
A

An Active Learning Approach for Improving the Accuracy of
Automated Domain Model Extraction

CHETAN ARORA, SnT Centre for Security, Reliability and Trust, University of Luxembourg
MEHRDAD SABETZADEH, SnT Centre for Security, Reliability and Trust, University of Luxembourg
SHIVA NEJATI, SnT Centre for Security, Reliability and Trust, University of Luxembourg
LIONEL BRIAND, SnT Centre for Security, Reliability and Trust, University of Luxembourg

Domain models are a useful vehicle for making the interpretation and elaboration of natural-language re-
quirements more precise. Advances in natural language processing (NLP) have made it possible to auto-
matically extract from requirements most of the information that is relevant to domain model construction.
However, alongside the relevant information, NLP extracts from requirements a significant amount of in-
formation that is superfluous, i.e., not relevant to the domain model. Our objective in this article is to
develop automated assistance for filtering the superfluous information extracted by NLP during domain
model extraction. To this end, we devise an active-learning-based approach that iteratively learns from an-
alysts’ feedback over the relevance and superfluousness of the extracted domain model elements, and uses
this feedback to provide recommendations for filtering superfluous elements. We empirically evaluate our
approach over three industrial case studies. Our results indicate that, once trained, our approach automat-
ically detects an average of ≈ 45% of the superfluous elements with a precision of ≈ 96%. Since precision is
very high, the automatic recommendations made by our approach are trustworthy. Consequently, analysts
can dispose of a considerable fraction – nearly half – of the superfluous elements with minimal manual
work. The results are particularly promising, as they should be considered in light of the non-negligible
subjectivity that is inherently tied to the notion of relevance.

CCS Concepts: rSoftware and its engineering→ Requirements analysis; Software design engineering;
Empirical software validation;

Additional Key Words and Phrases: Requirements Engineering, Active Learning, Natural-language Re-
quirements, Domain Modeling, Case Study Research.

ACM Reference Format:
Chetan Arora, Mehrdad Sabetzadeh, Shiva Nejati, and Lionel Briand, 2017. An Active Learning Approach
for Improving the Accuracy of Automated Domain Model Extraction. ACM Trans. Softw. Eng. Methodol. V,
N, Article A (January YYYY), 36 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Natural language (NL) is pervasive in requirements documents. It is estimated that
≈80% of what is typically known about a proposed system at the requirements anal-
ysis stage has been expressed in natural language [Luisa et al. 2004; Pohl 2010]. As
software development progresses into specification and design, NL requirements in-
evitably need to be elaborated into more precise artifacts. An important artifact that

This work is supported by Luxembourg’s National Research Fund (grant agreement number FNR/P10/03),
and by the European Research Council under the European Union’s Horizon 2020 research and innovation
program (grant agreement number 694277).
Author’s addresses: C. Arora, M. Sabetzadeh, S. Nejati, and L. Briand, Interdisciplinary Centre for Secu-
rity, Reliability and Trust (SnT), University of Luxembourg, 29 Avenue J.F. Kennedy, L-1855 Luxembourg;
emails: {arora, sabetzadeh, nejati, briand}@svv.lu;
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1049-331X/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

1

is commonly built during such elaboration is a domain model – an explicit representa-
tion of the salient concepts in an application domain and the relations between these
concepts [Larman 2004].

Domain models are valuable to the software development process in a number
of ways: First, domain models provide structured knowledge about the terminology
that underlies a domain. This makes domain models a useful instrument for com-
munication between different stakeholders, including non-technical ones such as end-
users [Larman 2004]. Second, domain models link a proposed system to the problem
that the system is intended at addressing. In fact, the design of a system, particularly
in a model-based development context, often takes shape around a domain model [Lar-
man 2004]. Finally, domain models have gained considerable traction in recent years
as an enabler for automated software verification. For example, model-based testing
techniques rely heavily on domain models for automated test case and oracle genera-
tion [Utting and Legeard 2010; Wang et al. 2015].

Requirements documents may include hundreds and sometimes thousands of state-
ments. Automated support presents a major advantage when one needs to build a
domain model that is aligned with a large collection of NL requirements.

Numerous techniques exist for domain model extraction [Yue et al. 2011]. Most of
these techniques use natural language processing (NLP) [Manning and Schütze 1999]
as an enabling technology. Recent advances in NLP have made it possible to reliably
extract increasingly more complex information from natural-language content. This
has led to a surge of interest in developing new and improved solutions for auto-
mated requirements analysis, including automated domain model extraction [Arora
et al. 2016; Thakur and Gupta 2016; Lucassen et al. 2017].

We illustrate domain model extraction through the example of Fig. 1. The NL re-
quirements in Fig. 1(a) represent a small fragment of the requirements document for
a safety certification platform. This platform is the subject of one of our case stud-
ies, as we explain later. To ease illustration, we have altered the requirements in
Fig. 1(a) from their original form, without changing their substance. In Fig. 1(b), we
show the distinct relations extracted from these requirements using the NLP-based do-
main model extractor developed in our earlier work [Arora et al. 2016]. The extracted
relations are represented in the UML class diagram notation. The extraction rule be-
hind each relation is further shown, e.g., A5 for Rel(ation) 1.1. We briefly describe in
Section 2 our domain model extractor and the extraction rules that it implements.

The extracted relations are typically collated into a candidate domain model and
subsequently presented to domain experts for review. Fig. 2(a) shows the candidate
domain model induced by the relations of Fig. 1(b). As the experts review this model,
they make decisions about what information should be retained in the domain model
and what information should be filtered out. For example, for reasons that we discuss
later in this section, only about half of the relations of Fig. 1(b) are retained and the
remaining are discarded. In tandem or after this filtering process, the experts also de-
cide about how they would like to represent the retained information. For example,
the experts may elect to represent Rel 3.4 of Fig. 1(b) as an attribute, rather than an
aggregation as in the candidate model. The associations may undergo changes as well.
For example, associations Rel 1.1 and Rel 2.1 between “CMP” and “Evidence Model”
may be merged into one relation with a more abstractly worded name, e.g., “managed
in”, attached to the merged relation. The experts may further introduce additional in-
formation that is absent from the candidate model. For instance, certain containment
relations may have been left tacit in the requirements. For example, an “Evidence
Repository” is part of an “Assurance Project”, thus necessitating an aggregation from
the latter to the former.

2

REQ1: The CMP (certification management platform) shall provide users with the
ability to import the evidence models that are associated with an assurance project.

REQ2: The CMP shall be able to modify the evidence models associated with an
assurance project.

REQ3: The CMP shall store the timestamp of evidence model changes in the
evidence repository.

Generalization !"G1
Evidence

Model Change
Model Change

Evidence

Model Change
Model Change

Rel

3.5

#$%

!"

Assurance

Project
Project

Assurance

Project
Project

CMP
Evidence

Model Change

store

 timestamp of
CMP

Evidence

Model Change

store

 timestamp of

A4

Evidence

Model
Model

Evidence

Model
Model

Evidence

Model

Assurance

Project

associated

with

Evidence

Model

Assurance

Project

associated

with

Rel

1.4

A5

Rel

1.2

A1

Relevant

?

Rel

1.3

Relation Type

Generalization

Association

Association CMP Timestamp
store

CMP Timestamp
store

A6

Aggregation #$%

Generalization

Rel

2.1

CMP
Evidence

Model

provide

 users with

 the ability

 to import

CMP
Evidence

Model

provide

 users with

 the ability

 to import

Extracted Relation

Ag1

Association

Timestamp
Evidence

Model Change
Timestamp

Evidence

Model Change

#

A6

Rel

1.1

A3

Association #$%

#$%

Rel

3.1

CMP
Evidence

Repository

store

timestamp

of evidence

model

changes in

CMP
Evidence

Repository

store

timestamp

of evidence

model

changes in

!"

G1

#$%

!"

CMP
Evidence

Model

modify
CMP

Evidence

Model

modify

G1

Association

Rel

3.4

Rel

3.2

Rel

3.3

!"

Extraction

Rule

Association

(a)

(b)

Fig. 1. (a) Example requirements; (b) Distinct extracted relations.

In Fig. 2(b), we show the outcome of the validation and elaboration process conducted
by the experts over the automatically extracted candidate model. In the figure, we use
colors to distinguish between the information that comes verbatim from the candidate
model, the information that can be traced back to the candidate model but which has
been altered from its original form, and the information that is absent from the candi-
date model and has been added manually by the experts. Ultimately, what the experts
aim to obtain is a domain model that is feasibly complete [Lindland et al. 1994]: This
means that accepting a model with any more or any less information would be less
desirable than accepting the model as is. Naturally, the notion of completeness is con-
textual and dependent on how the experts wish to use the resulting domain model.
Challenge. Our work in this article concerns a challenge that we observed earlier in
automated model extraction and already exemplified in Fig. 1 and Fig. 2. Upon pre-
senting automatically extracted relations to a subject-matter expert in an industrial
case study, the expert deemed only a fraction – about 36% – of the extracted rela-
tions relevant, i.e., useful for inclusion in the domain model. Despite the majority of
the remaining relations being meaningful, the expert found them to be superfluous,

3

(a)

CMP Evidence Model
Assurance

Project

provide users with

the ability to import

!

modify

!

associated

 with

!

Evidence
Repository

store timestamp of

evidence model changes in

!

Evidence Model
Change

Timestamp

(b)

Evidence Model CMP
managed in

Assurance
Project

- timestamp

Evidence Model
Change

Evidence
Repository

associated

 with

!

logged in

!

!

in
tr

o
d

u
c

e
d

in

Taken from the model of Fig. 2(a) with modifications

Absent from the model of Fig. 2(a) and added manually

Taken as is from the model of Fig. 2(a)

ProjectModel

Model Change

store

!
!

store

timestamp of

!

Fig. 2. (a) Automatically extracted domain model; (b) Domain model after being refined by an expert.

i.e., not pertinent to the domain model [Arora et al. 2016]. In the last column of the
table in Fig. 1(b), we show the expert opinion about the relevance of the automati-
cally extracted relations in our illustrative example. Various reasons were cited when
a relation was found superfluous. For example, Rel 1.3, Rel 1.4 and Rel 3.5 were ruled
out because these generalizations, including their target abstract concepts, namely
“Project”, “Model” and “Model Change”, were found to be trivial and thus not useful.
Rel 3.1 was too generic; and Rel 3.2 was discarded in favor of Rel 3.3.

The process that we outlined earlier, whereby the experts perform a completely
manual review of the automatically extracted candidate model, is cumbersome. This
is because the experts will have to manually filter numerous superfluous relations.
If the experts filter too much, the resulting domain model will be of limited useful-
ness because it misses key domain knowledge. If the experts filter too little, again,
the domain model will not serve the purposes it is built for, as the domain model
is littered with superfluous information. Including superfluous information in the
domain model is not only futile, but can also negatively affect understandability
due to factors such as cognitive overload and clutter (e.g., when the domain model
needs to be rendered visually).

As we argue more precisely in Section 3, by properly utilizing modern NLP tech-
nologies, one can automatically extract the large majority of relevant relations from
the text of the requirements. This makes NLP a palatable basis for supporting the
transition from NL requirements to domain models. At the same time, the ability to

4

near-completely extract all the relevant relations comes at the cost of a considerable
number of superfluous relations. Manually filtering the superfluous relations is still a
better alternative than having to inspect all the requirements and manually extract
all the relevant relations. Nevertheless, taking steps to reduce the number of superflu-
ous relations (i.e., noise) without missing out on relevant relations would bring about
major cost savings.
Objectives and Results. The main objectives of this article and the results achieved
in relation to each objective are as follows.
1) Building insights on relevance in model extraction: Our initial observa-
tion about relevance highlighted a little known issue in automated model extrac-
tion [Arora et al. 2016]. Our observation, however, was based on a single case
study. Before deciding whether the observed problem warranted a technical solu-
tion, we needed to further examine whether the problem was representative of
practice or an isolated case. To this end, we report on results from two addi-
tional studies, where we asked subject-matter experts about the relevance of do-
main model relations that were extracted automatically from industrial require-
ments. The results confirm our initial observation: relevant relations in the two
new studies constitute only 39.5% and 36.6% of the extracted relations, respectively.
In one of the new case studies, we had the opportunity to elicit feedback from multiple
experts, and subsequently assess the level of agreement between them. Our interrator
agreement analysis indicates that the experts are, to a large extent, consistent in how
they reason about relevance. Nevertheless, we also found a non-negligible number of
diverging opinions, suggesting that the experts exercise some degree of subjectivity.
2) Devising automated assistance for identifying superfluous relations: We
propose an automated approach for assisting analysts in identifying superfluous re-
lations while reviewing the domain model extraction results. Our approach builds on
the concept of active learning – a machine learning paradigm in which a learning tech-
nique interactively requests inputs from an external source in order to improve the
accuracy of the machine learning model [Settles and Craven 2008]. In our approach,
we employ active learning to process analysts’ feedback, and dynamically apply the
logic gleaned from the feedback for reducing superfluous information. Specifically, we
define a set of features for learning from analysts’ feedback in the context of domain
model extraction. Building on these features, we propose an algorithm for constructing
a classifier that can assist analysts in identifying superfluous relations.

An effective realization of our automated assistance approach involves answering
several questions. These include, among others, the choice of machine learning tech-
nique and the values to use for the approach’s input parameters, e.g., the confidence
margin necessary to ensure meaningful predictions. Using data from our three indus-
trial case studies, we provide an optimal tuning of our approach. Subsequently, we ex-
amine the overall effectiveness of the approach over the case studies. We observe that,
once trained, our approach automatically identifies an average of≈45% of the superflu-
ous relations with a precision of ≈96%. The results have the potential for major effort
savings, noting that the recommendations are highly trustworthy and cover nearly
half of the superfluous relations. The filtering rate achieved is particularly promising,
considering the subjectivity that was observed among experts.
Structure. Section 2 provides background. Section 3 describes our studies on rele-
vance. Sections 4 and 5 present our approach for filtering superfluous relations and
our evaluation. Section 6 discusses threats to validity. Section 7 compares with related
work. Section 8 concludes the article.

5

Table I. Domain model extraction rules.

Terms "contain", "include", [...] suggest
aggregations.

Ag2
Book Library

“The library contains books.” ::

Book Library

“The library contains books.” ::

REQ1 in Fig. 1 :: Rel 1.3
Premodifiers of noun phrases suggest
generalizations.

G1

"The train arrives in the morning
at 10 AM." :: Arrival time is an

attribute of Train.

An intransitive verb with an adverb
suggests an attribute.

At1

REQ3 in Fig. 1 :: Rel 3.4Genitive cases suggest aggregations.Ag1

A prepositional dependency (Link Path)
suggests an association between
indirectly-related concepts.

A6 REQ3 in Fig. 1 :: Rel 3.2

A non-finite verbal modifier suggests an
association.

A5 REQ1 in Fig. 1 :: Rel 1.1

A4
A verbal clausal modifier suggests an
association.

REQ2 in Fig. 1 :: Rel 2.1

A3
A relative clause modifier of nouns
suggests an association.

