
HAL Id: hal-02972571
https://hal.science/hal-02972571v1

Submitted on 29 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recommending Deployment Strategies for Collaborative
Tasks

Dong Wei, Senjuti Basu Roy, Sihem Amer-Yahia

To cite this version:
Dong Wei, Senjuti Basu Roy, Sihem Amer-Yahia. Recommending Deployment Strategies for Collabo-
rative Tasks. SIGMOD/PODS ’20: International Conference on Management of Data, 2020, Portland
(virtual), United States. pp.3-17, �10.1145/3318464.3389719�. �hal-02972571�

https://hal.science/hal-02972571v1
https://hal.archives-ouvertes.fr

Recommending Deployment Strategies
for Collaborative Tasks

Dong Wei

NJIT, USA

dw277@njit.edu

Senjuti Basu Roy

NJIT, USA

senjutib@njit.edu

Sihem Amer-Yahia

CNRS, Univ. Grenoble Alpes, France

sihem.amer-yahia@cnrs.fr

ABSTRACT
Our work contributes to aiding requesters in deploying col-

laborative tasks in crowdsourcing. We initiate the study of

recommending deployment strategies for collaborative tasks

to requesters that are consistent with deployment parame-

ters they desire: a lower-bound on the quality of the crowd

contribution, an upper-bound on the latency of task com-

pletion, and an upper-bound on the cost incurred by paying

workers. A deployment strategy is a choice of value for three

dimensions: Structure (whether to solicit the workforce se-
quentially or simultaneously), Organization (to organize it

collaboratively or independently), and Style (to rely solely

on the crowd or to combine it with machine algorithms).

We propose StratRec, an optimization-driven middle layer

that recommends deployment strategies and alternative de-

ployment parameters to requesters by accounting for worker

availability. Our solutions are grounded in discrete optimiza-

tion and computational geometry techniques that produce

results with theoretical guarantees. We present extensive

experiments on Amazon Mechanical Turk, and conduct syn-

thetic experiments to validate the qualitative and scalability

aspects of StratRec.

ACM Reference Format:
Dong Wei, Senjuti Basu Roy, and Sihem Amer-Yahia. 2020. Recom-

mending Deployment Strategies for Collaborative Tasks. In Pro-
ceedings of . ACM, New York, NY, USA, 15 pages. https://doi.org/

10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Despite becoming a popularmeans of deploying tasks, crowd-

sourcing oers very little help to requesters. In particular,

task deployment requires that requesters identify appropriate
deployment strategies. A strategy involves the interplay of

multiple dimensions: Structure (whether to solicit the work-

force sequentially or simultaneously), Organization (to orga-

nize it collaboratively or independently), and Style (to rely

on the crowd alone or on a combination of crowd and ma-

chine algorithms). A strategy needs to be commensurate

, ,
© 2020

.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

to deployment parameters desired by a requester, namely, a

lower-bound on quality, an upper-bound on latency, and an

upper-bound on cost. For example, for a sentence translation

task, a requester wants the translated sentences to be at least

80% as good as the work of a domain expert, in a span of

at most 2 days, and at a maximum cost of $100. Till date,

the burden is entirely on requesters to design deployment

strategies that satisfy desired parameters. Our eort in this

paper is to present a formalism and computationally e-

cient algorithms to recommend multiple strategies (namely

k) to the requester that are commensurate to her deployment

parameters, primarily for collaborative tasks.

A recent work [5] investigated the deployment of text cre-

ation tasks in Amazon Mechanical Turk (AMT) empirically.

The authors validated the eectiveness of dierent strategies

for dierent collaborative tasks, such as text summarization

and text translation, and provided evidence for the need to

guide requesters in choosing the right strategy. In this paper,

we propose to automate strategy recommendation. This is
particularly challenging because the estimation of the cost,

quality, and latency of a strategy for a given deployment

request must account for many factors.

To realize our contributions, we develop StratRec (refer
to Figure 1), an optimization-driven middle layer that sits

between requesters, workers, and platforms. StratRec has
two main modules: Aggregator and Alternative Parameter
Recommendation (ADPaR in short). Aggregator is respon-
sible for recommending k strategies to a batch of incom-

ing deployment requests, considering worker availability.

If the platform does not have enough qualied workers to

satisfy all requests, Aggregator triages them by optimizing
platform-centric goals, i.e., to maximize throughput or pay-o
(Section 2.2). Unsatised requests are sent to ADPaR, which
recommends dierent deployment parameters for which k
strategies are available.

In principle, recommending deployment strategies involves
modeling worker availability considering their skills for the
tasks that require deployment. This gives rise to a complex

function that estimates parameters (quality, latency, and

cost) of a strategy considering worker skills, task types, and

worker availability. As the rst ever principled investiga-

tion of strategy recommendation in crowdsourcing, we rst

make a binary match between workers’ skills and task types

and then estimate strategy parameters considering those

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: StratRec Framework

workers’ availability. Worker availability is captured as a

probability distribution function (pdf) by leveraging histor-

ical data on a platform. For example, the pdf can capture

that there is a 70% chance of having 7% of the workers and a

30% chance of having 2% of the workers available who are

suitable to undertake a certain type of task. In expectation,

this gives rise to 5.5% of available workers. If a platform has

4000 total workers available to undertake a certain type of

task, that gives rise to a total of 220 available workers in an

expected sense. StratRec works with such expected values.
Contribution 1.Modeling and Formalism:We present

a general framework StratRec for modeling quality, cost, and

latency of a set of collaborative tasks, when deployed based

on a strategy considering worker availability (Section 3.1).

The rst problem we study is Batch Deployment Recommen-
dation inside to deploy a batch of tasks to maximize two

dierent platform-centric criteria: task throughput and pay-

o. After that, unsatised requests are sent one by one to

the Alternative Parameter Recommendation module (ADPaR).
ADPaR solves an optimization problem that recommends al-

ternative parameters for which k deployment strategies exist.

For instance, if a request has a very small latency thresh-

old that cannot be attained based on worker availability,

ADPaR may recommend increasing the latency and cost

thresholds to nd k legitimate strategies. ADPaR does not

arbitrarily choose the alternative deployment parameters. It

recommends those alternative parameters that are closest,
i.e., minimizing the `2 distance to the ones specied.

Contribution 2. Algorithms: In Section 3, we design

BatchStrat, a unied algorithmic framework to solve the

Batch Deployment Recommendation problem. BatchStrat is
greedy in nature and provides exact results for the through-

put maximization problem, and a 1/2-approximation factor

for the pay-o maximization problem (which is NP-hard). In

Section 4, we develop ADPaR-Exact to solve ADPaR that is

geometric and exploits the fact that our objective function is

monotone (Equation 3). Even though the original problem

is dened in a continuous space, we present a discretized

technique that is exact. ADPaR-Exact employs a sweep-line

technique [9] that gradually relaxes quality, cost, and la-

tency, and is guaranteed to produce the tightest alternative

parameters for which k deployment strategies exist.

Contribution 3. Experiments: We conduct comprehen-

sive real-world deployments for text editing applications

with real workers and rigorous synthetic data experiments

(Section 5). The former validates that worker availability

varies over time, and could be reasonably estimated through
multiple real world deployments. It also shows with statistical
signicance that cost, quality, latency have a linear relation-
ship with worker availability for text editing tasks. Our real
data experiments (Section 5.1.2) also validate that when tasks

are deployed considering the recommendation of StratRec,
with statistical signicance, they achieve higher quality and

lower latency, under the xed cost threshold on an average,

compared to the deployments that do not consult StratRec.
These results validate the eectiveness of deployment recom-

mendations of our proposed framework and its algorithms.

2 FRAMEWORK AND PROBLEM
2.1 Data Model
Crowdsourcing Tasks: A platform is designed to crowd-

source tasks, deployed by a set of requesters and undertaken

by crowd workers. We consider collaborative tasks such as

sentence translation, text summarization, and puzzle solv-

ing [29, 30].

Deployment Strategies: A deployment strategy [17]

instantiates three dimensions: Structure (sequential or simul-

taneous), Organization (collaborative or independent), and

Style (crowd-only or crowd and algorithms). We rely on com-

mon deployment strategies [5, 17] and refer to them as S.

Figure 2 enlists some strategies that are suitable for text

translation tasks (from English to French in this example).

For instance, SEQ-IND-CRO in Figure 2(a) dictates that work-

ers complete tasks sequentially (SEQ), independently (IND)
and with no help from algorithms (CRO). In SIM-COL-CRO
(Figure 2(b)), workers are solicited in parallel (SIM) to com-

plete a task collaboratively (COL) and with no help from

algorithms (CRO). The last strategy SIM-IND-HYB dictates a

hybrid work style (HYB) where workers are combined with

algorithms, for instance with Google Translate.

