
00

Oracles for Testing Software Timeliness with Uncertainty

CHUNHUI WANG, University of Luxembourg - Interdisciplinary Centre for Security, Reliability and

Trust, Luxembourg

FABRIZIO PASTORE, University of Luxembourg - Interdisciplinary Centre for Security, Reliability and

Trust, Luxembourg

LIONEL BRIAND, University of Luxembourg - Interdisciplinary Centre for Security, Reliability and Trust,

Luxembourg

Uncertainty in timing properties (e.g., detection time of external events) is a common occurrence in embedded

software systems since these systems interact with complex physical environments.

Such time uncertainty leads to non-determinism. For example, time-triggered operationsmay either generate

different valid outputs across different executions, or experience failures (e.g., results not being generated

in the expected time window) that occur only occasionally over many executions. For these reasons, time

uncertainty makes the generation of effective test oracles for timing requirements a challenging task.

To address the above challenge, we propose STUIOS (Stochastic Testing with Unique Input Output Se-

quences), an approach for the automated generation of stochastic oracles that verify the capability of a software

system to fulfill timing constraints in the presence of time uncertainty. Such stochastic oracles entail the

statistical analysis of repeated test case executions based on test output probabilities predicted by means of

statistical model checking. Results from two industrial case studies in the automotive domain demonstrate

that this approach improves the fault detection effectiveness of tests suites derived from timed automata,

compared to traditional approaches.

CCS Concepts: • Software and its engineering→ Software verification and validation;

Additional Key Words and Phrases: Time Uncertainty, Probabilistic Unique Input Output Sequences, Timing

Specifications, Test Oracles Generation

ACM Reference Format:
Chunhui Wang, Fabrizio Pastore, and Lionel Briand. 2018. Oracles for Testing Software Timeliness with

Uncertainty. ACM Trans. Softw. Eng. Methodol. 0, 0, Article 00 (2018), 30 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
Software timeliness, i.e., the capability to fulfill timing constraints, plays a crucial role in embedded

software systems. Timing constraints are used either to specify the period of system operations, a

typical requirement of real-time systems, or to specify the system response time, a necessity when

an embedded system provides safety critical functionalities.

Although embedded systems are designed to ensure that their operations work within pre-

specified timing constraints, most of the timing specifications provided by software engineers

are characterized by uncertainty [12]. An example of uncertainty is given by timing constraints

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

1049-331X/2018/0-ART00 $15.00

https://doi.org/0000001.0000001

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
Fabrizio PASTORE
Paper accepted for publication on ACM Transactions on Software Engineering and Methodology on September 2018.

00:2 C. Wang et al.

expressed as ranges (e.g., the detection time of external events takes anywhere between 3400 and

5100 milliseconds).

Time uncertainty in software specifications can be due to multiple reasons, including design

choices. A common example of such design choice is the polling of sensors at a certain frequency.

This case is very common in embedded systems because many real-world events can only be

detected by polling the environment in a control loop and, therefore, one cannot precisely determine

when the system will be able to observe and process them. Example cases are the sensing systems

developed by our industrial partner IEE [23], an automotive company located in Luxembourg,

which provides the case study systems considered in this paper. The systems developed by IEE

detect events such as overheating or the presence of hands on the steering wheel of a car. Time

uncertainty may, in turn, lead to non-deterministic system behaviors that make the definition of

test oracles challenging (e.g., determining whether it is acceptable for the system not to detect an

error condition after a certain time delay).

The automated generation of oracles for non-deterministic systems where the source of non-

determinism is time uncertainty has only been partially targeted by existing research. Indeed, most

of the existing work on verifying the timing properties of software systems focuses on schedulability

analysis for real-time systems [14]. These approaches address a different problem than ours, i.e.,

the development of techniques to test or verify that software tasks are able to meet their deadlines.

The few approaches that address the problem of testing software timeliness, in the presence of

non-deterministic behaviors caused by time uncertainty, rely upon feedback-driven model-based

test input generation [12, 19, 25]. These approaches generate test inputs during test case execution,

based on the feedback from system execution. Models of the expected software behavior (e.g.,

timed automata) are used to identify system inputs and to validate system outputs. Unfortunately,

feedback-driven approaches are often inappropriate for testing real-time systems because of the

latency introduced by run-time processing of outputs and generation of test inputs, which comes

in addition to the latency of test drivers and stubs.

An additional limitation of most existing timeliness testing approaches, including feedback-

driven approaches, is that they do not fully address the problems related to time uncertainty. More

specifically, they do not verify if the frequency of appearance of the expected outputs complies

with the specifications, nor do they verify if the observed results can provide statistical guarantees

for the validity of the test outcome. To the best of our knowledge, the only approach that deals

with the effects of time uncertainty [20] focuses on the generation of complete test suites built to

uncover specific types of faults, and cannot be adopted to generate oracles for arbitrary test suites.

In this work we assume that the timing constraints of the system are specified by means of

timed automata since this is one of the most common formalisms adopted for this purpose [38].

Timed automata are a type of extended finite-state machines (EFSM) enabling the specification

of guard conditions on clock variables and thus are adequate to define timing constraints. The

type of uncertainty that we consider in this paper is common in industrial settings and relates

to time-triggered state transitions (i.e., internal transitions that are enabled when an inequality

constraint on clock variables evaluates to true), which are a typical cause of uncertainty [12]. For

example this is the case when the arrival time of events is unknown or the duration of operations

is uncertain.

Traditional approaches that derive test cases from finite state machine (FSM) specifications rely

on Unique Input-Output (UIO) sequences to derive effective test oracles [15, 26]. Unfortunately,

existing approaches for deriving UIO sequences from FSM and EFSM [31] do not work with timed

automata and, more specifically, cannot deal with time-triggered state transitions. Furthermore,

they do not verify if the frequency of appearance of the expected output over multiple executions

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:3

of a same test case complies with the specifications, nor do they verify if the observed results can

give statistical guarantees for the validity of the test outcome.

In this paper we propose Stochastic Testing with Unique Input-Output Sequences (STUIOS), an
approach for the automated generation of effective oracles for timeliness test cases derived from

timed automata, in the presence of time uncertainty. As main components of the approach, we

introduce the concepts of stochastic test cases and probabilistic UIO sequences (PUIO sequences).

A PUIO sequence is a unique input-output sequence with an associated probability of observing

the given output sequence in response to the inputs. The underlying idea is that PUIO sequences

enable fault detection by determining if the output sequences observed through testing are unlikely,

based on multiple executions of the same test cases. Stochastic test cases extend the same idea to

the entire test case. A stochastic test case specifies the expected probability of observing a specific

output sequence given a test input sequence and, in addition, includes a PUIO sequence that is

used to check if the test execution has brought the system to the expected state.

STUIOS receives as input the timing specifications of the system expressed as a network of

timed automata, and a set of test cases derived from these specifications, either manually by the

software engineers or automatically. STUIOS generates stochastic test cases that include the input-
output sequences from the test cases provided by software engineers, and automatically derives

corresponding expected probabilities of observing the test output and PUIO sequences.

One significant contribution and innovation is that STUIOS combines the principles of UIO tech-

niques and statistical model checking to address the challenges stated above. STUIOS automatically

identifies UIO sequences from timed automata by relying on the simulation and verification capa-

bilities of the UPPAAL model checker. Furthermore, it derives probabilities for both the identified

UIO sequences and the provided test cases by exploiting the features of statistical model checking

software (the statistical extension of UPPAAL). Finally, STUIOS identifies failures by repeatedly

executing test cases with the associated PUIO sequences and making use of statistical hypothesis

testing to determine the test verdicts (pass or fail).

The paper proceeds as follows. Section 2 introduces the context and motivations of our work.

Section 3 provides background information about the modeling and testing of timing specifications.

Section 4 discusses the issues to expect when generating oracles from timed automata with uncer-

tainty. Section 5 presents the STUIOS approach and its steps. Section 6 discusses the effectiveness

of the approach when time uncertainty is not explicitly modeled in timed automata. Section 7

reports on the empirical results obtained from two industrial case studies in the automotive domain.

Section 8 discusses related work. Section 9 concludes the paper.

2 MOTIVATION AND CONTEXT
The context of our research is that of embedded safety-critical systems (e.g., automotive controllers).

An example is Hands Off Detector (HOD [22]), an embedded system developed by our industrial

partner IEE, which we use as running example in the paper. HOD is an embedded system that

detects if the car driver has both hands on the steering wheel; this device is used to enable and

disable automatic braking in cars with driver-assist features to ensure safety (a car should not

automatically brake if the driver does not have both his hands on the steering wheel). Another

example case is BodySenseTM [21], the other case study system used in our empirical evaluation,

which is a seat occupancy detection system; BodySenseTM is described in Section 7.

Embedded systems are typically implemented by means of a main control loop triggered with a

constant frequency (e.g., every 1700 ms in the case of HOD). At the beginning of the control loop,

the system executes the main system task, which performs all the safety critical operations of the

system (e.g., error detection). Other functionalities (e.g., message handling) are implemented by

lower priority tasks executed after the end of the main system task. The beginning of the main

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:4 C. Wang et al.

task is guaranteed to be triggered with a constant frequency by the underlying real-time operating

system.

Embedded safety-critical systems are typically required to identify error conditions in a timely

manner. Error conditions may alter the proper functioning of the system and, for this reason,

companies developing embedded systems put particular attention to ensure that the system complies

with the requirements specifications regarding the detection of error conditions (including detection

time). As running example for this paper, we use timing properties concerning the qualification

(i.e., confirmation) of temperature errors (e.g, overheating) in HOD. For example, the accuracy

of HOD might be altered by overheating caused by a malfunctioning steering wheel heater. In

the case of HOD, temperature error conditions are detected by polling data from a temperature

sensor. More precisely, at every execution of the main task, HOD processes the value recorded by

the temperature sensor to detect the presence of high or low temperature. A temperature error is

qualified if it remains present in the system for at least two executions of the main control loop

(i.e., 3400 ms), and it is similarly disqualified if it remains absent for at least two executions of the

main control loop.

What complicates the testing of timing requirements in embedded systems is time uncertainty,

which introduces non-deterministic software behavior. Time uncertainty may depend on multiple

factors including polling operations, delays on the communication bus and multithreading. In the

case of HOD, time uncertainty is due to the fact that polling operations are repeated according

to a specified frequency (i.e., the duration of the main control loop) while error conditions (e.g.,

temperature errors in HOD) occur at unpredictable times during the loop execution. The effect of

this uncertainty in HOD is that the time required to qualify temperature errors can be specified only

in terms of a time range. More precisely, the timing requirements for HOD indicate that temperature

errors should be qualified between 3400 ms and 5100 ms after they arise in the system while, ideally,

one would like errors to be qualified in two cycles (i.e., 3400 ms after they arise).

Figure 1 shows an example of non-deterministic outputs during the execution of a test case that

simulates overheating. Case 1 in Figure 1 shows that a temperature error is qualified in 3400 ms

if the error condition (e.g., overheating) appears when the system executes the instructions that

detect the error condition. Case 2 in Figure 1 shows that when the error condition appears just

after error detection instructions, then the temperature error is only detected after 5100 ms. This

happens because the error will be detected only in the next execution of the main control loop (i.e.,

after 1700 ms) and then it will be qualified after two executions of the main control loop (i.e., after

3400 ms). Case 3 in Figure 1, instead, shows that if the error condition appears 850 ms after error

detection (i.e., in the middle point between two consecutive error detection operations), then a

temperature error will be qualified in 4250 ms. This happens because the error will be detected

only in the next execution of the main control loop (i.e, after 850 ms) and then it will be qualified

after two executions of the main control loop.

In the presence of time uncertainty, software engineers need automated test oracles capable of

determining if the non-deterministic outputs produced by test case executions are the result of time

uncertainty or rather due to other factors such as software and hardware faults. For example, in the

case of a test case that simulates overheating (Figure 1), engineers are interested in automatically

determining if the non-deterministic outputs observed during multiple executions of a same test

case follow the expected time distribution. Since time uncertainty depends on polling operations

repeated with a constant frequency, the uncertainty is characterized by a uniform distribution (i.e.,

in Figure 1, Case 1 should occur as frequently as Case 2); if the observed HOD outputs are not

uniformly distributed then the system does not behave as expected. In the context of embedded

systems, variations in the frequency of the expected outputs might be triggered, for example, by

configuration errors (e.g., number of execution cycles required to qualify a temperature error in

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:5

3400 ms

5100 ms

Legend:

error condition present (e.g., test case input simulating overheating) error qualifiedexecution of error detection code

Case 1:

Case 2:

Start of the main control loop (every 1700 ms)

t t+1700 t+3400 t+5100System start t+6800

the error condition appears
just before error detection

the error condition appears
just after error detection

4250 ms

Case 3:

the error condition appears
850 ms after error detection

Fig. 1. Effects of cyclic sampling on time uncertainty

HOD), unstable clocks, bus faults, or programming errors. The testing process should be capable of

detecting these problems to ensure safety.

