, themost citedwork to date is [12],

which shows how LS can dramatically improve the performance

of GP, for synthetic functions with up to three variables. In [13],

theoretical motivations for the added value of LS are given. LS was

successfully used for practical applications in, e.g., [1, 21, 23].

To the best of our knowledge, no contribution has been made

that proposes modifications of LS itself. This is not surprising, as

LS is quick (i.e., O(n)), and the scaling and translation coefficients

are optimal w.r.t. the dependent variable y (see the description of

LS in Sec. 4.1). Perhaps more interestingly, we also could not find

any work where LS is combined with another method in a truly

synergetic way, i.e., having LS and/or the other method sharing

information with each other. E.g., in [5], LS is used together with a

particular mating scheme, but the two methods co-exist indepen-

dently from each other. Here, we consider for the first time a use of

LS that is deeply intertwined with another method, i.e., SB.

As to SB, it was first introduced together with RDO in [26], and

much research work has followed. Perhaps one of the most com-

prehensive contributions is [19], which compares several variation

operators, two of which are SB-based (RDO, and approximately

geometric crossover [15]). RDO is shown to outperform most of

the other operators, on both Boolean and regression problems.

While RDO uses SB to replace a subtree, the Forward Propagation

Mutation (FPM) operator proposed in [22] does the opposite: it

preserves the subtree, and replaces the remaining part of the tree,

called the context. A new context is built by determining a new root,

and another subtree to append to the root, which is a sibling to the

preserved one. This new subtree is retrieved by library search using

cosine similarity, and is rescaled by an optimal constant (determined

in O(n)). The authors claim that an alternative could be to use LS

to also determine a translation coefficient during library search for

FPM. This is indeed investigated in our work, for RDO.

Very recently, a variant of FPM has been proposed in [3] where

the target is set to a random point in the segment between y and the

O
u
t
p
u
t

Input Input

Figure 2: Example of the effect of LS. Blue circles repre-
sent the output of the function to approximate, while or-
ange diamonds and green crosses are the output of two
trees. Left: The orange diamonds are closest to the blue cir-
cles. Right: The application of LS substantially improves the
green crosses, making them become the best match.

output of the parent, and where LS is applied after library search.

While this improves the fitting of the subtree to the context, it is less

effective (but faster) compared to considering optimal translation

coefficients during library search (as recognized by [22]).

Notwithstanding the novelty and advantages of the aforemen-

tioned and of other work on SB-based GP (e.g., [8, 11]), as we

mentioned in the introduction, mostly synthetic functions have

been considered so far, in the domain of regression. These func-

tions have up to three variables only. Furthermore, comparisons

have only been framed in terms of number of generations, thus

ignoring much of the computational expensiveness of SB-based GP.

To the best of our knowledge, only in [3] and [4] four and two

real-world benchmarks are respectively considered, for GP using

RDO (and a variant) and the aforementioned variant of FPM. Yet

again, only generational budgets are considered, except for the

supplementary material of [3], where experiments using a time

limit are reported. Although those results undeniably bring addi-

tional insight, we believe it remains hard to assess what the impact

of using SB-based operators is on computation time, because of

two reasons. Firstly, a relatively small population size of 100 is

used, meaning that population-based libraries will also be small

and quick to parse. Secondly, the considered GP algorithms have

several differences (e.g., selection schemes), and always employ

other variation operators together with the SB-based ones.

In this paper, not only do we consider how LS can be combined

with SB-based GP, but we also attempt to address the main limi-

tations of the related work. We adopt ten real-world benchmark

datasets for regression with dozens of features, as they are arguably

more representative of practical problems, and we attempt to frame

algorithmic comparisons in terms of both generations and time

limits to also observe the potential overhead of adopting SB-based

GP.

4 LINEAR SCALING WITH SB-BASED GP
We now describe the first contribution of this paper, i.e., how SB can

work together with LS, in synergy. The main concept behind LS is

to allow GP to focus on the “shape” of the function to approximate,

by providing translation and scaling coefficients that minimize the

training Mean Squared Error (MSE) [12] (see, e.g., Figure 2).

