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ABSTRACT

The task of fashion recommendation includes twomain challenges:

visual understanding and visual matching. Visual understanding

aims to extract effective visual features. Visual matching aims to

model a human notion of compatibility to compute a match be-

tween fashion items. Most previous studies rely on recommenda-

tion loss alone to guide visual understanding and matching. Al-

though the features captured by these methods describe basic char-

acteristics (e.g., color, texture, shape) of the input items, they are

not directly related to the visual signals of the output items (to be

recommended). This is problematic because the aesthetic charac-

teristics (e.g., style, design), based on which we can directly infer

the output items, are lacking. Features are learned under the rec-

ommendation loss alone, where the supervision signal is simply

whether the given two items are matched or not.

To address this problem, we propose a neural co-supervision

learning framework, called the FAshion RecommendationMachine

(FARM). FARM improves visual understanding by incorporating

the supervision of generation loss, which we hypothesize to be

able to better encode aesthetic information. FARM enhances visual

matching by introducing a novel layer-to-layer matching mech-

anism to fuse aesthetic information more effectively, and mean-

while avoiding paying too much attention to the generation qual-

ity and ignoring the recommendation performance.

Extensive experiments on two publicly available datasets show

that FARM outperforms state-of-the-art models on outfit recom-

mendation, in terms of AUC and MRR. Detailed analyses of gener-

ated and recommended items demonstrate that FARM can encode

better features and generate high quality images as references to

improve recommendation performance.
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1 INTRODUCTION

Fashion recommendation has attracted increasing attention [14, 18,

20] for its potentially wide applications in fashion-oriented online

communities such as, e.g., Polyvore1 and Chictopia.2 By recom-

mending fashionable items that people may be interested in, fash-

ion recommendation can promote the development of online retail

by stimulating people’s interests and participation in online shop-

ping. In this paper, we target outfit recommendation, that is, given

a top (i.e., upper garment), we need to recommend a list of bottoms

(e.g., trousers or skirts) from a large collection that best match the

top, and vice versa. Specifically, we allow users to provide some

descriptions as conditions that the recommended items should ac-

cord with as much as possible.

Unlike conventional recommendation tasks, outfit recommen-

dation faces two main challenges: visual understanding and visual

matching. Visual understanding aims to extract effective features

by building a deep understanding of fashion item images. Visual

matching requires modeling a human notion of the compatibil-

ity between fashion items [41], which involves matching features

such as color and shape etc. Early studies into outfit recommen-

dation rely on feature engineering for visual understanding and

traditional machine learning for visual matching [16]. For example,

Iwata et al. [15] define three types of feature, i.e., color, texture and

local descriptors such as Scale Invariant Feature Transform (SIFT)

(for visual understanding), and propose a recommendation model

based on Graphical Models (GM) (for visual matching). Liu et al.

[29] define five types of feature including Histograms of Oriented

Gradient (HOG) [9], Local Binary Pattern (LBP) [1], color moment,

color histogram and skin descriptor [5] (for visual understanding),

and propose a latent Support Vector Machine (SVM) based recom-

mendation model (for visual matching).

1http://www.polyvore.com/
2http://www.chictopia.com/

http://arxiv.org/abs/1908.09104v1
https://doi.org/10.1145/3308558.3313614
https://doi.org/10.1145/3308558.3313614
http://www.polyvore.com/
http://www.chictopia.com/


Recently, neural networks have been applied to address the chal-

lenges of fashion recommendation: Song et al. [41] use a pre-trained

Convolutional Neural Network (CNN) (on ImageNet) to extract vi-

sual features (for visual understanding). Then, they employ a sep-

arate Bayesian Personalized Ranking (BPR) [35] method to exploit

pairwise preferences between tops and bottoms (for visual match-

ing). Lin et al. [28] propose to train feature extraction (for visual

understanding) and preference prediction (for visual matching) in

a single back-propagation scheme. They introduce a mutual atten-

tion mechanism into CNN to improve feature extraction. The vi-

sual features captured by these methods only describe basic char-

acteristics (e.g., color, texture, shape) of the input items, which lack

aesthetic characteristics (e.g., style, design) to describe the output

items (to be recommended). Visual understanding and matching

are conducted based on recommendation loss alone, where the su-

pervision signal is just whether two given items arematched or not

and no supervision is available to directly connect the visual sig-

nals of the fashion items. Recently, some studies have realized the

importance of modeling aesthetic information. For example, Ma

et al. [30] build a universal taxonomy to quantitatively describe

aesthetic characteristics of clothing. Yu et al. [46] propose to en-

code aesthetic information by pre-training models on aesthetic as-

sessment datasets. However, none of them is for outfit recommen-

dation and none improves visual understanding and matching like

we do.

In this paper, we address the challenges of outfit recommenda-

tion from a novel perspective by proposing a neural co-supervision

learning framework, called FAshion RecommendationMachine (FARM).

FARM enhances visual understanding and visual matching with

the joint supervision of generation and recommendation learning.

Let us explain. By incorporating the generation process as a su-

pervision signal, FARM is able to encode more aesthetic character-

istics, based on which we can directly generate the output items.

FARM enhances visual matching by incorporating a novel layer-

to-layer matching mechanism to evaluate the matching score of

generated and candidate items at different neural layers; in this

manner FARM fuses the generation features from different visual

levels to improve the recommendation performance. This layer-to-

layer matching mechanism also ensures that FARM avoids paying

too much attention to the generation quality and ignoring the rec-

ommendation performance. To the best of our knowledge, FARM

is the first end-to-end learning framework that improves outfit rec-

ommendation with joint modeling of fashion generation.