In this paper, we address the problem of generating test oracles that are robust to time uncertainty.

The proposed solution works in contexts where timing requirements (including time uncertainty)

are modelled by means of timed automata.

3 BACKGROUND
This section provides background information about the modeling of timing specifications with

timed automata (TAs) and the modeling of test cases derived from such TAs.

3.1 Modelling of Timing Specifications
The timing properties of a system are typically modelled using networks of TAs or UML statecharts.

In this paper, we make use of the former, and adopt the formalization from UPPAAL [8].

A timed automaton (TA) is a tuple (L, l0,C,A,V ,E, I), where L is a set of locations, l0 ∈ L is

the initial location, C is a set of clocks, A is a set of actions, V is a set of state variables, E is a set

of edges between locations, I is a set of invariants assigned to locations. Each edge may have an

action, a guard and a set of updates. Updates are expressed in form of assignments that can reset

clocks or state variables. Each location might be associated with a state invariant that constrains

clocks or state variables.

With a network of TAs, the state of the system is captured by the values of state variables and

the set of active locations across all the TAs.

Actions are used to synchronize different TAs. Each action is expressed with the notation event!
or event?. The notation event! indicates that the event is sent when the edge is fired, while the

notation event? indicates that the edge is fired only if this event has been received from another

automaton.

Figure 2 shows a simplified TA for HOD. The TA in Figure 2 captures the timing properties

concerning the qualification (i.e., confirmation) of temperature errors (e.g, overheating). In the TA

in Figure 2, the variable x is a clock variable, while isQualified and qc are two state variables.

The former indicates if a temperature error is qualified while the latter counts the number of times

temperature errors have qualified so far.

In Figure 2, the edge that connects locations Absent and Present can be fired only upon the

reception of the event tempOutOfRange, which indicates that the temperature is out of the valid

range (e.g., because of overheating). The event tempOutOfRange is an abstraction used to capture

the fact that an error condition is present in the system.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:6 C. Wang et al.

AbsentQualified

x < 5100

x >= 3400

location name

Legend:

invariant

guard condition

x=0,qc++ updatetempInRange?

tempInRange? action

tempInRange? tempOutOfRange?

tempOutOfRange?

tempOutOfRange?

tempOutOfRange?

tempInRange?

x < 5100

 x=0
tempInRange?

isQualified=true,qc++isQualified=false

 x=0
Absent Present

PresentQualifiedAbsentQualified

x >= 3400x >= 3400

x < 5100

Fig. 2. Automaton that captures the timing requirements for the qualification of temperature errors in HOD.

The location Present has an invariant that indicates that the clock variable xmust be below 5100

ms when the location is active. The guard condition on the edge between the location Present and
PresentQualified indicates that this edge cannot be fired if the clock x is below 3400. In effect,

the edge between locations Present and PresentQualified can be fired anytime when x has a
value between 3400 and 5100. In other words, this edge models a time-triggered state transition
whose time range is captured by the location invariant and the guard condition on the edge.

TAs are usually modeled by including time ranges to allow for time uncertainty. As mentioned

before, in the case of HOD, time uncertainty is driven by the polling of the environment for data.

When time uncertainty depends on polling operations repeated with a constant frequency then

the uncertainty is characterized by a uniform distribution. This is the case of HOD, where polling
operations are guaranteed to be performed every 1700 ms since they are executed within the main

task (see Section 2). Uncertainty regarding functionalities that are not executed with a constant

frequency might not be characterized by a uniform distribution. For simplicity, though in the

rest of the paper we focus on the former case, the proposed approach can be applied to systems

characterized by different types of distributions, which can be modelled in TAs as indicated in

Section 5.2.

3.2 Modelling of Test Cases
In the presence of software specifications elicited by using TAs or FSMs, software engineers derive

test cases according to criteria whose objective is to ensure the compliance of the software with

its specifications. A commonly adopted criterion, for example, is edge coverage, which consists in

generating test cases so that all the edges of the timed automata are covered, at least once, during

test execution.

We model test cases derived from TAs as sequences of input / output pairs. Each pair indicates

the output expected to be generated by the system after a given input. In embedded systems, inputs

and outputs typically correspond to system events (e.g., messages and interrupts). However, since

TAs include state variables, the expected output indicated in a test case also includes the expected

value of observable state variables. In addition, since edges in TAs might be triggered after specific

time delays, inputs might be expressed as wait operations.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:7

<tempOutOfRange>/ (isQualified == false, qc == 0)
<wait for 5100 ms> / (isQualified == true , qc == 1)

Fig. 3. A Test Case that checks if TemperatureErrors are qualified on time. We use the symbol ’/’ to separate
inputs from the expected outputs.

An example test case is shown in Figure 3. This test case is derived from the TA in Figure 2 and

checks if temperature errors are qualified on time. This test case covers the edges of the shortest

path from location Absent to location PresentQualified, and checks if state variables and outputs
contain the expected result after each input or time delay. The first line of the test case indicates that

the event tempOutOfRange has no visible effect on the system because this event simply indicates

that an error condition is present (i.e, the temperature is out of the valid range) but we cannot

know in advance when the system will detect it. As a consequence, the observable state variables

isQualified and qc should remain set to false and zero, respectively. The second line of the test
case indicates that after 5100 ms, the values of these two variables should be set to true and one,
respectively. This line of the test case checks if the system is capable of qualifying an error in at

most 5100 ms (which corresponds to the maximum allowed error qualification time).

3.3 Testing with UIO Sequences
The state of the actual software system that implements the timing specifications expressed in TAs

is partially observable. More specifically, not all the state variables used to implement the actual

system can be inspected during testing. Unobservable variables capture state information that in

the TAs is modelled thanks to the use of locations. This limited observability makes oracles that

simply check if the expected output sequence has been generated by test inputs ineffective. More

precisely, these oracles may not detect transition faults [29, 39], which manifest themselves when

the active location of a TA following a state transition is incorrect but the system updates its state

variables and generates outputs as expected.

In the case of HOD, a transition fault may keep the system in location Present for more than

the allowed time (5100 ms). In the presence of this transition fault, HOD would behave as if the

edge between locations Present and PresentQualified was turned into a self-loop that begins

and ends in location Present. This fault cannot be detected with the test case in Figure 3 which

simply checks the values of the observable state variables isQualified and qc after waiting for
5100 ms, since these two variables are updated as expected.

When specifications are given in the form of FSMs, common approaches for testing in the

presence of partial observability are based on the identification of Unique Input-Output (UIO)

sequences [15, 26]. A UIO sequence is composed of a sequence of inputs and corresponding outputs

generated by the system. It provides the guarantee that the expected output sequence is observed

only when the system is in a specific known state. An oracle, derived from a UIO sequence, is

executed after a test case by checking if the system is in the expected state. To do so, inputs specified

by the UIO sequence are sent and the system response is compared to the expected output sequence

that contains the values assigned to the observable state variables. We model UIO sequences in the

same way as test cases, i.e., by using sequences of IO pairs that include time delays and observable

state variables. Details about the generation of UIO sequences for TAs are provided in Section 4.

4 TESTING TIMED AUTOMATAWITH TIME UNCERTAINTY: OPEN ISSUES
We now discuss the challenges to consider in order to derive reliable oracles from TAs in presence

of time uncertainty.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:8 C. Wang et al.

<wait for 5100ms> / (isQualified == true, qc == 1)
<tempInRange> / (isQualified == true, qc == 1)
<wait for 5100ms> / (isQualified == false, qc == 1)

Fig. 4. UIO sequence derived for the test case in Figure 3.

Table 1. Output generated by the UIO sequence in Figure 4 when the location reached after the execution
of the test case in Figure 3 is different than PresentQualified. Bold red values highlight the differences
with the expected output; the symbol ’-’ is used when a previous input in the sequence leads to an output
different than the one expected by the UIO (i.e., to detect a transition fault).

Input Absent Present AbsentQualified
<wait for 5100ms> isQualified == true, qc == 1 isQualified == true, qc == 2 isQualified == false, qc == 1
<tempInRange> isQualified == true, qc == 1 - -
<wait for 5100ms> isQualified == true, qc == 1 - -

4.1 Generation of UIO sequences from TAs
Since TAs include state variables, the output generated by a TA while processing a certain input

sequence depends on both the active location and on the values assigned to state variables. UIO

sequences derived from TAs are thus context dependent, i.e., they characterize a state of the

system, not just a location, and their output depends on the test inputs already processed [30].

This characteristic is shared with UIO sequences derived from FSMs including state variables (e.g.,

EFSM). As a result, we generate a different UIO sequence for each test case of the test suite.

Figure 4 shows a UIO sequence derived for the test case of Figure 3 that checks if the system

has reached location PresentQualified after test execution. The first line of the UIO sequence

indicates to wait for 5100 ms, after which the system should keep location PresentQualified
active (this cannot be observed by a tester), and keep the variables isQualified and qc set to true
and one, respectively. The second line of the UIO sequence indicates to remove the error condition

from the system (e.g., by resetting the temperature of the test environment within the valid range).

Since, after this operation, the system should not make any change to any observable state variable,

the values of the variables isQualified and qc are expected to remain set to true and one. The
third line of the UIO sequence indicates to wait for 5100 ms, after which the system should make

location Absent active (this cannot be observed by a tester), set the variables isQualified to

false while variable qc should remain set to one.
The UIO sequence in Figure 4 ensures that the execution of the test case terminates in location

PresentQualified. To clarify this better, we show in Table 1 the output generated by the system

when the inputs of the UIO sequence are processed in locations different than PresentQualified.
The input on the first line of the UIO sequence in Figure 4 leads to an output different than the

expected one when the active location is Present or AbsentQualified (see first row of Table 1).

The input on the third line of the UIO sequence, instead, helps determine if the test erroneously

terminated in location Absent (the generated output is different from the expected one, as shown

in the last row of Table 1).

Unfortunately, there are no approaches focused on deriving UIO sequences from TAs charac-

terised by time uncertainty. In the case of TAs without uncertainty (e.g., TAs that do not include

any time-triggered transition), existing approaches for generating UIO sequences from EFSMs

could be applied because of the similarity between EFSM and TA formalisms. For example, the

approach proposed by Robinson et al. [31] requires deterministic EFSMs with transitions that are

always triggered by some input event.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:9

<tempOutOfRange>/ (isQualified == false, qc == 0)
<wait for 4250 ms> / (isQualified == true , qc == 1)
<tempInRange>/ (isQualified == true , qc == 1)
<wait for 5100 ms> / (isQualified == false, qc == 1)

Fig. 5. Test case that verifies the qualification of a temperature error that appears for a short time. The bold
line matches the UIO sequence that checks if the test case brings the system to location AbsentQualified.

4.2 Soundness and effectiveness of test oracles
One of the effects of time uncertainty is non-determinism, which might lead to ineffective and

unsound test oracles.

Test oracles are ineffective when they are not capable of discovering the presence of a failure.

Consider for example a faulty implementation of HOD that may take up to 6000 ms to qualify an

error. In this case, the test case and the UIO sequence in Figures 3 and 4 will be able to detect the

fault only when HOD takes more than 5100 ms to qualify an error during test execution. If the fault

manifests itself in a non-deterministic way, a single test case execution may not be able to detect its

presence. To address this problem, when testing timing requirements, multiple test case executions

might thus be needed, and test oracles should therefore provide a verdict (i.e., pass or fail) only

when there are statistical guarantees about the accuracy of results.

Software testing is unsound if test oracles can flag valid software as faulty. In the presence of

non-determinism caused by time uncertainty, a same test input sequence may lead to multiple

valid output sequences and bring the system to multiple valid locations. For example, in the case

of HOD, this happens with the test case shown in Figure 5, which checks if the system behaves

properly when a temperature error appears just for a short time. More precisely, this test case

checks if the system can qualify a temperature error that remains active just for 4250 ms. If HOD
does not qualify the temperature error between 3400 ms and 4250 ms, the test case in Figure 5 will

fail when checking the condition isQualified==true, qc==1. A single failure of this test case

does not indicate the presence of a fault in HOD since the specifications indicate that HOD can

take more than 4250 ms to qualify an error.

To correctly evaluate test results, we thus need to know the expected probability for the system

to respond with a specific output sequence. In the presence of time uncertainty, an implementation

is faulty if and only if, over multiple executions, the various possible outputs are not observed with

their expected frequency. In the context of embedded systems, slight variations in the frequency

of the expected outputs should be detected (see Section 2). This observation shows the need for

oracles to take into consideration the probability of observing a given output to determine if a test

case passes or fails. We will refer to such test cases as stochastic test cases in this work.