A platform could provide the ability to implement some

strategies. For instance, communication between workers

enables SEQ, while collaboration enables COL. Additionally,
coordination between machines and humans may enable

HYB. Therefore, strategies could be implemented inside or

outside platforms. In the latter, a platform could be used

solely for hiring workers who are then redirected to an envi-

ronment where strategies are implemented. In all cases, we

will assume a set of strategies S for a given platform.

For the purpose of illustration, we will only use a few

strategies in this paper. However, in principle, the number

of possible strategies could be very large. The closest anal-

ogy is query plans in relational databases in which joins,

selections, and projections could be combined any number

of times and in dierent orders. Additionally, there exists

multiple real world tools Turkomatic [19] or Soylent [4], that

aid requesters in planning and solving collaborative tasks. In

Turkomatic, while workers decompose and solve tasks, re-

questers can view the status of worker-designed workows

in real time; intervene to change tasks; and request new

solutions. Such tools would certainly benet from strategy

recommendation.

TaskRequests andDeployment Parameters:A requester

intends to nd one or more strategies (notationally k , a small

integer) for a deployment d with parameters on quality, cost,

and latency (d .quality, d .cost , d .latency) such that, when a

task in d is deployed using strategy s ∈ S , it is estimated to

achieve a crowd contribution quality s .quality, by spending

at most s .cost , and the deployment will last at most s .latency.

Quality Cost Latency

d1 0.4 0.17 0.28

d2 0.8 0.2 0.28

d3 0.7 0.83 0.28

s1 0.5 0.25 0.28

s2 0.75 0.33 0.28

s3 0.8 0.5 0.14

s4 0.88 0.58 0.14

Table 1: Deployment Requests and Strategies

Example 1. Assume there are 3 (m = 3) task deployment
requests for dierent types of collaborative sentence translation
tasks. The rst requester d1 is interested in deploying sentence
translation tasks for 2 days (out of 7 days), at a cost up to $100
(out of $600 max), and expects the quality of the translation to
reach at least 40% of domain expert quality. Table 1 presents
these after normalization between [0 − 1]. We set k = 3.

A strategy s is suitable to be recommended to d , if
s .quality ≥ d .qualityAND s .cost ≤ d .cost AND s .latency ≤
d .latency. Estimating the parameters s .quality, s .cost ,
s .latency for each s and deployment d requires accounting

for the worker pool and their skills who are available to un-

dertake tasks in d . A simple yet reasonable approach to that is
to rst match task types in a deployment request with workers’
skills to select a pool of workers. Following that, we account for
worker availability from this selected pool, since the deployed
tasks are to be done by those workers. Thus, the (estimated)
quality, cost and latency of a strategy for a task is a function

of worker availability, considering a selected pool of workers
who are suitable for the tasks.

Worker Availability: Worker availability is a discrete

random variable and is represented by its corresponding

distribution function (pdf), which gives the probability of

the proportion of workers who are suitable and available

to undertake tasks of a certain type within a specied time

d .latency (refer to Example 1). This pdf is computed from his-

torical data on workers’ arrival and departure on a platform.

StratRec computes the expected value of this pdf to represent

the available workforceW , as a normalized value in [0, 1].
In the remainder of the paper, worker availability stands for

worker availability in expectation, unless otherwise speci-

ed. How to accurately estimate worker availability is an

interesting yet orthogonal problem and not our focus here.

2.2 Illustration of StratRec
StratRec is an optimization-driven middle layer that sits be-

tween requesters, workers, and platforms. At any time, a

crowdsourcing platform has a batch of m deployment re-

quests each with its own parameters as dened above, com-

ing from dierent requesters. StratRec is composed of two

main modules - Aggregator and Alternative Parameter Rec-
ommendation (or ADPaR).

For the purpose of illustration, continuing with Example 1,

S consists of the set of 4 deployment strategies, as shown in

Figure 2: SIM-COL-CRO, SEQ-IND-CRO, SIM-IND-CRO, SIM-
IND-HYB. To ease understanding, we name them as s1, s2, s3,
s4, respectively.

These requests, once received by StratRec, are sent to the

Aggregator. First, it analyzes the Worker Pool to estimate

worker availability. There is a 50% probability of having 700

workers and a 50% probability of having 900 workers out of

1000 suitable workers for sentence translation tasks available

for the next 7 days. Thus, the expected worker availabilityW
is 0.8. After that, it consults the Deployment Strategy Model-
ing in Batch Deployment module to estimate the quality, cost,

and latency of a strategy (more in Section 3.1) for a deploy-

ment. Since all deployments are of the same type, Equation 4,

could be used to estimate those Strategy parameters (also

presented in Table 1). Then, it consults theWorkforce Require-
ment Computation to estimate the workforce requirement of

each strategy (more in Section 3.2 and Figure 3). Finally, the

Optimization Guided Batch Deployment (refer to Section 3.3)

is invoked to select a subset of requests that optimizes the

underlying goal and recommends k strategies for each. Each

unsatised request di is sent to ADPaR that recommends an

alternative deployment d ′i to the requester for which there

exist k deployment strategies.

Using Example 1, out of the three deployment requests,

only d3 could be fully served (considering either throughput

English Text

Final French Text

Worker-1

French Text...

Worker-n

French Text

(a) SEQ-IND-CRO

English Text

French Text

Worker-1... Worker-n

(b) SIM-COL-CRO

English Text

Evaluation

Best French
Translation

Worker-1

French Text ...
Worker-n

French Text

(c) SIM-IND-CRO

English Text

Evaluation

Best French
Translation

Worker-1

French Text ...
Worker-n

French Text

Automatic Translation
(French Text)

(d) SIM-IND-HYB

Figure 2: Deployment Strategies

or pay-o objective) and s2, s3, s4 are recommended. d1 and
d2 are then sent to ADPaR one by one.

2.3 Problem Denitions
Problem 1. Batch Deployment Recommendation:

Given an optimization goal F , a set S of strategies, a batch of
m deployment requests from dierent requesters, where the i-th
task deployment di is associated with parameters di .quality,
di .cost and di .latency, and worker availabilityW , distribute
W among these requests by recommending k strategies for each
request, such that F is optimized.
The high level problem optimization problem could be for-

malized as:

Maximize F =
∑

fi

s.t.
∑

~wi ≤W AND

di is successful

(1)

where fi is the optimization value of deployment di and
~wi is the workforce required to successfully recommend k
strategies it. A deployment request di is successful, if for
each of the k strategies in the recommended set of strategies

S id , the following three criteria are met: s .cost ≤ di .cost ,
s .latency ≤ di .latency and s .quality ≥ di .quality.

Using Example 1, d3 is successful, as it will return S3d =
{s2, s3, s4}, such that d3.cost ≥ s4.cost ≥ s3.cost ≥ s2.cost
& d3.latency ≥ s4.latency ≥ s3.latency ≥ s2.latency &

d3.quality ≤ s4.quality ≤ s3.quality ≤ s2.quality, and it

could be deployed with the available workforceW = 0.8.
In this work, F is designed tomaximize one of two dierent

platform centric-goals: task throughput and pay-o.

Throughputmaximizes the total number of successful strat-

egy recommendations without exceedingW . Formally,

Maximize

m∑
i=1

xi

s.t.

∑
xi × ~wi ≤W

xi =

1 di .cost ≤ sj .cost AND

di .latency ≤ sj .latency AND

di .quality ≥ sj .quality AND

|S id | = k,∀i = 1, . . . ,m; j = 1, . . . , |S|

0 otherwise

(2)

Pay-o maximizes di .cost , if di is a successful deployment

request without exceedingW . The rest of the formulation is

akin to Equation 2.

Problem 2. Alternative ParameterRecommendation:
Given a deployment d , worker availability W , a set of de-
ployment strategies S, and a cardinality constraint k , ADPaR
recommends an alternative deployment d ′ and associated k
strategies, such that, the Euclidean distance (`2) between d and
d ′ is minimized.

Formally, our problem could be stated as a constrained opti-
mization problem:

min (d ′.cost − d .cost)2 + (d ′.latency − d .latency)2

+ (d ′.quality − d .quality)2

s.t.
|S |∑
j=1

x j = k

x j =

1 d ′.cost ≤ sj .cost AND
d ′.latency ≤ sj .latency AND
d ′.quality ≥ sj .quality

0 otherwise

(3)

Based on Example 1, if ADPaR takes the following input

values d1 : (0.4, 0.17, 0.28) and S. For d1, the alternative rec-
ommendation should be (0.4, 0.5, 0.28) with three strategies

s1, s2, s3.