Extensive experimental results conducted on two publicly avail-

able datasets show that FARM outperforms state-of-the-art models

on outfit recommendation, in terms of AUC and MRR. To further

demonstrate the advantages of FARM,we conduct several analyses

and case studies.

To sum up, our contributions can be summarized as follows:

• We propose a neural co-supervision learning framework, FARM,

for outfit recommendation that simultaneously yields recommen-

dation and generation.

• We propose a layer-to-layer matching mechanism that acts as a

bridge between generation and recommendation, and improves

recommendation by leveraging generation features.

• Our proposed approach is shown to be effective in experiments

on two large-scale datasets.

2 RELATED WORK

We survey related work on fashion recommendation by focusing

on the two main challenges in the area: visual understanding and

visual matching.

2.1 Visual understanding

One branch of studies aims at extracting better features to improve

the visual understanding of fashion items.

For instance, Iwata et al. [15] propose a recommender system

for clothing coordinates using full-body photographs from fash-

ion magazines. They extract visual features, such as color, texture

and local descriptors such as SIFT, and use a probabilistic topic

model for visual understanding of coordinates from these features.

Liu et al. [29] target occasion-oriented clothing recommendation.

Given a user-input event, e.g., wedding, shopping or dating, their

model recommends the most suitable clothing from the user’s own

clothing photo album. They adopt clothing attributes (e.g., clothing

category, color, pattern) for better visual understanding. Jagadeesh

et al. [16] describe a visual recommendation system for street fash-

ion images. They mainly focus on colormodeling in terms of visual

understanding.

The studies listed above achieve visual understanding mostly

based on feature engineering and conventional machine learning

techniques. With the availability of large scale fashion recommen-

dation datasets and the rapid development of deep learning models,

several recent publications turn to neural networks for fashion rec-

ommendation. CNNs are certainly widely employed [26, 31]. Ma

et al. [30] build a taxonomy based on a theory of aesthetics to de-

scribe aesthetic features of fashion items quantitatively and univer-

sally. Then they capture the internal correlation in clothing colloca-

tions by a novel fashion-oriented multi-modal deep learning based

model. Song et al. [41] use a pre-trained CNN on ImageNet to ex-

tract visual features. Then, to improve visual understanding with

contextual information (such as titles and categories), they propose

to use multi-modal auto-encoders to exploit the latent compatibil-

ity of visual and contextual features. Han et al. [11] enrich visual

understanding by incorporating sequential information by using

a Bidirectional Long Short-Term Memory Network (Bi-LSTM) to

predict the next item conditioned on previous ones. They further

inject attribute and category information as a kind of regulariza-

tion to learn a visual-semantic space by regressing visual features

to their semantic representations. Kang et al. [20] use a CNN-F [7]

to learn image representations and train a personalized fashion

recommendation system jointly. Besides, they devise a personal-

ized fashion design system based on the learned CNN-F and user

representations. Yu et al. [46] propose to introduce aesthetic infor-

mation into fashion recommendation. To achieve this, they extract

aesthetic features using a pre-trained brain-inspired deep structure

on the aesthetic assessment task. Lin et al. [28] enhance visual

understanding by jointly modeling fashion recommendation and

user comment generation, where the visual features learned with

a CNN are enriched because they are related to the generation of

user comments.

Even though there is a growing number of studies on better

visual understanding for fashion recommendation, none of them

takes fashion generation into account like we do in this paper.



Figure 1: Overviewof FARM. The fashion generator (top) uses a variational transformer to learn a special Gaussiandistribution

for a given top image It and a given bottom description d. It then generates a bottom image Iд to match It and d. The fashion

recommender (bottom) evaluates the matching score between the recommended bottom image Ib and (It ,d) pair from three

angles, i.e., visual matching, description matching, and layer-to-layer matching.

2.2 Visual matching

Early studies into visual matching are based on conventional ma-

chine learning methods. Iwata et al. [15] use a topic model to learn

the relation between photographs and recommend a bottom that

has the closest topic proportions to those of the given top. Liu et al.

[29] employ an SVM for recommendation, which has a term de-

scribing the relationship between visual features and attributes of

tops and bottoms. Simo-Serra et al. [38] predict the popularity of

an outfit to implicitly learn its compatibility by a Conditional Ran-

dom Field (CRF)model.McAuley et al. [31]measure the compatibil-

ity between clothes by learning a distance metric with pre-trained

CNN features. Hu et al. [14] propose a functional pairwise inter-

action tensor factorization method to model the interactions be-

tween fashion items of different categories. Hsiao and Grauman

[13] develop a submodular objective function to capture the key

ingredients of visual compatibility in outfits. They propose a topic

model namely Correlated Topic Models (CTM) to generate com-

patible outfits learned from unlabeled images of people wearing

outfits.

Recently, deep learning methods have been used widely in the

fashion recommendation community. Veit et al. [43] train an end-

to-end Siamese CNN network to learn a feature transformation

from images to a latent compatibility space. Oramas and Tuytelaars

[33] mine mid-level elements from CNNs to model the compatibil-

ity of clothes. Li et al. [26] use a Recurrent Neural Network (RNN)

to predict whether an outfit is popular, which also implicitly learns

the compatibility relation between fashion items. Han et al. [11]

further train a Bi-LSTM to sequentially predict the next item con-

ditioned on the previous ones for learning their compatibility re-

lationship. Song et al. [41] employ a dual auto-encoder network

to learn the latent compatibility space where they use the BPR

model to jointly model the relation between visual and contex-

tualmodalities and implicit preferences among fashion items. Song

et al. [40] consider the knowledge about clothing matching and fol-

low a teacher-student scheme to encode the fashion domain knowl-

edge in a traditional neural network. And they introduce an atten-

tive scheme to the knowledge distillation procedure to flexibly as-

sign rule confidence. Nakamura and Goto [32] present an architec-

ture containing three subnetworks, i.e., VSE (Visual-Semantic Em-

bedding), Bi-LSTM and SE (Style Embedding) modules, to model

the matching relation between different items to generate outfits.