In principle, LS and SB can work independently, without making

changes to the two methods. In RDO, SB works by setting the
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target output t (i.e., the desired output for the root) to y. To back-

propagate this information means to directly try to optimize the

tree towards delivering exactly y, without exploiting the fact that LS
helps scaling the output of the root. In other words, in this setting,

LS acts solely as a “patch” on top of SB-based GP, as it attempts to

correct for the residual error that the algorithm normally makes.

We argue that it is reasonable to attempt to make LS and SB

work in synergy to reduce the error, in particular by informing

SB on what the effect of LS is. Indeed, we hypothesize that if the

transformation applied by LS is also backpropagated to determine

the desired output, the subsequent variation will be more effective,

as it will attempt to correct the error that remains after LS is applied.

4.1 Linear scaling
LS works as follows. Let the MSE between the dependent variable

y and the tree output o be the fitness function for regression:

MSE(y, o) =
1

n

n∑
i=1

(yi − oi )2 .

LS introduces a scaled version of the MSE, where respectively a

translation coefficient a and a scaling coefficient b are used within

the computation of the MSE, in order to minimize it:

MSE
a,b (y, o) =

1

n

n∑
i=1

(yi − (a + boi ))2 .

The optimal a and b that minimize the error are (see [12]):

a = ȳ − b ō,

b =
n∑
i=1

(yi − ȳ)(oi − ō)
(oi − ō)2

=
cov(y, o)
var (o)

.
(2)

The implementation of Eq. 2 takes O(n).

4.2 Linear scaling in synergy with semantic
backpropagation

We now describe how LS and SB can work in synergy. To begin, we

point out that using theMSE
a,b

is equivalent to using the traditional

MSE on a tree where the addition of a and multiplication by b are

encoded within the tree itself, with suitable nodes placed on top

of the root. For example, consider the rightmost tree of Figure 3:

ignore the nodes in white, and imagine the plus node to be the

actual root. That tree is essentially one where the effect of LS is

incorporated in its structure (with pink nodes). For such a tree, it is

straightforward to compute SB (as described in Sec. 2). In particular,

we immediately see that for a target output t, the desired output

for the original root (top green node) will be:

di =
ti − a
b

, ∀i . (3)

Therefore, whenever SB needs to be performed, we can calculate

a and b based on t and the current tree output o (or, if t = y
like in RDO, a and b can be cached after they are computed for

MSE
a,b (y, o)). Then we can compute d for the root using Eq. 3 as

starting point for SB, and then we can proceed with Eq. 1 as usual.

We remark that the computation overhead for including LS in SB

this way can be considered negligible. If D is the depth of the node

chosen for replacement, then SB needs to compute D inversions.

If only injective functions are considered, this leads to O(Dn) (it is
O(DγDn) if non-injective functions are present). In typical symbolic

regression settings, D is bounded by a small constant and n is large,

i.e. D ≪ n, meaning that the bound is O(n). Since to include LS in

synergy with SB means to compute Eq. 2 and to compute Eq. 3, and

since these computations bring only additional O(n) contributions,
the bound remains O(n).

5 LINEAR SCALING WITHIN SB-BASED GP
When performing library search, a tree T that has output o close

to a desired output d is sought for. This situation is similar to the

symbolic regression problem itself, where the output of the root

node is expected to match y. Because LS is known to help in the

latter scenario [12, 13], it is reasonable to expect that LS can improve

the effectiveness of library search as well, as optimally scaled tree

outputs will be considered.

5.1 Linear scaling during library search
Let L2 be the distance metric adopted by the library search pro-

cedure. Since L2 is a monotonic transformation of the MSE, the

optimal coefficients a and b can be computed with Eq. 2 (replacing

y with d) to decrease the distance between d and o.
In practice, d needs to be in Rn (instead of in Rγ×n ) to have

a unique, well-defined way to compute a and b. E.g., what is ¯d if

there exists some di with multiple values? Some criterion should

be used to choose one of the values for di (e.g., the value closest
to the mean given by considering the other dj that have unique
values). Restricting the multi-dimensionality of the desired output

by choosing a single value for each di means that possibly better

matching outputs present in the library will not be searched for.