To compute the expected frequency of a test case output, additional information about the

distribution of time-triggered transitions might be needed. In the case of HOD, for example, time

triggered transitions are fired following a uniform distribution because temperature events can

happen at any time during the polling loop execution, with equal probability. For this reason we

expect that the test case in Figure 5 should pass in almost 50% of the executions since 4250 is the

middle point between 3400 and 5100.

4.3 Scalability of testing
Verifying that the system generates all possible, valid outputs and has reached all the expected

states after processing the same test inputs, might easily lead to scalability issues. This may be the

case if each test case needs to be executed multiple times, until every possible location is reached,

including the least probable ones.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:10 C. Wang et al.

To deal with this problem, and thus balance testing cost and test effectiveness, we assume that

engineers are interested in verifying if the system has been able to reach a single specific location,
with the expected frequency, that we refer to as desired final test location, which is the location that

one would ideally like to reach all the time but cannot because of non-determinism. Nevertheless,

it is the location that is reached with the highest probability, according to the specifications.

In the case of the test case in Figure 5, for example, location AbsentQualified is the location
that is most likely reached based on the sequence of outputs specified by the test case. Location

AbsentQualified is thus the location to be verified by means of an UIO sequence (in bold in

Figure 5).

5 THE STUIOS APPROACH
5.1 An Overview
Figure 6 shows an overview of the STUIOS approach. STUIOS works in two phases: (1) it generates
stochastic test cases by extending the test cases provided by software engineers; (2) it executes the
stochastic test cases and attempts to determine whether they pass or fail.

STUIOS receives as input a test suite, which we assume to be derived from specifications elicited

as a network of TAs. Any test criterion can be used to generate the test suite. We simply expect

that each test case of the test suite is defined as an IO sequence (i.e., a sequence of pairs <input> /
<expected output>), which matches a feasible path of the automata, as described in Section 3.2. An

example test case is shown in Figure 3. For each test case, we also expect that software engineers

specify the desired final test location.
STUIOS wraps the given test cases into stochastic test cases that handle time uncertainty. We

define a stochastic test case as a test case that includes an IO sequence that covers a specific test

scenario, followed by a probabilistic UIO sequence (PUIO sequence) that checks if the desired final

test location has been reached. A stochastic test case specifies both the probability of observing

the test scenario output and the probability of observing the output of the PUIO sequence. The

former is necessary to deal with the effects of time uncertainty on the test case execution. Indeed,

in the presence of non-determinism caused by time uncertainty, a same input sequence may lead

to multiple, valid, output sequences. The probability of observing the output of the PUIO sequence

addresses the effects of time uncertainty on the output generated by the UIO sequence.

To generate stochastic test cases, STUIOS performs four steps (shown in Figure 6). In Step 1.1,
STUIOS identifies a UIO sequence for each desired final test location of each test case provided

by software engineers. In Step 1.2, STUIOS builds corresponding PUIO sequences, which means

that it calculates, for each UIO sequence, the probability of observing its output when the UIO

sequence is executed after the corresponding test case. In Step 1.3, STUIOS calculates the probability
of observing the output expected for each test case. Steps 1.1 to 1.3 rely on the simulation and

verification capabilities of the UPPAAL model checker [8]. We use confidence intervals to capture

the probability of observing the test case output and the UIO output since this is how UPPAAL

calculates them (see Section 5.2 for details). For example, the probability of observing the output of

the test case T1 in Figure 6 is between 0.46 and 0.56 with 95% confidence level.

In Step 1.4, STUIOS builds stochastic test cases. Each generated test case specifies the probability

of observing the output sequence, and includes the PUIO sequence that checks if the desired final

test location has been reached.

In the second phase (Execute Stochastic Test Cases in Figure 6), STUIOS executes each stochastic

test case against the software implementation multiple times (until we have sufficient statistical

guarantees about the test outcome, as discussed below) and collects test results. STUIOS relies upon
statistical hypothesis testing to decide when an accurate test result can be obtained from multiple

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:11

executions of the same test case. Test execution is stopped when we have sufficient statistical

guarantees that the test case either passes or fails. More specifically, a test case fails if its output or

the PUIO output is not as frequent as expected, considering a confidence interval, or otherwise

passes.

After a brief overview of the capabilities of UPPAAL exploited by STUIOS, the following sections
provide additional details about the activities performed by STUIOS.

5.2 Probability Estimation with UPPAAL
To generate PUIO sequences (Steps 1.1 and 1.2 in Figure 6) and calculate test case probabilities

(Steps 1.3), STUIOS relies on UPPAAL [8], which is a model checker for networks of TAs that

provides model checking and statistical model checking capabilities. More specifically, STUIOS
makes use of the verification of reachability properties, the simulation of the model execution,

and the estimation of the true probability of a model property (i.e., the probability that a property

holds).

We briefly describe the probability estimation feature of UPPAAL as some readers may not be

familiar with it. UPPAAL can estimate the probability that a given property of the system holds

within a certain time frame. More precisely, UPPAAL returns a confidence interval; for example

UPPAAL can estimate that the probability that a specific location of a network of TAs be reached

in 4250 clock ticks is between 0.46 and 0.56.

A confidence interval indicates that the estimated parameter (e.g., the frequency of reaching

a given location) has a probability pc of lying in it (pc is known as the confidence level). We used

pc = 95% in our experiments. To estimate such intervals, UPPAAL relies upon an algorithm that

resembles Monte-Carlo simulation [11]. More precisely, given a time frame specified by the end-user,

UPPAAL simulates the triggering of the TA transitions and then determines if the property holds

(e.g., by checking that a location has been reached within the given time frame). UPPAAL performs

multiple simulation runs sequentially and, after each run, computes the confidence interval using the

Clopper-Pearson ‘exact’ method [10]. The simulation terminates when the interval reaches a length

specified by the engineer (in our experiments, we used 0.1 by following common practice [11]).

UPPAAL assumes that the values of the clock variables that control time triggered transitions

follow a uniform distribution within the range specified in the TA (e.g., 3400 and 5100 in the case

of location Present in Figure 2). This assumption holds for HOD, and in general for systems with

similar characteristics, i.e., embedded controllers that poll the environment for inputs, where we

have no information about the arrival time of inputs. However, TAs produced with UPPAAL can be

modeled in such a way that time triggered transitions might follow any distribution; this is achieved

by defining custom functions to control the delay in transitioning to locations with invariants

including clock variables (see [11] for more details).

5.3 Generating Stochastic Test Cases
We now describe the steps followed by STUIOS to generate stochastic test cases (Steps 1.1, 1.2, 1.3,

and 1.4 in Figure 6). Figure 7 shows these activities in an algorithmic form.

5.3.1 Identify UIO Sequences (Step 1.1). To generate UIO sequences, STUIOS performs three

activities: (1) it determines the context (active locations and values of state variables) of each UIO

sequence, (2) it identifies all the potential UIO sequences for a given final test execution state, (3) it

identifies a valid UIO sequence among these potential UIO sequences (i.e., it ensures that the UIO

sequence generates a unique output to detect transition faults).

Activity 1 of Step 1.1-Determining the context of a UIO sequence. UIO sequences for TAs are context

dependent (Section 4.1). Since STUIOS uses UIO sequences to determine if the execution of a test

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:12 C. Wang et al.

case has brought the system into a given location, the context of a UIO sequence consists of the

state of the system after the execution of the corresponding test case (hereafter final test state). In

TAs, the state of the system is represented by both the active locations and the values of the state

variables. Though the final test state can be deduced by simulating test case executions against the

TA network, STUIOS relies on reachability analysis to speed up the process.

Test
Generation

Test Cases (I/O sequences)

1. Generate Stochastic Test Cases

1.2 Calculate PUIO probabilities with UPPAAL

P
U1

=[0.47,0.57] P
U3

=[0.90,1.00]P
U2

=[0.81,0.91]

Timing Specifications

Run1: Expected Test Output
Run1: Expected PUIO Output
Run2: Unexpected Test Output
..

p(TEST)=[0.49,0.58]
p(PUIO)=[0.49,0.58]

^

PASS

ST3

1.1 Identify UIO Sequences

<tempOutOfRange> / (iQ=f qc=0)
<wait 4250> / (iQ=t qc=1)
<tempInRange> / (iQ=t qc=1)

1.4 Build Stochastic Test Cases

1.3 Calculate test output probabilities with UPPAAL

^

p(TEST)=[0.41,0.51]
p(PUIO)=[0.41,0.51]
FAIL

^

^
p(TEST)=[0.89,0.99]
p(PUIO)=[0.75,0.85]
FAIL

^

2. Execute Stochastic Test Cases

ST2
ST1

p
U

probability of observing the UIO output
 estimated by UPPAAL.

p
O

probability of observing the test case
 output estimated by UPPAAL.

LEGEND
p(TEST/PUIO) probability estimated
 based on test case executions.

^

^

<tempOutOfRange> / (iQ=f qc=0)
<wait 5100> / (iQ = t, qc = 1)
<tempInRange> / (iQ = t, qc = 1)
<wait 5100> / (iQ = f, qc = 1)

<wait 5100> / (iQ=t, qc=1)

<tempOutOfRange> / (iQ=f qc=0)
<wait 4250> / (iQ=t qc=1)

<wait 5100> / (iQ = t, qc = 1)
<tempInRange> / (iQ = t, qc = 1)
<wait 5100> / (iQ = f, qc = 1)

<wait 5100> / (iQ = t, qc = 1)
<tempOutOfRange> / (iQ = f, qc = 1)
<wait 5100> / (iQ = t, qc = 2)

T1

T2

T3

UIO for T1 UIO for T2 UIO for T3

probability of T1’s UIO UIO probability of T2’s UIO UIO probability of T3’s UIO

P
O1

=[0.46,0.56] P
O3

=[0.90,1.00]P
O2

=[0.80,0.90]

probability of T1’s output UIO probability of T2’s output UIO probability of T3’s output

<tempOutOfRange> / (iQ=f qc=0)
<wait 4250> / (iQ=t qc=1)
<tempInRange> / (iQ=t qc=1)

<tempOutOfRange> / (iQ=f qc=0)
<wait 5100> / (iQ = t, qc = 1)
<tempInRange> / (iQ = t, qc = 1)
<wait 5100> / (iQ = f, qc = 1)

<tempOutOfRange> / (iQ=f qc=0)
<wait 4250> / (iQ=t qc=1)

ST1 ST2 ST3

<wait 5100> / (iQ=t, qc=1)
<wait 5100> / (iQ = t, qc = 1)
<tempInRange> / (iQ = t, qc = 1)
<wait 5100> / (iQ = f, qc = 1) <wait 5100> / (iQ = t, qc = 1)

<tempOutOfRange> / (iQ = f, qc = 1)
<wait 5100> / (iQ = t, qc = 2)P

O1
= [0.47,0.57]

P
U1

= [0.46,0.56] P
U2

= [0.80,0.90]

P
O2

= [0.81,0.91]

P
O3

= [0.90,1.00]

P
U3

= [0.90,1.00]

Fig. 6. An overview of the STUIOS approach. The values in the figure are based on the running example
presented in the paper.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:13

Require: TS , the test suite
Require: TAS , the timing specifications (network of TA)

Require: DTL, the desired final test location

Require: L, the maximum length of a UIO sequence

Ensure: ST S , a stochastic test suite derived from TS

1: function main(TS,TAS,DTL,L)

2: for testCase in TS do
3: STS ← STS ∪ buildStochasticTest (testCase)
4: end for
5: return STS
6: end function

7: function buildStochasticTest(testCase)
8: //1.1 Identify an UIO
9: TAtest ← generateTestAutomaton(testCase)
10: PUIO, TAUIO ← identifyUIO(TAtest)
11: //1.2 Calculate PUIO probability if a PUIO was found
12: if PUIO , null then
13: TAtestUIO ← join(TAtest, TAUIO)
14: maxTime ← sumAllTheDelaysIn(TAtestUIO)
15: pPUIO ← probabilityAnalysis(TAS,TAtestUIO, maxTime)
16: end if
17: //1.3 Calculate test output probability
18: maxTime ← sumAllTheDelaysIn(TAtest)
19: ptest ← probabilityAnalysis(TAS,TAtest, maxTime)
20: //1.4 Return stochastic test case
21: return < testCase, ptest, PUIO, pPUIO >
22: end function

23: function identifyUIO(TAtest)
24: //1.1.1 Determine the context of the UIO
25: trace ← reachability (TAS,TAtest, DTL)
26: assignments, activeLocations ← extractContext (trace)
27: pathLen← 1

28: repeat
29: //1.1.2 Identify all the potential UIO sequences
30: potentialUIOS ← findPUIOS(TAS, assignments,
31: activeLocations, pathLen)
32: for PUIO in potentialUIOS do
33: //1.1.3 Determine if the potential UIO is valid
34: TAUIO ← generateTestAutomaton(PUIO)
35: if isValidUIO(activeLocations,TAUIO, assignments)
36: return PUIO, TAUIO
37: end for
38: pathLen← pathLen + 1
39: until pathLen < L
40: return null, null
41: end function

42: function isValidUIO(activeLocations, TAUIO, assignments)
43: locations ← activeLocations \ DTL
44: TADTL ← retrieveAutomatonContaining(DTL)
45: otherLocations ← allLocationsIn(TADTL) \ DTL
46: for oL in otherLocations do
47: activeLocations ← locations ∪ oL
48: trace ← reachability (TAS,TAUIO, activeLocations,
49: assignments)
50: if trace , null
51: //final state of TAUIO is reachable from activeLocations
52: return FALSE
53: end for
54: return TRUE
55: end function

Function reachability performs reachability analysis with UPPAAL by pro-

cessing the timing specifications and the test automaton. The additional

parameters appearing in line 48 are used to set the initial state of the sys-

tem (otherwise the initial state is specified in the software specifications).