3 DEPLOYMENT RECOMMENDATION
We describe our proposed solution for Batch Deployment
Recommendation (Problem 1). Givenm requests andW , the

Aggregator invokes BatchStrat, our unied solution to solve

the batch deployment recommendation problem. There are

three major steps involved. BatchStrat rst obtains model

parameters of a set of candidate strategies (Section 3.1),

then computes workforce requirement to satisfy these re-

quests (Section 3.2), and nally performs optimization to

select a subset ofm deployment requests, such that dier-

ent platform-centric optimization goals could be achieved

(Section 3.3).

We rst provide an abstraction that serves the purpose

of designing BatchStrat. Givenm deployment requests and

W workforce availability, we intend to compute a two di-

mensional matrixW , where there are |S| columns that map

to available deployment strategies andm rows of dierent

deployment requests. Figure 3a shows the matrix built for

Example 1. A cellwi j in this matrix estimates the workforce

required to deploy i-th request using j-th strategy. This ma-

trixW is crucial to enable platform centric optimization for

batch deployment.

3.1 Deployment Strategy Modeling
BatchStrat rst performs deployment strategy modeling to

estimate quality, cost, latency of a strategy s for a given de-

ployment requestd . As the rst principled solution, it models

these parameters as a linear function of worker availability,

from the ltered pool of workers whose proles match tasks

in the deployment request
1
. Therefore, if d is deployed us-

ing strategy s , the quality parameter of this deployment is

modeled as:

sd .quality = αqds .(wqds) + βqds (4)

Our experimental evaluation (Table 6) in Section 5.1, per-

formed on AMT validates this linearity assumption with 90%

statistical signicance for two text editing tasks.

Model parameters α and β are obtained for every s , d ,
and parameter (quality, cost, latency) combination, by tting

historical data to this linear model. Once these parameters

are known, BatchStrat uses Equation 4 again to estimate

workforce requirementwqds to satisfy quality threshold (cost

and latency like-wise) for deployment d using strategy s . We

repeat this exercise for each s ∈ S, which comprises our set

of candidate strategies for a deployment d .

1
We note that StratRec could be adapted for tasks that do not exhibit
such linear relationships.

3.2 Workforce Requirement Computation
The goal of the Workforce Requirement Computation is to

estimate workforce requirement per (deployment, strategy)

pair. It performs that in two sub-steps, as described below.

(1) ComputingMatrixW : The rst step is to computeW ,

wherewi, j represents the workforce requirement of deploy-

ingdi with strategy sj . Recall that in Equation 4, as long as for
a deployment di , the deployment parameters on quality, cost,

and latency, i.e.,di .quality,di .cost anddi .latency are known,

for a strategy, sj , we can computewi, j , i.e., that is the mini-

mum workforce needed to achieve those thresholds, by con-

sidering the equality condition, i.e., sj .quality = di .quality
(similarly for cost and latency), and solving Equation 4 for

w , with known (α , β) values. Using Example 1, the table in

Figure 3a shows the rows and columns of matrixW and

how a workforce requirement could be calculated for w11.

Basically, once we solve the workforce requirement of qual-

ity, cost, and latency(wqi j ,wci j ,wl i j), the overall workforce

requirement of deploying di using sj is the maximum over

these three requirements. Formally, they could be stated as

follows:

wi j = Max

di .quality = αqi jwqi j + βqi j

di .cost = αci jwci j + βci j

di .latency = αl i jwl i j + βl i j

Using Example 1,w11 is the maximum over {wq11,wc11,wl11}.

Figure 3a shows howw11 needs to be computed for deploy-

ment d1 and strategy s1 for the running example.

RunningTime:Running time of computingW isO (m |S|),
since computing each cellwi j takes constant time.

(2) ComputingWorkforce Requirement per Deploy-
ment: For a deployment request di to be successful, Batch-
Strat has to nd k strategies, such that each satises the

deployment parameters. In step (2), we investigate how to

make compute workforce requirement for all k strategies,

for each di . The output of this step produces a vector ~W
of lengthm, where the i-th value represents the aggregated

workforce requirement for requestdi . Computing ~W requires

understanding of two cases:

• Sum-case: It is possible that the task designer intends
to perform the deployment using allk strategies. There-
fore, the minimum workforce (wi) needed to satisfy

cardinality constraint ki is Σ
k
y=1wiy (wherewiy is the

y-th smallest workforce value in row i of matrixW .

• Max-case: The task designer intends to only deploy

one of the k recommended strategies - in that case,

wi = wiy , (where wiy is the k-th smallest workforce

value in row i of matrixW).

Figures 3b and 3c represent how ~W is calculated considering

sum-case and max-case, respectively.

(a) Requirement for (d1, s1) (b) Aggregated requirement per request
(Sum)

(c) Aggregated requirement per request
(Max)

Figure 3: Computing Workforce Requirement

Running Time: The running time of computing the ag-

gregated workforce requirement of the i-th deployment re-

quest isO (|S|kloд |S|), if we use min-heaps to retrieve the k
smallest numbers. The overall running time is again

O (mk loд |S|).

3.3 Optimization-Guided Batch
Deployment

Finally, we focus on the optimization step of BatchStrat,
where, given ~W , the objective is to distribute the available

workforceW amongm deployment requests such that it op-

timizes a platform-centric goal F . SinceW can be limited, it

may not be possible to successfully satisfy all deployment

requests in a single batch. This requires distributingW ju-

diciously among competing deployment requests and satis-

fying the ones that maximize platform-centric optimization

goals, i.e., throughput or pay-o.

At this point, a keen reader may notice that the batch

deployment problem bears a resemblance to a well-known

discrete optimization problem that falls into the general cat-

egory of assignment problems, specically, Knapsack-type

of problems [10]. The objective is to maximize a goal (in

this case, throughput or pay-o), subject to the capacity

constraint of worker availabilityW . In fact, depending on

the nature of the problem, the optimization-guided batch

deployment problem could become intractable.

Intuitively, when the objective is only tomaximize through-

put (i.e., the number of satised deployment requests), the

problem is polynomial-time solvable. However, when there

is an additional dimension, such as pay-o, the problem

becomes NP-hard problem, as we shall prove next.

Theorem 1. The Pay-O maximization problem is NP-
hard [33].

Our proposed solution bears similarity to the greedy ap-

proximation algorithm of the Knapsack problem [14]. The ob-

jective is to sort the deployment strategies in non-increasing

order of
fi
~wi
. The algorithm greedily adds deployments based

on this sorted order until it hits a deployment di that can
no longer be satised byW , that is, Σi=1..x di >W . At that

step, it chooses the better of {d1,d2,di−1} and di and the pro-

cess continues until no further deployment requests could

be satised based onW . Lines 4− 8 in Algorithm BatchStrat
describe those steps.

Running Time: The running time of this step is domi-

nated by the sorting time of the deployment requests, which

is O (m loдm).

Algorithm 1 Algorithm BatchStrat

1: Input:m deployment requests, S, objective function F ,
available workforceW

2: Output: recommendations for a subset of deployment

requests.

3: Estimate model parameters for each (strategy, deploy-

ment) pair.

4: Compute Workforce Requirement MatrixW

5: Compute Workforce Requirement per Deployment Vec-

tor ~W
6: Compute the objective function value fi of each deploy-

ment request di
7: Sort the deployment requests in non-increasing order of

fi
~wi

8: Greedily add deployments until we hit di , such that

Σi=1..x di >W
9: Pick the better of {d1,d2,di−1} and di

3.3.1 Maximizing Throughput. When task throughput is

maximized, the objective function F is computed simply by

counting the number of deployment requests that are satis-

ed by the Aggregator. Therefore, fi , the objective function
value of deployment di is the same for all the deployment re-

quests and is 1. Our solution, BatchStrat-ThroughPut, sorts
the deployment requests in increasing order of workforce

requirement ~wi to make
1

~wi
non-increasing. Other than that,

the rest of the algorithm remains unchanged.

(a) Deployment parameters in
3-D space

(b) Projection of d ′ on (L, Q)
plane

Figure 4: ADPaR

Theorem 2. Algorithm BatchStrat-ThroughPut gives an
exact solution to the problem [33].

3.3.2 Maximizing Pay-O. Unlike throughput, when pay-o
is maximized, there is an additional dimension involved that

is dierent potentially for each deployment request. fi for
deployment requestdi is computed usingdi .cost , the amount

of payment deployment di is willing to expend. Other than

that, the rest of the algorithm remains unchanged.

Theorem 3. Algorithm BatchStrat-PayO has a
1/2-approximation factor [33].