REQ1 in Fig. 1 :: Rel 1.2

Transaction ATM
processed

by

“The transaction is processed by the

ATM.”::

Transaction ATM
processed

by

“The transaction is processed by the

ATM.”::
A2

A verb with a preposition suggests an
association.

Rule Id

All noun phrases in the requirements are

candidate concepts.

REQ3 in Fig. 1 :: Rel 3.1

REQ1 in Fig. 1 ::
Certification Management Platform,
CMP, User, Evidence Model, and
Assurance Project

Description

A1

C1

Transitive verbs suggest associations.

Example

2. BACKGROUND
In this section, we first introduce domain model extraction. We then review the ma-
chine learning background for our approach.

2.1. Domain Model Extraction
To extract concepts and relations from NL statements, domain model extractors rely
primarily on predefined rules that are implemented using NLP. This article is not
concerned with the technicalities of model extraction: the extractor we draw upon
has been discussed in our earlier work [Arora et al. 2016] and is publicly available
at http://bit.ly/2nNNOTO. To be self-contained, we present and exemplify in Table I
the main extraction rules that underlie our model extractor. Of the eleven rules in the
table, one is for concepts (C1), six for associations (A1–A6), two for aggregations (Ag1–
Ag2), one for attributes (At1), and one for generalizations (G1). Our model extractor
further has rules for assigning multiplicities to associations. We do not discuss these
rules here. For details, see [Arora et al. 2016]. Rules A3 to A6 are specific to our domain
model extractor; the remaining rules are common and used by several other extractors
as well [Yue et al. 2011; Elbendak et al. 2011; VidyaSagar and Abirami 2014; Thakur
and Gupta 2016; Lucassen et al. 2017].

Among the rules in Table I, A6 requires some further explanation. Rather than just
one rule, A6 represents a class of rules known as Link Paths (LP) [Akbik and Broß
2009; Fader et al. 2011]. As opposed to rules A1 – A5 in Table I which extract direct
associations between the concepts in a sentence, rule A6 extracts indirect associations.
To illustrate the notions of direct and indirect, consider Rel 3.1, Rel 3.2 and Rel 3.3 in
the example of Fig. 1. The grammatical dependencies that induce these associations

6

CMP Timestamp
Evidence

Model Change
Evidence

Repository

Dep: prep_of Dep: prep_in

Direct Relation:

 Rel 3.1 (Depth = 0)
Indirect Relation:

 Rel 3.2 (Depth = 1)

Indirect Relation:

 Rel 3.3 (Depth = 2)

Dep: subj-obj

G
ra

m
m

a
ti
c
a

l
d

e
p

e
n

d
e

n
c
ie

s
(e

x
tr

a
c
te

d

u
s
in

g
 N

L
P

)

E
x
tr

a
c
te

d

a
s
s
o

c
ia

ti
o

n
s

Fig. 3. Illustration of Link Paths over REQ3 from the example of Fig. 1.

are shown in Fig. 3. Here, Rel 3.1 is a direct association because it is derived from
the subject-object dependency between CMP and Timestamp. In contrast, Rel 3.2 and
Rel 3.3 are indirect, as they are deduced from additional dependencies – in this case
prepositional dependencies – originating from the target concept of Rel 3.1 (i.e., Times-
tamp). The prepositional dependency between Timestamp and Evidence Model Change
induces Rel 3.2. This dependency, when chained to the prepositional dependency be-
tween Evidence Model Change and Evidence Repository, induces Rel 3.3. The number
of additional dependencies that are chained to a direct association denotes the depth of
an LP association. For example, Rel 3.2 has an LP depth of one, whereas Rel 3.3 has an
LP depth of two. Direct associations such as Rel 3.1, which serve as base relations for
LP associations, have a depth of zero. Our model extractor identifies LP associations
up to a maximum depth of four.

We use the term LP group to refer to a direct association alongside all its indirect
associations extracted using rule A6. For example, the set {Rel 3.1,Rel 3.2,Rel 3.3}
is an LP group. As we elaborate in Section 3, we empirically observe an interesting
property that facilitates the filtering of superfluous associations in LP groups. Our
technical solution in Section 4 utilizes a combination of this property and machine
learning for accurate identification of superfluous relations.

2.2. Using Machine Learning (ML) for Building Recommendation Systems
Using ML is common in software engineering for building recommendation systems.
Recommendation systems are “software applications that provide information items
estimated to be valuable for software engineering tasks in a given context” [Robillard
et al. 2014]. Our work relates most closely to Recommendation systems In-The-Small
(RITS), where recommendations are drawn based on a small amount of data taken
from the analyst’s immediate context [Robillard et al. 2014]. RITS are commonly im-
plemented using ML so that the logic and rationale behind the recommendations can
evolve as more data and analyst feedback become available [Robillard et al. 2014].
This is particularly important in our context, where recommendations have to adapt
on-the-fly to different requirements documents in different application domains.

Our approach is a supervised method: it requires analysts to label relevant and su-
perfluous items, and then uses these labels for training. Supervised learning tech-
niques are divided into regression and classification, where the goal is to predict real-
valued and categorical outputs, respectively [Louridas and Ebert 2016]. Our approach
falls under classification, since its function is to tell apart the relevant and superflu-
ous categories. In our evaluation (Section 5), we experiment with several classification
techniques in order to determine which one is most accurate in our context.

7

❑Yes ❑Partially No❑

❑Yes ❑Maybe No❑

Q3 (asked per requirement). Are there any other relations that this requirement implies?
If yes, please elaborate.

Q2 (asked per relation). Should this relation be in the domain model?

Q1 (asked per relation). Is this relation correct?

Fig. 4. Interview survey questionnaire.

Our technical solution builds upon active learning. An active learning technique
starts with a seed training set and iteratively samples the unlabeled data set for
further learning [Settles 2012]. Active learners are typically instantiated based on a
sampling strategy that is aimed at maximizing the effectiveness of learning [Yu et al.
2018]. Notable sampling strategies include selecting (unlabeled) data over which the
learner is most certain [Miwa et al. 2014] or least certain [Lewis and Gale 1994], data
that is likely to change the current learned model the most [Settles and Craven 2008],
and data that is most representative of the unlabeled data set [Settles and Craven
2008; DeBarr and Wechsler 2009]. In our approach, we sample the most uncertain
data. This sampling approach is one of the most common, and is often referred to as
Simple Active Learning (SAL) [Cormack and Grossman 2014]. We discuss our algo-
rithm and the way it implements SAL in Section 4.

3. EXPERT SURVEYS ON RELEVANCE
This section presents the design, execution, and results of three interview surveys with
subject-matter experts on the output that our domain model extractor generates over
industrial requirements. The overall survey protocol as well as the results for one of
the three surveys comes from our previous work [Arora et al. 2016]. For completeness,
we summarize from this past work what is needed for this article. In addition to pro-
viding further insights about relevance in domain model extraction, the data collected
in the surveys serves as the gold standard for evaluating the approach we propose in
Section 4.

3.1. Survey Design and Execution
Our survey was designed to elicit domain experts’ responses to the questionnaire of
Fig. 4. Of the three questions, Q1 to Q3, on the questionnaire, we are interested, for
the purposes of this article, in Q2 only. Nevertheless, to be able to properly interpret
the results of Q2, we need the results of Q1 and Q3 as well.

Before conducting the surveys, we explained and illustrated to the experts what we
meant by the term “relation” in the questions. Specifically, we defined a relation to
be a (regular) association, an aggregation, a generalization, or an attribute. We treat
attributes as relations, because of the “belongs to” link between an attribute and its
concept. The questionnaire does not directly address the extracted concepts. The ratio-
nale is that concepts appear as the endpoints of the relations; concepts are therefore
always reviewed as part of the relations being examined.

3.1.1. Survey Material. Table II provides information about the material used in our
three surveys, denoted Case A, Case B and Case C. The source requirements in all
three cases were collections of (IEEE-830-style) “shall” statements. Case A is from our
previous work; Case B and Case C are new. In each survey, we aimed to cover at least
30% of the requirements. The requirements to cover were picked randomly. We could
not cover all the requirements due to the limited availability of the survey participants
(domain experts). Table II shows the total number of requirements in each case, the

8

Table II. Content used in interview surveys.

213

101

157

of Distinct Relations

Examined by Experts
Case

 50 (31.6%)Case A

79

of

Requirements

Case C
Requirements for an automotive
occupant classification system

158

 27 (34.2%)

 33 (30%)Case B

of Requirements

Covered in Survey

Requirements for a safety
information management system

Document Description

110

Requirements for a satellite
system simulator

number of requirements covered in the survey, and the number of (distinct) relations
induced by the covered requirements.

3.1.2. Survey Participants. In each Case A and Case B, an individual expert provided
feedback on the relations extracted from the selected requirements (two distinct indi-
viduals for the two case studies). In both cases, the expert involved was the lead author
and analyst of the requirements under investigation. In Case C, three experts agreed
to participate in our survey. These three were: the lead requirements author (also, the
project manager) and two additional domain experts who worked as design and devel-
opment engineers. As we describe below, the surveys were organized into sessions. In
Case C, two sessions were held, the first of which was attended by all the three ex-
perts. Due to unforeseen circumstances, however, only the lead requirements author
in Case C could participate in the second session. Throughout the entire article, we
use for Case C only the feedback obtained from this single expert. The only exception
is in Section 3.2.4, where we use the (incomplete) feedback from the first session of
Case C for analyzing the degree of agreement among the three participating experts.
We note that the experts involved in all Case A, Case B, and Case C were experienced
in domain modeling and fully familiar with the requirements from which the relations
had been extracted.

3.1.3. Survey Execution. In each case, the expert was asked to examine, through Q1
and Q2, the individual relations extracted from a specific requirement. After all the
relations extracted from a given requirement REQ had been evaluated, the expert was
asked, through Q3, whether she could think of additional relations that were implied
by REQ , but which were not present in the extracted results. The relations extracted
from each requirement were presented to the expert in the same visual representation
as shown by the third column of Fig. 1(b).

Q1 concerns correctness. For a given relation, the expert was instructed to answer
Yes, if she deemed all the following conditions to be met simultaneously: (1) the concept
(or attribute) at each endpoint of the relation is meaningful, (2) the relation itself is
meaningful with the correct type assigned to it (e.g., generalization or association),
and (3) if the relation happens to be an association, the relation has the correct name
and multiplicity constraint assigned. We instructed the expert to respond by Partially
when she identified any omission or inaccuracy with respect to the conditions above,
but she found the inaccuracy or omission not to be major and thus not affecting the
meaningfulness of the relation. The expert was otherwise asked to answer Q1 by No.

Q2 addresses relevance – our main topic of investigation in this article. As stated
before, relevance has to do with whether experts deem a relation useful for inclusion
in the domain model. For a given relation, the expert was asked Q2 only if they had
answered Yes or Partially to Q1. A No answer to Q1 prompted an automatic No answer
to Q2. If the expert had responded to Q1 by Partially, we asked them to explain any
omissions / inaccuracies observed. We recorded (wrote down) the explanation given
by the expert. Subsequently, we asked the expert to answer Q2 based on the premise

9

Table III. Interview survey results.

88.6%

88.1%

% of Relevant
Relations Retrieved *

91.6%

5

of Missing
Relations

(Q3 Results)

7

8

(71+5)/213 (35.7%)

(37+0)/101 (36.6%)

Case B

% of Relevant + Maybe
Relevant Relations

(Q2 Results)

191/213 (89.7%)

Case

135/157 (86.0%)

Case C

% of Partially Correct
and Correct Relations

(Q1 Results)

Case A

86/101 (85.1%)

(60+2)/157 (39.5%)

* relevant relations retrieved =
 # of relevant (incl. maybe) relations

 # of relevant (incl. maybe) relations + # missing relations

that the omissions / inaccuracies have been addressed. A Maybe option was provided
for Q2 to handle situations where the expert could not readily decide about relevance.
Whenever the experts’ response to Q2 was Maybe or No, the experts were further asked
to explain their rationale. The explanation, which was spontaneous and unguided, was
scribed by two researchers (first two authors), and later cross-checked and reconciled.

Lastly, Q3 asks about relations that have been missed by automated extraction, but
which the expert could identify upon a manual examination of a given requirement.
The experts answered Q3 only after having gone through all the relations that were
automatically extracted from a given requirement.

The interview for Case A took ≈6 hours (three two-hour sessions on different days).
The interviews for Case B and Case C took ≈4 hours each (two two-hour sessions
on different days). In Case C, as noted before, three experts participated in the first
session and only one expert was available for the second session.

3.2. Survey Outcomes
In this section, we present the results from our interview surveys and the insights
gained from analyzing these results.

3.2.1. Results. Table III shows the overall survey results. The results for Q1 indicate
that the large majority (> 85%) of the extracted relations are correct, either partially
or fully. This provides evidence for the meaningfulness of the extracted relations via
NLP-based extraction rules. With regard to Q2, the highest relevance ratio observed
is 39.5% (Case B). To ensure that low relevance is not an issue that applies exclusively
to our model extractor, we break down the relevance results per extraction rule. This
rule-wise breakdown, shown in Table IV, indicates that the new extraction rules in our
model extractor –A3 to A6 in Table I– are not contributing disproportionately to low
relevance when compared to the other rules in Table I which are common across other
existing tools. This suggests that low relevance is a general problem and not restricted
to our model extraction solution per se.

In light of our results, we conclude that an explicit solution for improving relevance
would be necessary. Developing such a solution would of course make sense only if one
can already extract the large majority of relevant relations via NLP. This is addressed
by Q3. In particular, our results in Table III indicate that the number of missed rela-
tions is proportionally low, with more than 88% of the relevant relations being retriev-
able via NLP in our studies. Consequently, one can expect useful gains from automated
assistance for distinguishing relevant and superfluous relations.

Our analysis of the survey results led to a number of additional findings about rele-
vance in domain model extraction. We outline these findings in the rest of this section.

3.2.2. Reasons for superfluousness. As per our survey design, incorrect relations were
automatically marked as superfluous. With the incorrect relations excluded, the ex-

10

Table IV. Rule-wise breakdown of relevance results.

A1

Y

012

N

17

M

A2

Y

01

N

3

M

Ag2

MY

0

N

170

Ag1

MY

0

N

148

G1

7

MY

4 12

N

At1

N

20

MY

0

A3

0 4

N

3

MY

A4

Y

07

N

13

M

A5

MY

17

N

7

A6

MY

0 48

N

26

Case A (Relevance)

(Relation) Extraction Rule

YesY MaybeM NoN Relevance (%)R%Relevance:Legend

MY

0 6

N

9

Y

02

N

1

M N

03

MY

0

MY

015

N

12

MY

0

N

120

Y

0 1

N

4

M

0 4

N

2

MY

1

MY

0

N

2

MY

06

N

7

Y

2 50

N

18

M

Case B (Relevance)

7

MY

0

N

2

MY

0

N

58

Y

0

N

12

M

0

N

65

MY

20

MY

02

NNMY

0 000

N

32

MY NMY

0 21

Y

1

M

0

N

1

M

14 0 19

Y N

Case C (Relevance)

43.4%

Overall Relevance per Extraction Rule

55.0% 38.9% 34.6% 50.0% 33.9% 46.7% 21.7% 57.1% 22.8%

30

MY

0

N

23

MY

0

N

911

Y

0

N

185

M

0

N

3228

MY

44

MY

49

NNMY

0 340

N

117

MY NMY

0 179

Y

14

M

1

N

15

M

58 2

Y N

117

perts answered Q2 for 191 relations in Case A, 135 relations in Case B, and 86 rela-
tions in Case C. From these relations, the experts deemed superfluous 115 relations
in Case A, 73 relations in Case B, and 49 relations in Case C. For a small number of
relations – five in Case A and two in Case B – the experts were uncertain as to whether
the relations should be included in the domain model, hence answering Q2 by maybe.