Function probabilityAnalysis returns the probability of reaching the final

state of the given test automaton in the provided time bound.

Fig. 7. The algorithm to generate stochastic test cases.

STUIOS first translates the IO sequence into

a sequential timed automaton (hereafter test

automaton, see Line 9 in Figure 7). In the test

automaton, each edge either sends a test input

or checks if the output corresponds to expecta-

tions. If the output does not match expectations,

an error location is reached, otherwise the com-

putation continues. Figure 8 shows a test au-

tomaton derived from the test case in Figure 3.

The edge between locations L1 and L2 captures
the sending of the event tempOutOfRange, the
edge between locations L2 and L3 simulates a

delay of 5100 ms, while the other edge checks

for the expected values of observable variables,

and activates the location Error in case the

values are not the expected ones.

STUIOS then exploits the reachability anal-

ysis feature of UPPAAL to identify a trace that

shows the outputs of the test case execution

(Line 25 in Figure 7). This is done thanks to a

reachability formula that specifies that the de-

sired final test location (PresentQualified in

Figure 2) should be reached once the test case

execution is complete (i.e., we have reached

TestCompleted in Figure 8).

The trace generated by UPPAAL shows the

value of all the state variables and the list of

active locations after the execution of the test

case, such information being extracted by func-

tion extractContext in Figure 7, Line 26.

Activity 2 of Step 1.1-Identifying all the po-
tential UIO sequences. To identify all the poten-

tial UIO sequences of a specific length, STUIOS
explores all the feasible paths of the timed au-

tomata by taking advantage of the UPPAAL

simulator. To guarantee termination, the ex-

ploration is performed up to a path length L

provided by the software engineer.

The exploration is performed in a breadth-

first manner starting from the final test state

and is implemented by function findPUIOS in-
voked in Line 30 in Figure 7. The paths tra-

versed during the visit are potential UIO sequences since they capture the output sequence expected

following additional inputs being sent to the system after test case execution, but do not give any

guarantee about uniqueness.

To determine the maximum length L of UIO sequences, engineers can rely on the average UIO

length reported in related work [15]. For example, considering that the average length for models

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:14 C. Wang et al.

L1 L2 L3 TestCompleted te.isQualified==true && te.qc == 1

 ! (te.isQualified==true && te.qc == 1)

 x == 5100 tempOutOfRange!

x < 5100

Error

Fig. 8. Test Automaton derived from the test case in Figure 3.

with at most 20 locations is reported to be three [15], and that every TA for HOD includes less

than 20 locations, we assumed a maximum length L of 10 to increase our chances to discover all

required UIO sequences.

The process for finding potential UIO sequences starts with a path length equal to one (Line 27 in
Figure 7) and then the process iterates by incrementing the path length by one (Line 38) if none of

the recorded sequences is recognized as a valid UIO sequence, as explained in the following section.

Activity 3 of Step 1.1-Identification of valid UIO sequences. A valid UIO sequence guarantees that

the expected output sequence is observed if and only if the test case has terminated in the desired

final test location.

STUIOS identifies a valid UIO sequence by iteratively processing all the potential UIO sequences

to find a potential UIO sequence whose inputs never lead to the expected output sequence when

the active location is different from the desired final test location.

First STUIOS translates each potential UIO sequence into a sequential automaton (hereafter UIO

automaton) by following the same process adopted to derive test automata (Line 34 in Figure 7).

Then STUIOS relies on the reachability analysis feature of UPPAAL to determine if the UIO

sequence can generate the expected output even when the test case terminates in a location different

than the desired final test location. This is done by function isValidUIO, used in Line 35, which

starts reachability analysis from the same active locations and variable values as those of the test

termination state, except for the desired final test location. STUIOS iterates the process multiple

times so that all the locations other than the final test location are considered (see lines 46 to 53).

STUIOS identifies a UIO sequence when the final location of the test automaton is never reached

(Line 54). STUIOS repeats the process for all the potential UIO sequences until a valid UIO sequence

is found (see the return instruction in Line 36). Although the proposed algorithm may process a

vast number of potentially long UIO sequences, which may affect the scalability of the approach, in

practice, STUIOS scales well since UIO sequences are usually short [15] and thus the identification

of UIO sequences usually terminates after a few iterations.

5.3.2 Building PUIO Sequences (Step 1.2). In the next step (Step 1.2 in Figure 6), STUIOS associates
to each UIO sequence a confidence interval that captures the probability that the system responds

with the expected output of the UIO sequence if the desired final test location was reached (Lines 14

to 15 in Figure 7). As discussed earlier, to calculate this probability, STUIOS uses the probability
estimation feature of UPPAAL.

To compute the probability of a UIO sequence, STUIOS first builds a test automaton that joins

the sequence of inputs produced by the test case and by the UIO sequence (Line 13) and then

estimates the probability of reaching the final location of the test automaton (Line 15). The time

bound considered to compute the probability should match the test case execution time. In our

context this is given by the sum of all the delays appearing in the combined automaton, i.e., variable

maxTime in Line 14.

5.3.3 Identifying Test Case Probabilities (Step 1.3). STUIOS computes the probability of observing

the output expected by the test case (Step 1.3 in Figure 6) by following the same approach described

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:15

(isQualified == false, qc == 0)
(isQualified == true, qc == 0)

Fig. 9. Portion of a faulty output sequence generated after the execution of the test case in Figure 5.

in Section 5.3.2 (i.e., by computing the probability of reaching the final location of the test automaton,

which does not include the PUIO sequence, see Lines 18 to 19 in Figure 7).

5.3.4 Building Stochastic Test Cases (Step 1.4). A stochastic test case is then built (Step 1.4 in

Figure 6) using the PUIO sequences and the probability of observing the expected test output

(Line 21).

5.4 Test Execution
STUIOS executes each stochastic test case in a loop until a stopping condition is met (Step 2 in

Figure 6). We have identified three different stopping conditions: (1) the actual output is illegal (in

this case, the test case fails), (2) the expected output occurs with the expected frequency (in this

case, the test case passes), (3) the expected output does not occur with the expected frequency (in

this case too, the test case fails). Below, we describe the three cases in more detail.

Case 1: The output is illegal. The output of a test case is illegal if the observed output sequence

cannot be generated by the network of TAs that capture the software specifications. In other

terms, there is no path in the TAs that leads to the observed output sequence after the given input

sequence.

The output sequence in Figure 9 shows an example of an illegal output for the TA in Figure 2.

This output sequence is illegal if it is generated in response to the test inputs of the test case in

Figure 5. The specifications for HOD indicate that the system, after waiting for 4250 ms (second

line of the test case), is allowed to either stay in location Present, thus keeping the variables

isQualified and qc set to false and zero, respectively, or move to location PresentQualified,
and set the values of the two variables to true and one, respectively (these are the values expected

by the test case Figure 5). The faulty output in Figure 9 shows that the system sets the value of

variable isQualified to true but keeps variable qc set to zero after waiting for 4250 ms. This

combination of values is not a legal output for the TA in Figure 2.

STUIOS thus stops executing a test case if it leads to an invalid output sequence because this

clearly indicates that the software does not meet its specifications. The test case is considered to

have failed.

Cases 2 and 3: The output is valid. If the system produces legal outputs (i.e., an output that can be

generated according to the software specifications), then we need to determine if, across multiple

executions of the stochastic test case, the system generates, among all the legal output sequences

generated, the desired output sequence with the expected frequency.

Since stochastic test cases include both test cases provided by software engineers and PUIO

sequences, we need to observe that both the following output sequences occur with the expected

frequency: (1) the sequence of output values (hereafter outputT EST) generated after the inputs

belonging to the original test case and (2) the output sequence (hereafter outputPU IO) generated

after the inputs of the PUIO sequence.

We assume that each execution of a test case is independent; this assumption generally holds

for stateless systems and for systems that provide means to reset the system state between the

executions of different test cases. The latter is true for HOD and usually for embedded systems in

general. Since each execution of a test case is independent and since the result is either pass or fail,

we can assume that test results follow a binomial distribution.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:16 C. Wang et al.

Given that the expected frequencies of outputT EST and outputPU IO are captured by means of

confidence intervals returned by UPPAAL, we perform hypothesis testing based on confidence

interval comparison [28].

To compute a confidence interval that captures the frequency of occurrence of the expected

test output, we rely upon the Wilson score interval [41], which is known to be reliable even

in the presence of a small sample (i.e., executions of a test case in our context), when it fol-

lows a binomial distribution. The Wilson score interval is computed according to the formula:

1

n+z2
[
nS +

1

2
z2 ± z

√
1

n ∗ nS ∗ nF +
1

4
z2
]

where z is known as standard score, and depends on the confidence level pc (if pc=95% then z=1.96),
n is the total number of runs considered, nS is the number of successes (in our context, the output

of the test case is the expected one), nF is the number of failures (the output of the test case is

not the expected one). The value of pc is chosen by the experimenter (e.g., the software engineer)

and captures the desired likelihood of avoiding a Type I error (i.e., erroneously rejecting the null

hypothesis). We set pc to 95%.

A test case fails if the null hypothesis “the expected output occurs with the expected frequency”

is rejected. Since we estimate the expected frequency of an output using the confidence interval

returned by UPPAAL and we estimate the frequency of the output generated by the actual system

using also a confidence interval, we can rely on interval comparison to perform hypothesis testing.

The two intervals consist in a range indicating that the estimated parameter should lie in it, at a level

of confidence pc . Thus, if two intervals do not overlap, there is convincing evidence of a difference

(i.e., the implemented system differs from the model) [28]. Following this principle, we reject the

null hypothesis if the interval computed by UPPAAL and the Wilson score interval computed

during testing do not overlap. Confidence interval comparison is known to be more conservative

(i.e., rejects the null hypothesis less often) than other methods when the null hypothesis is true,

which in our case means fewer false alarms [33].

To provide trustable results we would like to collect a large enough sample to be confident

about the outcome. Generally speaking, the more observations, the higher the confidence about the

absence of faults. We rely on the length of the confidence interval. With a small interval, when the

null hypothesis is not rejected, we can conclude that the estimated parameter is close to the value

derived from specifications with a given degree of confidence (pc = 95% in our example). Based on

this observation we stop testing when the confidence interval is small enough; more specifically,

we have chosen to adopt the same criterion adopted by UPPAAL, which means that the length of

the confidence interval generated by STUIOS is at most 2 ∗ (1 − pc), 0.1 in our example. This way

the two compared intervals have approximately the same length.

STUIOS applies hypothesis testing twice for each test case execution, considering bothoutputT EST
and outputPU IO . When the confidence interval is smaller than 0.1 and the null hypothesis is

supported for both outputT EST and outputPU IO , then STUIOS indicates that the test case has

passed. When the confidence interval is smaller than 0.1 and the null hypothesis is rejected in

the case of either outputT EST or outputPU IO , then STUIOS indicates that the test case has failed.

Otherwise, if the confidence interval is not smaller than 0.1, the execution of the test case continues.

According to the Wilson score formula, the size of the confidence interval depends on the formula

z
√

1

n ∗nS ∗nF+
1

4
z2

n+z2 , which identifies the lower and upper bounds of the interval; thus, the maximum

number of executions (maxE) required to obtain a confidence interval below a given value has an

upper limit, for a specific value of z. For example, this upper limit is equal to 381 when we compute

a confidence interval of length 0.1 with pc = 95%.

To speed up testing, STUIOS enables engineers to specify a value formaxE based on their test

budget (we usedmaxE = 100 in our experiment). When the maximum number of executions (maxE)

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:17

is reached, STUIOS reports that the test case passes if the null hypothesis is confirmed for both

outputT EST and outputPU IO . Otherwise the test case fails. When the confidence interval length is

still above 0.1, STUIOS also reports that the test case outcome might not be reliable. An in-depth

analysis of the effects ofmaxE on the effectiveness of oracles is reported in Section 7.