Alternatively, multiple scalings could be computed and the best

one could be taken, but exponential possibilities could exist. In this

paper, we include a non-injective function in the function set of

GP that is symmetric around zero. For its inversion, we choose

to return only the positive value (see Sec. 6). Regarding ∗ values,

we make the assumption that, if present, they are few, and can be

ignored when computing a and b.
We thus assess the effect of using LS within library search.When-

ever library search is performed, for each tree in the library, we

compute optimal a and b coefficients that minimize the distance be-

tween the output of the tree and the desired output. Library search

then returns the best matching tree, along with its a,b coefficients.

When this tree needs to be appended by the variation operator,

four nodes are added on top of its root, namely two constants with

value a and b respectively, an addition and a multiplication node,

to effectively incorporate the scaling in the structure of the tree.

Figure 3 illustrates this procedure.

The computation time taken by LS is O(n), and it is additive

w.r.t. the time taken to compute the distance between the output

of a tree in the library and d. Therefore, the library search bound

remains O(|L |n). In practice, some adjustments can be made to

reduce computations. Once the library is created, the mean of each

tree output ō can be cached, as well as the terms (oi − ō) (see Eq. 2).
Furthermore, themean of the desired output

¯d, and the terms (di−¯d)
can be computed only once, before starting the library search. This

way, the only operation with cost linear in n that is left to do when

searching is the computation of the numerator of b in Eq. 2.

Lastly, when using LS within library search, we also change the

way a competing constant is computed: we set the constant to the

optimal value, i.e.,
¯d.
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d

Library Search

apply LS to each tree

while parsing L

& (a,b)

+

a
×

b

Figure 3: Illustration of SB-based GP variation using LS
within library search. From left to right: the desired out-
put d is computed for a node (in yellow). Library search re-
trieves the tree (in green)with output that, scaled bya,b, best
matches d. The yellow node is replaced, and a structure is in-
corporated to account for the scaling (in pink).

6 EXPERIMENTAL SETUP
The parameter settings for GP are reported in Table 1, and are

typical settings used in literature ([20], related work of Sec. 3).

The function ÷AQ is the analytic quotient [18], which allows for

smooth division with no discontinuities (the denominator can never

become 0). The inversions for the functions considered are reported

in Table 2. Note that in the inversion of ÷AQ for aj , we return only

the positive value. The terminal set includes an Ephemeral Random

Constant (ERC) [20], that has the effect of generating nodes with

randomized constant output. These constant outputs are sampled

uniformly in the interval defined by the minimum and maximum

value (available at training time) of the features.

Together with SB-based GP using RDO, we consider as a baseline

GP with standard subtree crossover and subtree mutation opera-

tors (SGP) [14, 20], respectively applying them on 90% and 10%

of the population every generation. Like for RDO, the nodes to

swap/mutate are chosen with equal depth probability, as in [19].

The operators of SGP takemuch less computation time compared

to RDO (essentially O(1)), in particular because the latter requires

to build the library of trees, and performs SB and library search.

Therefore, we consider both a limit of 100 generations and a time-

dependent limit of 1000 seconds. As time-based comparisons can

very much depend on implementation details, we attempt to boost

their fidelity by developing all algorithms in the same C++ code base,

which can be found at: https://goo.gl/UbFFSU.

We consider ten real-world benchmark regression datasets, with

variable numbers of examples and features, as reported in Table 3.

The datasets Dow chemical and Tower are recommended as bench-

marks in [25]. The others are often used in GP literature and come

from the UCI machine learning repository
1
. These datasets can

be considered “well-behaved”, in that overfitting to the training

typically happens only if very complicated models are learned, or

functions with discontinuities are used (e.g., protected division [14]).

We adopt a typical 75%-25% random splitting of the examples into

training and test set for a given run.

Each experiment consists of 30 independent runs. To assess if the

results of one experiment are significantly better or worse than the

ones of another, we use the non-parametric Wilcoxon signed-rank

test [6], pairing runs by random seed. The random seed determines

the train-test split and the sampling of the initial population. We

say a result is significant if the p-value of the statistical test is below

1
https://archive.ics.uci.edu/ml/index.php

Table 1: Parameter settings of GP.