In Table V, we provide a classification of the rationale given by the experts when
they found a relation to be superfluous, or when they could not give a conclusive answer
about relevance. This classification was developed after the conclusion of the interview
surveys, and following established guidelines for qualitative analysis [Auerbach and
Silverstein 2003]. Specifically, we derived labels for the rationale items using words
and phrases from the experts’ terminology in the interview surveys. This is known
as in-vivo coding [Saldaña 2015]. The labels were iteratively merged and abstracted
into themes. The themes were then reviewed and finalized through discussion among
the researchers. Due to the chronological order in which our studies were performed,
the themes were first developed for Case A and later used as reference in Case B and
Case C. The results of our qualitative analysis were then validated by the experts,
who agreed that the classification of Table V was an accurate characterization of the
reasons for (potential and actual) superfluousness.

Table V further shows for each category (theme) in our classification the number of
relations falling under that category as well as an example. The first row of the ta-
ble, “future contingencies”, captures situations where the experts were unsure about
the relevance of a given relation, because the decision depended on future events and
circumstances. The second row, “too detailed”, captures situations where the experts
considered the information conveyed by a relation to be too specific for the domain
model. The third row, “too unspecific”, is the opposite, i.e., the information was too
abstract or lacking sufficient context. The final row, “trivial knowledge”, captures situ-
ations where the experts considered a relation to be too obvious and widely known by
the stakeholders, and thus not warranted in the domain model.

3.2.3. Relevance of associations in Link Path (LP) groups. Our analysis revealed an impor-
tant and, in retrospect, intuitive trend concerning the relevance of associations in LP
groups (the notion of LP group was defined in Section 2.1). Specifically, we observed

11

Table V. Reasons for superfluousness.

16

17

“The CMP shall support a debug mode,

which provides features for on-site testing.”

Debug
Mode

Mode

Expert Feedback: Currently there is only one mode —

debug mode — for the system. This may change, in

which case this relation will be relevant.

“The CMP shall support a debug mode,

which provides features for on-site testing.”

Debug
Mode

Mode

Expert Feedback: Currently there is only one mode —

debug mode — for the system. This may change, in

which case this relation will be relevant.

Information
Evidence Model

Element

“The CMP shall maintain an evidence repository

with the information of evidence model elements.”

Information
Evidence Model

Element

“The CMP shall maintain an evidence repository

with the information of evidence model elements.”

10

23

0

Relations Too

Unspecific /

Lacking Context

Information

Example

1

Relation

Too Detailed

Case B

Count

Trivial Knowledge

21

5
Future

Contingencies

Rel 3.1 and Rel 3.2 in Fig. 1

3

Case A

Count

2

882 53

6

3

“The CMP shall support a debug mode,

which provides features for on-site testing.”

Debug
Mode

On-site
Testing

provide

features for

“The CMP shall support a debug mode,

which provides features for on-site testing.”

Debug
Mode

On-site
Testing

provide

features for

Reason

4

Case C

Count
 M

a
yb

e

R
e
le

va
n

t
S

u
p

e
rfl

u
o
u

s

Table VI. Statistics about LP groups and the number of relevant associations in them.

2

1

of LP groups with two or

more relevant associations

2

18

30

36

of LP groups with at most

one relevant association

38

2.74

Case

Case B

Case C

32

of LP groups

3.19

Case A

19

2.95

Avg. # of associations

in LP group

that once an association from an LP group L was deemed relevant by an expert, the
expert was unlikely to find another association in L relevant. Table VI provides statis-
tics about the LP groups in our case studies. For each case study, the table shows the
number of LP groups, the average number of associations in the groups, the number
of groups with zero or one relevant association, and the number of groups with more
than one relevant relation. Quantitatively speaking and across our three case studies,
for (36 + 30 + 18)/(38 + 32 + 19) ≈ 94% of the LP groups, the experts found at most one
association to be relevant. We note that the experts in our case studies had no knowl-
edge of the rules employed by our model extractor, nor the fact that some associations
were related to one another through some underlying scheme (Link Paths).

The above phenomenon can be explained as follows: LP groups are manifestations
of the same relation with different amounts of contextual information (constraints)
embedded in them [Fader et al. 2011]. What we observed in our case studies was that
the experts – without being aware of the existence of such notion as LP groups – sought
relations with the optimal level of contextual information in them. If the relation with
the desired level of detail happened to be from an LP group, the remaining relations
in the group were naturally found to be either too unspecific or too detailed.

To further analyze the properties of LP groups, we provide in Fig. 5 a depth-wise
breakdown of relevant associations in these groups. As seen from the figure, the ma-
jority of relevant associations in LP groups have a depth of zero (direct association)
or one (an additional concept chained to the direct association). Associations with a
depth of two are not uncommon, although they are less prevalent than those with a

12

0%

25%

50%

75%

100%

Depth = 0

Case B Case C

30.2%

48.8%

16.3%

4.7%

44.4%

38.9%

8.3%

5.6%

2.8%

26.3%

57.9%

15.8%

Depth = 1 Depth = 2 Depth = 3 Depth = 4

Case A

Fig. 5. Depth-wise breakdown of relevant associations in LP groups.

depth of zero or one. Associations with depths of three and higher are relatively uncom-
mon, since these associations require cascades of three or more prepositional phrases.
Such cascades occur predominantly in long sentences, which requirements writing best
practices advise against [Génova et al. 2013]. Furthermore, higher-depth associations,
should they be present, are unlikely to have much practical value, because they estab-
lish relationships between concepts that are too far apart. As noted in Section 2.1, our
model extractor finds associations with a maximum LP depth of four.

We conclude our discussion of LP groups with a final remark about the way we utilize
these groups in Section 4 for filtering superfluous relations. Due to multiple relevant
relations from the same LP group being unlikely to occur (probability of < 6%), we
incorporate a rule into our approach to filter all the remaining associations of an LP
group, once some association from the group has been deemed relevant.

3.2.4. Subjectivity in decisions about relevance. As mentioned above, for part of Case C
we had access to three different experts. Specifically, for 50 out of the total of 101
relations in Case C, we collected feedback from all three experts. We employed a simple
round-table meeting for eliciting expert opinions, with each expert responding to our
questionnaire in the presence of other experts. The experts were in perfect agreement
over their answers to Q1, and unanimously found 46 of the relations to be correct or
partially correct, and the remaining four incorrect.

The experts answered Q2 for the 46 correct and partially correct relations. In con-
trast to Q1, the experts had diverging opinions on 13 relations. To quantify the level
of agreement between the experts, we apply Fleiss’ Kappa (κ) [Fleiss 1971]. For the re-
sponses to Q2, we obtain κ = 0.65. This κ score denotes substantial agreement [Landis
and Koch 1977], thus providing evidence that the experts applied a largely consistent
reasoning process when determining relevance.

Of the 13 disagreements between the experts, ten were rooted in the level of detail
the experts wished to see in the relations. In a post-study analysis, we observed that
nine of these ten relations originated from LP groups. For the remaining three out of
the 13 relations, the disagreement was over whether the relations were worthwhile or
too trivial for being modeled.

13

Pick relation(s)

to inspect

Inspect

relation(s)

Decide about

relevance
Recommender

labeled

relations

Recommendations

Fig. 6. Approach overview.

The disagreements suggest that there is a degree of subjectivity involved in telling
apart relevant relations from superfluous ones. Such subjectivity has indeed been al-
ready observed in other contexts, e.g., web mining [Kosala and Blockeel 2000] and
media report analysis [Scholz and Conrad 2013], when experts were tasked with iden-
tifying relevant information from the output of NLP technologies. While subjectivity
inevitably reduces the accuracy of automation, the level of interrator agreement ob-
served in our context (i.e., domain model extraction) leaves ample room for building
useful automated assistance for filtering superfluous information.

4. APPROACH FOR FILTERING SUPERFLUOUS RELATIONS
Fig. 6 illustrates the idea behind our automated assistance approach: given a set of
relations, we build a recommender that predicts based on a classifier a label – rele-
vant or superfluous – for each relation. These predictions come with probabilities that
indicate prediction confidence. The labeled relations and the probabilities can then
be presented to the analyst in a visually-enhanced form, e.g., via a sorted list or a
color-coding scheme where different probability ranges are rendered in different col-
ors. Using such cues, the analyst can pick one or more relations, inspect them, and
either accept or reject the predicted labels. The updated labels are subsequently used
to reconstruct a more accurate classification model for the remaining relations that
are yet to be inspected by the analyst.

The effectiveness of such a recommender would naturally be affected by which
relations the analyst picks to inspect in each iteration. In lieu of having a human
analyst in the loop, we provide an instantiation of the approach whereby the next
relations to inspect are picked by an automated strategy. This strategy, alongside
the expert survey data collected in Section 3, enable us to simulate the analyst’s
input to the recommender. By so doing, as we elaborate in Section 5, we are able
to make a number of key technical decisions that are necessary prerequisites to
running future experiments with human subjects.

Specifically, our strategy in regard to the next relations to show to the analyst for
inspection is as follows: if, in a given iteration, a relation is predicted to be relevant
with high probability, we accept the prediction and recommend it to the analyst. In
contrast, we do not accept a prediction of being superfluous the first time it is made,
no matter how high the probability is. Rather, we wait for multiple iterations and
monitor whether the prediction remains the same. Stated otherwise, our recommender
withholds a recommendation of “superfluous” for multiple rounds in order to build
confidence that the predictions remain stable with more feedback from the analyst
becoming available.

Our asymmetric treatment of predictions for relevance and superfluousness is mo-
tivated by two reasons: (1) we need to strictly avoid misleading the analyst toward
filtering useful relations, and (2) to save manual effort, we are interested primarily
in accurately identifying superfluous relations, rather than the relevant ones. This is
because a recommendation of “relevant” conveys no information about the correctness
of a relation (as defined in Section 3). Relevant relations are thus always subject to
a careful manual analysis to ensure that all their details are correct. This is in con-

14

Algorithm RECOMMENDER

Input: - Set R of relations extracted from requirements
- Feature functions f1, . . . , fl

Parameters: - Training set size n
- Confidence margins ε and δ
- Iteration parameter k

Output: - Recommendations of relevance and superfluousness

1. Pick a (random) training set T ⊆ R such that |T | = n and let X = R \ T
2*. Obtain analyst feedback on every relation r ∈ T
3. Split T into T+ and T− based on the analyst feedback

/* T+ contains relevant and T− contains superfluous relations. */
4. Build FeatureMatrix based on f1(T), . . . , fl(T)
5. Build classifier C over FeatureMatrix

6. repeat /* Active learning loop */
7. Apply C to X, and for every r ∈ X:

let p(r) be the prediction probability of r being superfluous
8. Lmin = min{p(r)}r∈X
9. Lmax = max{p(r)}r∈X
10. I+ = {r ∈ X | p(r) ≤ Lmin + δ}
11. I− = {r ∈ X | (p(r) ≥ Lmax − ε) ∧ (r has been predicted with high probability to be superfluous

in k − 1 of the previous iterations)}
12. I− = I− ∪ {r ∈ X | there is some r′ ∈ T+ s.t. r and r′ are in the same LP group}

/* See the discussion in Section 3.2.3. Once a relation from an LP group lands in T+,
we recommend as superfluous all other relations from that LP group. */

13. If I+ ∪ I− 6= ∅ then
14. X = X \ (I+ ∪ I−)
15*. Present I+ and I− to the analyst; the analyst checks that elements in I+ (resp. I−) are indeed

relevant (resp. superfluous); analyst modifies I+ and I− as necessary
16. T+ = T+ ∪ I+

17. T− = T− ∪ I−
18. else
19*. Let r ∈ X be a relation for which there is minimum support of superfluousness;

obtain analyst feedback on r
20. Add r to T+ if relevant and to T− if superfluous
21. X = X \ {r}
22. Update FeatureMatrix based on f1(T+ ∪ T−), . . . , fl(T+ ∪ T−)
23. Rebuild C over FeatureMatrix

24. until X = ∅

Fig. 7. Algorithm for making recommendations on relevance and superfluousness. The lines labeled with
an asterisk (*) require user interaction.

trast to superfluous relations, which, once identified, can be immediately dismissed. In
our evaluation of Section 5, we focus exclusively on our approach’s ability to identify
superfluous relations.

If, in a given round, the recommender cannot issue any recommendation, we still
need to present the analyst with a relation for feedback so that the process can con-
tinue. In such a case, we attempt to pick a relation that has a low likelihood of receiving
an automated recommendation in the future.

The algorithm of Fig. 7, named RECOMMENDER, presents our approach more pre-
cisely. The algorithm receives as input a set R of relations extracted from natural-
language requirements and feature functions f1, . . . , fl. The values of the feature func-
tions are used for building and training a classifier C. Our feature functions are listed
in Table VII. For each feature in the table, we provide an id, a definition, and the in-

15

tuition captured by the feature alongside an example. The algorithm further has four
parameters, n, ε, δ and k, which are used for tuning the learning process. Suitable
values for these parameters are derived empirically in Section 5.

Table VII. Features for learning.

If an end concept of a relation has a conjunction in it, the end concept and
thus the relation may have a larger likelihood of being incorrect.

If in Rel 3.1, "Timestamp" is replaced by "Time and Date" :: IF8 = TRUE

IF8
If any of the end concepts in a relation
contains a conjunction, such as "and".

IF7
Single-token words are often not useful as domain concepts.

Rel 1.4 in Fig. 1 :: IF7 = TRUE

If any of the end concepts in a relation
is a single-token word which is defined
in an English dictionary.

IF4

Ratio of the cumulative length of all
tokens in the relation (source concept,
target concept and relation name in
the case of associations) to the length
of all tokens in the requirement from
which the relation has been extracted.

If the relation is part of an LP group,
IF3 is the LP depth of the relation (see
Fig. 3). Otherwise (i.e., when the
relation does not belong to an LP
group), IF3 is -1, indicating that IF3
does not apply.

IF2
The rule that extracted the relation
(see Table I).

Similar to the intuition for IF1.

Rel 2.1 in Fig. 1 :: IF2 = A4

Type is an inherent characteristic of a relation and could thus be a useful
indicator for building a machine learning model.

Rel 2.1 in Fig. 1 :: IF1 = A (Association)

Concept names that are too long or too short could be an indication of
unwanted concepts.

Rel 2.1 in Fig. 1 :: IF5 = min(1,2) = 1

(min(# of tokens in "CMP", # of tokens in "Evidence Model"))

Rel 2.1 in Fig. 1 :: IF6 = max(1,2) = 2

A relation incorporating a large text segment of a given requirement is
unlikely to be useful, since one may as well read the original requirement.