4 ADPAR
We discuss our solution to the ADPaR problem, that takes a

deployment d and strategy set S as inputs, and is designed

to recommend alternative deployment parameters d ′ to opti-

mize the goal stated in Equation 3 (Section 2.3), such that d ′

satises the cardinality constraint of d .
Going back to Example 1 with the request d2, StratRec

there is no strategy that satises d2 (refer to Figure 4a).

At a high level, ADPaR bears a resemblance to Skyline and
Skyband queries [8, 16, 27] - but as we describe in Section 6,

there are signicant dierences between these two problems

- thus the former solutions do not adapt to solve ADPaR. Sim-

ilarly, ADPaR is signicantly dierent from existing works

on query renement [2, 11, 24, 25], that we further delineate

in Section 6.

4.1 Algorithm ADPaR-Exact
Our treatment is geometric and exploits the monotonicity

of our objective function (Equation 1 in Section 2.3). Even

though the original problem is dened in a continuous space,

we present a discretized technique that is exact. ADPaR-
Exact, employs three sweep-lines [9], one for each parameter,

quality, cost, and latency and gradually relaxes the parame-

ters to produce the tightest alternative parameters that admit

k strategies. By its unique design choice, ADPaR-Exact is
empowered to select the parameter that is most suitable to

optimize the objective function, and hence, produces exact

solutions to ADPaR.

ADPaR-Exact has four main steps. Before getting into

those details, we present a few simplications to the prob-

lem for the purpose of elucidation. As we have described

before, we normalize quality, cost, latency thresholds of a

deployment or of a strategy in [0, 1], and inverse quality to

(1 − quality). This step is just for unication, making our

treatment for all three parameters uniform inside ADPaR,
where smaller is better, and the deployment thresholds are

considered as upper-bounds. With this, each strategy is a

point in a 3-dimensional space and a deployment parameter

(modulo its cardinality constraint) is an axis-parallel hyper-

rectangle[9] in that space. Consider Figure 4a that shows the

4 strategies in Example 1 and d2 as a hyper-rectangle.
Step-1 of ADPaR-Exact computes the relaxation (incre-

ment) that a deployment requires to satisfy a strategy among

each deployment parameter. This is akin to computing si .cost−
d2.cost (likewise for quality and latency) and when the strat-

egy cost is smaller than the deployment threshold, it shows

no relaxation is needed - hence we transform that to 0. The

problem is studied for quality, cost, and latency (referred to

as Q, C, L) (Table 3). It also initializes d ′ = {1, 1, 1}, the worst
possible relaxation.

Step-2 of ADPaR-Exact involves sorting the strategies based

on the computed relaxation values from step-1 in an increas-

ing order across all parameters, as well as keeping track of

the index of the strategies and the parameters of the relax-

ation values. The sorted relaxation scores are stored in list

R, the corresponding I data structure provides the strategy
index, and D provides the parameter value. In other words,

R[j] represents the j-th smallest relaxation value, where I [j]
represents the index of the strategy and D[j] represents the
parameter value corresponding to that. A cursor r is initial-
ized to the rst position inR (Table 4). Another data structure,

a boolean matrixM of size |S| ×3 (Table 2) is used that keeps

track of the number of strategies that are covered by the cur-

rent movement of cursor r in list R. This matrix is initialized

to 0 and the entries are updated to 1, as r advances.

Step-3 involves designing three sweep-lines along Q, C, and
L (Table 5). A sweep line is an imaginary vertical line which

is swept across the plane rightwards. The Q sweep-line sorts

the S in C L plane in increasing order of Q (the other two

works in a similar fashion). ADPaR-Exact sweeps the line
as it encounters strategies, in order to discretize the sweep.

At the beginning, each sweep-line points the k-th strategy

along Q, C, L, respectively. d ′ is updated and contains the

current Q, C, L value i..e, d ′.quality = Q, d ′.cost = C, and
d ′.latency = L. Cursor r points to the smallest of these three

values in R. MatrixM is updated to see what parameters of

which strategies are covered so far.

At step-4, ADPaR-Exact checks if the current d ′ covers k
strategies or not. This involves reading through I and check-

ing if there exists k strategies such that for each strategy

s .quality ≤ d ′.quality and s .cost ≤ d ′.cost and s .latency ≤
d ′.latency. If there are not k such strategies, it advances r to
the next position and resets d ′ = {1, 1, 1} again.
If there are more than k strategies, the new d ′, however,

does not ensure that it is the tightest one to optimize Equa-

tion 3. Therefore, ADPaR-Exact cannot halt. ADPaR-Exact
needs to check if there exists another d

′′

that still covers k
strategies better than d ′. This can indeed happen as we are

dealing with a 3-dimensional problem and these three values

in combination determine the objective function.

ADPaR-Exact takes a turn in considering the current val-

ues of each parameter based on d ′, and creates a projec-

tion on the corresponding 2-D plane, for the xed value of

the third parameter. Figure 4b shows an example in (Q, L)
plane for a xed cost. It then considers all strategies whose

s .cost ≤ d ′.cost . After that, it nds the largest expansion

among the two parameters such that this new d
′′

covers k
strategies. This gives rise to three new deployment parame-

ters, d
′′

C , d
′′

Q , d
′′

L . It chooses the best of these three and updates

d ′. At this point, it checks ifM has k strategies covered. If it

does, it stops processing and returns the new d ′ and the k
strategies. If it does not, it advances the cursor r to the right.

Using Example 1, the alternative parameters are (0.75, 0.5,
0.28) for d2 and s1, s2, s3 are returned.

Lemma 1. To cover k strategies, d ′ needs to be initialized at
least to the kth smallest values on each paramete [33].

Lemma 2. Going by the relaxation value and parameter
order of R andD, it ensures the tightest increase in the objective
function in ADPaR-Exact [33].

Theorem 4. ADPaR-Exact produces an exact solution to the
ADPaR problem [33].

Running Time: Step-1 of Algorithm ADPaR-Exact takes
O (|S|). Step-2 and 3 are dominated by sorting time, which

takes O (|S| loд |S|). Step-4 is the most time-consuming and

takes O (|S3 |). Therefore, the overall running time of the

algorithm is cubic to the number of strategies.

5 EXPERIMENTAL EVALUATION
In our real-world deployments, we estimate worker availabil-

ity and demonstrate the need for optimization (Section 5.1).

In synthetic data experiments (Section 5.2), we present re-

sults to validate the qualitative and scalability aspects of our

algorithms.

5.1 Real Data Experiments
We perform two dierent real data experiments that involve

workers from AMT focusing on text editing tasks. The rst

Cost Quality Latency

s1 0 0 1

s2 0 0 1

s3 0 0 0

s4 0 0 0

Table 2: matrixM

Cost Quality Latency

s1 0.3 0.05 0

s2 0.05 0.13 0

s3 0 0.3 0

s4 0 0.38 0

Table 3: Step 1

Relaxation R 0 0 0 0 0 0

Strategy Index I 1 2 3 4 3 4

Parameter D L L L L C C

Relaxation R 0.05 0.05 0.13 0.3 0.3 0.38

Strategy Index I 1 2 2 1 3 4

Parameter D Q C Q C Q Q

Table 4: Step 2

sweep-line(Q) C,L plane 0.05 0.13 0.3 0.38

s .cost 0.3 0.05 0 0

s .latency 0 0 0 0

sweep-line(C) Q,L plane 0 0 0.05 0.3

s .quality 0.38 0.3 0.13 0.05

s .latency 0 0 0 0

sweep-line(L) C,Q plane 0 0 0 0

s .cost 0.3 0.05 0 0

s .quality 0.05 0.13 0.3 0.38

Table 5: Step 3

experiments (Section 5.1.1) empirically validate key assump-

tions in designing StratRec. the second experiments (Sec-

tion 5.1.2) validate the eectiveness of StratRec when com-

pared to the case where no recommendation is made.

5.1.1 Validating Key Assumptions. We consider two types

of tasks: a) sentence translation (translating from English to

Hindi) and text creation (writing 4 to 5 sentences on some

topic) to validate the following questions:

1. Can worker availability be estimated and does it vary over
time?We performed 3 dierent deployments for each task.

The rst deployment was done on the weekend (Friday 12am

to Monday 12am), the second deployment was done at the

beginning to the middle of the week (Monday to Thurs-

day), the last one is from the middle of the week until the

week-end (Thursday to Sunday). We design the HITs (Hu-

man Intelligence Tasks) in AMT such that each task needs to

Algorithm 2 Algorithm ADPaR-Exact for alternative de-

ployment parameter recommendation

Require: S, k ,W , d , k .
1: Compute relaxation values s .quality−d .quality, s .cost−

d .cost , s .latency − d .latency, ∀s ∈ S.
2: Compute R by sorting 3|S| numbers in increasing order.