For example, test case T1 in Figure 6 passes because (1) the Wilson score interval calculated

for outputT EST after multiple runs of T1 is [0.49, 0.58], which is smaller than 0.1 and overlaps

with the confidence interval provided by UPPAAL ([0.46, 0.56]), and (2) the Wilson score interval

calculated for outputPU IO overlaps with the expected interval. In contrast, test case T2 fails because

the Wilson score intervals calculated for both outputT EST and outputPU IO do not overlap with

the intervals associated to the stochastic test case. Finally, test case T3 fails because the Wilson

score interval calculated for outputPU IO ([0.75, 0.85]) does not overlap with the expected interval

([0.9, 1.0]).

6 IMPLICIT TIME UNCERTAINTY, NON-DETERMINISTIC TRANSITIONS AND UIO
SEQUENCES AVAILABILITY

In this section we discuss how implicit time uncertainty, non-deterministic transitions and avail-

ability of UIO sequences impact on STUIOS effectiveness.

6.1 Implicit Modelling of Time Uncertainty
In this section we write that time uncertainty is modeled explicitly when it is captured by means

of time ranges in the TAs; this is the case of the model in Figure 2 where a time range is used to

indicate when the transition between locations Present and PresentQualified can be triggered.

We refer to time uncertainty being modeled implicitly when the system is characterized by time

uncertainty but time ranges are not used in the TAs.

A modeling solution for HOD where time uncertainty is modeled implicitly is shown in Figure 10.

In Figure 10, the TA labeled with (a) models the main control loop; this TA indicates that the main

control loop is triggered every 1700 ms and that, after being started, the control loop first detects if

an error is present (see the event detect) and then determines if an error can be qualified (see the

event qualify). The safety-related operations performed by the main control loop are executed in

1400 ms and, after this time, the system goes into the idle state. The automaton labeled with (b)
models the detection of temperature errors (the initial location is NotDetectedNotQualified) and
shows that the location DetectedNotQualified becomes active when the main control loop sends

the event detect and a temperature error is present in the system (i.e., the equality ‘TE == true’
holds). Location DetectedQualified becomes active if the variable q is equal to twowhen the event
qualify is triggered (this happens if the temperature error remains present for two consecutive

executions of the main control loop). If the error condition disappears (i.e., if ‘TE == false’)
while the location DetectedNotQualified is active, then the location NotDetectedNotQualified
becomes active. The disqualification of errors is modelled in a similar manner. The automaton

labeled with c is a simplified environment model that indicates that a temperature error condition

(i.e., temperature out of valid range) might be present (i.e., ‘TE = true’) or absent (i.e., ‘TE =
false’, which is set when the temperature is within the valid range).

The purpose of the model in Figure 10 is different than the one in Figure 2; however, both

models can be used to derive test cases and oracles. The TA in Figure 2 aims to capture the timing

requirements of the system regardless of its internal design and implementation, while the network

of TAs in Figure 10 is a design specification for HOD. The TA in Figure 2 describes the expected

behaviour of HOD from the perspective of an actor (e.g., a human tester) interacting with the

system. The network of TAs in Figure 10 explicitly captures the presence of a main control loop

and specifies the constraints that regulate error qualification in terms of the number of execution

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:18 C. Wang et al.

(a)

(b)(c)

Started

Idle

 x=0

x == 1400

x == 1700

x <= 1400

x <= 1700

x <= 0
detect! qualify!

idle!

 TE == false
 TE == true TE == true

 TE == false

 TE == false

 TE == true

 TE == true
 TE == false

aq == 2 q == 2

detect?

detect? detect?

detect?

qualify?qualify?

detect?

detect?
detect?

detect?

 isQualified=false isQualified=true,
 qc++

 q=0 q=q+1

 aq=aq+1

 aq=0

tempOutOfRange?
 TE=true

 TE=false
tempInRange?

NotDetectedQualified

NotDetectedNotQualified DetectedNotQualified

DetectedQualified

Fig. 10. Network of TAs that captures the frequency of the main control loop and the procedure for qualifying
temperature errors in HOD. The TA labelled with (a) models the main control loop, the TA labelled with
(b) captures the detection and qualification of temperature errors, the TA labelled with (c) is a simplified
environment automata that captures the fact that temperature errors might be present or absent. The label
‘C’ within a location is used to indicate that the location is ‘committed’; edges departing from committed
locations have priority over other edges in a network of TAs [11]. Committed locations are used, for example,
to model atomic operations (e.g., an activity triggered immediately after an interrupt is received).

<tempOutOfRange>/ (isQualified == false, qc == 0)
<wait for 4250 ms> / (isQualified == true , qc == 1)
<tempInRange> / (isQualified == true , qc == 1)
<wait for 1700 ms> / (isQualified == true, qc == 1)
<wait for 1700 ms> / (isQualified == true, qc == 1)
<wait for 1700 ms> / (isQualified == false, qc == 1)

Fig. 11. Test case that verifies the qualification of a temperature error that appears for a short time. Test
inputs match the network of TAs in Figure 10. The bold lines match the UIO sequence that checks if the test
case brings the system to location DetectedQualified.

cycles during which the error remains present in the system (i.e., what happens in the actual

implementation).

The explicit modeling of the main control loop in Figure 10 makes the explicit modeling of time

uncertainty redundant because the time range in which an error can be qualified (or disqualified) can

be derived from the model. In practice, the system is still characterized by time uncertainty although

the network of TAs in Figure 10 does not explicitly model time uncertainty. Time uncertainty can

be observed by focussing on the delay between the moment in which a temperature error becomes

present in the system (i.e., TE is set to true by the environment automaton) and the moment in

which the temperature error is qualified (i.e., location DetectedQualified becomes active), which

varies between 3400 ms and 5100 ms. This is due to the fact that error detection occurs every

1700 ms (i.e., the event detect is fired every 1700 ms), while the transitions of the environment

automaton, including the one that sets TE to true, might be fired anytime.

STUIOS can generate effective stochastic test cases even in the presence of networks of TAs

that do not explicitly model time uncertainty. Indeed, the four activities performed by STUIOS to

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:19

Table 2. Output generated by the UIO sequence in Figure 11 for all the locations of the TA (b) in Figure 10.
For each location we report the value of the state variables isQualified and qc. Bold red values highlight the
differences with the expected output in case of transition faults.

Input DetectedQualified NotDetectedNotQualified DetectedNotQualified NotDetectedQualified

<wait for 1700ms> true, 1 true, 1 true, 1 true, 1
<wait for 1700ms> true, 1 true, 1 true, 1 false, 1
<wait for 1700ms> false, 1 true, 1 true, 1 -

build stochastic test cases (i.e., determine the context of a UIO, identify potential UIO sequences,

determine valid UIO sequences, and calculate output probabilities) are based on UPPAAL features

whose results do not depend on the explicit or implicit modelling of time uncertainty. Regarding

context determination, STUIOS relies on UPPAAL reachability analysis. The reachability analysis

implemented by UPPAAL is based on state traversal with difference bounded matrices and clock

difference diagrams [7, 9, 40], which produce correct results independently from the number and

type of constraints appearing in the TAs. The identification of potential UIO sequences is based
on the simulation feature of UPPAAL, which correctly returns all the transitions that are enabled

in a given time range, independently of whether time uncertainty is explicit. To determine if a

potential UIO sequence is valid, STUIOS relies on the reachability analysis feature of UPPAAL,

which is guaranteed to provide correct results, as mentioned above. Finally, to calculate output

probabilities, STUIOS relies on the probability estimation feature of UPPAAL. This feature is based

on Monte-Carlo simulation, and, as such, is not affected by how time ranges are modeled, but simply

reflects the behaviors captured by the model. Figure 11 shows an example test case generated by

STUIOS from the TAs in Figure 10; Table 2 shows the output of the UIO sequence in Figure 11 in

the presence of transition faults.

6.2 Non-deterministic Transitions
The SMC features of UPPAAL require that TAs be input-deterministic, which means that for every

location l all possible inputs (event or delay) may trigger only one outgoing edge of the location

l at a given instant. Input-deterministic TAs may include time-triggered transitions if these are

controlled by guard conditions that are disjoint from the other guard conditions appearing in the

other edges departing from the same locations. The TA in Figure 10 is input-deterministic because,

for every possible clock value, only a single edge can be taken. Recall from Section 3.1, however,

that time-triggered transitions introduce time uncertainty in (input-deterministic) TAs and thus

lead to non-deterministic behaviours.

Since the implementation of STUIOS relies on UPPAAL, it also requires input-deterministic TAs.

In the context of embedded systems, this is unlikely to constitute a practical limitation since such

systems are often reactive systems that perform a single specific action in response to a certain

event.

6.3 Availability of UIO Sequences
UIO sequences are not guaranteed to exist for all the locations of a TA. However, like FSMs [2],

TAs are often characterized by the presence of UIO sequences.

In this Section we characterize a class of input-deterministic TAs that always present a UIO
sequence for every location, which is the class of minimal, connected, and deterministic TAs. A

deterministic TA is an input-deterministic TA that does not include time-triggered transitions. A

TA is connected when each location can be reached from any other location, which is usually true

for software systems modeled using TAs and FSMs (for example, TAs that model a control loop

are connected) [29]. A TA is minimal when for every pair of locations, it is possible to identify

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:20 C. Wang et al.

an input sequence that distinguishes one location from the other by generating different outputs,

depending on the location on which it is applied. In the software testing literature, an input sequence

that distinguishes two locations is known as signature sequence [32]. When a deterministic TA is

connected, for every pair of locations < la , lb >, it is possible to identify a sequence of inputs that

transitions the system from la to lb . As a consequence, when a deterministic TA is both connected

and minimal, for every location l , it then possible to derive a UIO sequence that has the following

characteristics. The UIO sequence traverses the location l multiple times and is characterized by

an input sequence that can be represented as < SS1, FS1, SS2, FS2, ..., SSx , FSx >, where SSi is a
signature sequence that distinguishes location l from location li , and FSi is an input sequence that

transitions the system from the location reached by SSi to l . The UIO sequence thus contains one

signature sequence SSi for each location li to be distinguished from l . The number of signature
sequences included in the UIO sequence is at most equal to the number of locations in the TA minus

one.

Based on the observation above, we can additionally conclude that any TA that is determinizable
1
,

minimal and connected will thus include UIO sequences. This is the case, for example, of event-clock

automata, which is a class of determinizable TAs where each clock is associated to a specific event

and is reset after the occurrence of the event [4]. The TA in Figure 10, for example, is an event-clock

automaton where the clock is reset after every event.

Finally, despite having identified a class of TAs that present a UIO for all the locations, it is worth

mentioning that even in the presence of TAs that are not deterministic, all the desired final test

locations of a test suite might present UIO sequences. In addition, when a UIO sequence cannot

be generated for a desired final test location, STUIOS remains useful since it enables engineers to

verify the frequency of the test output sequence.

7 EMPIRICAL EVALUATION
To evaluate the effectiveness of the STUIOS approach, we conducted an empirical evaluation, based

on two industrial case studies, addressing the following four research questions:

• (RQ1) Does STUIOS generate oracles that are effective in the presence of time uncertainty?
This research question aims to evaluate the effectiveness of STUIOS in terms of fault de-

tection capability of the generated test suite when faults affecting timing requirements are

characterized by time uncertainty.

• (RQ2) How does STUIOS compare with a simpler and less expensive alternative?
This research question aims to determine whether STUIOS performs significantly better than

a much simpler and less expensive alternative that derives test cases that do not include UIO

sequences and whose oracles rely solely on analyzing output sequences.

• (RQ3) Is the test execution overhead introduced by STUIOS acceptable in an industrial context?
This question aims to evaluate whether STUIOS can be successfully adopted in an industrial

context and what are the costs associated with its adoption.

• (RQ4) How does the maximum number of execution per test case (maxE) affect the accuracy of
STUIOS oracles? This question aims to evaluate to what extent the choice of the maximum

number of test case executions (maxE) affects the accuracy of STUIOS oracles in terms of

failing and passing executions being correctly classified.

7.1 Subject of the study
The subjects of our case study are HOD [22] and BodySenseTM [21], two embedded systems already

on the market and developed by our industrial partner, IEE [23]. HOD has been introduced in

1
A TA is determinizable when it is possible to derive an equivalent, deterministic TA [6, 27].

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:21

Section 2 and is an embedded system that detects if a car driver has both hands on the steering

wheel. HOD is a sensing system that measures the capacitance between a conductive layer in the

steering wheel and the electrical ground in the car body and the seat frame. HOD provides the

input for autonomous driving assistance systems, notifying them whether or not the driver has his

hands on the steering wheel.