Lin et al. [28] propose a mutual attention mechanism into CNNs

to model the compatibility between different parts of images of

fashion items.

Although there are many studies on improving visual matching,

none of them considers connecting it with fashion generation.

3 NEURAL FASHION RECOMMENDATION

3.1 Overview

Given a top t from a pool T = {t1, t2, . . . , tNt
} and a user’s de-

scription d for the target bottom, the bottom recommendation task

is to recommend a list of bottoms from a candidate pool B =



(a) Encoder

(b) Generator

Figure 2: Details of the encoder and the generator in FARM,wherek represents kernel size,n represents thenumber of channels,

s represents strides and p represents padding.

{b1,b2, . . . ,bNb
}. Similarly, the top recommendation task is to rec-

ommend a ranked list of tops for a given bottom and top descrip-

tion pair. Here, we use bottom recommendation as the setup to

introduce our framework FARM.

As shown in Figure 1, FARM consists of two parts, i.e., a fashion

generator (for visual understanding) and a fashion recommender

(for visual matching), where the fashion generator is actually an

auxiliary module for recommendation. For the fashion generator,

we use a CNN as the top encoder to extract the visual features from

a given top image It . We learn the semantic representation for the

bag-of-words vector d of a given bottom description. Then we use

a variational transformer to learn the mapping from the bottom

distribution to a specific Gaussian distribution that is based on the

visual features of It and the semantic representation of d. Finally,

we sample a random vector from the Gaussian distribution and

input it to a DeConvolutional Neural Network (DCNN) [48] (as

bottom generator) to generate a bottom image Iд that matches It
and d, which explicitly forces the top encoder to encode more aes-

thetic matching information into the visual features. For the fash-

ion recommender, we also employ a CNN as the bottom encoder

to extract the visual features from a candidate bottom image Ib .

Then we evaluate the matching score between Ib and (It ,d) pair

from three angles, namely the visual matching between Ib and It ,

the description matching between Ib and d, and the layer-to-layer

matching between Ib and Iд which leverages the generation infor-

mation to improve the recommendation. FARM jointly trains the

fashion generator and fashion recommender. Next we will detail

each of these two main parts.

3.2 Fashion generator

Given an image It of a top t and the bag-of-words vector d of a

bottom description d , the fashion generator needs to generate a

bottom image Iд that not only matches It , but also meets d as

much as possible. We enforce the extracted visual features from

It to contain the information about its matching bottom by using

the generator as a supervision signal. The generated image can be

seen as a reference for recommendation.

Specifically, for a generated bottom image Iд that matches It
and d, the aim of the fashion generator is to maximize Eq. 1:

p(Iд |It , d) =

∫
z
p(Iд |z, It ,d)p(z|It ,d)dz, (1)

where p(z|It ,d) is the top encoder, p(Iд |z, It , d) is the bottom gen-

erator, and z is the latent variable. Because the integral of the mar-

ginal likelihood shown in Eq. 1 is intractable, inspired by varia-

tional inference [4],we first find the Evidence Lower BOund (ELBO)

of p(Iд |It ,d), as shown in Eq. 2:

ELBO = Ez∼q(z |It ,d)[logp(Iд |z, It ,d)]

−KL[q(z|It ,d)‖p(z|It ,d)], (2)

where q(z|It , d) is the approximation of the intractable true poste-

rior p(z|Iд , It ,d). The following inequality holds for the ELBO:

logp(Iд |It ,d) > ELBO. (3)

Hence, we canmaximize the ELBO so as tomaximize logp(Iд |It ,d).

The ELBO contains three components:q(z|It , d),p(z|It ,d) andp(Iд |z, It , d).

Below we explain each component in detail.



3.2.1 q(z|It , d) andp(z|It ,d). Wepropose a variational transformer

(as shown in Figure 1) to model these two components, which

transforms It ,d into a latent variable z. As with previous work [23,

37], we assume that q(z|It , d) and p(z|It ,d) are Gaussian distribu-

tions, i.e.,

q(z|It , d) ∼ N(z; µ,σ2), p(z|It ,d) ∼ N(0, 1), (4)

where µ and σ denote the variational mean and standard devia-

tion respectively, which are calculated with our top encoder and

variational transformer as follows.

Specifically, for a top image It of size 128× 128 with 3 channels,

we first use a CNN, i.e., the top encoder (as shown in Figure 2(a)) to

extract visual features Ft :

Ft = CNN(It ), (5)

where Ft ∈ RW ×H×D ,W and H are the width and height of the

output feature maps, respectively, and D is the number of output

feature maps. And we flatten Ft into a vector ft ∈ RN , where

N =W × H × D, and project ft to the visual representation vt :

vt = sigmoid(Wvt ft + bvt ), (6)

where Wvt ∈ Re×N , vt and bvt ∈ Re , and e is the size of the

representation.

Besides the top image, FARM also allows users to give a natu-

ral language description d, which describes the ideal bottom they

want. In order to take into account the description d, we follow

Eq. 7 to get the semantic representation vd :

vd = sigmoid(Wdd), (7)

where vd ∈ Re , d ∈ RDd , Dd is the vocabulary size, and Wd ∈

R
e×Dd is the visual semantic word embedding matrix [32], which

transforms words from the textual space to the visual space. Spe-

cially, when d is an empty description, vd is a zero vector.