3: Compute I and D accordingly.

4: InitializeM to all 0’s and d ′ = {1, 1, 1}
5: Initialize Cursor r = R[0]
6: Sort (C L) , (Q L), and (Q C) planes based on the Q, C, L

sweep-lines respectively.

7: x= k-th value in (C L), y= k-th value in (Q L), z= k-th
value in (Q C) plane

8: Update d ′= {x ,y, z}
9: r = minimum {x ,y, z}
10: Update matrixM
11: if d ′ covers ≥ k strategies then
12: Compute the best d

′′

better than d ′ that covers k
strategies

13: if M covers k strategies then
14: d ′ = d

′′

and return

15: if M covers < k strategies then
16: move r to the right

17: if d ′ covers < k strategies then
18: Move r to the right

19: Update d ′’s one of the parameters by consulting R
and D

20: go back to line 10

be undertaken by a maximum number of workers x . Worker

availability is computed as the ratio of
x ′
x , where x

′
is the

actual number of workers who undertook the task during the

deployment time (although this does not fully conform to our

formal worker availability denition, it is our sincere attempt

to quantify worker availability using public platforms).

2. How does worker availability impact deployment parame-
ters? We need to be able to calculate the quality, cost, and

latency, along with worker availability. Latency and cost

are easier to calculate, basically, it is the total amount of

money that was paid to workers and the total amount of

time the workers used to make edits in the document. Since

text editing tasks are knowledge-intensive, to compute the

quality of the crowd contributions, we ask a domain expert

to judge the quality completed tasks as a percentage. Once

worker availability, quality, cost, and latency are computed,

we perform curve tting that has the best t to the series of

data points.

3. How do deployment strategies impact dierent task types?
We deployed both types of text editing tasks using two dier-

ent deployment strategies SEQ-IND-CRO and SIM-COL-CRO
that were shown to be eective withmore than 70% of quality

Original
Text

Mary had a little lamb, little lamb,
little lamb,
Mary had a little lamb, its fleece
was white as snow.
Everywhere that Mary went, Mary
went, Mary went,
Everywhere that Mary went, the
lamb was sure to go.

Lavender’s blue,
dilly dilly,
Lavender’s green
When you are
king, dilly dilly,
I shall be queen

Rock-a-bye, baby, in
the treetop
When the wind blows,
the cradle will rock
When the bough
breaks, the cradle will
fall
And down will come
baby, cradle and all

Sequential
-independe
nt- crowd

!री $ एक 'ड पाली, 'ड
पाली, 'ड पाली,

!री $ एक 'ड पाली सफ.द
बालौ वाली.

जहा5 भी !री जाती थी, जाती
थी, जाती थी,

जहा5 भी !री जाती थी, वो पी:
आती थी.

ल<=डर की नीली,
गहरी नीली,
ल<=डर का हरा
जब आप राजा हो@ A,
तो आप बBत खDश हो@
A।

G रानी बनHIगी

रॉक-ए-बाय, Lबी, Mीटोप O
जब हवा चQगी, तो
खड़खड़ाहट उठUगी
जब कड़ा फVगा तो खWटया
Wगर जाएगी
और नीY आएगा बZचा,
पालना और सब

simultaneo
us -
collaborativ
e- crowd

[री \ पास एक छोटा सा !मना था,
थोड़ा सा !मना, थोड़ा सा 'ड़ का बZचा,
[री \ पास थोड़ा सा !मना था, उसका
ऊन बफ̀ की तरह सफ.द था।
हर जगह [री चली गई, [री चली गई,
[री चली गई,
हर जगह [री चली गई, !म$ का जाना
Wनिcत था

ल<=डर की नीली,
गहरी नीली,
ल<=डर का हरा
जब आप राजा हो@ A,
तो आप बBत खDश हो@
A।

G रानी बनHIगी

रॉक-ए-बाय, Lबी, Mीटोप O
जब हवा चQगी, तो
खड़खड़ाहट उठUगी
जब कड़ा फVगा तो खWटया
Wगर जाएगी
और नीY आएगा बZचा,
पालना और सब

Sentence Translation Tasks Results

Figure 5: Translation: Original Texts and Translation

score for short texts [5]. Since our eort here was to evaluate

the eectiveness of these two strategies considering qual-

ity, cost, and latency, we did not set values for deployment

parameters and we simply observed them through experi-

mentation.

Tasks andDeploymentDesign:We chose three popular

English nursery rhymes for sentence translation. Each rhyme

consisted of 4-5 lines that were to be translated from English

to Hindi (one such sample rhyme is shown in Figure 5). For

text creation, we considered three popular topics, Robert
Mueller Report,Notre Dame Cathedral, and 2019 Pulitzer prizes.
One sample text creation is shown in Figure 6.

We designed three deployment windows at dierent days

of the week. Unlike micro-tasks in AMT, text editing tasks

require signicantly more time to complete (we allocated 2

hours per HIT). A HIT contains either 3 sentence translation

tasks or three text creation tasks as opposed to micro-tasks,

where a HITmay contain tens of tasks. For each task type, we

validated 2 deployment strategies - in SEQ-IND-CRO, workers
were to work in sequence and independently, whereas, in

SIM-COL-CRO, workers were asked to work simultaneously

and collaboratively. We created 2 dierent samples of the

same study resulting in a total of 8 HITs deployed inside the

same window. Each HIT was asked to be completed by 10

workers paid $2 each if the worker spent enough time (more

than 10 minutes). This way, a total of 80 unique workers

were hired for each deployment window, and a total of 240

workers were hired for all three deployments.

Worker Recruitment: For both task types, we recruited

workers with a HIT approval rate greater than 90%. For

Strategy TOPIC TEXT

Sequential -
independent-
crowd

Robert
Mueller
report

The Mueller Report, formally titled the Report on the
Investigation into Russian Interference in the 2016 Presidential
Election, is the official report documenting the findings of the
Special Counsel investigation, led by Robert Mueller, into
Russian efforts to interfere in the 2016 United States
presidential election, allegations of conspiracy or coordination
between Donald Trump's presidential campaign and Russia,
and allegations of obstruction of justice. The report was
submitted to Attorney General William Barr on March 22, 2019.
This report addressed obstruction of justice, stating it "does not
conclude that the President committed a crime, [and] it also
does not exonerate him”.

simultaneous -
collaborative-
crowd

Robert
Mueller
report

It was a report related to United States counterintelligence
investigation of the Russian government's efforts to interfere in
the 2016 presidential election. As of April 2019, thirty-four
individuals were indicted by Special Counsel investigators.
Eight have pled guilty to or been convicted of felonies,
including at least five Trump associates and campaign officials.
The report concluded that Russian interference in the 2016
presidential election did occur and "violated U.S. criminal law."

Figure 6: Text Creation: Robert Mueller Report

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Window-1	 Window-2	 Window-3	

W
or
ke
r	A

va
ila
bi
lit
y	

Deployment-window	

Seq-IC	

Sim-CC	

Figure 7: Worker Availability Estimation

sentence translation, we additionally ltered workers on ge-

ographic locations, either US or India. For text creation tasks,

we recruited US-based workers with a Bachelor’s degree.

Enabling collaboration: After workers were recruited
from AMT, they were directed to Google Docs where the

tasks were described and the workers were given instruc-

tions. The docs were set up in editing mode, so edits could

be monitored.

ExperimentDesign:An experiment is comprised of three

steps. In Step-1, all initially recruited workers went through

qualication tests. For text creation, a topic (Royal Wed-

ding) was provided and the workers were asked to write

5 sentences related to that topic. For sentence translation,

the qualication test comprised of 5 sample sentences to be

translated from English to Hindi. Completed qualication

tests were evaluated by domain experts and workers with

more than 80% or more qualication scores were retained

and invited to work on the actual HITs. In Step-2, actual HITs

were deployed for 72 hours and the workers were allotted 2

hours for the tasks. In Step-3, after 72 hours of deployment,

results were aggregated by domain experts to obtain a qual-

ity score. Cost and latency were easier to calculate directly

from the raw data.

Summary of Results: Our rst observation is that

worker availability can be estimated and does vary over time
(standard error bars added). We observed that for both task

types, workersweremore available duringWindow 2 (Monday-

Thursday), compared to the other two windows. Detailed

results are shown in Figure 7.

Our second observation is that each deployment param-

eter has a linear relationship with worker availability for text

editing tasks. Quality and cost increase linearly with worker

availability. Latency decreases with increasing worker avail-

ability. This linear relationship could be captured and the

parameters (α , β) could be estimated. Table 6 presents these

results and the estimated (α , β) always lie within 90% con-

dence interval of the tted line.