BodySenseTM is a car seat occupant classification system that enables smart airbag deployment.

BodySenseTM relies on a capacitive sensor in the vehicle’s passenger seat to determine whether

the seat is occupied, as well as classifying the occupant. If the passenger seat has a child in a

child seat or is unoccupied, the system disables the airbag. For seats occupied by adult passengers,

BodySenseTM ensures the airbag is deployed in the event of an accident. BodySenseTM is integrated

with multiple car sensors (e.g., capacitive sensors and temperature sensors) and communicates

with other car controllers by means of a LIN bus. For example, BodySenseTM communicates the car

occupancy status to the airbag controller in order to automatically enable or disable airbags; also, it

communicates with the seat belt controller to support seat belt reminder functions.

BodySenseTM targets occupant classification in compliance with the U.S. National Highway &

Traffic Safety Administration and also covers the Euro NCAP requirements for automatic airbag

disabling, required for any rearward-facing child seat.

The two systems run on a real-time operating system and present several critical timing require-

ments that are currently verified by developers with an automated test suite, in compliance with

the ISO-26262 safety standard [24].

Table 3. Purpose and size of the TAs belonging to the case study systems.

Modeled Specification (number of TAs) Total Total Size
Error qualification Control Message Environment number Locations Edges

/disqualification Loop Handling of TAs
HOD 33 - 1 - 34 223 107

BodySenseTM 22 2 2 2 28 238 110

HOD and BodySenseTM are two embedded systems that are required to timely identify error

conditions in order to guarantee the safety of car passengers and drivers. In our experiments, we

focus on test cases that verify the conformance of these two systems with the timing requirements

related to the qualification of error conditions. Table 3 provides an overview of the TAs for the two

case studies. The timing specification of HOD are captured by means of 34 TAs: 33 TAs capture

the timing requirements for the qualification and disqualification of different error conditions

while one TA models message handling. Of the 33 TAs capturing error qualification, 20 TAs share

the template of temperature errors shown in Figure 2, while the remaining 13 TAs match the

templates in Figures 12-a and 12-b. In total, the timing specifications of HOD include 223 edges

and 107 locations. The specifications of HOD model high-level timing requirements regarding

error qualification, not their implementation, thus they do not explicitly model the control loop

and the environment (see Section 6.1). The timing specification of BodySenseTM are captured by

means of 28 TAs: 22 TAs capture the qualification and disqualification of error conditions, two TAs

model the main control loop, two TAs model interrupts and message handling, two TAs model

the environment. The TAs of BodySenseTM resemble the ones in Figure 10. In total, the timing

specifications of BodySenseTM include 238 edges and 110 locations.

7.2 Experiment setup
In our experiments we deal with the evaluation of the effectiveness of test suites in detecting faults

in a program. To generate faulty versions of HOD and BodySenseTM we relied on mutation analysis.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:22 C. Wang et al.

(a) (b)

 errorConditionPresent?

 errorConditionPresent?

 noErrorCondition?

 noErrorCondition?

 x >= 0

 x >= 0
 x <= 1700

 x <= 1700

Present

Absent

 PresentQualified
 AbsentQualified

isQualified:=trueisQualified=true

isQualified=false

 x=0

 x=0

Absent Present PresentQualified

isQualified=true x=0

 noErrorCondition?

 errorConditionPresent?

 x <= 1700

 x >= 0

Fig. 12. Additonal templates for TAs modeling timing requirements for HOD. Figure (a) models the timing
requirements for errors that are immediatly qualified (or disqualified) when they are recognized as present
(or absent). Figure (b) models the timing requirements for (critical) errors that cannot be disqualified after
being (immediatly) qualified.

More specifically, we derived the faulty versions of HOD and BodySenseTM by means of specification

mutation (i.e., by using mutation operators to derive software specifications that characterize the

behaviour of a faulty program). In the literature, different mutation operators for TAs have been

described (e.g., [1, 3]). For our experiments, we considered mutation operators that directly affect

timing properties, which are: Restricting Clock Conditions [1], Widening Clock Conditions [1],

Shifting Clock Conditions [1], and Change Target Location [3]. Applying the above mutation

operators led to a total of 651 mutated specifications, 328 for HOD and 323 for BodySenseTM .

Manually modifying the implementation of HOD and BodySenseTM to create 651 faulty versions

would require unacceptable engineering effort. This would also be the case for deploying the faulty

versions on dedicated hardware for purely experimental purposes. For this reason, we generated

651 programs that implement the mutated specifications of the two systems. Since these programs

are generated for experimental purposes, they only implement the behavior under test related to

timeliness and are therefore much simpler to implement and modify.

Because of the large number of test suite runs
2
, we used a high-performance computing cluster

(HPC) to run our experiments [37]. The experiments were run on a Bullx B500 blade system [5]

with each node having two processors (Intel Xeon L5640, 2.26 GHz). In our experiments, since each

test suite has been executed on a dedicated node, test cases belonging to the same test suite have

been executed in sequence, while different test suites have been executed in parallel.

The artifacts required to replicate the empirical results presented in the paper (case study systems

and test suites) are available for download from the following URL: https://sntsvv.github.io/STUIOS/.

7.3 Results
7.3.1 RQ1. RQ1 aims to evaluate the effectiveness of STUIOS, that is the capability to detect

failures. To respond to RQ1, we evaluated the effectiveness of the oracles generated by STUIOS when
failures are related to software timeliness, and the executed test cases lead to non-deterministic

behaviour because of time uncertainty. For our experiments we focused on failures that may affect

the capability of HOD and BodySenseTM to qualify error conditions (e.g., overheating) within the

given time ranges.

We considered both a valid implementation of the specifications of the two systems and a subset

of the 651 faulty versions described above. Since we aim to evaluate the effectiveness of STUIOS

2
To respond to RQ1 we executed one test suite against three versions of the system; to respond to RQ2 we executed ten test

suites against 651 faulty programs. Details are provided in the following subsections.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

https://sntsvv.github.io/STUIOS/

Oracles for Testing Software Timeliness with Uncertainty 00:23

in the presence of failures related to software timeliness, we considered mutated specifications

that lead to error conditions being qualified with an erroneous timing. This is the case of the

mutated specifications derived by applying the mutation operators Restricting Clock Conditions

andWidening Clock Conditions on the TA edges that capture the qualification time of each different

error condition. Applying the two mutation operators on the HOD and BodySenseTM specifications

leads to two different faulty versions for each TA regarding the detection of error conditions, each

containing a single fault. HOD specifications include 33 TAs modeling error conditions, which leads

to 66 faulty versions of HOD. BodySenseTM specifications include 22 TAs modeling error conditions,

which leads to 44 faulty versions of BodySenseTM .

Since the injected faults affect the qualification of error conditions, to perform our experiments,

we considered a set of test cases verifying if an error condition is qualified according to its timing

specifications. In order to assess the worst-case performance of STUIOS, we have considered test

cases for which STUIOS requires a high number of executions before determining the test outcome.

To identify these test cases, we have considered the fact that the Wilson score formula requires the

largest sample to generate a confidence interval of length 0.1 when the probability of observing

the expected output is 0.5. In the case of HOD, for example, this occurs with test cases that check if

HOD is able to qualify a specific error condition within 4250 ms (i.e., the middle point in the allowed

range). In total we considered 55 test cases, each one focussing on one of the error conditions

detected by HOD (33 error conditions) and BodySenseTM (22 error conditions).

We executed each test case against both the valid version and the two faulty versions for a

total of 165 (i.e., 55 × 3) test case runs (recall that each run may imply repeated executions of the

test case because of the probabilistic nature of STUIOS). Test cases executed against the correct

implementation are expected to pass while test cases executed against faulty versions are expected

to fail.

To answer RQ1, we computed the precision and recall according to standard formulas. In our

context, true positives correspond to test cases correctly failing against the faulty version, whereas

false positives correspond to test cases unexpectedly failing against the correct version. True

negatives match test cases not failing when executed against a faulty version.

Empirical results show that STUIOS provides perfect precision and recall (1.0) in both case study

systems. Please note that test cases with simple oracles, i.e., test cases that do not include UIO

sequences but only analyze output sequences, cannot be executed in this context. For example, in

the case of HOD, simple oracles would fail every time the system does not qualify errors in 4250

ms, which happens in 50% of the passing executions since the qualification time follows a uniform

distribution.

7.3.2 RQ2. RQ2 aims to determine whether STUIOS performs significantly better than a much

simpler and less expensive alternative that derives test cases that rely upon simple oracles. No
existing approach focuses on deriving UIO sequences from specifications provided as TAs with

time uncertainty.

To perform the experiment, and avoid bias in the selection of the test cases, for the case of

BodySenseTM we considered ten test suites of 122 test cases each, which were automatically gener-

ated in previous work for the same software under test [39]. The test suites were generated using

the TAUC test generation technique (detailed in [39]), which is a model-based testing technique that

relies on meta-heuristic search to generate test suites that (1) cover all the transitions in a network

of TAs and (2) stress timing requirements by sending multiple, diverse inputs to the system. TAUC

maximizes the diversity among the sequences of inputs being sent to the system by the different

test cases in a test suite. In previous work, TAUC has shown to be able to generate test suites that

discover faults not detected by the test suite manually produced by software engineers [39]. For

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:24 C. Wang et al.

the case of HOD, we considered 100 test cases generated according to the same criterion adopted

for the BodySenseTM test suites.

The test suites generated with TAUC (hereafter standard test suites) include only simple oracles.

For each standard test suite we used STUIOS to generate a test suite containing stochastic test cases.
Although the case study systems process multiple types of inputs (not just error conditions)

and all the test cases considered in the evaluation send multiple inputs to the system, we expect

that system outputs always adhere to the distribution calculated by STUIOS. This happens because
of the two reasons discussed in Section 3.1: (1) time uncertainty depends on the polling of the

environment repeated at a given frequency and (2) inputs are not expected to interfere with the

polling frequency (inputs are processed at the end of the control loop).

We executed each test suite on each of the 328 faulty software versions (mutants) for HOD and

on each of the 323 mutants for BodySenseTM , and we kept track of passing and failing test cases.

We measured fault detection effectiveness at the test suite level and report the percentage of faults

discovered by both the stochastic and standard test suites.

The empirical results show that all the test suites are sound, i.e., they never report failures when

executed against the valid version of the software. Furthermore, the test suites generated by STUIOS
are more effective than the standard test suites since they are able to uncover on average, across

the ten generated test suites, 96.95% of the faults in the case of HOD (96.95% min, 96.95% max)

and 99.26% of the faults (98.76% min, 100% max) in the case of BodySenseTM , while the test suites

integrating simple oracles detect on average 89.16% of the faults in the case of HOD (89.16% min,

89.16% max) and 88.76% of the faults in the case of BodySenseTM (86.38% min, 90.71% max). In

the case of BodySenseTM STUIOS does not detect faults when their effect is masked by additional

inputs (e.g., when inputs overwrite the incorrect values). In the case of HOD, the faults not being
discovered are due to not being able to distinguish invalid final states from valid final states when

exclusively relying on I/O sequences. This happens when the fault consists of turning into a self

loop the edge that connects the locations Present and PresentQualified in Fig. 12-b; this fault

affects ten faulty versions. The number of faults being discovered by STUIOS in HOD is constant

since none of the test suites can discover these ten faults.

The results show that the test suites generated by STUIOS significantly improve the effectiveness

of the standard test suites from which they have been derived, even in the presence of very effective

test suites (the standard test suites detect 89% of the faults). STUIOS test suites uncover at least 7%
more faults.

7.3.3 RQ3. RQ3 aims to evaluate the costs associated with the adoption of STUIOS in an in-

dustrial context. STUIOS requires multiple executions of the same test case in order to determine

the test outcome. In our context, like in many other embedded development environments, the

repeated execution of test cases is not a problem. Software engineers are expected to set up the

physical environment only once, at the beginning of the testing process, and as in many other in-

dustrial contexts, the execution of test suites is usually conducted automatically by test automation

frameworks. The repeated execution of a same test case thus does not impact on the human effort

required to perform testing but may introduce delays in the testing process. For this reason, to

respond to RQ3, we discuss the impact on the time required to perform automated testing.

We compared the number of test executions required to generate test results with STUIOS against
those required by the standard test suite used to respond to RQ2, i.e., 222 executions, one for each
of the 222 test cases. In our empirical study, we determined that STUIOS requires 57 executions, on
average, for each test case, with a minimum and maximum of 35 and 100 executions. Although

the number of test case executions is high, the execution time is acceptable in practice. In our

experiments, the execution of a test suite took on average 34 hours in the case of HOD and 32 hours

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:25

in the case of BodySenseTM 3
. The difference between the two case studies is caused by differing

characteristics of the two systems, which lead to test cases with longer execution times for HOD. For
example, BodySenseTM is characterized by a shorter qualification time for all the error conditions,

which in turn leads to quicker test cases.