Rel 2.1 in Fig. 1 :: IF4 = (# of tokens in Rel 2.1) / (# of tokens in R2) = 4 /

15 = 0.27

{Minimum (IF5), Maximum(IF6)} of the
number of tokens in the source
concept and the target concept of a
relation.

The depth of an LP association is the number of additional concepts that
participate in indirectly linking a given pair of concepts. Based on our
empirical observations (Section 3.2.3), LP relations with high depths are
unlikely to be relevant. Subsequently, IF3 may be useful for relevance
classification.

 Rel 3.1 in Fig. 1 :: IF3 = 0 (direct association with extended LP

associations - Rel 3.2 and Rel 3.3)

 Rel 3.2 in Fig. 1 :: IF3 = 1 (one added concept "Timestamp")

 Rel 3.4 in Fig. 1 :: IF3 = -1 (not applicable)

Relation type (Association,
Aggregation, Attribute, Generalization).

IF1

Intuition and Example

IF3

Id Definition

IF5
1

IF6
1

DF1

{Minimum (DF2), Maximum(DF3)} of the

following two numbers: (a) the number

of relevant relations in the training set

that have as an endpoint the source

concept of the relation in question (b)

the number of relevant relations in the

training set that have as an endpoint the

target concept of the relation in
question.

The number of relevant relations in
the training set that share the same
verb as the relation in question (for
associations only).

DF10

DF11

Replace 'relevant' in DF6 with

'superfluous'.

A verb shared with a relevant association can, alongside other factors such
as IF3, serve as an indicator for relevance.

Rel 3.2 in Fig. 1 :: DF6 = 0 (Only one relation in the training set, Rel 3.1,

shares the verb "store" with Rel 3.2; however Rel 3.1 is superfluous)

DF12

DF6

Same intuition as that for DF5; replace 'relevant' with 'superfluous'.

Rel 2.1 in Fig. 1 :: DF11 = 0 (see explanation of DF5)

If the concepts at the two endpoints of the relation have appeared in other
relevant relations, it may be more likely for the relation in question to be
relevant.

Rel 2.1 in Fig. 1 :: DF2 = min(1,2) = 1 (One relevant relation, Rel 1.1,

shares the "CMP" end concept, and two relevant relations, Rel 1.1 and

Rel 1.2 share the "Evidence Model" end concept)

Rel 2.1 in Fig. 1 :: DF3 = max(1,2) = 2

Same intuition as that for DF1, replace 'relevant' with 'superfluous'.

Rel 2.1 in Fig. 1 :: DF7 = 0 (see explanation of DF1)

Replace 'relevant' in DF4 with

'superfluous'.

DF7

The relevance of other relations extracted under similar conditions may be
a useful indicator for relevance.

Rel 2.1 in Fig. 1 :: DF1 = 0 (No other relation in the training set is

extracted from R2 using rule A4)

Replace 'relevant' in DF5 with

'superfluous'.

The intuition is similar to that for DF2 and DF3. The distinction is that DF4
simultaneously considers all the textual components of relevant relations,
including relation names (in case of associations).

 Rel 3.2 in Fig. 1 :: DF4 = 1 (All textual components of Rel 3.4 -a relevant

relation- are contained in Rel 3.2)

For a given relation r, let S(r) denote
the union of all the noun phrases and
verbs appearing in r's endpoints and
r's name (in case of associations). Let
q be the relation in question. DF4 is

the number of relevant relations r in
the training set where S(r)⊆S(q).

DF8
1

DF9
1

Same intuition as that for DF4; replace 'relevant' with 'superfluous'.

Rel 3.2 in Fig. 1 :: DF10 = 1 (Rel 3.1 is a subset of Rel 3.2)

Same intuition as that for DF2 and DF3; replace 'relevant' with
'superfluous'.

Rel 2.1 in Fig. 1 :: DF8 = min(1,2) = 1 (One superfluous relation, Rel 1.4

shares the "Evidence Model" end concept, and two superfluous relations,

Rel 3.1 and Rel 3.2, share the "CMP" end concept)

Rel 2.1 in Fig. 1 :: DF9 = max(1,2) = 2

The number of relevant relations in
the training set that have been
extracted from the same requirement
and via the same extraction rule as the
relation in question.

Replace 'relevant' in DF1 with

'superfluous'.

DF4

Same intuition as that for DF6; replace 'relevant' with 'superfluous'.

Rel 2.1 in Fig. 1 :: DF12 = 1 (see explanation of DF6)

Any relation satisfying the condition of DF5 would go in parallel to the
relation in question. Parallel relations make sense only between certain
concepts. By keeping track of the relevance of parallel relations, DF5 can
be a useful indicator for predicting the relevance of relations that go in
parallel to those already in the training set.

Rel 2.1 in Fig. 1 :: DF5 = 1 (Only one relevant relation in the training set,

Rel 1.1, shares both the end concepts of Rel 2.1)

The number of relevant relations in
the training set that share with the
relation in question both of their
endpoints.

DF5

Replace 'relevant' in DF2 and DF3,

respectively, with 'superfluous'.

DF2
1

DF3
1

DF16

The number of relevant relations in
the training set that have been
extracted from the same requirement
as the relation in question.

DF15

DF13

Same intuition as that for DF15; replace 'relevant' with 'superfluous'.

Rel 1.1 in Fig. 1 :: DF15 = 2 (Rel 1.3 and Rel1.4 are superfluous and have

been extracted from the same requirement as Rel1.1)

For a given relation r, let S(r) denote
the union of all the noun phrases and
verbs appearing in r's endpoints and
r's name (in case of associations). Let
q be the relation in question. DF13 is

the number of relevant relations r in

the training set where S(r) !"S(q).

Replace 'relevant' in DF13 with

'superfluous'.

The textual components of a relation, i.e., the endpoints and the relation
names (in case of associations) can be useful for determining relevance.

 Rel 3.1 in Fig. 1 :: DF13 = 0 (Rel 3.2 shares all the concepts and verbs

in Rel 3.1, however it is superfluous)

Same intuition as that for DF13; replace 'relevant' with 'superfluous'.

 Rel 3.1 in Fig. 1 :: DF14 = 1 (Rel 3.2 shares all the concepts and verbs

in Rel 3.1)

Replace 'relevant' in DF15 with

'superfluous'.

DF14

The relevance of other relations extracted from the same requirement may
be a useful indicator for relevance.

Rel 1.1 in Fig. 1 :: DF15 = 1 (Rel 1.2 is relevant and has been extracted

from the same requirement as Rel1.1)

 L
a

b
e
l-

in
d

e
p

e
n

d
e
n

t
Fe

a
tu

re
s

 L
a

b
e
l-

d
e
p

e
n

d
e
n

t
Fe

a
tu

re
s
2

 L
a

b
e
l-

d
e
p

e
n

d
e
n

t
Fe

a
tu

re
s
2

2
 The examples for label-dependent features are based on the matrix in Fig. 8.

1
 The minimum and maximum operators enable the treatment of source and target concepts in a symmetric way,

without having to define separate features for each endpoint of a relation.

......

16

If an end concept of a relation has a conjunction in it, the end concept and
thus the relation may have a larger likelihood of being incorrect.

If in Rel 3.1, "Timestamp" is replaced by "Time and Date" :: IF8 = TRUE

IF8
If any of the end concepts in a relation
contains a conjunction, such as "and".

IF7
Single-token words are often not useful as domain concepts.

Rel 1.4 in Fig. 1 :: IF7 = TRUE

If any of the end concepts in a relation
is a single-token word which is defined
in an English dictionary.

IF4

Ratio of the cumulative length of all
tokens in the relation (source concept,
target concept and relation name in
the case of associations) to the length
of all tokens in the requirement from
which the relation has been extracted.

If the relation is part of an LP group,
IF3 is the LP depth of the relation (see
Fig. 3). Otherwise (i.e., when the
relation does not belong to an LP
group), IF3 is -1, indicating that IF3
does not apply.

IF2
The rule that extracted the relation
(see Table I).

Similar to the intuition for IF1.

Rel 2.1 in Fig. 1 :: IF2 = A4

Type is an inherent characteristic of a relation and could thus be a useful
indicator for building a machine learning model.

Rel 2.1 in Fig. 1 :: IF1 = A (Association)

Concept names that are too long or too short could be an indication of
unwanted concepts.

Rel 2.1 in Fig. 1 :: IF5 = min(1,2) = 1

(min(# of tokens in "CMP", # of tokens in "Evidence Model"))

Rel 2.1 in Fig. 1 :: IF6 = max(1,2) = 2

A relation incorporating a large text segment of a given requirement is
unlikely to be useful, since one may as well read the original requirement.

Rel 2.1 in Fig. 1 :: IF4 = (# of tokens in Rel 2.1) / (# of tokens in R2) = 4 /

15 = 0.27

{Minimum (IF5), Maximum(IF6)} of the
number of tokens in the source
concept and the target concept of a
relation.

The depth of an LP association is the number of additional concepts that
participate in indirectly linking a given pair of concepts. Based on our
empirical observations (Section 3.2.3), LP relations with high depths are
unlikely to be relevant. Subsequently, IF3 may be useful for relevance
classification.

 Rel 3.1 in Fig. 1 :: IF3 = 0 (direct association with extended LP

associations - Rel 3.2 and Rel 3.3)

 Rel 3.2 in Fig. 1 :: IF3 = 1 (one added concept "Timestamp")

 Rel 3.4 in Fig. 1 :: IF3 = -1 (not applicable)

Relation type (Association,
Aggregation, Attribute, Generalization).

IF1

Intuition and Example

IF3

Id Definition

IF5
1

IF6
1

DF1

{Minimum (DF2), Maximum(DF3)} of the

following two numbers: (a) the number

of relevant relations in the training set

that have as an endpoint the source

concept of the relation in question (b)

the number of relevant relations in the

training set that have as an endpoint the

target concept of the relation in
question.

The number of relevant relations in
the training set that share the same
verb as the relation in question (for
associations only).

DF10

DF11

Replace 'relevant' in DF6 with

'superfluous'.

A verb shared with a relevant association can, alongside other factors such
as IF3, serve as an indicator for relevance.

Rel 3.2 in Fig. 1 :: DF6 = 0 (Only one relation in the training set, Rel 3.1,

shares the verb "store" with Rel 3.2; however Rel 3.1 is superfluous)

DF12

DF6

Same intuition as that for DF5; replace 'relevant' with 'superfluous'.

Rel 2.1 in Fig. 1 :: DF11 = 0 (see explanation of DF5)

If the concepts at the two endpoints of the relation have appeared in other
relevant relations, it may be more likely for the relation in question to be
relevant.

Rel 2.1 in Fig. 1 :: DF2 = min(1,2) = 1 (One relevant relation, Rel 1.1,

shares the "CMP" end concept, and two relevant relations, Rel 1.1 and

Rel 1.2 share the "Evidence Model" end concept)

Rel 2.1 in Fig. 1 :: DF3 = max(1,2) = 2

Same intuition as that for DF1, replace 'relevant' with 'superfluous'.

Rel 2.1 in Fig. 1 :: DF7 = 0 (see explanation of DF1)

Replace 'relevant' in DF4 with

'superfluous'.

DF7

The relevance of other relations extracted under similar conditions may be
a useful indicator for relevance.

Rel 2.1 in Fig. 1 :: DF1 = 0 (No other relation in the training set is

extracted from R2 using rule A4)

Replace 'relevant' in DF5 with

'superfluous'.

The intuition is similar to that for DF2 and DF3. The distinction is that DF4
simultaneously considers all the textual components of relevant relations,
including relation names (in case of associations).

 Rel 3.2 in Fig. 1 :: DF4 = 1 (All textual components of Rel 3.4 -a relevant

relation- are contained in Rel 3.2)

For a given relation r, let S(r) denote
the union of all the noun phrases and
verbs appearing in r's endpoints and
r's name (in case of associations). Let
q be the relation in question. DF4 is

the number of relevant relations r in
the training set where S(r)⊆S(q).

DF8
1

DF9
1

Same intuition as that for DF4; replace 'relevant' with 'superfluous'.

Rel 3.2 in Fig. 1 :: DF10 = 1 (Rel 3.1 is a subset of Rel 3.2)

Same intuition as that for DF2 and DF3; replace 'relevant' with
'superfluous'.

Rel 2.1 in Fig. 1 :: DF8 = min(1,2) = 1 (One superfluous relation, Rel 1.4

shares the "Evidence Model" end concept, and two superfluous relations,

Rel 3.1 and Rel 3.2, share the "CMP" end concept)

Rel 2.1 in Fig. 1 :: DF9 = max(1,2) = 2

The number of relevant relations in
the training set that have been
extracted from the same requirement
and via the same extraction rule as the
relation in question.

Replace 'relevant' in DF1 with

'superfluous'.

DF4

Same intuition as that for DF6; replace 'relevant' with 'superfluous'.

Rel 2.1 in Fig. 1 :: DF12 = 1 (see explanation of DF6)

Any relation satisfying the condition of DF5 would go in parallel to the
relation in question. Parallel relations make sense only between certain
concepts. By keeping track of the relevance of parallel relations, DF5 can
be a useful indicator for predicting the relevance of relations that go in
parallel to those already in the training set.

Rel 2.1 in Fig. 1 :: DF5 = 1 (Only one relevant relation in the training set,

Rel 1.1, shares both the end concepts of Rel 2.1)

The number of relevant relations in
the training set that share with the
relation in question both of their
endpoints.

DF5

Replace 'relevant' in DF2 and DF3,

respectively, with 'superfluous'.

DF2
1

DF3
1

DF16

The number of relevant relations in
the training set that have been
extracted from the same requirement
as the relation in question.

DF15

DF13

Same intuition as that for DF15; replace 'relevant' with 'superfluous'.

Rel 1.1 in Fig. 1 :: DF15 = 2 (Rel 1.3 and Rel1.4 are superfluous and have

been extracted from the same requirement as Rel1.1)

For a given relation r, let S(r) denote
the union of all the noun phrases and
verbs appearing in r's endpoints and
r's name (in case of associations). Let
q be the relation in question. DF13 is

the number of relevant relations r in

the training set where S(r) !"S(q).

Replace 'relevant' in DF13 with

'superfluous'.

The textual components of a relation, i.e., the endpoints and the relation
names (in case of associations) can be useful for determining relevance.

 Rel 3.1 in Fig. 1 :: DF13 = 0 (Rel 3.2 shares all the concepts and verbs

in Rel 3.1, however it is superfluous)

Same intuition as that for DF13; replace 'relevant' with 'superfluous'.

 Rel 3.1 in Fig. 1 :: DF14 = 1 (Rel 3.2 shares all the concepts and verbs

in Rel 3.1)

Replace 'relevant' in DF15 with

'superfluous'.

DF14

The relevance of other relations extracted from the same requirement may
be a useful indicator for relevance.

Rel 1.1 in Fig. 1 :: DF15 = 1 (Rel 1.2 is relevant and has been extracted

from the same requirement as Rel1.1)

 L
a

b
e
l-

in
d

e
p

e
n

d
e
n

t
Fe

a
tu

re
s

 L
a

b
e
l-

d
e
p

e
n

d
e
n

t
Fe

a
tu

re
s
2

 L
a

b
e
l-

d
e
p

e
n

d
e
n

t
Fe

a
tu

re
s
2

2
 The examples for label-dependent features are based on the matrix in Fig. 8.

1
 The minimum and maximum operators enable the treatment of source and target concepts in a symmetric way,

without having to define separate features for each endpoint of a relation.