Parameter Setting

# Generations / time limit 100 / 1000 s

Population size 500

Function set {+, −, ×, ÷AQ }

Terminal set Features ∪ ERC

ERC sample method U[min(Features), max(Features)]

Initialization Ramped Half-Half 2–6

Maximum tree height 12

Maximum number of nodes 500

Selection Tournament 4 & Elitism 1

Variation RDO with rate 1.0

Intermediate output caching Active

Table 2: Functions considered and their inversions.

Function Direct Inversion(s)

+ ai + aj = o ai = o − aj
− ai − aj = o ai = o + aj , aj = ai − o
× ai × aj = o ai = o/aj if o, aj , 0

∗ if o, aj = 0

impossible if o , 0, aj = 0

÷AQ ai /
√

1 + a2

j = o ai = o ×
√

1 + a2

j

aj = +
√
(ai /o)2 − 1 if o , 0, (ai /o)2 ≥ 1

impossible if o = 0 or (ai /o)2 < 1

Table 3: Real-world benchmark datasets.

(Abbreviation) Name Examples (n) Features Var (y) Link

(A) Airfoil 1503 5 4.756 · 10 goo.gl/uNMLv3

(B) Boston housing 506 13 8.442 · 10 goo.gl/KxCnq1

(C) Concrete strength 1030 8 2.788 · 10
2

goo.gl/Gjq9oN

(D) Dow chemical 1066 57 1.228 · 10
−1

goo.gl/9D2z3b

(Ec) Energy cooling 768 8 9.039 · 10 goo.gl/ANV6dW

(Eh) Energy heating 768 8 1.017 · 10
2

goo.gl/ANV6dW

(T) Tower 4999 26 6.518 · 10
−1

goo.gl/9D2z3b

(Wr) Wine red 1599 11 7.842 · 10
−1

goo.gl/inDsCE

(Ww) Wine white 4899 11 7.702 · 10
3

goo.gl/inDsCE

(Y) Yacht hydrodynamics 308 6 2.291 · 10
2

goo.gl/cmkRor

a threshold τ . We use τ = 0.05, and further apply the Bonferroni

correction method, to prevent false positive claims [6].

We run the experiments on a machine with two Intel
®
Xeon

®

CPU E5-2699 v4 @ 2.20GHz, and 630 GB of RAM. Big amounts

of memory are needed to use the intermediate output caching, as

single runs can already employ a few GB of memory.

7 RESULTS
We proceed by showing the results of the following experiments.

Firstly we consider whether using LS in synergy with SB is benefi-

cial compared to using it independently. Secondly, we compare all

configurations of SB-based GP with SGP, by fixing the maximum

number of generations, and observing the time taken. Thirdly, we

repeat the previous experiment, but this time using a fixed time

budget, to take into account computational expensiveness.

7.1 Independent vs synergetic linear scaling
with semantic backpropagation

Table 4 shows the median error obtained by end-of-run best trees

found using SB-based GP without LS (noLS), with LS but inde-

pendently from SB (iLS), and with LS in synergy with SB (sLS),
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Table 4: Training and test median NMSEs for SB-based GP
without LS (noLS), with LS used independently (iLS), and
with LS used in synergy with SB (sLS). Underlined results
are best in that no other is significantly better.

Train NMSE Test NMSE

noLS iLS sLS noLS iLS sLS

A 41 29 22 43 32 29

B 27 17 14 27 21 16

C 34 19 15 37 21 18

D 71 29 20 69 28 21

Ec 9.9 6.9 4.9 8.7 7.1 5.4

Eh 6.8 4.0 5.4 8.7 6.2 7.1

T 16 14 13 17 14 14

Wr 69 63 60 65 63 62

Ww 75 69 67 78 71 70

Y .62 .44 .40 .94 .62 .61

# Best 0 2 10 0 2 10

after 100 generations. The results are reported in terms of variance-

Normalized MSE (NMSE), given by dividing the MSE by the vari-

ance of the dependent variable y, to have results of similar order of

magnitude, and multiplying by 100.

Evidently, iLS has much better training and test performance

compared to noLS. This is always significant w.r.t. training NMSE,

and is also significant on all datasets but for Boston at test time.