Then the variational transformer uses the visual representation

vt and the semantic representation vd to calculate the mean µ and

standard deviation σ for q(z|It ,d):

µ =Wµtvt +Wµdvd + bµ

logσ2
=Wσ tvt +Wσdvd + bσ ,

(8)

where Wµt , Wµd , Wσ t and Wσd ∈ Rk×e , µ, σ , bµ and bσ ∈ Rk ,

and k is the size of latent variable z. The latent variable z can be

calculated by the reparameterization trick [23, 37]:

ϵ ∼ N(0, 1), z = µ + σ ⊗ ϵ , (9)

where ϵ and z ∈ Rk , and ϵ is the auxiliary noise variable. By the

reparameterization trick, we make sure z is a random vector sam-

pled from N(z; µ,σ2).

3.2.2 p(Iд |z, It , d). We use the bottomgenerator (as shown in Fig-

ure 2(b)) to generate Iд from the variable z.We also assumep(Iд |z, It ,d)

is a Gaussian distribution [23, 37], i.e.,

p(Iд |z, It , d) ∼ N(д(z, It , d),σ
2), (10)

where д is the bottom generator.

Specifically, we first follow Eq. 11 to obtain the basic visual fea-

ture vector fд :

fд = relu(Wдzz +Wдt vt +Wдdvd + bд), (11)

where fд and bд ∈ RN ,WдzR
N×k ,Wдt and Wдd ∈ RN×e . Then

we reshape fд into a 3-D tensor Fд ∈ RW ×H×D , which is the re-

verse operation to what we do for Ft . Finally, we use a DCNN, i.e.,

the bottom generator to generate the bottom image Iд :

Iд = DCNN(Fд ), (12)

where Iд ∈ R128×128×3. To avoid generating blurry images [3], we

divide the process of image generation into two stages [6, 49]. The

first stage is an ordinary deconvolutional neural network that gen-

erates low-resolution images. The second stage is similar to the

super-resolution residual network (SRResNet) [24], which accepts

the images from the first stage and refines them to generate high

quality ones. The DCNN is meant to capture high-level aesthetic

features of the bottoms to be recommended [47, 48]. Besides, in or-

der to generate the bottom, the generation process also forces the

top encoder to capture more aesthetic information.

During training, we first sample a z fromq(z|It ,d). Thenwe gen-

erate Iд with д(z, It ,d). During testing, in order to avoid the ran-

domness introduced by ϵ , we directly generate Iд byд(z = µ, It ,d).

3.3 Fashion recommender

Given the image Ib of a bottom b , the fashion recommender needs

to evaluate the matching score between Ib and the pair (It ,d).

Specifically,we first use the bottom encoder (as shown in Figure 2(a)),

which has the same structure as the top encoder (parameters not

shared), to extract visual features Fb ∈ RW ×H×D from Ib . Then

we flatten Fb into a vector fb ∈ RN and project fb to the visual

representation vb . Next, we calculate the matching score between

Ib and the pair (It , d) in three ways.

3.3.1 Visual matching. We propose visual matching to evaluate

the compatibility between Ib and It based on their visual features.

Specifically, we calculate the visual matching score sv between Ib
and It by Eq. 13:

sv = vT
b
vt . (13)

3.3.2 Description matching. For evaluating the matching degree

between Ib and d, we propose to match descriptions. The descrip-

tion matching score sd between Ib and d is calculated by Eq. 14:

sd = vT
b
vd . (14)

Note that if d does not contain any word, sd equals 0.

3.3.3 Layer-to-layer matching. As we will demonstrate in our ex-

periments in Section 6.2, a simple combination of generation and

recommendation is not able to improve the recommendation per-

formance. The reason is that there is no direct connection between

generation and recommendation, which results in two issues. First,

the aesthetic information from the generation process cannot be

used effectively. Second, the generation process might introduce

features that are only helpful for generation while unhelpful for

recommendation. To overcome these issues, we propose a layer-

to-layer matching mechanism. Specifically, we denote the visual

features of the l-th CNN layer in the bottom encoder as Fl
b

∈

R
W l×H l×Dl

. And we denote the visual features of the correspond-

ing DCNN layer, which has the same size as Fl
b
, in the bottom gen-

erator as Flд ∈ RW
l×H l×Dl

. Then, we reshape Fl
b
= [fl

b,1
, . . . , fl

b,S
]



by flattening the width and height of the original Fl
b
, where S =

W l ×H l and fl
b,i

∈ RD
l

. And we can consider fl
b,i

as the visual fea-

tures of the i-th location of Ib . We perform global-average-pooling

in Fl
b
to get the global visual features fl

b
∈ RD

l

:

fl
b
=

1

S

S∑
i=1

fl
b,i
. (15)

We project fl
b
to the visual representation vl

b
∈ Re :

vl
b
= sigmoid(Wl

vb
fl
b
+ bl

vb
), (16)

where Wl
vb

∈ Re×D
l

and bl
vb

∈ Re . The same operations apply

to Flд to get vlд . Then we calculate the dot product between vl
b
and

vlд , which represents the matching degree slд between Ib and Iд in

the l-th visual level:

slд = vl
b

T
vlд . (17)

For different visual levels, we sum all slд to get the matching score

sд between Ib and Iд :

sд =
∑
l ∈L

slд , (18)

where L is the selected CNN layer set for layer-to-layer matching.