......

The algorithm starts by partitioning R into sets T and X (line 1), with the number
of relations in T being determined by the parameter n. We seek the analyst’s feedback
on all the relations in T (line 2). Subsequently, we split T into T+ and T−, where T+

contains the relevant relations and T− contains the superfluous ones (line 3).

17

S

R

R

S

R

R

S

S

2

1

1

2

1

0

1

2

1

2

1

2

1

0

1

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

DF4

1

1

0

1

DF9

03

1

DF8

1

0

0

1

2

0

0

0

0

0

0

DF6

1

DF1

0

0

1

0

1

02

2

0

0

0

1

0

0

10

1

0

0

0

2

0

0

0

0

0

0

0

0

00

0

1

0

0

DF5

1

2

0

0

0

DF2

0

21 0

0

DF3

0

1

0

0

0

00

0

01

0

0

2

0 0

1

0

0

1

0

0

1

1

0

0

0

DF7

0

0

0

0

F

F

F

F

F

IF8

F

F

FF

F

T

T

F

F

T

IF7

T

2

IF2

A 1

2

1

2G

-1A3

2

1

Ag

0.5

G G1

 1

A5

IF5IF3

A

A

A6

-1

1

A1

1

-1

0.5

G1

A

A

-1

IF1 IF4

 0

-1

A4

3

2

3

1

1

2

IF6

0.3

-1

1

Rel 1.1

Rel 1.2
Rel 1.3
Rel 1.4

Rel 2.1

Rel 3.1

Rel 3.2

Rel 3.4

DF10 DF11 DF12

0.15

0.15

0.27

0.21

0.21Ag1

{
C

u
rr

e
n

t
Tr

a
in

in
g

 D
a

ta

Label

Rel 3.3 212A6A 0.71 R202101002 110F F

DF13 DF14 DF15 DF16

2100

Fig. 8. Example feature matrix. Last column is the label (R for relevant and S for Superfluous). Highlighted
cells increase by one when Rel 3.3 is added.

Once the relations in T have been labeled, we compute the feature functions f1, . . . , fl
(line 4). As shown in Table VII, some of the features are label-independent and some
are label-dependent. The former group is computed independently of user feedback
(labels); whereas the latter requires knowledge of the labels in the training set. After
computing the feature functions, we build the initial classifier C (line 5). To illustrate,
we show in Fig. 8 the feature matrix (FeatureMatrix in the algorithm) that is built
when the training data is composed of Rel 1.1 through Rel 1.4, Rel 2.1, Rel 3.1, Rel 3.2
and Rel 3.4 from the example relations of Fig. 1. Columns IF1–IF8 and DF1–DF16 are
the features in Table VII. The last column is the label: Relevant (R) or Superfluous (S).

In the remainder of the algorithm (lines 6-24), we iteratively improve C as follows:
we predict the labels for every relation in set X, i.e., R \ T , using C and without any
feedback from the analyst (line 7). For each relation r ∈ X, the classifier predicts r
as being superfluous with a probability of p(r) (i.e, as relevant with a probability of
1 − p(r)). We then compute two sets I+ and I−. These sets denote the automatic rec-
ommendations to be made to the analyst in the current iteration about relevance and
superfluousness, respectively. The set I+ is populated with relations that have been
with high probability labeled as relevant in the current iteration (line 10). The set I−
has two parts to it: The first part is composed of the relations that have been repeat-
edly and with high probability labeled as superfluous (line 11). Recall the asymmetric
treatment for predictions of relevance and superfluousness mentioned earlier in this
section. The second part of I− (line 12) is induced by LP groups (see Section 3.2.3).

Specifically, let Lmin and Lmax respectively denote the minimum and the maximum
predicted p(r) over all relations in X (lines 8 and 9). Further, let the parameter ε (resp.
δ) be the margin for deciding whether, for a given relation r, the probability p(r) is low
enough (resp. high enough) with respect to Lmin (resp. Lmax) for the relation to make
the cut as a prediction of “relevant” (resp. “superfluous”). We add a relation r to I+
when p(r) ≤ Lmin + δ (line 10). We add r to I− when p(r) ≥ Lmax − ε, and further, r has
been predicted with high probability to be superfluous in k−1 of the previous iterations
(line 11). These k− 1 iterations do not necessarily have to be consecutive. Additionally,
we add to I− any relation r ∈ X such that r belongs to the same LP group as some
r′ ∈ T+ (line 12). In other words, and in line with the findings in Section 3.2.3, once a
relation from an LP group has been deemed relevant, i.e., the relation has landed in
T+, we recommend as superfluous all the remaining relations in that LP group which
are yet to be inspected by the analyst.

Next, we present the recommendations in I+ ∪ I− to the analyst, if the union is non-
empty. The analyst confirms and, when necessary, relabels those relations in I+ and
I− where the automatic recommendations have been incorrect. Subsequently, T+ and

18

T− are extended with the revised I− and I+ (lines 16 and 17). This is of course after
removing I+ ∪ I− from X (line 14).

Otherwise, if both I+ and I− are empty, we pick for presentation to the analyst and
obtaining feedback a relation r ∈ X for which we have the least amount of evidence in
support of superfluousness (line 19). If there are multiple such relations, we pick one
randomly. As noted in Section 2.2, picking element(s) over which the classifier is least
certain and obtaining feedback over them is a common strategy (known as SAL).

Next, we add the analyst feedback on r to the training data (line 20), followed by
removing r fromX (line 21). We then rebuild C using the updated feature values for the
extended training data (lines 22-23). This process continues until X becomes empty.
We emphasize that on line 22, we update the values of label-dependent features for all
those relations in T+ ∪ T− affected by the newly-added relations.

To illustrate, suppose a new relation, Rel 3.3 from Fig. 1, is labeled as relevant by
the analyst and added to the training set of Fig. 8. Adding Rel 3.3 affects the cells
highlighted green in the existing feature matrix. Specifically, the DF1 value for Rel 3.2
is increased by one as both Rel 3.3 and Rel 3.2 originate from requirement R3 (Fig. 1)
and were extracted by the same rule (A6). Further, Rels 1.1, 2.1, 3.1 and 3.2 share an
endpoint, “CMP”, with Rel 3.3. The DF2 and DF3 values for these relations thus need
to be recomputed. The DF6 values for Rels 3.1 and 3.2 increase by one, since these
relations share the same verb, “store”, with Rel 3.3. The DF13 values for Rels 3.1, 3.2
and 3.4 are updated as well, because the end concepts and the relation labels of these
relations are all contained in Rel 3.3. DF15 is a generic version of DF1 and counts
only the relations that originate from the same requirement. Therefore, when Rel 3.3
is added, the DF15 values for Rels 3.1, 3.2 and 3.4 are updated. As a side remark, we
note that Rel 3.3 is in the same LP group as Rel 3.1 and Rel 3.2. Had Rel 3.1 and Rel 3.2
not been in the training data already, they would have further received an automated
recommendation of “superfluous” and been escalated to the analyst for review.

The algorithm shown in Fig. 7 uses a single classifier, C. An alternative is to use
ensemble learning, where multiple classifiers are used together. Ensemble learning is
known to often lead to better results than when classifiers are used individually [Miner
et al. 2012]. The duality between our features for measuring relevance, i.e., DF1–DF6,
DF13 and DF15 in Table VII, and those for measuring superfluousness, i.e., DF7–
DF12, DF14 and DF16 in the table, leads to a natural two-classifier ensemble, made
up of C1 and C2 defined as follows: C1 uses all the label-independent features, i.e., IF1–
IF8, alongside the following subset of label-dependent features: DF1–DF6, DF13 and
DF15. C2 uses all the label-independent features, just like in C1, but alongside the
following label-dependent features: DF7–DF12, DF14 and DF16.

Classifiers C1 and C2 would still be applied to the relations in X, as shown in Fig. 7.
This arrangement nevertheless yields, for each relation r ∈ X, two prediction proba-
bilities, p1(r) and p2(r), indicating the probability of r being superfluous according to
C1 and C2, respectively. In an ensemble setting, the computations on lines 10 and 11
need to be done by consensus. A relation is labeled as relevant (resp. superfluous) if
both C1 and C2 predict it to be relevant (resp. superfluous). Otherwise, the prediction
is inconclusive. To do so, we need to compute Lmin and Lmax (lines 8 and 9) separately
for the two classifiers. Let L1,min and L1,max be these values for C1, and let L2,min and
L2,max be these values for C2. In the ensemble setting, lines 10 and 11 of the algorithm
of Fig. 7 need to be modified as follows:

19

I+ = {r ∈ X | p1(r) ≤ L1,min + δ ∧ p2(r) ≤ L2,min + δ}
I− = {r ∈ X | (p1(r) ≥ L1,max − ε ∧ p2(r) ≥ L2,max − ε)∧

(r has been predicted with high probability to be superfluous in k − 1 of
of the previous iterations)}

The rest of the algorithm in Fig. 7 remains as is for ensemble learning. In Section 5,
we provide a systematic empirical analysis of our algorithm, where we simultaneously
consider the influence of different factors, including single versus ensemble learning
as well as different choices for parameter values.

5. EMPIRICAL EVALUATION
In this section, we evaluate the filtering approach presented in Section 4. To do so, we
use as case study material the survey results discussed in Section 3.

5.1. Research Questions (RQs)
Our evaluation aims to answer the following RQs:
RQ1. Which ML classification technique yields the most accurate recom-
mender? Our recommender (algorithm of Fig. 7) can be realized using several alter-
native ML classification techniques. RQ1 identifies the most accurate alternative.
RQ2. Which ML features are the most influential for our recommender? In Ta-
ble VII, we presented the complete set of features that we consider for classification.
RQ2 assesses the importance of these features.
RQ3. What is the optimal tuning of our recommender? The algorithm of Fig. 7
has four parameters that need to be specified. In addition, one needs to select the
feature functions to use for classification, and decide whether to apply ensemble clas-
sification (discussed in Section 4). RQ3 explores the impact of the parameter values,
feature selection and ensemble learning on accuracy, and provides the best tuning of
our recommender within the space of alternatives considered.
RQ4. Is our recommender accurate enough to be used in practice for identify-
ing superfluous relations? As explained in Section 4, the main value of our recom-
mender is in helping analyst find the superfluous relations. With RQ3 having estab-
lished the optimal tuning of the recommender, RQ4 examines the overall accuracy of
our automatic recommendations of superfluousness.
RQ5. Does our recommender have practical execution time? Our recommender
has a human feedback loop in it. The main computational steps of the recommender
(lines 7, 22, 23 of the algorithm of Fig. 7) therefore have to execute quickly enough
to allow user interaction. RQ5 investigates the execution time of the recommender’s
main computational steps.

5.2. Implementation
We have implemented the algorithm of Fig. 7 using a combination of Java and R
(https://www.r-project.org). More precisely, the features in Table VII are computed us-
ing Java code. The computed features are then passed to R for building ML-based clas-
sifiers. Data exchange between Java and R is handled via R’s Rserve package (http://
www.rforge.net/Rserve/). As per our evaluation outcomes, which we present momentar-
ily, the best-performing ML classification technique in our context is Random Forest.
The default ML technique in our implementation is R’s randomForest package (https:
//www.stat.berkeley.edu/∼breiman/RandomForests/). This choice is user-configurable;

20

other ML techniques can be used if desired. Our implementation is ≈1,500 lines of
Java code and ≈200 lines of R scripts, excluding comments and third-party libraries.
To facilitate replication, we make our implementation and non-proprietary case study
material (Case B) publicly available at: https://sites.google.com/site/svvredomex/.

5.3. Experimental Setup
To answer the RQs in Section 5.1, we performed experiments EXPI, EXPII and EXPIII,
described below.
EXPI. This experiment answers RQ1. We compare the accuracy of five alternative
ML classification techniques. These are: Random Forest, Logistic Regression, Deci-
sion Tree, Support Vector Machine and Artificial Neural Network [Louridas and Ebert
2016]. To do so, we first subject these techniques to hyperparameter optimization using
MultiSearch [Weka MultiSearch 2017]. The optimization is performed over the predic-
tion accuracy metric (see Section 5.4) and across our case studies, Case A, Case B
and Case C, in Table II. EXPI is based on the complete set of features presented in
Table VII.

Following hyperparameter optimization, we perform a standard 10-fold cross valida-
tion [Miner et al. 2012] of the five classification techniques considered. Specifically, the
set of expert-reviewed relations in each case study is randomly divided into ten equal
subsets (folds). We select one subset as the test set, and the remaining nine subsets as
the training set. We compute the feature matrix for the training set (as explained in
Section 4), build a classifier based on the training set, and apply the classifier to the
test set. We repeat this process ten times to obtain the prediction results of each of the
ten classifiers on their respective test sets.
EXPII. This experiment answers RQ2. For most ML classification problems, the pro-
cess through which the features are engineered is informal and heavily reliant on the
domain knowledge and the intuitions of the individuals who define the features [Ka-
sun et al. 2013]. Consequently, one often has no definitive way of knowing in advance
whether a feature is going to be instrumental for building a good prediction model. The
importance of the features is usually established after the fact using statistical mea-
sures. In EXPII, we employ the Mean Decrease in Accuracy (MDA) metric, discussed
in Section 5.4, for ranking the features of Table VII based on their importance. The re-
sulting ranking is further used in RQ3 for comparing the accuracy of our recommender
using all features versus important features only.
EXPIII. This experiment answers RQ3–RQ5 by applying the algorithm of Fig. 7 with
the following configuration options:

(1) Features: We consider two options for the set of features to use for building C. The
first option is to use all the features in Table VII; the second option is to use only
those features that are found to be important in EXPII. We refer to the first option
as all and to the second as reduced. What features reduced is exactly composed
of is discussed after presenting the results of EXPII and answering RQ2.

(2) Learner: We consider two alternative ways of building C: single learner and en-
semble learner (see Section 4).

(3) Size of initial training set (parameter n in Fig. 7): For the size of the initial training
set T , we consider five levels: 10%, 20%, 30%, 40% and 50% of |R|, where R is the
set of all relations in a given case study. We recall from Table II that |R| = 213 in
Case A, |R| = 157 in Case B, and |R| = 101 in Case C. We do not set n to a value
lower than 10% because we need a reasonable amount of training data to build a
classifier that can make meaningful predictions. At the same time, we do not want
to set n to a higher level than 50%, as such a value would both imply a large upfront

21

effort from the analyst for labeling the training set, and further leave a small pool
of relations for automated predictions. For comparing our three case studies, which
have different numbers of relations, we use the absolute values of n at different
proportional levels.

(4) Probability margin for predicting relevant relations (parameter δ in Fig. 7): We
consider two levels for δ: 5% and 10%. We do not consider δ values that are
too small or too large. A too large value of δ may rule out correct recommenda-
tions of superfluousness; a too small value may lead to more relevant relations
getting wrongly predicted as superfluous.