Our nal observation is that SEQ-IND-CRO performs

better than SIM-COL-CRO for both task types. However, this

dierence is not statistically signicant. On the other hand,

SEQ-IND-CRO has higher latency. Upon further analysis, we

observe that when workers are asked to collaborate and edit

simultaneously, that gives rise to an edit war and an overall

poor quality. Figure 8 presents these results.

Worker Availability and Deployment Parameters

Task-Strategy Parameters α ,β

Translation SEQ-IND-CRO
Quality 0.09, 0.85

Cost 1.00, 0.00

Latency −0.98, 1.40

Translation SIM-COL-CRO
Quality 0.09, 0.82

Cost 0.82, 0.17

Latency −0.63, 1.01

Creation SEQ-IND-CRO
Quality 0.10, 0.80

Cost 1.00, 0.00

Latency −1.56, 2.04

Creation SIM-COL-CRO
Quality 0.19, 0.70

Cost 1.00,−0.00

Latency −1.38, 1.81

Table 6: α , β Estimation

5.1.2 Validating the Eectiveness of StratRec. We are unable

to ask specic user (task designer’s) satisfaction questions

in this experiment, simply because AMT does not allow to

recruit additional task designers and only workers could

be recruited. For this purpose, we deploy 10 additional sen-

tence translation (translating nursery rhymes from English

to Hindi) and 10 additional text creation tasks considering a

set of 8 strategies.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.6 0.6 0.8 0.9 1 1D
ep

lo
ym

en
t

Pa
ra

m
et

er
s

Worker Availability

Quality
Cost

Latency

(a) Translation SEQ-IND-CRO

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.6 0.6 0.8 0.9 1 1D
ep

lo
ym

en
t

Pa
ra

m
et

er
s

Worker Availability

Quality
Cost

Latency

(b) Translation SIM-COL-CRO

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.7 0.7 0.8 0.9 1 1D
ep

lo
ym

en
t

Pa
ra

m
et

er
s

Worker Availability

Quality
Cost

Latency

(c) Creation SEQ-IND-CRO

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.6 0.7 0.8 0.9 0.9 1D
ep

lo
ym

en
t

Pa
ra

m
et

er
s

Worker Availability

Quality
Cost

Latency

(d) Creation SIM-COL-CRO

Figure 8: Relationship Between Deployment Parameters and Worker Availability

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

StratRec	 Without StratRec

Sentence	Translation	

Quality	

Cost	

Latency	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

StratRec Without StratRec

Text	Creation	

Quality	

Cost	

Latency	

Figure 9: Average Quality, Cost, Latency Comparison of De-
ployments with and without StratRec

We create 2 mirror deployments for the same task (one

according to StratRec recommendation and the other with-

out) resulting in a total of 40 HITs deployed. For the latter

scenario, the deployments were not recommended any struc-

ture, organization, or style and the workers were given the

liberty to complete the task the way they preferred. Each

HIT was asked to be completed by 7 workers paid $2 each

if the worker spent enough time (more than 10 minutes).

This way, a total of 280 unique workers are hired during this

experiment. The quality, cost, and latency thresholds of each

deployment are set to be 70%, $14, 72 hours.

The worker recruitment, and the rest of the experiment

design, and result aggregation steps are akin to those steps

that are described in Section 5.1.1. Figure 9 represents the

average quality, cost, and latency results of these experiments

with statistical signicance.

Summary of Results: We have two primary observa-

tions from these experiments.Our rst observation is that
(Figure 9), when tasks are deployed considering recommen-

dation of StratRec, with statistical signicance, they achieve

higher quality and lower latency, under the xed cost thresh-

old on an average compared to the deployments that do not

consult StratRec. These results validate the eectiveness of
deployment recommendations of our proposed framework

and its algorithms.

Our second observation (upon further investigating the

Google Docs where the workers undertook tasks), is that the

deployments that do not consider StratRec recommendations

have more edits, compared to that are deployed considering

StratRec. In fact, on average, StratRec deployments have

an average of 3.45 edits for sentence translation, compared

to 6.25 edits on average for those deployed with no recom-

mendations. Indeed, when workers were not guided, they

repeatedly overrode each other’s contributions, giving rise

to an edit war.

5.2 Synthetic Experiments
We aim to evaluate the qualitative guarantees and the scala-

bility. Algorithms are implemented in Python 3.6 on Ubuntu

18.10. Intel Core i9 3.6 GHz CPU, 16GB of memory.

5.2.1 Implemented Algorithms. We describe dierent algo-

rithms that are implemented.

Batch Deployment Algorithms. Brute Force: An ex-

haustive algorithm which compares all possible combina-

tions of deployment requests and returns the one that opti-

mizes the objective function.

BaselineG: This algorithm sorts the deployment requests

in decreasing order of
fi
~wi

and greedily selects requests until

worker availabilityW is exhausted.

BatchStrat: Our proposed solution described in Section 3.

ADPaR Algorithms. ADPaRB: This is a brute force algo-

rithm that examines all sets of strategies of size k . It returns
the one that has the smallest distance to the task designer’s

original deployment parameters. While it returns the exact

answer, this algorithm takes exponential time to run.

Baseline2: This baseline algorithm is inspired by a related

work [24]. The main dierence though, the related work

modies the original deployment request by just one param-

eter at a time and is not optimization driven. In contrast,

ADPaR-Exact returns an alternative deployment request,

where multiple parameters may have to be modied.

Baseline3: This one is designed by modifying space par-

titioning data structure R-Tree [3]. We treat each strategy

parameters as a point in a 3-D space and index them using an

R-Tree. Then, it scans the tree to nd if there is a minimum

bounding box (MBB) that exactly contains k strategies. If so,

it returns the top-right corner of that MBB as the alternative

deployment parameters and corresponding k strategies. If

such an MBB does not exist, it will return the top right cor-

ner of another MBB that has at least k strategies and will

randomly return k strategies from there.

ADPaR-Exact: Our proposed solution in Section 4.

Summary of Results: Our simulation experiments high-

light the following ndings: Observation 1: Our solution
BatchStrat returns exact answers for throughput optimiza-

tion, and the approximation factor for pay-o maximization

is always above 90%, signicantly surpassing its theoretical

approximation factor of 1/2. Observation 2: Our solution
BatchStrat is highly scalable and takes less than a second to

handle millions of strategies, and hundreds of deployment re-

quests, and k . Observation 3: Our algorithm ADPaR-Exact
returns exact solutions to the ADPaR problem, and signi-

cantly outperforms the two baseline solutions in objective

function value.Observation 4: ADPaR-Exact is scalable and
takes a few seconds to return alternative deployment param-

eters, even when the total number of strategies is large and

k is sizable.

5.2.2 ality Experiment.
Batch Deployment Recommendation. Goal: We val-

idate the following two aspects: (i) how many deployment
requests BatchStrat can satisfy without invoking ADPaR?
(ii) How does BatchStrat fare to optimize dierent platform-
centric goals? We compare BatchStrat with the other two

baselines, as appropriate.

StrategyGeneration: The dimension values of a strategy

are generated considering uniform and normal distributions.

For the normal distribution, the mean and standard deviation

are set to 0.75 and 0.1, respectively. We randomly pick the

value from 0.5 to 1 for the uniform distribution.

Worker Availability: For a strategy, we generate α uni-

formly from an interval [0.5, 1]. Then, we set β = 1 − α to

make sure that the estimated worker availabilityW is within

[0, 1]. These numbers are generated in consistence with our

real data experiments.

Deployment Parameters:OnceW is estimated, the qual-

ity, latency, and cost - i.e., the deployment parameters, are

generated in the interval [0.625, 1]. For each experiment, 10

deployment parameters are generated, and an average of 10

runs is presented in the results.

Figure 10 shows the percentage of satised requests by

BatchStrat with varying k ,m, |S|,W . In general, normal dis-

tribution performs better than uniform. Upon further analy-

sis, we realize that normal distribution has a very small stan-

dard deviation, and is thereby able to satisfy more requests.

As shown in Figure 10(a), the percentage of satised requests

decreases with increasing k , which is expected. Contrarily,

the eect of increasing batch sizem is less pronounced. This

is because all requests use the same underlying distribution,

allowing BatchStrat to handle more of them. With more

strategies |S|, as Figure 10(c) illustrates, BatchStrat satises
more requests, which is natural, because with increasing

|S|, it simply has more choices. Finally, in Figure 10(d), with

higher worker availability BatchStrat satises more requests.