Finally, the totalmatching score s between Ib and the pair (It , d)

is defined as follows:

s = sv + sd + sд . (19)

3.4 Co-supervision learning framework

For FARM, we train the fashion generator and the fashion recom-

mender jointly with a co-supervision learning framework.

Specifically, for the generation part, we regard the image Ip of

a positive bottom p, which not only matches the given top It but

also meets the given description d, as the generation target. And

we denote the generated bottom image in the first stage as I1д , and

denote the generated bottom image in the second stage as I2д . Then,

the first loss is to maximize the first term in ELBO, which is Eq. 20:

Lgen(t ,d,p) =
1

2
‖I1д − Ip ‖

2
2 + ‖I2д − Ip ‖. (20)

The second loss is to minimize the second term in ELBO, which is

Eq. 21:

Lkl (t ,d,p) =
1

2

k∑
i=1

(1 + logσ2
i − µ

2
i − σ

2
i ), (21)

where µi and σi are the i-th elements in µ and σ respectively.

For the recommendation part, we employ BPR [35] as the loss:

Lbpr (t ,d,p,n) = − log(sigmoid(sp − sn)), (22)

where sp and sn are the matching scores of a positive bottom Ip
and a negative bottom In , respectively (calculated with Eq. 19). In
(image of bottom n) is randomly sampled.

The total loss function can be defined as follows:

L =
∑

(t,d,p,n)∈D

Lgen(t ,d,p) + Lkl (t ,d,p) + Lbpr (t ,d,p,n), (23)

where D = {(t ,d,p,n)|t ∈ T ,d ∈ Db ,p ∈ Bt,d ,n ∈ B \ Bt,d },

Db is the bottom description set, Bt,d is the positive bottom set

for the pair (It ,d) and B \ Bt,d is the negative bottom set for the

pair (It ,d). The whole framework can be efficiently trained using

back-propagation in an end-to-end paradigm.

For top recommendation, we follow the same way to build and

train the model, but exchange the roles of tops and bottoms.

4 EXPERIMENTAL SETUP

We set up a series of experiments to evaluate the recommenda-

tion performance of FARM.Details of our experimental settings are

listed below. All code and data used to run the experiments in this

paper are available at https://bitbucket.org/Jay_Ren/www2019_fas

hionrecommendation_yujie/src/master/farm/.

4.1 Datasets

Existing fashion datasets includeWoW [29], Exact Street2Shop [21],

Fashion-136K [16], FashionVC [41] and ExpFashion [28].WoW, Ex-

act Street2Shop, and Fashion-136K have been collected from street

photos3 on the web and involve (visual) parsing of clothing, which

still remains a great challenge in the computer vision domain [41,

44, 45] and which is beyond the scope of this paper. FashionVC

and ExpFashion have been collected from the fashion-oriented on-

line community Polyvore4 and contain both images and texts. The

images are of good quality and the texts include descriptions like

names and categories. For our experiments, we choose FashionVC

and ExpFashion. The statistics of the two datasets are given in Ta-

ble 1. We preprocess FashionVC or ExpFashion with the following

Table 1: Dataset statistics.

Dataset Tops Bottoms Outfits

FashionVC [41] 14,871 13,663 20,726

ExpFashion [28] 168,682 117,668 853,991

steps, taking bottom recommendation as an example. For each tu-

ple (top, top description, bo�om, bo�om description), we regard (top,

bo�om description) as input and the bottom as the ground truth out-

put. We follow existing studies [41] and randomly select bottoms

to generate 100 candidates along with the ground truth bottoms

in the validation and test set. Similar processing steps are used for

top recommendation.

4.2 Implementation details

The parametersW , H , D and N of the encoder and the generator

are set to 1, 1, 1024 and 1024, respectively. The size e of the visual

semantic word embedding, the semantic representation and the vi-

sual representation is set to 100. And the latent variable size k is

set to 100 too. The 7th, the 6th and the 5th layers of the encoder

CNN are adopted to compute the layer-to-layer matching with the

input, the 1st and the 2nd layers of the generator DCNN. To build

descriptions, we first filter out words whose frequency is less than

100. Then, we manually go through the rest to only keep words

that can describe tops or bottoms. Finally, the remaining vocabu-

lary size Dd is 547. During training, we initialize model parame-

ters randomly with the Xavier method [10]. We choose Adam [22]

as our optimization algorithm. For the hyper-parameters of the

3http://www.tamaraberg.com/street2shop/
4http://www.polyvore.com/

https://bitbucket.org/Jay_Ren/www2019_fas
hionrecommendation_yujie/src/master/farm/
http://www.tamaraberg.com/street2shop/
http://www.polyvore.com/


Adam optimizer, we set the learning rate α = 0.001, two momen-

tum parameters β1 = 0.9 and β2 = 0.999, and ϵ = 10−8. We apply

dropout [42] to the output of our encoder and set the rate to 0.5.We

also apply gradient clipping [34] with range [−5, 5] during training.

We use a mini-batch size 64 by grid search to both speed up the

training and converge quickly. We test the model performance on

the validation set for every epoch. Our framework is implemented

with MXNet [8]. All experiments are conducted on a single Titan

X GPU.

4.3 Methods used for comparison

We choose the following methods for comparison.

• LR: Logistic Regression (LR) is a standardmachine learning meth-

od [17].We use it to predict whether a candidate bottommatches

a given (top, bo�om description) pair or not. Specifically, we em-

ploy a pre-trained CNN to extract visual features from images.