(5) Probability margin for predicting superfluous relations (parameter ε in Fig. 7): We
consider two levels for ε: 5% and 10%. We do not consider ε values that are too
small or too large. A too small value of ε may lead to fewer superfluous recommen-
dations, and a too large value of ε may lead to more incorrect recommendations of
superfluousness.

(6) Number of times a relation needs to be predicted as superfluous before it is recom-
mended to the user (parameter k in Fig. 7): We consider five levels for k. These
are: an absolute value of one, alongside four proportional levels, 5%, 10%, 15%
and 20%. The proportional levels are relative to the total number of relations
in X, as defined on line 1 of the algorithm in Fig. 7. When the level denoted
one is used, a prediction of “superfluous” over a relation immediately prompts
a recommendation of “superfluous”. The remaining levels for k signify different
amounts of evidence that must build up in support of superfluousness, before a
recommendation of “superfluous” is made. For example, if |X| = 200, the 5% level
would require that a relation should be predicted as superfluous for 10 times,
before the relation is recommended as being so.

With the different levels defined for the above configuration options and parameters,
we obtain 2× 2× 5× 2× 2× 5 = 400 different configurations of the algorithm in Fig. 7
over each of our three case studies. To account for the randomness of our algorithm, in
particular the selection of the initial training set, we run each configuration ten times.
This yields 400× 10 = 4000 runs per case study, i.e., 4000× 3 = 12000 runs in total.

Running EXPIII requires feedback from the analyst on lines 2, 15 and 19 of the algo-
rithm of Fig. 7. This feedback is simulated based on the survey results (gold standards)
presented in Section 3.

5.4. Metrics
For EXPI, we evaluate the alternative classification techniques under analysis via the
prediction accuracy metric. Prediction accuracy is computed as the ratio of correct pre-
dictions over the total number of predictions.

For EXPII, we measure feature importance using Mean Decrease in Accuracy
(MDA) [Breiman et al. 1984]. We selected this metric in light of the results of RQ1.
In particular, as we argue in Section 5.5, Random Forest turns out to be the over-
all best classification technique for our recommender. MDA is one of the main meth-
ods used for ranking the importance of features in Random-Forest-based classification
models [Strobl et al. 2009]. Intuitively, MDA represents the loss of predictive power re-
sulting from the exclusion of a given feature from the classification model. Naturally,
the higher the MDA score for a given feature, the more important the feature is. The
standard practice with Random Forest is to discard features that have a negative, zero,
or very low positive MDA score [Strobl et al. 2009].

For EXPIII, we compute the precision and recall of the recommendations of superflu-
ousness. We denote (1) byA the number of correct recommendations of superfluousness
made on line 15 of the RECOMMENDER algorithm in Fig. 7, (2) by B the number of all

22

Table VIII. Accuracy results for EXPI.

71.8%

64.3%

60.4%

80.3%

77.2%

75.2%

86.4%

Decision

 Tree

82.2%

92.4%

69.0%

69.4%

Logistic

Regression

56.4%

89.2%

89.1%

Random

Forest
Case

92.1%

Case A

Case C

Case B

Artificial Neural

Network

Support Vector

Machine

recommendations of superfluousness made on line 15, be the recommendations correct
or incorrect, (3) by C the number of superfluous relations in R on line 1, i.e., the set of
all superfluous relations in a given case study, and (4) by D the number of superfluous
relations in set X, i.e., the set of all relations minus the initial training data, i.e., T on
line 1.

We compute Precision as A/B. For recall, we consider two different metrics. The first
metric, denoted simply Recall, is computed as A/C. Recall does not exclude the set of
relations T used for initial training. Any superfluous relation that happens to be in T is
thus counted as a miss by the Recall metric. We define a second recall metric, denoted
RecallX and computed asA/D. RecallX , in contrast to Recall, excludes T , thus focusing
only on relations that have a chance of being assigned an automatic recommendation
by the RECOMMENDER algorithm. Our answer to RQ3 is based on Precision and Recall,
whereas our answer to RQ4 is based on Precision and RecallX .

5.5. Discussion
Below, we present our answers to the RQs of Section 5.1.
RQ1. We answer RQ1 by performing EXPI and computing prediction accuracy for the
five ML classification techniques under investigation. Table VIII shows for each case
study and each ML technique the mean accuracy of 10-fold cross validation, obtained
with optimized hyperparameters for the underlying ML technique. As highlighted in
the table, for Case A and Case C, Random Forest outperforms all the other techniques.
In Case B, Decision Tree turns out to be the most accurate, but is closely followed by
Random Forest (accuracy difference of 3.3%).

The answer to RQ1 is that Random Forest performs consistently well across our
three case studies. We thus use Random Forest for answering the remaining RQs.

RQ2. To answer RQ2, we conduct EXPII. Fig. 9 shows, for each case study, the features
ranked in descending order of importance as computed by the MDA metric introduced
in Section 5.4. Based on the rankings, DF9, DF3, IF2 and IF4 are consistently among
the top five most important features. While it is difficult to provide a precise explana-
tion as to why some features are more influential than others, we present our intuition
about the obtained results. The high importance of DF3 and DF9 is likely an indication
that the relevance of a given relation strongly correlates with the experts’ perception
about other relations that share an endpoint with the relation in question.

With regard to IF2, we observe from Table IV that although all the model extraction
rules are overall useful, there are certain rules that have poor relevance in certain
case studies. For instance, rules Ag2 and At1 in Case A, and rule G1 in Case B and
Case C yield no or few relevant relations. ML classification techniques are quite adept
at picking up on such patterns. This likely contributes to the importance of IF2.

Finally, IF4 is related to the number of tokens in a relation relative to the length
of the underlying requirement. The importance of this feature is likely due to the fact
that relations containing a significant amount of textual content have a high chance of

23

Case A Case B Case C

Fig. 9. Features of Table VII ranked in descending order of Mean Decrease in Accuracy (MDA).

being superfluous. This is natural: such relations defeat the purpose of domain model
construction; one may as well read the requirements than consult the domain model
to obtain the information content.

With the influence of features determined, a standard practice in ML is to discard
features with a negative or only marginally positive impact on prediction accuracy.
This is often referred to as feature reduction (or feature selection). The main benefits of
feature reduction are: mitigating overfitting risks, simplifying the resulting prediction
models, improving training times, and avoiding the undesirable consequences of using
too many features (the curse of dimensionality) [Guyon and Elisseeff 2003].

In our work, we consider all features with an MDA score of < 1% across all case
studies as candidates for removal from the feature set. The features that fall below the
< 1% in all Case A, Case B, and Case C are the following: DF13, DF14, DF15, DF16,
IF7 and IF8. For EXPIII, we define the reduced option to be the set of all features
with the above-mentioned six features removed.
The answer to RQ2 is that, among the features in Table VII, the most important
ones are DF3, DF9, IF2 and IF4, and the least important ones are DF13, DF14,
DF15, DF16, IF7 and IF8.

RQ3. To answer this question, we perform EXPIII and calculate the Precision and
Recall metrics, defined in Section 5.4, for 12000 full executions (4000 from each case
study) of the RECOMMENDER algorithm in Fig. 7. Our analysis in RQ3 is based on the
mean values for the ten runs of each configuration of the algorithm. This gives us a
total of 400× 3 = 1200 datapoints.

We are interested in configurations that yield high precision, i.e., recommend few
relevant relations as superfluous. Poor precision means that the recommendations are
not trustworthy. If the analyst trusts the recommendations when precision is low, she
will risk filtering useful information. On the other hand, if she attempts to vet all the
recommendations in detail, any potential effort savings brought about by the algo-
rithm will be canceled. To identify configurations with high precision across the three
case studies, we use regression trees [Breiman et al. 1984]. A regression tree is con-
structed by partitioning a data set in a step-wise manner in order to obtain partitions
that minimize variation with respect to a criterion, e.g., precision or recall.

The first column of Fig. 10 shows the regression trees for precision in our three
case studies. At each node, the tree identifies the parameter that is most influential in
explaining the variation in precision, and partitions the node based on that parameter.
We show the number of elements, mean and standard deviation of precision at each
node, as well as the difference between the mean precision scores of the children of

24

All Rows

Count

Mean

32

0.294

Std Dev

Difference

0.03

0.028

n >= 64

Count

Mean

24

0.282

Std

Dev
0.02

Case A

Count

Mean

8

0.31

n < 64

Std

Dev
0.01

All Rows

Count

Mean

32

0.294

Std Dev

Difference

0.03

0.028

n >= 64

Count

Mean

24

0.282

Std

Dev
0.02

Case A

Count

Mean

8

0.31

n < 64

Std

Dev
0.01

All Rows

Count

Mean

400

0.903

Std Dev

Difference

0.066

0.093

Learner {Single}

Count

Mean

200

0.857

Std

Dev
0.064

Case A

Count

Mean

200

0.95

Learner {Ensemble}

Std Dev

Difference

0.017

0.018

Count

Mean

40

0.935

Std

Dev
0.024

k {one}
Count

Mean

160

0.953

Std

Dev
0.012

k {5%, 10%, 15%, 20%}

All Rows
Count

Mean

400

0.903

Std Dev

Difference

0.066

0.093

Learner {Single}

Count

Mean

200

0.857

Std

Dev
0.064

Case A

Count

Mean

200

0.95

Learner {Ensemble}

Std Dev

Difference

0.017

0.018

Count

Mean

40

0.935

Std

Dev
0.024

k {one}
Count

Mean

160

0.953

Std

Dev
0.012

k {5%, 10%, 15%, 20%}

All Rows

Count

Mean

32

0.333

Std Dev

Difference

0.063

0.111

n >= 48

Count

Mean

24

0.306

Std

Dev
0.047

Case B

Count

Mean

8

0.417

n < 48

Std

Dev
0.007

All Rows

Count

Mean

32

0.333

Std Dev

Difference

0.063

0.111

n >= 48

Count

Mean

24

0.306

Std

Dev
0.047

Case B

Count

Mean

8

0.417

n < 48

Std

Dev
0.007

All Rows

Count

Mean

400

0.859

Std Dev

Difference

0.094

0.101

Learner {Single}

Count

Mean

200

0.809

Std

Dev
0.084

Count

Mean

200

0.91

Std Dev

Difference

0.075

0.095

Learner {Ensemble}

Count

Mean

80

0.853

Std

Dev
0.06

n < 31
Count

Mean

120

0.948

Std Dev

Difference

0.059

0.093

n >= 31

Case C

Count

Mean

24

0.873

Std

Dev
0.075

k {one}
Count

Mean

96

0.966

k {5%, 10%, 15%, 20%}

Count

Mean

48

0.95

Std

Dev
0.037

Features {All}

Count

Mean

48

0.983

Std

Dev
0.027

Features {Reduced}

Std Dev

Difference

0.036

0.033

All Rows
Count

Mean

400

0.859

Std Dev

Difference

0.094

0.101

Learner {Single}

Count

Mean

200

0.809

Std

Dev
0.084

Count

Mean

200

0.91

Std Dev

Difference

0.075

0.095

Learner {Ensemble}

Count

Mean

80

0.853

Std

Dev
0.06

n < 31
Count

Mean

120

0.948

Std Dev

Difference

0.059

0.093

n >= 31

Case C

Count

Mean

24

0.873

Std

Dev
0.075

k {one}
Count

Mean

96

0.966

k {5%, 10%, 15%, 20%}

Count

Mean

48

0.95

Std

Dev
0.037

Features {All}

Count

Mean

48

0.983

Std

Dev
0.027

Features {Reduced}

Std Dev

Difference

0.036

0.033

RecallPrecision

All Rows

Count

Mean

24

0.164

Std Dev

Difference

0.063

0.09

k {10%, 15%, 20%}
Count

Mean

18

0.142

Std

Dev
0.05

Case C

Count

Mean

6

0.232

k {5%}

Std

Dev
0.032

All Rows
Count

Mean

24

0.164

Std Dev

Difference

0.063

0.09

k {10%, 15%, 20%}
Count

Mean

18

0.142

Std

Dev
0.05

Case C

Count

Mean

6

0.232

k {5%}

Std

Dev
0.032

All Rows
Count

Mean

400

0.859

Std Dev

Difference

0.089

0.137

Learner {Single}

Count

Mean

200

0.791

Std

Dev
0.078

Count

Mean

200

0.928

Std Dev

Difference

0.02

0.02

Learner {Ensemble}

Case B

Count

Mean

40

0.911

Std

Dev
0.018

k {one}
Count

Mean

160

0.931

Std Dev

Difference

0.01

0.015

k {5%, 10%, 15%, 20%}

 {10%}
Count

Mean

80

0.924

Std

Dev
0.021

Count

Mean

80

0.939

 {5%}! !

0.012
Std

Dev

All Rows
Count

Mean

400

0.859

Std Dev

Difference

0.089

0.137

Learner {Single}

Count

Mean

200

0.791

Std

Dev
0.078

Count

Mean

200

0.928

Std Dev

Difference

0.02

0.02

Learner {Ensemble}

Case B

Count

Mean

40

0.911

Std

Dev
0.018

k {one}
Count

Mean

160

0.931

Std Dev

Difference

0.01

0.015

k {5%, 10%, 15%, 20%}

 {10%}
Count

Mean

80

0.924

Std

Dev
0.021

Count

Mean

80

0.939

 {5%}! !

0.012
Std

Dev

Accuracy Measure

C
a

se
 S

tu
d

y

Fig. 10. Regression tree for Precision and Recall.

non-leaf nodes. A node is expanded if the difference between the means of its children
nodes is >0.01 (i.e., >1%), which we deem to be the minimum difference of practical
relevance.

As indicated by the precision column in Fig. 10, in all three case studies, the most
critical decision is the choice of the learner. The ensemble learner performs consis-
tently better than the single learner. The second most critical decision in Case A and
Case B (and the third most critical decision in Case C) is the choice of parameter k.

25

The 5%, 10%, 15% and 20% levels perform significantly better than the “one” level.
This finding indicates that a single prediction of superfluousness is insufficient for
escalating the prediction into a recommendation of superfluousness.

In addition to the two parameters discussed above, which appear in the precision
regression trees of all the three case studies, there are three other parameters, one of
which is influential in Case B and two of which are influential in Case C. In Case B,
the 5% level for ε is significantly better than the 10% level. In Case C, we need to
seed the initial training set with at least 31 relations. Furthermore, using the reduced
set of feature functions in Case C provides an edge, compared to when all the feature
functions are used.

Ultimately, our goal is to pick configurations that perform consistently well across
all three case studies. That is, we are interested in the intersection of the best
configurations. Since no inconsistency exists between the precision regression trees1,
the intersection of the configurations that perform best with respect to precision is
non-empty. Specifically, the configurations falling in the intersection are the following:
(1) Features: {Reduced};
(2) Learner: {Ensemble};
(3) n: ≥ 31, {20%, 30%, 40%, 50%} in Cases A and B, and {30%, 40%, 50%} in Case C;
(4) δ: {5%, 10%};
(5) ε: {5%};
(6) k: {5%, 10%, 15%, 20%}.