By default, we set |S| = 10000,m = 10,k = 10,W = 0.5.
Figure 11 shows the results of throughput of BatchStrat

by varying k , m,|S|, compare with the two baselines. Fig-

ure 12 shows the approximation factor of BatchStrat and
BaselineG. BatchStrat achieves an approximation factor of

0.9most of the time. For both experiments, the default values

are k = 10,m = 5, |S| = 30,W = 0.5 because brute force

does not scale beyond that.

Alternative Deployment Recommendation ADPaR.
The goal here is to measure the objective function. Since

ADPaRB takes exponential time, to be able to compare with

this, we set |S| = 20, k = 5,W = 0.5 for all the quality exper-
iments that has to compare with the brute force. Otherwise,

the default values are |S| = 200, k = 5.

In Figure 13, we vary |S| and k and plot the Euclidean

distance between d and d ′ (smaller is better). Indeed, ADPaR-
Exact returns exact solution always. The other two baselines

perform signicantly worse, while Baseline 3 is the worst.

That is indeed expected, because these two baselines are not

optimization guided, and does not satisfy our goal. Natu-

rally, the objective function decreases with increasing |S|,

because more strategies mean smaller change in d ′, making

the distance between d and d ′ smaller. As the results depict,

optimal Euclidean distance between d and d ′ increases with
increasing k , which is also intuitive, because, with higher k
value, the alternative deployment parameters are likely to

have more distance from the original ones.

5.2.3 Scalability Experiments. Our goal is to evaluate the

running time of our proposed solutions. Running time is

measured in seconds. We present a subset of results that are

representative.

Batch Deployment Recommendation. Since the BaselineG
has the same running time as that of BatchStrat (although
qualitatively inferior), we only compare the running time

between Brute Force and BatchStrat. The default setting
for |S|, k andW are 30, 10 and 0.75, respectively.

	0.2
	0.4
	0.6
	0.8
	1

	1.2

10 100 1000 10000%
	sa

tis
fie

d	
re
qu

es
ts

K

Uniform
Normal

(a) Varying k

	0.2
	0.4
	0.6
	0.8
	1

	1.2

10 100 1000 10000%
	sa

tis
fie

d	
re
qu

es
ts

m

Uniform
Normal

(b) Varyingm

	0.2
	0.4
	0.6
	0.8
	1

	1.2

10 100 1000 10000%
	sa

tis
fie

d	
re
qu

es
ts

|S|

Uniform
Normal

(c) Varying S

	0.2
	0.4
	0.6
	0.8
	1

	1.2

0.5 0.6 0.7 0.8 0.9%
	sa

tis
fie

d	
re
qu

es
ts

w

Uniform
Normal

(d) VaryingW

Figure 10: Percentage of satised requests before invoking ADPaR

	0.2
	0.4
	0.6
	0.8
	1

	1.2
	1.4

10 20 30Ag
gr
eg

at
ed

	th
ro
ug

hp
ut

K

BruteForce
BatchStrat
BaselineG

(a) Varying k

	0.6
	0.8
	1

	1.2
	1.4

10 20 30Ag
gr
eg

at
ed

	th
ro
ug

hp
ut

m

BruteForce
BatchStrat
BaselineG

(b) Varyingm

	0.4
	0.5
	0.6
	0.7
	0.8
	0.9
	1

	1.1
	1.2

10 20 30Ag
gr
eg
at
ed
	th

ro
ug

hp
ut

|S|

BruteForce
BatchStrat
BaselineG

(c) Varying S

Figure 11: Objective Function for Throughput

	1.4
	1.5
	1.6
	1.7
	1.8
	1.9
	2

	2.1
	2.2

10 20 30

0.994

0.951

0.9980.993 1.0000.989Ag
gr
eg

at
ed

	p
ay

of
f

K

Brute
Force

BatchStrat

(a) Varying k

	2.1

	2.2

	2.3

	2.4

	2.5

	2.6

10 20 30

0.962

0.920

0.924

0.883

0.901

0.839Ag
gr
eg

at
ed

	p
ay

of
f

m

Brute
Force

BatchStrat

(b) Varyingm

	1.5
	1.6
	1.7
	1.8
	1.9
	2

	2.1

10 20 30

0.9970.987

0.999
0.966

0.995
0.972

Ag
gr
eg

at
ed

	p
ay

of
f

|S|

Brute
Force

BatchStrat

(c) Varying S

Figure 12: Objective Function and Approximation Factor for Payo

103

104

105

106

107

108

200 400 600 800 1000

Eu
cli
de

an
	d
ist

an
ce

be
tw

ee
n	
d	
an

d	
d'

|S|

ADPaR-Exact
Baseline2
Baseline3

(a) without Brute Force

104
105
106
107
108
109

1010
1011

10 20 30

Eu
cli

de
an

	d
ist

an
ce

be
tw

ee
n	

d	
an

d	
d'

|S|

ADPaR-Exact
Baseline2
Baseline3

ADPaRB

(b) with Brute Force

104

105

106

107

108

109

10 20 30 40 50

Eu
cli
de

an
	d
ist

an
ce

be
tw

ee
n	
d	
an

d	
d'

K

ADPaR-Exact
Baseline2
Baseline3

(c) without Brute Force

104
105
106
107
108
109
1010
1011

5 10 15

Eu
cli
de
an
	d
ist
an
ce

be
tw
ee
n	
d	
an
d	
d'

K

ADPaR-Exact
Baseline2
Baseline3
ADPaRB

(d) with Brute Force

Figure 13: Quality Experiments for ADPaR

	0.005

	0.01

	0.015

200 400 600 800

Ru
nn

ing
	Ti

m
e(
s)

m

BruteForce
BatchStrat

(a) Batch Deployment Varyingm

	200

	400

	600

	800

1000 5000 25000

Ru
nn

ing
	Ti

m
e(
s)

|S|

ADPaR-Exact

(b) ADPaR Varying |S |

	400

	800

	1200

	1600

10 50 250

Ru
nn

ing
	Ti

m
e(
s)

K

ADPaR-Exact

(c) ADPaR Varying k

Figure 14: Scalability Experiments

The rst observation we make is, clearly BatchStrat can
handle millions of strategies, several hundreds of batches,

and very largek and still takes only a few fractions of seconds

to run. It is easy to notice that the running time of this

problem only relies on the size of the batchm (or the number

of deployment requests), and not on k or S. As we can see

in Figure 14a, Brute Force takes exponential time with

increasingm, whereas BatchStrat scales linearly.

Alternative Deployment Recommendation. We vary k and

|S| with defaults set to 5 and 10000 respectively, and eval-

uate the running time of ADPaR-Exact.W is set to 0.5. As
Figures 14b and 14c attest, albeit non-linear, ADPaR-Exact
scales well with k and |S|. We do not present the baselines

as they are signicantly inferior in quality.

6 RELATEDWORK
Crowdsourcing Deployment: Till date, the burden is en-

tirely on the task requester to design appropriate deploy-

ment strategies that are consistent with the cost, latency,

and quality parameters of task deployment. A very few re-

lated works [1, 35] have started to study the importance

of appropriate deployment strategies but these works do

not propose an algorithmic solution and are limited to em-

pirical studies. A recent work [13] presents the results of

a 10-month deployment of a crowd-powered system that

uses a hybrid approach to fast recruitment of workers, called

Ignition. These results suggest a number of opportunities to

deploy work in the online job market.

Crowdsourcing Applications: A number of interactive

crowd-powered systems have been developed to solve di-

cult problems and develop applications [4, 7, 12, 18–20, 23, 28,

31]. For instance, Soylent uses the crowd to edit and proof-

read text [4]; Chorus recruits a group of workers to hold

sophisticated conversations [22]; and Legion allows a crowd

to interact with a UI-control task [21]. A primary challenge

for such interactive systems is to decrease latency without

having to compromise with the quality. A comprehensive sur-

vey on dierent crowdsourcing applications could be found

at [34]. All crowd-powered systems share these challenges

and are likely to benet from StratRec.

Query planning and Renement: The closest analogy

of deployment strategy recommendation is recommending

the best query plan in relational databases, in which joins,

selections and projections could be combined any number

of times. Typical parametric query optimization problems,

like [15], only focus on one objective to optimize. Afterward,

multi-objective problems have been studied, with a focus on

optimizing multiple objectives at the same time [32]. Our

work borrows inspiration from that and studies the problem

in the deployment context, making the challenges unique

and dierent from traditional query planning.

Query reformulation has been widely studied in Informa-

tion Retrieval [11]. In [24], authors take users’ preference

into account and propose an interactive method for seeking

an alternative query which satises cardinality constraints.

This is dierent from ADPaR since it only relaxes one dimen-

sion at a time. Aris et al. [2] proposed a graph modication

method to recommend queries that maximize an overall util-

ity. Mottin et al. [25] develop an optimization framework

where solutions can only handle Boolean/categorical data.