Then we follow Eq. 24 to calculate the matching probability p:

p = sigmoid(wT
t vt +w

T
b vb +w

T
d d), (24)

where vt and vb ∈ RDv are the visual features of the top and

the bottom respectively, wt and wb ∈ RDv , and wd ∈ RDd . Dv

is set to 4096 in our experiments.

• IBRd : IBR [31] learns a visual style space in which related objects

are close and unrelated objects are far. In order to consider the

given descriptions at the same time, wemodify IBR by projecting

descriptions to the visual style space. As a result, we can evaluate

the matching degree between objects and descriptions by their

distance in the space. Specifically, the distance function between

the candidate bottom b and the given (top, bo�om description)

pair (t ,d) is as follows:

mtdb = ‖Wvvt −Wvvb ‖
2
2 + ‖Wdvd −Wvd‖

2
2 , (25)

where Wv ∈ RK×Dv , Wd ∈ RK×Dd , vt and vb ∈ RDv are

the visual features extracted by a pre-trained CNN, and K is the

dimension of the visual style space. Dv is 4096, and K is 100 in

our experiments. We refer to the modified version as IBRd .

• BPR-DAEd : BPR-DAE [41] can jointly model the implicit match-

ing preference between items in visual and textual modalities

and the coherence relation between different modalities of items.

In our task, we do not have other text information except descrip-

tions, so we first remove the part of BPR-DAE that is related to

text information. Then, for evaluating the matching score be-

tween the given description and the candidate item, we project

the description representation and the item representation to the

same latent space:

v′d = sigmoid(Wdd), v′i = sigmoid(Wvvi ), (26)

whereWd ∈ RK×Dd ,Wv ∈ RK×Dv , and vi ∈ R
Dv is the latent

representation of item i learned by BPR-DAE. Finally, we follow

Eq. 27 to evaluate the compatibility between a candidate bottom

b and a given (top, bo�om description) pair (t ,d):

mtdb = vTt vb + v
′T
d
v′
b
. (27)

We set Dv = 512, and K = 100 in experiments. We refer to the

modified version as BPR-DAEd .

• DVBPRd : DVBPR [20] learns the image representations and trains

the recommender system jointly to recommend fashion items for

users. We adopt DVBPR to our task and refer to it as DVBPRd .

Specifically, we first follow DVBPR to use a CNN-F to learn im-

age representations of tops and bottoms. Then we calculate the

matching score between a bottom and the given (top, bo�om

description) pair by Eq. 28:

mtdb = vTt vb + v
T
d
vb , (28)

where vt and vb ∈ RK are the image representations of the top

and bottom respectively, vd ∈ RK is the description represen-

tation learned in the same way as FARM, and K is set to 100 in

experiments.

4.4 Evaluation metrics

We employ Mean Reciprocal Rank (MRR) and Area Under the ROC

Curve (AUC) to evaluate the recommendation performance, which

are widely used in recommender systems [25, 36, 50].

In the case of bottom recommendations, for example, MRR and

AUC are calculated as follows:

MRR =
1

|Qtd |

|Qtd |∑
i=1

1

ranki
, (29)

whereQtd is the (top, bo�om description) collection as queries, and

ranki refers to the rank position of the first positive bottom for the

i-th (top, bo�om description) pair. Furthermore,

AUC =
1

|Qtd |

∑
(t,d )∈Qtd

1

|E(t ,d)|

∑
(p,n)∈E(t,d )

δ (sp > sn ), (30)

where E(t ,d) is the set of all positive and negative candidate bot-

toms for the given top t and the given bottom description d , sp
is the matching score of a positive bottom p, sn is the matching

score of a negative bottomn, and δ (α) is an indicator function that

equals 1 if α is true and 0 otherwise.

5 RESULTS

The recommendation results on the FashionVC and ExpFashion

datasets of FARM and the methods used for comparison are shown

in Table 2.We can see that FARM consistently outperforms all base-

lines in terms of AUC andMRRon both datasets.We have fivemain

observations from Table 2.

(1) FARM significantly outperforms all baselines and achieves the

best results on all metrics. There are three main reasons. First,

FARM contains a fashion generator as an auxiliary module for

recommendation. With its co-supervision learning framework,

FARM can encode more aesthetic characteristics and use this

extra information to improve recommendation performance;

see Section 6.1 for further analysis. Second, we propose a layer-

to-layer matching scheme to make sure that FARM can effec-

tively use the aesthetic features in the fashion generator to

improve recommendation results; see Section 6.2 for a further

analysis. Third, LR, IBRd and BPR-DAEd employ pre-trained

CNNs (all AlexNet [19] trained on ImageNet5) to extract vi-

sual features from images, but they do not fine-tune the CNNs

during experiments. However, in FARM, we jointly train the

5http://www.image-net.org/

http://www.image-net.org/


Table 2: Recommendation results on the FashionVC and

ExpFashion datasets (%).

Method

FashionVC

Top Bottom

AUC MRR AUC MRR

LR 48.7 4.5 46.4 4.4

IBRd 52.8 6.1 62.9 10.3

BPR-DAEd 62.9 8.6 70.2 10.9

DVBPRd 64.6 9.1 76.9 13.0

FARM 71.2∗ 12.6∗ 77.8 15.3∗

Method

ExpFashion

Top Bottom

AUC MRR AUC MRR

LR 50.5 5.4 48.4 4.4

IBRd 56.1 7.1 68.9 12.0

BPR-DAEd 73.0 12.3 79.9 14.7

DVBPRd 82.4 18.5 83.7 15.4

FARM 85.2∗ 25.1∗ 88.4∗ 24.3∗

The superscript ∗ indicates that FARM significantly outperforms DVBPRd ,

using a paired t-test with p < 0.05.

top encoder, the bottom encoder and the top/bottom genera-

tor, which can extract better visual features.