However, to use LS in synergy with SB is even better, significantly

outperforming both noLS (all cases) and iLS on 8/10 datasets both

at training and test time. Our hypothesis that using LS in synergy

with SB is beneficial is therefore experimentally confirmed.

7.2 SB-based GP vs standard GP
The next results present the outcome of comparing SB-based GP

with SGP, with and without using LS to scale the error and within

library search. We first consider a limit of 100 generations.

7.2.1 Budget of 100 generations. Figure 4 shows, for each dataset,
the evolution of the best training fitness for SGP, SGP with LS

(SGP+LS), SB-based GP with traditional RDO (RDO), RDO using

LS in synergy during backpropagation (RDO+LS), RDO using LS

within library search (RDO
xLS

), and RDO using both LS in synergy

with backpropagation and within library search (RDO
xLS

+LS
).

RDO and SGP are complementary: one is better than the other

on half datasets. However, on Tower and Yacht, SGP has much

larger errors. In some cases (Airfoil, Boston, Concrete, Wine white,

Yacht), it is noticeable that the error of SGP levels off less markedly

than the one of RDO, thus a larger generational budget may favor

SGP. RDO+LS is better than SGP+LS on all datasets but Yacht.

RDO
xLS

and RDO
xLS

+LS
are consistently the best performing, with

the second reaching slightly smaller errors than the first. More-

over, both algorithms have smaller variances than RDO
(+LS)

. This

is because the use of LS within library search (xLS) dynamically im-

proves the expressiveness of the library for any desired output that

is searched. Without xLS, the expressiveness of the library is more

aleatory, as it only depends on the subtrees from the population.

Table 5 shows training and test NMSEs of end-of-run best trees.

The training errors reflect what already seen in Fig. 4. Test errors

are typically similar to training ones, for all the algorithms. RDO
xLS

+LS

is the best performing, while RDO
xLS

is the second best. On Wine
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T
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Figure 4: Median best training NMSE (25th and 75th per-
centiles within shaded area) in 100 generations.

red at test time, SGP+LS is preferable over RDO
xLS

+LS
, which indicates

that the latter overfits (slightly).

7.2.2 Time taken by 100 generations. Figure 5 show the time

taken to perform 100 generations for the algorithms. The differ-

ence between the times taken by SGP and SGP+LS and the various

configurations of RDO is very large. For Yacht, that has 308 exam-

ples, RDO takes around 20 times longer than SGP
(+LS)

; For Tower,

that has 4999 examples, RDO takes around 100 times longer than

SGP
(+LS)

. This result strongly motivates the need for a time-based

comparison between SGP and RDO configurations, for fairness.

The use of LS in addition to RDO, or within library search, does,

on average, increase running times. However, these running times

are not too dissimilar if put in perspective to the times taken by

SGP
(+LS)

. This is expected because +LS and xLS do not affect com-

putational time bounds. RDO and RDO+LS have larger variations

(some of the extreme time points of RDO are considered outliers).
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Table 5: Training and test median NMSEs, for the experi-
ments with a budget of 100 generations. Underlined results
are best in that no other is significantly better.

Train NMSE Test NMSE

S
G
P

S
G
P
+
L
S

R
D
O

R
D
O
+
L
S

R
D
O
x
L
S

R
D
O
x
L
S

+
L
S

S
G
P

S
G
P
+
L
S

R
D
O

R
D
O
+
L
S

R
D
O
x
L
S

R
D
O
x
L
S

+
L
S

A 59 30 41 22 16 15 60 32 43 29 20 19

B 25 17 27 14 10 9.4 23 17 27 16 16 14

C 29 17 34 15 13 12 30 20 37 18 15 15

D 69 23 71 20 15 13 65 23 69 21 16 15

Ec 12 10 9.9 4.9 2.9 2.8 11 9.0 8.7 5.4 3.4 3.2

Eh 8.0 5.7 6.8 5.4 .35 .32 10 7.6 8.7 7.1 .50 .40

T 36 15 16 13 8.6 7.5 36 15 17 14 10 9.5

Wr 67 61 69 60 57 57 65 62 65 62 62 65

Ww 73 68 75 67 64 63 75 70 78 70 69 68

Y 1.5 .31 .62 .40 .14 .13 1.9 .40 .90 .60 .30 .30

# Best 0 0 0 0 1 10 0 1 0 1 4 8

All datasets

Tower (T)

Yacht (Y)

Figure 5: Time (seconds) to complete 100 generations. Left:
Mean time over all datasets; Right: Time by the 30 runs on
Tower (top), and Yacht (bottom); Boxes extend from the 25th
to the 75th percentiles (inner bar is the 50th), whiskers from
the 10th to the 90th. Diamonds are outliers.