Given that these test cases can be concurrently executed on several test environments and that

acceptance testing usually lasts days, the reported increase in number of test cases executions has

limited practical consequences.

7.3.4 RQ4. RQ4 aims to evaluate the accuracy of STUIOS oracles (i.e., the capability of correctly

classifying test case executions as passing or failing), in the presence of different thresholds for

the maximum number of test case executions (maxE). In general, the accuracy of STUIOS oracles
may vary across different execution scenarios; for example, a fault that leads to a frequency of

the expected output which is very different from the expected one is easier to detect than a fault

that leads to an output frequency that is close to the expected one. Hereafter, for brevity, we

refer to the expected frequency of the expected output computed by UPPAAL as expected output
frequency and we refer to the frequency of the expected output observed when executing the

implemented system as observed output frequency. To evaluate the accuracy of STUIOS, ideally, one
would like to consider multiple systems, correct and faulty, in order to cover different combinations

of expected and observed output frequency. Since it is unrealistic to consider as many real systems as

needed to perform such an experiment, we simulated STUIOS by considering 420 fictitious scenarios
resulting from the combination of 20 different expected output frequencies and 21 different observed

output frequencies. The 20 expected output frequencies considered in our study are represented as

confidence intervals of length 0.1 with a central point pe covering the values in the range [0.05,1.0].

The 21 observed output frequencies have been used to generate 21 sequences of test outcomes (i.e.,

sequences of ‘success’ and ‘fail’) that follow a Bernoulli distribution with a probability of success

pa ; each output sequence thus simulates the output distribution of multiple runs of a same test case

against the implemented system. For pa , we considered all the values in the range [0,1], in steps of

0.05. In all these 420 scenarios we applied STUIOS (more precisely, the oracle strategy described in

Section 5.4) on the sequences of test outcomes and determined if the output reported by STUIOS
was correct or not. In this context, the output reported by STUIOS is correct in two cases: (case-1)

STUIOS reports that a test case passes in the presence of an observed output frequency pa that

matches the expected output frequency pe ; (case-2) STUIOS reports that a test case fails in the

presence of an observed output frequency pa that does not match the expected frequency pe .
For all the 420 scenarios, we have executed STUIOS using a confidence level pc equal to 95%

and 40 different configuration values formaxE (we considered values in the range [10,400] with

steps of 10). For each scenario and for each configuration, we have executed STUIOS 100 times. For

each scenario, we computed the accuracy of STUIOS as the fraction of correct results generated

in 100 STUIOS executions. The boxplot in Figure 13 shows the accuracy obtained for different

values ofmaxE. Each plot is based on 420 data points (each data point is the accuracy computed

after executing STUIOS 100 times on a certain scenario with a certain configuration formaxE) and
reflects the accuracy variation for a given configuration ofmaxE across the 420 scenarios. The

boxplot in Figure 14, instead, depicts cost by showing the number of test case executions required

for each scenario, for the 40 configurations of maxE. The boxplot in Figure 13 shows that the

accuracy of results improves for increasing values ofmaxE but this comes at the cost of a higher

number of executions required for each single test case. In general, the median number of test case

executions is close tomaxE, which means that engineers will directly affect the test execution costs

3
Note that the use of a HPC cluster does not introduce bias in the results (i.e., in the test suites execution time) because the

test cases belonging to a same test suite are not executed in parallel but are executed in sequence on the same HPC node.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:26 C. Wang et al.

●
●
●●

●

●

●●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●●

●
●

●●

●

●

●●

●●

●●

●

●

●●●

●

●
●

●

●●

●

●●●

●

●

●●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●●●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

● ●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●
●

●

● ●●

●

●●
●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●
●

●

● ●●

●

●●
●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●●

●

● ●●

●

●●
●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●
●

●

● ●●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●
●

●

● ●●

●

●●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●
●

●

● ●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

● ●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●
●

●

● ●●

●

●●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

● ●●

●

●●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●
●

●

● ●●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●
●

●

● ●●

●

●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●●

●●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●
●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●●

●
●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

● ●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maximum Number of Executions of a Same Test Case (maxE)

A
cc

ur
ac

y

10 50 100 150 200 250 300 350 400

Minimum whisker value is Q1 - 1.5*IQR, maximum whisker

value is Q3 + 1.5*IQR; where IQR is the interquartile range.

Default STUIOS configuration (i.e.,maxE = 100) in blue.

Fig. 13. Accuracy boxplot with pc = 95% for
different values ofmaxE.

●●●●●●
●
●●
●●
●●
●●●●●
●
●●●●●●
●●●
●●●
●
●●●
●
●●●
●
●●
●●●●
●●●●●●●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●
●●
●●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●

●●

●●

●●

●

●●

●

●●●●

●
●

●●●●

●

●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●

●

●●

●●

● ●● ●●

0
10

0
20

0
30

0
40

0

Maximum Number of Executions of a Same Test Case (maxE)

A
ct

ua
l N

um
be

r
of

 E
xe

cu
tio

ns
 o

f A
 S

am
e

Te
st

 C
as

e

10 50 100 150 200 250 300 350 400

38
1

Minimum whisker value is Q1 - 1.5*IQR, maximum whisker

value is Q3 + 1.5*IQR; where IQR is the interquartile range.

Default STUIOS configuration (i.e.,maxE = 100) in blue.

Fig. 14. Number of test case executions with
pc = 95% for different values ofmaxE.

by increasing the value ofmaxE. The median number of test case executions reaches a plateau

asmaxE gets closer to the upper limit for for the given confidence interval (e.g., values ofmaxE
above 300 when pc = 95%, where 381 is the upper limit). The default configuration of STUIOS
(i.e.,maxE = 100) is a compromise between execution costs and accuracy (e.g., the first quartile in

the boxplot in Figure 13 shows that 75% of the data points have an accuracy above 0.8). However,

engineers may select different configurations based on the requirements of the system under test.

For example, in the presence of an unstable system (e.g., with a high risk of clock drifts [36]),

engineers may increase the chances of obtaining accurate results by settingmaxE = 300. Similarly,

when a certain degree of clock drift is acceptable, engineers may set the confidence level to 90%,

which makes STUIOS more conservative (i.e., reject the null hypothesis less often) and thus prevents

false alarms.

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Discrepancy (Difference between Expected and Observed Output Frequency)

A
cc

ur
ac

y

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.05 0.15 0.50 0.75 1.00

maxE=30
maxE=100
maxE=300

Fig. 15. Average accuracy for different discrep-
ancy values and different values ofmaxE.

The outliers in Figure 13 are generated by execu-

tions where the observed output frequency is close

to the expected frequency (e.g., 0.45 vs. 0.50). To clar-

ify this, we show in Figure 15 the average STUIOS

accuracy obtained with scenarios presenting various

discrepancies between the expected and the actual

frequency. Figure 15 does not include the case in

which the observed frequency matches the expected

frequency (i.e., discrepancy = 0) because the accu-

racy is trivially 1 in that case. Figure 15 shows that,

as expected, the worst results are obtained when the

discrepancy is minimal and equal to 0.05 (i.e., half the

confidence interval). If engineers are interested in de-

tecting faults that may lead to a discrepancy below

or equal to 0.05, they should configure STUIOS with a

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:27

smaller confidence interval. However, failing to detect small discrepancies has limited practical

consequences as the behavior of the implemented system is close to that of the specified one.

For example, in the case of BodySenseTM , a confidence interval of 0.1 is sufficient to detect faults

and prevent false alarms because a discrepancy below 0.05 characterizes outputs that are delayed

by 85 ms (0.05 × 1700, the duration of the control loop), which is the minimal time required for

end-to-end communication between BodySenseTM and the test driver API, and thus may not be

indicative of the presence of a fault. The plot in Figure 15 also shows that higher values formaxE
improve STUIOS accuracy in the presence of small but possibly relevant discrepancies. For example,

with a discrepancy of 0.15,maxE = 100 leads to an average accuracy above 0.75, whilemaxE = 30

yelds a very low average accuracy, below 0.3.

7.4 Threats to Validity
Internal threats. To limit the threats to the internal validity of the empirical evaluation, that is, a

faulty implementation of our toolset that may lead to erroneous results, we have manually verified

that all the UIO sequences generated by our toolset are valid.

External threats. Threats to external validity concern the generalisability of results. HOD and

BodySenseTM are control systems with a main control loop that polls data from the environment

and then perform control operations. These kinds of control components are common in embedded

systems. In addition to this, HOD and BodySenseTM are representative embedded systems in the

automotive domain, with typical complexity (in terms of size and number of models required

to capture its timing properties), and thus we expect that results generalise and STUIOS can be

successfully adopted to test many other systems.

8 RELATEDWORK
Related work includes techniques for the generation of test cases and oracles from state-based

formalisms, e.g., finite state machines (FSMs), TAs, and Extended FSMs (EFSMs), as well as the

testing of real-time systems.

Most of the related work for the generation of test cases and oracles based on finite-state

specifications deals with FSMs, not TAs. Two surveys are relevant, one focusing on FSM-based

testing approaches [26] and a more recent one also including experimental comparisons [16]. Other

approaches focus on EFSMs [17, 31], but require deterministic EFSMs and thus cannot be applied

in the context of this paper, as discussed in Section 5.3.1.

On the other hand, several approaches working with TAs target the generation of test cases but

do not address the problem of generating precise test oracles in the presence of time uncertainty [1,

18, 34, 35]. For example, Springintveld et al. introduced a technique for translating TAs into grid

automata to enable generation of test sequences by means of traditional algorithms for FSM testing

[34].

Few techniques focussing on testing software timeliness in the presence of time uncertainty have

been reported [12, 13, 19, 20, 25]. The main difference with STUIOS is that these approaches focus
on test case generation and do not deal with the problem of generating test oracles for existing test

suites.

Some of the techniques dealing with time uncertainty perform feedback-driven, model-based

testing [12, 19, 25]. These techniques combine test generation and test execution in the same process.

Test inputs are generated at runtime during test execution by performing a random exploration

of the TA specifications. In the presence of non-determinism, a list of possibly active locations is

updated by simulating the actual system execution on the TAs based on the outputs generated

by the system. These approaches require the processing of models at runtime, an activity that

may introduce delays, and thus make these techniques unsuitable to test real-time systems [12].

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

00:28 C. Wang et al.

In addition to this, existing feedback-driven approaches, different from STUIOS, ignore some of

the effects of uncertainty. More specifically, they simply verify that the system does not generate

invalid results, but they do not verify if test outputs occur with the expected frequency. Further,

they do not rely upon confidence interval estimation to decide when to stop testing, and are thus

unable to spot faults that alter the frequency of occurrence of valid outputs.

Among the existing test generation approaches addressing time uncertainty, the only one dealing

with the verification of the frequency of expected outputs is that of Hierons et al. [20], who rely on

mutation testing and probability estimation to build test suites that verify if a software conforms

to specifications given as probabilistic FSMs. The approach derives test cases that aim to spot

specific implementation faults. To this end, the approach identifies sequences of test inputs that

can determine if a mutated specification, which models a fault, differs from the original one. The

approach proposed by Hierons et al. focuses on test generation — thus preventing engineers from

reusing test suites derived with different criteria — while STUIOS focuses on the generation of

oracles for existing test suites, regardless of how theywere generated. Furthermore, the effectiveness

of the approach from Hierons et al. has not been evaluated.

9 CONCLUSION
In the context of embedded systems, this paper addresses the automated generation of effective test

oracles for timeliness test cases in the presence of time uncertainty. We propose an approach, named

STUIOS, to generate stochastic cases that extend a set of test cases provided by software engineers.

A stochastic test case includes the input-output sequences from initial test cases, a probability

value that indicates the expected probability of observing the output sequence generated by the

test case, plus a probabilistic Unique Input Output (UIO) sequence. The latter captures the probability
of observing the output of a UIO sequence, identified by STUIOS, which helps predict if the test

case has terminated in the desired final test location. Probability values capture the expected

frequency of non-deterministic output sequences and thus make it possible for STUIOS to deal

with non-determinism. STUIOS then relies on executing multiple times each test case in such a

way that it can employ hypothesis testing to determine whether a test case has passed, i.e., if it has

generated the expected output with the expected frequency, at a given level of confidence.

Results from two industrial case studies in the automotive domain, involving typical embedded

systems, have demonstrated that STUIOS is able to achieve higher fault detection effectiveness

compared to a previous test approach which did not include stochastic test cases. In practice, though

STUIOS expectedly requires additional test execution time, this can be considered to have negligible

practical consequences if test case execution is automated.