Skyline and Skyband Queries: Skyline queries play an

essential role in computing favored answers from a data-

base [6, 8]. Based on the concepts of skylines, other classes

of queries arise, especially top-k queries and k-skyband prob-
lems which aim to bring more useful information than origi-

nal skylines. Mouratidis et al. [26, 27] study several related

problems. In [26], sliding windows are used to track the

records in dynamic stream rates. In [27], a geometry arrange-

ment method is proposed for top-k queries with uncertain

scoring functions. Because our problem seeks the optimal

group ofk strategies, it is similar to the top-k queries problem.

However, unlike Skyband or any other related work, ADPaR
recommends alternative deployment parameters. Thus, these

solutions do not extend to solve ADPaR.

7 CONCLUSION
We propose an optimization-driven middle layer to recom-

mend deployment strategies. Ourwork addressesmulti-faceted

modeling challenges through the generic design of modules

in StratRec that could be instantiated to optimize dierent

types of goals by accounting for worker availability. We de-

velop computationally-ecient algorithms and validate our

work with extensive real data and synthetic experiments.

This work opens up several important ongoing and future

research directions. As an ongoing investigation, we are de-

ploying additional types of tasks using StratRec to evaluate

its eectiveness. Our future investigation involves adapting

batch deployment to optimize additional criteria, such as

worker-centric goals, or to combine multiple goals inside

the same optimization function. Understanding the computa-

tional challenges of such an interactive system remains to be

explored. Finally, how to design StratRec for a fully dynamic

stream-like setting of incoming deployment requests, where

the deployment requests could be revoked, remains to be an

important open problem.

ACKNOWLEDGMENTS
Thework of DongWei and Senjuti Basu Roy are supported by

the National Science Foundation, CAREER Award #1942913,

IIS #1814595, and by the Oce of Naval Research Grant No:

N000141812838.

REFERENCES
[1] BJ Allen et al. 2018. Design Crowdsourcing: The Impact on New

Product Performance of Sourcing Design Solutions from the Crowd.

Journal of Marketing (2018).

[2] Aris Anagnostopoulos et al. 2010. An optimization framework for

query recommendation. (2010).

[3] Norbert Beckmann et al. 1990. The R*-tree: an ecient and robust

access method for points and rectangles. In SIGMOD. Acm.

[4] Michael S. Bernstein, Greg Little, Robert C. Miller, Björn Hartmann,

Mark S. Ackerman, David R. Karger, David Crowell, and Katrina

Panovich. 2010. Soylent: A Word Processor with a Crowd Inside.

In IN PROC UIST’10.
[5] Ria Mae Borromeo et al. 2017. Deployment strategies for crowdsourc-

ing text creation. Information Systems (2017).
[6] Stephan Borzsony et al. 2001. The skyline operator. In ICDE. IEEE.
[7] Lydia B Chilton, Greg Little, Darren Edge, Daniel S Weld, and James A

Landay. 2013. Cascade: Crowdsourcing taxonomy creation. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1999–2008.

[8] Jan Chomicki et al. 2013. Skyline queries, front and back. SIGMOD
(2013).

[9] Mark De Berg et al. 1997. Computational geometry. In Computational
geometry. Springer.

[10] Michael R Garey and David S Johnson. 2002. Computers and intractabil-
ity. wh freeman New York.

[11] Susan Gauch et al. 1991. Search improvement via automatic query
reformulation. Technical Report. UNC Chapel Hill, Computer Science.

[12] Benjamin M Good and Andrew I Su. 2013. Crowdsourcing for bioin-

formatics. Bioinformatics 29, 16 (2013), 1925–1933.
[13] Ting-Hao Kenneth Huang and Jerey P Bigham. 2017. A 10-month-

long deployment study of on-demand recruiting for low-latency crowd-

sourcing. In Fifth AAAI Conference on Human Computation and Crowd-
sourcing.

[14] Oscar H Ibarra et al. 1975. Fast approximation algorithms for the

knapsack and sum of subset problems. Journal of the ACM (JACM)
(1975).

[15] Yannis E Ioannidis, Raymond T Ng, Kyuseok Shim, and Timos K Sellis.

1992. Parametric query optimization. In VLDB, Vol. 92. Citeseer, 103–
114.

[16] Wen Jin et al. 2007. The multi-relational skyline operator. In ICDE.
IEEE.

[17] Ouiame Ait El Kadi. [n.d.]. Exploring Crowdsourcing Deployment

Strategies through Recommendation and Iterative Renement. MS
Research Report ([n. d.]).

[18] Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E Kraut. 2011.

Crowdforge: Crowdsourcing complex work. In Proceedings of the 24th
annual ACM symposium on User interface software and technology.
ACM, 43–52.

[19] Anand Kulkarni, Matthew Can, and Björn Hartmann. 2012. Collabo-

ratively crowdsourcing workows with turkomatic. In Proceedings of

the acm 2012 conference on computer supported cooperative work. ACM,

1003–1012.

[20] Anand P Kulkarni, Matthew Can, and Bjoern Hartmann. 2011. Turko-

matic: automatic recursive task and workow design for mechanical

turk. In CHI’11 Extended Abstracts on Human Factors in Computing
Systems. ACM, 2053–2058.

[21] Walter S Lasecki, Raja Kushalnagar, and Jerey P Bigham. 2014. Legion

scribe: real-time captioning by non-experts. In Proceedings of the 16th
international ACM SIGACCESS conference on Computers & accessibility.
ACM, 303–304.

[22] Walter S Lasecki, Rachel Wesley, Jerey Nichols, Anand Kulkarni,

James F Allen, and Jerey P Bigham. 2013. Chorus: a crowd-powered

conversational assistant. In Proceedings of the 26th annual ACM sym-
posium on User interface software and technology. ACM, 151–162.

[23] Christopher H Lin, Mausam Daniel, and S Weld. 2012. Dynamically

switching between synergistic workows for crowdsourcing. In In Pro-
ceedings of the 26th AAAI Conference on Articial Intelligence, AAAI’12.
Citeseer.

[24] Chaitanya Mishra et al. 2009. Interactive query renement. In EDBT.
ACM.

[25] Davide Mottin et al. 2013. A probabilistic optimization framework for

the empty-answer problem. VLDB (2013).

[26] Kyriakos Mouratidis et al. 2006. Continuous monitoring of top-k

queries over sliding windows. In SIGMOD. ACM.

[27] Kyriakos Mouratidis and Bo Tang. 2018. Exact Processing of Uncertain

Top-k Queries in Multi-criteria Settings. PVLDB (2018).

[28] Barzan Mozafari, Purna Sarkar, Michael Franklin, Michael Jordan,

and Samuel Madden. 2014. Scaling up crowd-sourcing to very large

datasets: a case for active learning. Proceedings of the VLDB Endowment
8, 2 (2014), 125–136.

[29] Julien Pilourdault et al. 2017. Motivation-aware task assignment in

crowdsourcing. In EDBT.
[30] Habibur Rahman et al. 2018. Optimized group formation for solving

collaborative tasks. The VLDB Journal (2018), 1–23.
[31] Klaas-Jan Stol and Brian Fitzgerald. 2014. Two’s company, three’s

a crowd: a case study of crowdsourcing software development. In

Proceedings of the 36th International Conference on Software Engineering.
ACM, 187–198.

[32] Immanuel Trummer and Christoph Koch. 2016. Multi-objective para-

metric query optimization. ACM SIGMOD Record 45, 1 (2016), 24–31.

[33] Dong Wei, Senjuti Basu Roy, and Sihem Amer-Yahia. 2020. Recom-

mending Deployment Strategies for Collaborative Tasks. arXiv preprint
arXiv:2003.06875 (2020).

[34] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. 2011. A survey

of crowdsourcing systems. In 2011 IEEE Third International Conference
on Privacy, Security, Risk and Trust and 2011 IEEE Third International
Conference on Social Computing. IEEE, 766–773.

[35] Haichao Zheng et al. 2011. Task design, motivation, and participa-

tion in crowdsourcing contests. International Journal of Electronic
Commerce (2011).

	Abstract
	1 Introduction
	2 Framework and Problem
	2.1 Data Model
	2.2 Illustration of StratRec
	2.3 Problem Definitions

	3 Deployment Recommendation
	3.1 Deployment Strategy Modeling
	3.2 Workforce Requirement Computation
	3.3 Optimization-Guided Batch Deployment

	4 ADPaR
	4.1 Algorithm ADPaR-Exact

	5 Experimental Evaluation
	5.1 Real Data Experiments
	5.2 Synthetic Experiments

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