These variations in time are linked to the variations already seen

in terms of fitness (e.g., see the Energy datasets in Fig. 4).

7.2.3 Budget of 1000 seconds. The evolution of the best training

fitness in time is reported in Figure 6, for each dataset and algorithm.

The conclusions that can be drawn from these results are different

from the ones based on a generational limit. For SGP, the use of a

time limit of 1000 seconds seems more appropriate than the limit

of 100 generations, since the fitness tends to plateau more in this

case (this is particularly evident for the smallest dataset Yacht).

Now, RDO performs markedly worse than SGP, and RDO+LS is

also worse than SGP+LS, with the latter typically achieving close

performance to RDO
xLS

. While in a time-based comparison RDO

Table 6: Training and test median NMSEs, for the experi-
ments with a budget of 1000 seconds. Underlined results are
best in that no other is significantly better.

Train NMSE Test NMSE

S
G
P

S
G
P
+
L
S

R
D
O

R
D
O
+
L
S

R
D
O
x
L
S

R
D
O
x
L
S

+
L
S

S
G
P

S
G
P
+
L
S

R
D
O

R
D
O
+
L
S

R
D
O
x
L
S

R
D
O
x
L
S

+
L
S

A 27 19 41 23 17 16 32 22 44 30 20 20

B 13 9.0 25 13 10 8.7 17 14 26 15 16 14

C 16 13 30 15 12 12 18 16 37 19 15 15

D 38 14 71 20 15 13 43 16 68 22 16 15

Ec 3.8 3.3 8.5 4.7 2.8 2.6 4.8 3.8 7.4 5.6 3.4 3.2

Eh 1.2 .77 6.5 4.1 .33 .28 1.5 .91 8.4 5.4 .45 .35

T 22 11 23 18 10 9.0 22 12 23 19 12 11

Wr 60 58 69 60 57 57 63 62 65 62 62 63

Ww 68 66 76 68 66 66 70 69 79 70 69 69

Y .27 .16 .50 .35 .12 .10 .49 .33 .80 .55 .35 .33

# Best 0 0 0 0 2 10 0 3 0 2 4 8

performs quite poorly, it is interesting to see that, instead, RDO
xLS

and RDO
xLS

+LS
still perform very well. Indeed, the inclusion of LS

within library search makes variation so effective that, even if

library search itself becomes slower, fitter trees are discovered

sooner. While it is perhaps not surprising that xLS makes variation

improve, it is interesting to see the extent of this improvement.

Table 6 summarizes both training and test NMSEs of end-of-run

best trees. The tests for statistical significance confirm what already

seen in the training fitness convergence plots of Fig. 6: RDO
xLS

+LS

is the top performing algorithm, followed by RDO
xLS

. In terms of

error magnitudes, SGP+LS is relatively close to RDO
xLS

and RDO
xLS

+LS

(yet often significantly worse), compared to SGP and RDO w/o LS.

When it comes to generalization, RDO
xLS

+LS
is still preferable, as it

is significantly worse than another algorithm only on 2 datasets,

by relatively small magnitudes. SGP+LS leads to very good general-

ization on 3 out of 10 datasets, indicating that RDO
xLS

+LS
, which was

better at training time, delivered slightly overfitted trees.

All in all, our results show that scaling the trees during library

search is extremely valuable for RDO. In addition, to consider LS

when backpropagating, i.e., RDO
xLS

+LS
, gives a further edge.