All the above configurations, i.e., 32 (4×2×4) configurations in Case A, 32 in Case B,
and 24 (3× 2× 4) in Case C – lead to a mean precision of ≥ 95%. These configurations
are thus all trustworthy for making recommendations of superfluousness.

Having identified the configurations that yield the highest precision, we now shift
our attention to recall. The recall regression trees are shown in the second column of
Fig. 10. In contrast to the precision regression trees (first column of Fig. 10), which
cover all configurations, the recall regression trees are restricted to the configurations
that yield the best precision. We remember, from Section 5.4, the two different notions
of recall defined. The recall regression trees in Fig. 10 are based on the Recall metric.
While one would conventionally use RecallX (as we will do in RQ4) for measuring the
recall of a trained classifier, this metric is not suitable for tuning the parameters of
our recommender. The reason is that RecallX would not account for the training that
goes into building an accurate classifier. Regression tree analysis, if performed over
RecallX , would thus unduly favor larger training sets. In contrast, Recall allows us
to maximize the net gain from the recommender, taking into account the amount of
training required.

As indicated by the recall regression trees, the most critical decision for recall is the
choice of n in Case A and Case B. This result simply highlights the fact that if the
initial training set is too large, there will not be enough iterations of the algorithm to
monitor the predictions and issue recommendations. In Case C, the most critical deci-
sion with respect to recall is the choice of k. In particular, k = 5% leads to better recall
than larger k values. This indicates that if some relation r is predicted as superfluous
for k = 5%× |X| times (where X is as defined on line 1 of the algorithm in Fig. 7), then
the evidence in support of r being superfluous is strong enough to warrant making
a recommendation to the analyst. Higher k values, although strengthening the confi-
dence, would negatively impact recall, since they allow fewer predictions to mature to
recommendations.

1An example inconsistency would have been if, say, Case A favored Ensemble learning while Case B favored
Single learning.

26

Table IX. Optimal configuration and associated accuracy results.

43.6%

Recall
X

40.0%
50.1%

35.0%
43.0%
27.3%

Recall

5% 98.0%Case C Ensemble 31 (30%) 5% 5%Reduced

5%32 (20%) 5% 5%ReducedCase B Ensemble 95.1%

!

5% 5%5%EnsembleReduced 95.2%Case A 43 (20%)

PrecisionknLearnerFeaturesCase !!

We note that similar to the precision regression trees, no inconsistencies were seen
in the recall regression trees. We further observe the following from the precision and
recall regression trees, when they are taken together: the choice of δ (5% versus 10%)
has no significant impact. A further examination indicated that our algorithm has
little sensitivity to this parameter, unless it is set to a really low (< 1%) or a really
high (> 30%) value. Neither action was justified, given the intuition behind δ, stated
earlier. Between the two levels considered in our experiment, we pick 5%, thus favoring
recall over precision, noting that precision is already very high.

The answer to RQ3, i.e., the optimal configuration, is shown in Table IX. For n, we
show the smallest level in each case study with ≥ 31 relations. For Case A and
Case B, this is the 20% level, and for Case C, the 30% level. Table IX further shows
for each case study the optimal precision and recall (average of the ten runs of the
optimal configuration). The practical utility of these results is discussed in RQ4.

RQ4. From Table IX, we observe that using the Recall metric, we obtain a recall range
of 27% to 43%, with precision being consistently above 95%. If we exclude the training
data from our analysis, i.e., apply the RecallX metric, the recall range is between 40%
to 50%. High precision provides confidence that the recommendations are very likely
to be correct. Since analysts want to dispose of superfluous relations with as little
effort as possible, such trustworthy recommendations appear useful. The amount of
effort that analysts save will, of course, depend on recall. The question that remains is
which of the two recall metrics is more representative of the effort savings in practice.
As we discussed in RQ3, the initial training size in the best configurations is in the
range of 30 to 40 elements. Had we analyzed the underlying requirements documents
in full, the size of the initial training set would have constituted a smaller fraction of
the entire set of relations set size. We therefore believe that RecallX is more indicative
of the effort savings brought about by our approach.

Indeed, we anticipate even larger savings if the requirements documents are ana-
lyzed in their entirety. In particular, we examined how much of the vocabulary of the
full requirements documents was covered by the document segments in our case stud-
ies. To this end, we measured the number of distinct noun phrases (NPs) and verb
phrases (VPs) in the segments as a ratio of the number of NPs and VPs in the full doc-
uments. We observed that, while the segments accounted for an average of ≈ 32% of
the total number of requirements, the NPs and VPs in these segments covered on aver-
age ≈ 61% of the full set of NPs and VPs. This observation suggests that we are likely
to see a saturation in vocabulary. With larger document segments analyzed, such sat-
uration would increase the quality of the predictions and consequently the proportion
of automated recommendations.

The answer to RQ4 is that, once trained, our recommender automatically detects
an average of ≈ 45% of the superfluous relations with a precision of ≈ 96%. Since
precision is very high, the automatic recommendations are trustworthy. In other
words, analysts can dispose of nearly half of the superfluous relations with minimal
manual effort. Our results are particularly promising when one considers the sub-
jectivity phenomenon described in Section 3.2.4, and the fact that such subjectivity
poses limits on how far an automated approach can go in detecting superfluousness.

27

RQ5. The most important consideration with regard to the execution time is the
following: once the analyst has provided some feedback, how long does it take the
algorithm to update the feature matrix, rebuild the classifier and compute fresh
predictions? For our largest case study (Case A), in the worst case, this cycle took
≈2 seconds on a laptop with a 2.3 GHz CPU and 8GB of memory. Our case stud-
ies however cover only about one third of the underlying requirements documents
(see Table II). Furthermore, for many systems, the requirements documents may be
larger than those in our case studies.

To gain a better understanding of execution time, we artificially duplicated the rela-
tions in Case A ten times, obtaining a total of 2130 relations. For this increased data
set, the worst execution time for one iteration of our algorithm increased to≈6 seconds.
When handling large sets of relations, a simple strategy for maintaining the interac-
tiveness of our algorithm would be to ensure that, in each iteration of the algorithm,
we present to the analyst at least a minimum number of relations, e.g., 1% of the total
number of relations. More precisely, if the number of relations in I+ ∪ I− falls below
the minimum threshold in a given iteration of the algorithm, we can proceed to addi-
tionally request user feedback on as many uncertain relations as necessary to meet the
threshold. By doing so, we can both reduce the number of iterations of the algorithm,
and further allow the computational tasks to be parallelized with user interactions,
thus minimizing interaction delays.
The answer to RQ5 is as follows: for small sets of relations (100-500 relations), the
algorithm of Fig. 7 can be run as-is. For larger sets, one can ensure that the number
of relations subject to feedback on lines 15 and 19 of the algorithm of Fig. 7 is above
a predefined minimum threshold. Further, some of the computational tasks can be
run in the background while the user is reviewing the relations.

6. THREATS TO VALIDITY

Internal Validity. The gold standards built for relevance in Section 3 are based on ex-
perts examining the requirements and the extracted relations one at a time. We did not
present to the experts the extracted domain models in their entirety. We thus cannot
completely rule out the possibility that the experts may have made different decisions
about relevance, had they seen the global picture, i.e., all the extracted relations at
once. We decided against showing the extracted domain models in their entirety in
order to avoid confounding factors due to potentially poor model layout and cognitive
overload. We believe the way we conducted our surveys does not pose a substantial
internal validity threat, since the experts could easily make up their mind about rele-
vance based on the information content they saw in the individual requirements.
Construct Validity. Our metrics do not account for the tacit (implicit) knowledge
that is required for building a domain model, but which cannot be inferred from the
requirements. This does not pose a threat to construct validity in our context, since
our focus was on filtering useless information that is explicit in the requirements and
extractable via NLP.
Conclusion Validity. The gold standard for each of our case studies – Case A, Case B
and Case C – is based on feedback from an individual respondent, noting that any
potential respondent had to be a domain expert. In each Case A and Case B, we were
unable to recruit more than one domain expert. In Case C, we collected feedback from
three experts for a part of the case study, but as stated earlier, only one expert par-
ticipated throughout the entire case study. To mitigate threats to conclusion validity,
we considered three distinct systems with three distinct experts. Further, each expert
covered many (> 100) relations to minimize potential expert errors.

28

External Validity. Our evaluation involved three industrial case studies from differ-
ent domains. Our conclusions are based on the combined results of these case studies.
The consistency seen across the results provides confidence about the generalizabil-
ity of our approach. Future case studies of larger sizes are nevertheless necessary for
improving external validity.

7. RELATED WORK
In this section, we position our work within the state of the art, and compare with
research strands that relate most closely to our approach. We organize our discussion
under three headings: (1) model extraction, (2) superfluousness in NLP results, and
(3) applications of ML in Requirements Engineering.

7.1. Model Extraction
This article was not meant at developing a new approach for domain model extraction.
We thus do not compare the model extractor we build upon in this article against other
existing solutions. For such a comparison, consult [Arora et al. 2016]. What is pertinent
to this article from the literature on domain model extraction are the existing empirical
results. To our knowledge, relevance – the main focus of our analysis in Section 3 – has
not been considered in previous work on model extraction. Indeed, we are not aware of
any prior strands of work where model extraction results have been validated directly
with domain experts. This potentially explains why relevance has been overlooked.

The results of Section 3 further show that Link Paths (LP) are indeed useful for
building domain models. We are not aware of any model extractor except ours that
accounts for LP relations. The topic of indirect relations, including LP, is the sub-
ject of research in the NLP community. Recent versions of the Stanford CoreNLP
toolkit [Manning et al. 2014] provide a module, named OpenIE (Open domain Informa-
tion Extraction) [Angeli et al. 2015], for extracting both direct and indirect relations.
The development of this module signifies the broader usefulness of indirect relations.

7.2. Superfluousness in NLP Results
Superfluousness is a recurring issue when NLP is used for information extrac-
tion [Manning and Schütze 1999; Jacquemin 2001]. This issue has been attributed to
two causes: (1) NLP’s inability to differentiate the specific information required by the
users from other information in a given text [Krauthammer and Nenadic 2004; Jack-
son and Moulinier 2007; Nikfarjam et al. 2015], and (2) the subjectivity involved in
determining what extracted information is relevant [Kosala and Blockeel 2000; Scholz
and Conrad 2013]. Our results in Section 3 (specifically, the reasons for superfluous-
ness shown in Table V and the discussion about interrator agreement in Section 3.2.4)
provide evidence that both causes are pertinent to NLP-based model extraction.

In the field of Requirements Engineering, the manual effort associated with filtering
the superfluous information produced by NLP has often been considered a fair price to
pay in exchange for the ability to extract (nearly) all the relevant information [Mah-
moud and Williams 2016]. The central premise for our work in this article is that an-
alysts can benefit from automated assistance in filtering the superfluous information,
thus making NLP an even more compelling choice for requirements analysis.

There are some recent threads of work in which the problem of filtering superfluous
information is explicitly tackled. Rago et al. [2016] propose a query language to help
analysts identify false positives in cross-cutting concerns that have been extracted
from requirements using NLP. Bhatia et al. [2016] use crowd-workers for filtering
superfluous privacy goals extracted from privacy policies. Quirchmayr et al. [2017]
develop a filter based on predefined phrase patterns for finding superfluous software
features extracted from user manuals.

29

The above approaches are not a suitable match for our application context. First,
due to the extensive level of experience required for domain model construction, crowd-
workers are unlikely to be able to contribute to this task in an effective manner. Fur-
ther, confidentiality issues would complicate sharing proprietary system requirements
with crowd-workers. Similarly, devising a complete set of generalizable criteria for
distinguishing superfluous and relevant domain model elements is difficult, if not in-
feasible. Queries and heuristics, e.g., as employed by Rago et al. [2016] and Quirch-
mayr et al. [2017], can be helpful for specific domains and document types; however,
these approaches cannot adapt themselves to the reasoning applied by experts in a
domain that has not been studied a priori. In contrast, our approach, which builds on
ML, can mimic the logic applied by experts in any domain, without the need for this
logic to be made explicit and articulated.

7.3. Applications of ML in Requirements Engineering
ML has been considered for automating a variety of Requirements Engineering tasks.
The tasks to which ML has been applied the most are requirements identification
and classification. Hayes et al. [2014] propose an ML toolkit for requirements assess-
ment, and demonstrate the application of the toolkit for requirements classification
along different dimensions, e.g., functional versus non-functional and temporal ver-
sus non-temporal. Cleland-Huang et al. [2007] develop an iterative classifier, based
on information retrieval techniques, for automated identification and classification
of non-functional requirements. Kurtanović and Maalej [2017] propose an approach
for distinguishing functional and non-functional requirements using Support Vector
Machines. Casamayor et al. [2010] use supervised and unsupervised (clustering) tech-
niques for identifying non-functional requirements in textual specifications. Rodeghero
et al. [2017] compare Logistic Regression and Support Vector Machines for identifying
requirements-related information in the transcripts of developer-client conversations.
Maalej et al. [2016] and Kurtanović and Maalej [2018] explore several ML techniques,
e.g., Naive Bayes [Witten et al. 2016], for extracting feature requests and user ratio-
nale from reviews. Winkler and Vogelsang [2016, 2018] use deep learning techniques
for classifying requirements and auxiliary content in textual descriptions.

Requirements traceability detection is another task where ML is gaining increas-
ing traction. Cleland-Huang et al. [2010] adopt the classifier developed in their ear-
lier work [Cleland-Huang et al. 2007] for generating trace links from regulatory codes
to requirements. Guo et al. [2017] use deep learning techniques for trace generation
from requirements to downstream development artifacts. Wang et al. [2018] propose
an approach for enhancing the accuracy of automated requirements traceability using
Artificial Neural Networks.

Using ML has been further studied, albeit to a more limited extent, for other re-
quirements analysis activities. For example, Yang et al. [2010] apply Logistic Regres-
sion for detecting requirements ambiguities; and Perini et al. [2013] employ boosting
techniques [Witten et al. 2016] for requirements prioritization.

None of the research strands outlined above use ML for addressing the same prob-
lem as what we tackle in this article, namely assisting analysts with filtering super-
fluous information during domain modeling.

8. CONCLUSION
We proposed and evaluated an active learning approach for filtering superfluous ele-
ments from the output of domain model extraction tools. Our empirical results over
industrial case studies indicate that, on average, our approach filters 45% of superflu-
ous domain model elements with a precision of 96%.

30

The features that we defined and employed for machine learning are targeted specif-
ically at detecting the relevance and superfluousness of domain model elements. We
found such specificity to be important, as devising an effective solution necessitated
that we carefully take the problem context into account, and exploit as much as possi-
ble the assumptions and intuitions valid in this context. At the same time, the general
idea behind our work, namely applying active learning to provide automated decision
support, can be useful for other requirements analysis tasks, e.g., glossary construc-
tion, traceability link vetting, and inconsistency handling. To this end, our technical
solution provides a concrete instantiation of the active learning process, covering fea-
ture specification and selection, parameter tuning, user feedback simulation, and ac-
curacy analysis. We thus believe that our work in this article can offer value beyond
domain model construction by paving the way for developing other human-in-the-loop
requirements automation techniques.