(2) DVBPRd performs better than other baseline methods. The rea-

son is that DVBPRd employs a CNN-F to jointly learn image

representations during recommendation. Hence, it can extract

more effective visual features to improve recommendation per-

formance.

(3) Although BPR-DAEd , IBRd and LR all use visual features ex-

tracted by a pre-trained CNN as input, BPR-DAEd performs

much better than the other two. This is because BPR-DAEd
learns a more sophisticated latent space using an auto-encoder

neural network to represent the fashion items. However, IBRd
only applies a linear transformation to inputs, which restricts

the expressive ability of the visual style space. And LR directly

uses the visual features and the bag-of-words vectors as inputs,

making it hard to learn an effective matching relation.

(4) The performance of all methods on the ExpFashion dataset is

better than on the FashionVC dataset. The most important rea-

son is that the average length of the descriptions in the Exp-

Fashion dataset is 5.6 words, however, it is only 3.7 words in

the FashionVC dataset. That means that the descriptions in the

ExpFashion dataset contain more details that can provide more

information for recommendation and generation, which boosts

the recommendation performance.

(5) The bottom recommendation performance is better than the

top recommendation performance for most methods. The num-

ber of tops is larger than the number of bottoms and the styles

of tops are also richer than those of bottoms on both datasets.

That makes bottom recommendation and bottom generation

easier.

In summary, FARM significantly outperforms state-of-the-art meth-

ods on both datasets. The improvements mainly come from the

co-supervision of generation and the layer-to-layer mechanism,

which we will demonstrate in the next section.

Table 3: Analysis of co-supervision learning. Recommenda-

tion results on the FashionVC and ExpFashion datasets (%).

Method

FashionVC

Top Bottom

AUC MRR AUC MRR

FARM-G 54.8 8.4 60.9 9.8

FARM-R 68.0 9.8 77.2 12.8

FARM 71.2∗ 12.6∗ 77.8 15.3∗

Method

ExpFashion

Top Bottom

AUC MRR AUC MRR

FARM-G 64.4 14.2 72.4 21.3

FARM-R 82.3 18.9 84.2 15.2

FARM 85.2∗ 25.1∗ 88.4∗ 24.3∗

The superscript ∗ indicates that FARM significantly outperforms FARM-R,

using a paired t-test with p < 0.05.

6 ANALYSIS

Weprovide two types of analyses (concerning co-supervision learn-

ing and layer-to-layer matching) and two cases studies (recommen-

dation and generation).

6.1 Co-supervision learning

To demonstrate the superiority of incorporating the extra supervi-

sion of the generator, we compare FARMwith FARM-G and FARM-

R, where FARM-G is FARM without the recommendation part and

FARM-R is FARMwithout the generation part. The results are shown

in Table 3. To be able to apply FARM-G to the recommendation

task, we first use FARM-G to generate a bottom image for a given

(top, bo�om description) pair. Then, similar to [2, 27], we use a pre-

trained AlexNet to get the representations of the generated bottom

and the candidate bottoms. Finally, we compute the similarity be-

tween the generated bottom and a candidate bottombased on their

representations.

From Table 3, we can see that FARM achieves significant im-

provements over FARM-R. On the FashionVC dataset, for top rec-

ommendation, AUC increases by 3.2%, MRR increases by 2.8%, and

for bottomrecommendation, AUC increases by 0.6%,MRR increases

by 2.5%. On the ExpFashion dataset, for top recommendation, AUC

increases by 2.9%, MRR increases by 6.2%, and for bottom recom-

mendation, AUC increases by 4.2%, MRR increases by 9.1%. Thus,

FARM is able to improve recommendation performance by using

the generator as a supervision signal.

Comparing FARM-G with all baselines, we notice that FARM-

G achieves better performance, and especially it performs better

than IBRd in most settings. Hence, the images generated by FARM-

G and FARM reflect some key factors of the items to be recom-

mended, which is why the generator can help improve recommen-

dation.

Additionally, we find that FARM-R outperforms LR, IBRd and

BPR-DAEd . And it achieves comparable performancewithDVBPRd ,

whose difference against FARM-R is mainly in the CNN part. If

FARMemploys more powerful CNN architectures such asVGG [39]

or ResNet [12], it should perform even better.



Table 4: Analysis of layer-to-layer matching. Recommenda-

tion results on the FashionVC and ExpFashion datasets (%).

Method

FashionVC

Top Bottom

AUC MRR AUC MRR

FARM-WL 59.8 7.6 67.8 8.2

FARM 71.2∗ 12.6∗ 77.8∗ 15.3∗

Method

ExpFashion

Top Bottom

AUC MRR AUC MRR

FARM-WL 68.6 9.9 74.3 10.3

FARM 85.2∗ 25.1∗ 88.4∗ 24.3∗

The superscript ∗ indicates that FARM significantly outperforms FARM-

WL, using a paired t-test with p < 0.05.

6.2 Layer-to-layer matching

To analyze the effect of the layer-to-layer matching scheme, we

compare FARM with FARM-WL which only uses the visual match-

ing and the description matching to evaluate the matching degree.

We can see from Table 4 that FARM performs significantly better

than FARM-WL according to all metrics on both datasets, which

confirms that layer-to-layer matching does indeed improve the per-

formance of recommendation.