8 DISCUSSION
We found that a comparison between RDO and SGP on real-world

datasets strongly depends on how this comparison is framed. With

a typical budget of 100 generations, the algorithms perform comple-

mentarily. Instead, when the comparison is framed in terms of time,

RDO performs worse than SGP. Our proposal of incorporating LS

within the mechanisms of RDO makes the algorithm much more

effective even if extra computations take place, and makes it capable

of outperforming all the other algorithms.

We now discuss some limitations of this paper. To begin, we

used typical settings for the parameters of GP. One may wonder

whether our findings do generalize to other configurations. Popula-

tion sizing is perhaps the most interesting aspect to consider [10],

especially when using a population-based library (which is com-

posed of all subtrees with unique output from the population). If a

library is large enough, i.e., if it has enough representative power,

the adoption of LS may become redundant. However, because LS
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Figure 6: Median best training NMSE (25th and 75th per-
centiles within shaded area) in 1000 seconds.

applies a linear transformation that is optimal, we argue that popu-
lations and libraries will likely need to grow too big to be practically

usable to compete with LS. As to other parameters, we believe that

the magnitude of our results, as well as the small variances found

along the runs, strongly indicate that the use of LS within library

search will remain beneficial for many other parameter settings.

Another limit of our approach, in particular of using LS within

library search, is the growth of tree size. Any time a tree is retrieved

from the library, four nodes are added to incorporate the effect of

LS. Larger trees are slower to evaluate (and require more mem-

ory to cache intermediate outputs), and are also less likely to lead

to interpretable expressions. Interpretability of machine learning

models can be a relevant aspect for practical applications, e.g., in

healthcare [16, 23]. By including LS within library search, we did

find trees to grow bigger, with the best trees found by RDO
xLS

+LS
be-

ing on average 1.1 times larger than the the ones found by SGP+LS

in the time-based comparison. We claim that this difference in size

is largely unimportant. Both algorithms deliver quite big trees any-

way, with approximately 325 nodes for SGP+LS and 360 nodes for

RDO
xLS

+LS
, on average. From a performance perspective, the incre-

ment in time taken to evaluate a larger tree is limited, but may

become noticeable for much larger datasets than the ones we con-

sidered. As to interpretability, the algorithms deliver trees that are

equivalently too large to result in interpretable expressions.

Future work may therefore focus on reducing tree size, e.g.,

by exploring the inclusion of bloat control methods [17], or by

expressing preference for smaller trees as a secondary objective [7].

However, if having trees with only a few dozen nodes is truly

desired, we believe substantially different approaches to GP may

need to be taken, such as modern model-based GP [23, 24].

Another aspect worth investigating is the use of more efficient

data structures to implement the library. In [15], k-d trees are

used [2, 9]. We did experiments with this data structure, and al-

though searching k-d trees may not be quick for datasets with many

examples [9], we did observe speed ups for the datasets we consid-

ered. Unfortunately, LS cannot be used within k-d tree search. This

is because a k-d tree is built exploiting the fixed distribution of tree

outputs, to cut exploration branches when searching. To apply LS

means to dynamically change such a distribution.

We did experiments with adopting k-d trees jointly with the

computation of only the optimal translation coefficient a. This can
be achieved by (i) Subtracting the mean of the output o of each

library tree prior to building the k-d tree; (ii) Subtracting the mean

of the desired output d prior to k-d tree search; (iii) Incorporating

the addition of a = ¯d − ō to the tree returned by the search. This

achieves the optimal translation (see Eq 2). However, we found this

to be less effective than using LS (which also computes b) within
traditional library search. To find an efficient data structure that

enables the use of LS or of a similarly powerful method, as well as

investigating code parallelization, may allow to use SB-based GP

for large scale symbolic regression.

9 CONCLUSION
We presented the use of Linear Scaling (LS) in synergy with Se-

mantic Backpropagation (SB), and within library search, in Genetic

Programming (GP) for symbolic regression. We validated the pro-

posed adaptations on ten real-world datasets, comparing various

GP configurations using a generational and a time budget. We found

that incorporating LS within SB-based GP leads to much lower er-

rors in both cases, and outperforms the use of traditional variation

operators. Lastly, the cost incurred by our adaptations is limited, as

the asymptotic time bounds of SB-based GP remain unchanged.
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