For future work, we would like to further improve our approach in terms of the
proportion of superfluous elements it can identify, while maintaining the high precision
already achieved. To this end, we are investigating ways for transfer learning [Pan
and Yang 2010], which enable the reuse of labeled data acquired from one project
for making predictions in other (unlabeled) projects. Conventional transfer learning
techniques are not readily applicable in our context, since, first, we cannot compute
our label-dependent features for a given set of relations without the analyst having
provided feedback on that particular set, and second, the label-dependent features rely
indirectly on the requirements terminology. While these characteristics may render
cross-domain knowledge reuse infeasible, we still need to investigate whether transfer
learning would be feasible for requirements documents within the same domain.

Another area for potential improvement has to do with how we pick the relations
to include in the initial training set. Our current recommendation algorithm uses a
random sampling strategy for this purpose. This decision was made after we tried,
without success, a number of other sampling strategies, where the initial training set
was picked according to some optimization criterion, e.g., covering as many frequently
recurring concepts as possible, or maximizing the diversity of the terminology used
within the selected relations. Further investigation is required to determine whether
random sampling can be outperformed by a more systematic strategy.

To tune the hyperparameters of the ML classification techniques in our evaluation,
we relied on a common but rather primitive strategy (MultiSearch). Noting the in-
creasing evidence that hyperparameters can considerably affect the accuracy of ML in
different contexts [Bergstra and Bengio 2012], we need to look more closely into al-
ternative strategies for optimizing the hyperparameters, and determine whether the
accuracy of our approach can be further increased using better hyperparameter values.
Two interesting optimization strategies that we would like to examine in the future for
this purpose are differential evolution [Fu et al. 2016] and sample-and-prune [Chen
et al. 2018].

Finally, in our evaluation, we followed a binary logic for recommendations (i.e., rec-
ommended / not recommended). In reality, the analysts would also be interested in
knowing, e.g., through color coding, how much evidence there is in support of super-
fluousness (or relevance), with an understanding that the evidence may be insufficient
for reliable recommendations. A more conclusive evaluation of our approach which
considers the above angles would require larger case studies and a human-in-the-loop
realization of our recommendation algorithm.
Acknowledgment. This project has received funding from the Luxembourg National
Research Fund (FNR) under grants FNR/P10/03 and FNR-11601446, and from the

31

European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 694277).

REFERENCES

Alan Akbik and Juergen Broß. 2009. Wanderlust: Extracting semantic relations from
natural language text using dependency grammar patterns.. In Workshop on Seman-
tic Search at International World Wide Web Conference (WWW’09). ACM, Madrid,
Spain, 5–16.

Gabor Angeli, Melvin Johnson Premkumar, and Christopher D Manning. 2015. Lever-
aging linguistic structure for open domain information extraction. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics (ACL’15).
ACL, Beijing, China, 344–354.

Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. 2016. Ex-
tracting Domain Models from Natural-Language Requirements: Approach and In-
dustrial Evaluation. In 19th International Conference on Model Driven Engineering
Languages and Systems (MODELS’16). ACM, St. Malo, France, 250–260.

Carl Auerbach and Louise B Silverstein. 2003. Qualitative data: An introduction to
coding and analysis. NYU press, New York, USA.

James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

Jaspreet Bhatia, Travis D. Breaux, and Florian Schaub. 2016. Mining Privacy Goals
from Privacy Policies Using Hybridized Task Recomposition. ACM Transactions on
Software Engineering and Methodology (ACM TOSEM) 25, 3 (2016), 22:1–22:24.

Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. 1984. Classifica-
tion and Regression Trees. Wadsworth and Brooks, London, UK.

Agustin Casamayor, Daniela Godoy, and Marcelo Campo. 2010. Identification of non-
functional requirements in textual specifications: A semi-supervised learning ap-
proach. Information and Software Technology 52, 4 (2010), 436–445.

Jianfeng Chen, Vivek Nair, Rahul Krishna, and Tim Menzies. 2018. “Sam-
pling” as a Baseline Optimizer for Search-based Software Engineering.
IEEE Transactions on Software Engineering to appear, 00 (2018), 00.
DOI:http://dx.doi.org/10.1109/TSE.2018.2790925

Jane Cleland-Huang, Adam Czauderna, Marek Gibiec, and John Emenecker. 2010. A
machine learning approach for tracing regulatory codes to product specific require-
ments. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE’10). ACM, Cape Town, South Africa, 155–164.

Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. 2007. Auto-
mated classification of non-functional requirements. Requirements Engineering 12,
2 (2007), 103–120.

Gordon V Cormack and Maura R Grossman. 2014. Evaluation of machine-learning
protocols for technology-assisted review in electronic discovery. In Proceedings of the
37th international ACM SIGIR conference on Research & development in information
retrieval. ACM, Gold Coast, Australia, 153–162.

Dave DeBarr and Harry Wechsler. 2009. Spam detection using clustering, random
forests, and active learning. In Sixth Conference on Email and Anti-Spam (CEAS).
Citeseer, Mountain View, USA, 1–6.

Mosa Elbendak, Paul Vickers, and Nick Rossiter. 2011. Parsed use case descriptions as
a basis for object-oriented class model generation. Journal of Systems and Software
(JSS) 84, 7 (2011), 1209 – 1223.

Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying relations for
open information extraction. In Conference on Empirical Methods in Natural Lan-

32

guage Processing (EMNLP’11). ACL, Edinburgh, UK, 1535–1545.
Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters. Psy-

chological Bulletin 76, 5 (1971), 378–382.
Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics: Is it

really necessary? Information and Software Technology 76 (2016), 135–146.
Gonzalo Génova, José M Fuentes, Juan Llorens, Omar Hurtado, and Valentı́n Moreno.

2013. A framework to measure and improve the quality of textual requirements.
Requirements engineering 18, 1 (2013), 25–41.

Jin Guo, Jinhui Cheng, and Jane Cleland-Huang. 2017. Semantically Enhanced
Software Traceability Using Deep Learning Techniques. In IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE’17). IEEE, Buenos Aires, Ar-
gentina, 255–272.

Isabelle Guyon and André Elisseeff. 2003. An introduction to variable and feature
selection. Journal of machine learning research 3, 1 (2003), 1157–1182.

Jane Huffman Hayes, Wenbin Li, and Mona Rahimi. 2014. Weka meets TraceLab:
Toward convenient classification: Machine learning for requirements engineering
problems: A position paper. In 1st International Workshop on Artificial Intelligence
for Requirements Engineering (AIRE’14). IEEE, Karlskrona, Sweden, 9–12.

Peter Jackson and Isabelle Moulinier. 2007. Natural language processing for online
applications: Text retrieval, extraction and categorization. Vol. 5. John Benjamins
Publishing, Amsterdam, Netherlands.

Christian Jacquemin. 2001. Spotting and discovering terms through natural language
processing. MIT press, Cambridge, USA.

Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang,
and Chi Man Vong. 2013. Representational learning with extreme learning machine
for big data. IEEE intelligent systems 28, 6 (2013), 31–34.

Raymond Kosala and Hendrik Blockeel. 2000. Web mining research: A survey. ACM
SIGKDD Explorations Newsletter 2, 1 (2000), 1–15.

Michael Krauthammer and Goran Nenadic. 2004. Term identification in the biomedi-
cal literature. Journal of Biomedical Informatics (JBI) 37, 6 (2004), 512–526.

Zijad Kurtanović and Walid Maalej. 2017. Automatically Classifying Functional
and Non-Functional Requirements Using Supervised Machine Learning. In 25th
IEEE International Requirements Engineering Conference (RE’2017). IEEE, Lis-
bon,Portugal, 490–495.

Zijad Kurtanović and Walid Maalej. 2018. On user rationale in software engineering.
Requirements Engineering 23, 3 (2018), 357–379.

J Richard Landis and Gary G Koch. 1977. An application of hierarchical kappa-type
statistics in the assessment of majority agreement among multiple observers. Bio-
metrics 33, 2 (1977), 363–374.

Craig Larman. 2004. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development (3rd ed.). Prentice Hall, New Jersey,
USA.

David D Lewis and William A Gale. 1994. A sequential algorithm for training text
classifiers. In Proceedings of the 17th ACM International conference on Research and
development in information retrieval (SIGIR’94). Springer, Dublin, Ireland, 3–12.

Odd Ivar Lindland, Guttorm Sindre, and Arne Solvberg. 1994. Understanding quality
in conceptual modeling. IEEE software 11, 2 (1994), 42–49.

Panos Louridas and Christof Ebert. 2016. Machine Learning. IEEE Software 33, 5
(2016), 110–115.

Garm Lucassen, Marcel Robeer, Fabiano Dalpiaz, Jan Martijn E. M. van der Werf,
and Sjaak Brinkkemper. 2017. Extracting conceptual models from user stories with
Visual Narrator. Requirements Engineering 22, 3 (2017), 339–358.

33

Mich Luisa, Franch Mariangela, and Novi Inverardi Pierluigi. 2004. Market research
for requirements analysis using linguistic tools. Requirements Engineering Journal
(RE J) 9, 1 (2004), 40–56.

Walid Maalej, Zijad Kurtanović, Hadeer Nabil, and Christoph Stanik. 2016. On the
automatic classification of app reviews. Requirements Engineering Journal (RE J)
21, 3 (2016), 311–331.

Anas Mahmoud and Grant Williams. 2016. Detecting, classifying, and tracing non-
functional software requirements. Requirements Engineering Journal (RE J) 21, 3
(2016), 357–381.

Christopher D Manning and Hinrich Schütze. 1999. Foundations of statistical natural
language processing. MIT press, Cambridge, USA.

Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In 52nd Annual Meeting of the Association for Computational Lin-
guistics (ACL): System Demonstrations. ACL, Baltimore,USA, 55–60.

Gary Miner, John Elder, and Thomas Hill. 2012. Practical text mining and statisti-
cal analysis for non-structured text data applications. Academic Press, Cambridge,
USA.

Makoto Miwa, James Thomas, Alison OMara-Eves, and Sophia Ananiadou. 2014. Re-
ducing systematic review workload through certainty-based screening. Journal of
biomedical informatics 51 (2014), 242–253.

Azadeh Nikfarjam, Abeed Sarker, Karen O’Connor, Rachel Ginn, and Graciela Gon-
zalez. 2015. Pharmacovigilance from social media: mining adverse drug reaction
mentions using sequence labeling with word embedding cluster features. Journal of
the American Medical Informatics Association 22, 3 (2015), 671–681.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Transac-
tions on Knowledge and Data Engineering (IEEE TKDE) 22, 10 (2010), 1345–1359.

Anna Perini, Angelo Susi, and Paolo Avesani. 2013. A machine learning approach to
software requirements prioritization. IEEE Transactions on Software Engineering
(TSE) 39, 4 (2013), 445–461.

Klaus Pohl. 2010. Requirements Engineering - Fundamentals, Principles, and Tech-
niques. Springer, Heidelberg, Germany.

Thomas Quirchmayr, Barbara Paech, Roland Kohl, and Hannes Karey. 2017. Semi-
automatic Software Feature-Relevant Information Extraction from Natural Lan-
guage User Manuals. In 23rd International Working Conference on Requirements
Engineering: Foundations for Software Quality (REFSQ’17). Springer, Essen, Ger-
many, 255–272.

Alejandro Rago, Claudia Marcos, and J Andres Diaz-Pace. 2016. Assisting require-
ments analysts to find latent concerns with REAssistant. ASE J 23, 2 (2016), 219–
252.

Martin P Robillard, Walid Maalej, Robert J Walker, and Thomas Zimmermann. 2014.
Recommendation systems in software engineering. Springer Science & Business,
New York, USA.

Paige Rodeghero, Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Detecting
User Story Information in Developer-Client Conversations to Generate Extractive
Summaries. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE’17). IEEE, Buenos Aires,Argentina, 49–59.

Johnny Saldaña. 2015. The coding manual for qualitative researchers (3rd ed.). Sage
Publications, London, United Kingdom.

Thomas Scholz and Stefan Conrad. 2013. Extraction of statements in news for a me-
dia response analysis. In 18th International Conference on Application of Natural
Language to Information Systems (NLDB’13). Springer, Montpelliers, France, 1–12.

34

Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning 6, 1 (2012), 1–114.

Burr Settles and Mark Craven. 2008. An analysis of active learning strategies for
sequence labeling tasks. In Proceedings of the conference on empirical methods in
natural language processing. Association for Computational Linguistics, Honolulu,
Hawaii, 1070–1079.

Carolin Strobl, James Malley, and Gerhard Tutz. 2009. An introduction to recursive
partitioning: rationale, application, and characteristics of classification and regres-
sion trees, bagging, and random forests. Psychological methods 14, 4 (2009), 323.

Jitendra Singh Thakur and Atul Gupta. 2016. Identifying Domain Elements from
Textual Specifications. In Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’16). ACM, Singapore, Singapore,
566–577.

Mark Utting and Bruno Legeard. 2010. Practical model-based testing: a tools ap-
proach. Morgan Kaufmann, Burlington, USA.

Vidhu Bhala VidyaSagar and S. Abirami. 2014. Conceptual Modeling of Natural Lan-
guage Functional Requirements. Journal of System and Software (JSS) 88 (2014),
25–41.

Chunhui Wang, Fabrizio Pastore, Arda Goknil, Lionel Briand, and Zohaib Iqbal. 2015.
Automatic generation of system test cases from use case specifications. In Pro-
ceedings of the 2015 International Symposium on Software Testing and Analysis
(ICST’15). ACM, Graz, Austria, 385–396.

Wentao Wang, Nan Niu, Hui Liu, and Zhendong Niu. 2018. Enhancing Automated Re-
quirements Traceability by Resolving Polysemy. In 26th International Requirements
Engineering Conference (RE’18). IEEE, Banff, Canada, to appear.

Weka MultiSearch 2017. Multi Search - Weka package for parameter optimiza-
tion. (2017). https://github.com/fracpete/multisearch-weka-package/ Last accessed:
March 2018.

Jonas Winkler and Andreas Vogelsang. 2016. Automatic Classification of Require-
ments Based on Convolutional Neural Networks. In 24th International Require-
ments Engineering Conference Workshops (REW’16). IEEE, Beijing, China, 39–45.

Jonas Winkler and Andreas Vogelsang. 2018. Using Tools to Assist Identification of
Non-requirements in Requirements Specifications–A Controlled Experiment. In In-
ternational Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ’18). Springer, Utrecht, The Netherlands, 57–71.

Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Min-
ing: Practical machine learning tools and techniques. Morgan Kaufmann, Mas-
sachusetts, USA.

Hui Yang, Alistair Willis, Anne De Roeck, and Bashar Nuseibeh. 2010. Automatic
detection of nocuous coordination ambiguities in natural language requirements. In
Proceedings of the 25th IEEE/ACM international conference on Automated Software
Engineering (ASE’10). ACM, Antwerp, Belgium, 53–62.

Zhe Yu, Nicholas A. Kraft, and Tim Menzies. 2018. Finding better active learners for
faster literature reviews. Empirical Software Engineering 99 (2018), 1–26.

Tao Yue, Lionel Briand, and Yvan Labiche. 2011. A systematic review of transfor-
mation approaches between user requirements and analysis models. Requirements
Engineering Journal (RE J) 16, 2 (2011), 75–99.

35