To help understand the effect of layer-to-layer matching, we list

some real and generated images in Figure 3. FARM generates good

quality images that are similar to real images. This means that the

generated images can tell us what kind of bottoms can match the

given (top, bo�om description) pair from the perspective of gener-

ation, so layer-to-layer matching can direct the recommender by

evaluating the matching degree between the candidate images and

the generated images. That is why layer-to-layer matching is able

to improve the performance of recommendation.

Additionally, we notice that FARM-WL performs worse than

FARM-R, which means that a simple combination of recommenda-

tion and generation is not able to improve recommendation perfor-

mance significantly. This may be because, without layer-to-layer

matching, FARM-WL pays too much attention to the generation

quality and ignores recommendation performance. We are able

to improve this situation with layer-to-layer matching. Layer-to-

layer matching builds a connection between the bottom generator

and the bottom encoder in different layers. As a result, the bottom

encoder pushes the bottom generator to learn useful matching in-

formation for improving recommendation performance.

6.3 Recommendation case studies

We list some recommendation produced by FARM in Figure 4. For

each input, we list the top-10 recommended items. We highlight

the positive items with red boxes. We can see that most recom-

mended items not only match the given items, but also meet the

given descriptions. For example, in the second case of the top rec-

ommendation, the given top description is “sleeve black blazer out-

erwear jackets,” so most recommended tops are jackets, and espe-

cially almost all recommended tops are black. Also in the first case

of the bottom recommendation, the given bottom description is

(a) Top generation.

(b) Bottom generation.

Figure 3: Comparison between real and generated images.

(a) Top recommendation.

(b) Bottom recommendation.

Figure 4: Case studies of recommendation. The items high-

lighted in the red boxes are the positive ones.

“distressed straight leg jean,” so the recommended bottoms are all

jeans, most of which are straight leg and some are distressed. By

comparing the generated items with the recommended items, such

as in the first case of the top recommendation and the second case

of the bottom recommendation, we can see that the generated im-

ages are able to provide good guidance for the recommendation.

We also notice that not all recommended items meet the given

description,mostly because FARM recommends items not only based

on the given description, but also based on the given item. For ex-

ample, in the third case of the bottom recommendation, the sixth

recommended bottom is a denim jeans instead of a daydress. The



given top is a denim coat, which makes FARM believe that recom-

mending a denim jeans is also reasonable. Besides, not all positive

items are ranked in the first position. See, e.g., the third case of the

top recommendation., where the top recommended item and the

given bottom have the same color green, which looks more com-

patible. In these failure cases, the quality of the generated images

is poor so they are likely less helpful for recommendation.

6.4 Generation case studies

Although this paper focuses on improving recommendation by in-

corporating generation, we also list some generation cases in Fig-

ure 5. Overall, the generated items are able to match the given in-

put. For example, in the sixth case of the top generation, the gen-

erated navy blouse with the yellow keen length skirt looks beau-

tiful and elegant. Although there are many kinds of navy blouses

(a) Top generation.

(b) Bottom generation.

Figure 5: Case studies of generation. Each case is in the form:

“given description + given item = generated item”.

like sailor suits, the style of the generated top seems to be more

suitable for the given bottom. And in the eighth case of the bot-

tom generation, the given description does not give the specific

pattern of the generated bottom. But the generated bottom has a

flame-like pattern, whichmakes it more compatiblewith the bright

yellow camisole. From these samples we can see that FARM is able

to generate fashion items based on the relation between the visual

features of different fashion items.

The generated items can accord with the given descriptions no

matter what they are about. For example, in the second case of

the top generation, the description is “grey wool coats,” so the gen-

erated top is a grey coat which also looks like wool. And in the

fourth case, the description is “gold fur trim puffer jackets”, so the

generated jacket has fur in its collar and cuff. In the bottom gen-

eration, we also observe that FARM is able to distinguish between

skinny jeans and bootcut jeans from the first and the second cases.

Another example is the sixth case, where the description contains

“floral print.” FARM generates a black long pencil skirt with flower

pattern. In short, FARM is able to build a cross-modal connection

between text and images in order to generate fashion items.

Generation is a challenging process, which means that power-

ful features are needed in order to generate a matching item. We

can see from the examples provided that FARM is able to generate

aesthetically matching outfits. FARM is able to improve recommen-

dation performance through jointly modeling generation.

7 CONCLUSION

In this paper, we have studied the task of outfit recommendation,

which has two main challenges: visual understanding and visual

matching. To tackle these challenges, we propose a co-supervision

learning framework, namely FARM. For visual understanding, FARM

captures aesthetic characteristics with the supervision of genera-

tion learning. For visual matching, FARM incorporates a layer-to-

layer matching mechanism to evaluate the matching score at dif-

ferent neural layers.

We have conducted experiments to confirm the effectiveness

of FARM. It achieves significant improvements over state-of-the-

art baselines in terms of AUC and MRR. We also show that the

proposed layer-to-layer matching mechanism can make effective

use of generation information to improve recommendation perfor-

mance. We further exhibit some cases to analyze the performance

of FARM.

Our results can be used to improve users’ experience in fashion-

oriented online communities by providing better recommendation

and to promote the research into fashion generation by demon-

strating a novel application in outfit recommendation.

A limitation of FARM is that its recommendation performance

is affected by the quality of the generated images. If the quality

of the generated images is not high, the generation part cannot

provide effective guidance for the recommendation part.

As to future work, we plan to improve the recommendation and

the generation of FARM when the descriptions are lacking. And

we want to extend FARM to recommend and generate whole out-

fits that not only contain tops and bottoms but also include shoes

and hats, etc. We will also try more powerful CNN and DCNN ar-

chitectures for recommendation and generation.
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