ACKNOWLEDGMENTS
This work is supported by IEE S.A. and the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 694277). We would

like to thank Thierry Stephany and the IEE software engineers for their support.

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

Oracles for Testing Software Timeliness with Uncertainty 00:29

REFERENCES
[1] M. Saeed AbouTrab, Michael Brockway, Steve Counsell, and Robert M. Hierons. 2013. Testing Real-Time Embedded

Systems using Timed Automata based approaches. Journal of Systems and Software 86, 5 (2013), 1209 – 1223. https:

//doi.org/10.1016/j.jss.2012.12.030

[2] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. 1991. An optimization technique for protocol conformance test

generation based on UIO sequences and rural Chinese postman tours. IEEE Transactions on Communications 39, 11
(Nov 1991), 1604–1615. https://doi.org/10.1109/26.111442

[3] Bernhard K. Aichernig, Florian Lorber, and Dejan Ničković. 2013. Time for Mutants — Model-Based Mutation Testing

with Timed Automata. In Proceedings of Tests and Proofs: 7th International Conference (TAP 2013). Springer Berlin
Heidelberg, Berlin, Heidelberg, 20–38. https://link.springer.com/chapter/10.1007/978-3-642-38916-0_2

[4] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. 1999. Event-clock automata: a determinizable class of timed

automata. Theoretical Computer Science 211, 1 (1999), 253 – 273. https://doi.org/10.1016/S0304-3975(97)00173-4

[5] Atos. 2018. Bullx B500 blade system. https://atos.net/en/products/high-performance-computing-hpc/bullsequana-x-

supercomputers. (2018).

[6] Christel Baier, Nathalie Bertrand, Patricia Bouyer, and Thomas Brihaye. 2009. When Are Timed Automata Determiniz-

able?. In Automata, Languages and Programming, Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris

Nikoletseas, and Wolfgang Thomas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 43–54.

[7] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. 2002.

UPPAAL Implementation Secrets. In Proceedings of the 7th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2 (FTRTFT ’02). Springer-Verlag, London, UK, UK, 3–22.
http://dl.acm.org/citation.cfm?id=646847.707113

[8] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. 1995. Uppaal — a Tool Suite for

Automatic Verification of Real–Time Systems. In Proceedings of Workshop on Verification and Control of Hybrid Systems
III (Lecture Notes in Computer Science). Springer–Verlag, 232–243. https://doi.org/10.1007/BFb0020949

[9] Johan Bengtsson and Wang Yi. 2004. Timed Automata: Semantics, Algorithms and Tools. Springer Berlin Heidelberg,

Berlin, Heidelberg, 87–124. https://doi.org/10.1007/978-3-540-27755-2_3

[10] C. J. Clopper and E. S. Pearson. 1934. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial.

Biometrika 26, 4 (1934), 404–413. http://www.jstor.org/stable/2331986

[11] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and Danny Bøgsted Poulsen. 2015. Uppaal SMC

tutorial. International Journal on Software Tools for Technology Transfer 17, 4 (01 Aug 2015), 397–415. https://doi.org/

10.1007/s10009-014-0361-y

[12] Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Marius Mikucionis, and Brian Nielsen. 2012. Testing Real-
Time Systems under Uncertainty. Springer Berlin Heidelberg, Berlin, Heidelberg, 352–371. http://doi.org/10.1007/

978-3-642-25271-6_19

[13] A. David, K. G. Larsen, S. Li, and B. Nielsen. 2009. Timed Testing under Partial Observability. In 2009 International
Conference on Software Testing Verification and Validation. 61–70. https://doi.org/10.1109/ICST.2009.38

[14] Robert I. Davis and Alan Burns. 2011. A Survey of Hard Real-time Scheduling for Multiprocessor Systems. ACM
Comput. Surv. 43, 4, Article 35 (Oct. 2011), 44 pages. https://doi.org/10.1145/1978802.1978814

[15] Karnig Derderian, Robert M. Hierons, Mark Harman, and Qiang Guo. 2006. Automated Unique Input Output Sequence

Generation for Conformance Testing of FSMs. Comput. J. 49, 3 (May 2006), 331–344. https://doi.org/10.1093/comjnl/

bxl003

[16] Rita Dorofeeva, Khaled El-Fakih, Stephane Maag, Ana R. Cavalli, and Nina Yevtushenko. 2010. FSM-based conformance

testing methods: A survey annotated with experimental evaluation. Information and Software Technology 52, 12 (2010),

1286 – 1297. https://doi.org/10.1016/j.infsof.2010.07.001

[17] A. Y. Duale and M. U. Uyar. 2004. A method enabling feasible conformance test sequence generation for EFSM models.

IEEE Trans. Comput. 53, 5 (May 2004), 614–627. https://doi.org/10.1109/TC.2004.1275300

[18] Abdeslam En-Nouaary. 2008. A scalable method for testing real-time systems. Software Quality Journal 16, 1 (2008),
3–22. https://doi.org/10.1007/s11219-007-9021-8

[19] Susanne Graf and Laurent Mounier (Eds.). 2004. Black-Box Conformance Testing for Real-Time Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24732-6_8

[20] Robert M. Hierons and Mercedes G. Merayo. 2009. Mutation testing from probabilistic and stochastic finite state

machines. Journal of Systems and Software 82, 11 (2009), 1804 – 1818. https://doi.org/10.1016/j.jss.2009.06.030

[21] IEE. 2018. BodySense product description. https://www.iee.lu/en/products/automotive/bodysense. (2018).

[22] IEE. 2018. HOD product description. https://www.iee.lu/en/products/automotive/hands-off-detection. (2018).

[23] IEE. 2018. Sensing solutions. http://www.iee.lu. (2018).

[24] ISO. 2011. ISO-26262: Road vehicles – Functional safety. (2011).

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

https://doi.org/10.1016/j.jss.2012.12.030
https://doi.org/10.1016/j.jss.2012.12.030
https://doi.org/10.1109/26.111442
https://link.springer.com/chapter/10.1007/978-3-642-38916-0_2
https://doi.org/10.1016/S0304-3975(97)00173-4
http://dl.acm.org/citation.cfm?id=646847.707113
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3
http://www.jstor.org/stable/2331986
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
http://doi.org/10.1007/978-3-642-25271-6_19
http://doi.org/10.1007/978-3-642-25271-6_19
https://doi.org/10.1109/ICST.2009.38
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1093/comjnl/bxl003
https://doi.org/10.1093/comjnl/bxl003
https://doi.org/10.1016/j.infsof.2010.07.001
https://doi.org/10.1109/TC.2004.1275300
https://doi.org/10.1007/s11219-007-9021-8
https://doi.org/10.1007/978-3-540-24732-6_8
https://doi.org/10.1016/j.jss.2009.06.030

00:30 C. Wang et al.

[25] Kim G. Larsen, Marius Mikucionis, Brian Nielsen, and Arne Skou. 2005. Testing Real-time Embedded Software Using

UPPAAL-TRON: An Industrial Case Study. In Proceedings of the 5th ACM International Conference on Embedded Software
(EMSOFT ’05). ACM, New York, NY, USA, 299–306. https://doi.org/10.1145/1086228.1086283

[26] D. Lee and M. Yannakakis. 1996. Principles and methods of testing finite state machines-a survey. Proc. IEEE 84, 8 (Aug

1996), 1090–1123. https://doi.org/10.1109/5.533956

[27] Florian Lorber, Amnon Rosenmann, Dejan Ničković, and Bernhard K. Aichernig. 2017. Bounded determinization of

timed automata with silent transitions. Real-Time Systems 53, 3 (01 May 2017), 291–326. https://doi.org/10.1007/

s11241-017-9271-x

[28] N. Schenker M. E. Payton, M. H. Greenstone. 2003. Overlapping confidence intervals or standard error intervals: What

do they mean in terms of statistical significance? Journal of Insect Science 34, 3 (2003), 19–35. https://doi.org/10.1016/j.

infsof.2015.03.009

[29] Aditya P. Mathur. 2009. Foundations of Software Testing (2nd ed.). Pearson Education.

[30] T. Ramalingom, K. Thulasiraman, and A. Das. 1996. Context independent unique sequences generation for protocol

testing. In INFOCOM ’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking the Next
Generation. Proceedings IEEE, Vol. 3. 1141–1148. https://doi.org/10.1109/INFCOM.1996.493058

[31] Christopher Robinson-Mallett, Peter Liggesmeyer, Tilo Mücke, and Ursula Goltz. 2006. Extended state identification

and verification using a model checker. Information and Software Technology 48, 10 (2006), 981–992. https://www.

sciencedirect.com/science/article/abs/pii/S0950584906000425

[32] Krishan Sabnani and Anton Dahbura. 1988. A protocol test generation procedure. Computer Networks and ISDN
Systems 15, 4 (1988), 285 – 297. https://doi.org/10.1016/0169-7552(88)90064-5

[33] Nathaniel Schenker and Jane F. Gentleman. 2001. On Judging the Significance of Differences by Examining the Overlap

Between Confidence Intervals. The American Statistician 55, 3 (2001), 182–186. http://www.jstor.org/stable/2685796

[34] Jan Springintveld, Frits Vaandrager, and Pedro R. D’Argenio. 2001. Testing Timed Automata. Theor. Comput. Sci. 254,
1-2 (March 2001), 225–257. https://doi.org/10.1016/S0304-3975(99)00134-6

[35] Mohammad Saeed Abou Trab, Bachar Alrouh, Steve Counsell, Rob M. Hierons, and George Ghinea. 2010. A Multi-
criteria Decision Making Framework for Real Time Model-Based Testing. Springer Berlin Heidelberg, Berlin, Heidelberg,

194–197. https://doi.org/10.1007/978-3-642-15585-7_20

[36] D. Trawczynski, J. Sosnowski, and J. Zalewski. 2007. The Effect of Large Clock Drifts on Performance of Event and

Time Triggered Network Interfaces. In 2nd International Conference on Dependability of Computer Systems (DepCoS-
RELCOMEX ’07). 344–351. https://doi.org/10.1109/DEPCOS-RELCOMEX.2007.48

[37] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an Academic HPC Cluster: The UL

Experience. In Proceedings of the 2014 International Conference on High Performance Computing & Simulation (HPCS
2014). IEEE, Bologna, Italy, 959–967.

[38] Md Tawhid Bin Waez, Juergen Dingel, and Karen Rudie. 2013. A survey of timed automata for the development of

real-time systems. Computer Science Review 9 (2013), 1 – 26. https://doi.org/10.1016/j.cosrev.2013.05.001

[39] Chunhui Wang, Fabrizio Pastore, and Lionel Briand. 2017. System Testing of Timing Requirements based on Use Cases

and Timed Automata. In Proceedings of the 2017 IEEE International Conference on Software Testing, Verification and
Validation (ICST). 299–309. https://doi.org/10.1109/ICST.2017.34

[40] Mihalis Yannakakis and David Lee. 1997. An Efficient Algorithm for Minimizing Real-Time Transition Systems. Formal
Methods in System Design 11, 2 (Aug. 1997), 113–136. https://doi.org/10.1023/A:1008621829508

[41] Guang Yong Zou, Wenyi Huang, and Xiaohe Zhang. 2009. A note on confidence interval estimation for a linear

function of binomial proportions. Computational Statistics and Data Analysis 53, 4 (2009), 1080 – 1085. https:

//doi.org/10.1016/j.csda.2008.09.033

Received June 2018

ACM Transactions on Software Engineering and Methodology, Vol. 0, No. 0, Article 00. Publication date: 2018.

https://doi.org/10.1145/1086228.1086283
https://doi.org/10.1109/5.533956
https://doi.org/10.1007/s11241-017-9271-x
https://doi.org/10.1007/s11241-017-9271-x
https://doi.org/10.1016/j.infsof.2015.03.009
https://doi.org/10.1016/j.infsof.2015.03.009
https://doi.org/10.1109/INFCOM.1996.493058
https://www.sciencedirect.com/science/article/abs/pii/S0950584906000425
https://www.sciencedirect.com/science/article/abs/pii/S0950584906000425
https://doi.org/10.1016/0169-7552(88)90064-5
http://www.jstor.org/stable/2685796
https://doi.org/10.1016/S0304-3975(99)00134-6
https://doi.org/10.1007/978-3-642-15585-7_20
https://doi.org/10.1109/DEPCOS-RELCOMEX.2007.48
https://doi.org/10.1016/j.cosrev.2013.05.001
https://doi.org/10.1109/ICST.2017.34
https://doi.org/10.1023/A:1008621829508
https://doi.org/10.1016/j.csda.2008.09.033
https://doi.org/10.1016/j.csda.2008.09.033

	Abstract
	1 Introduction
	2 Motivation and Context
	3 Background
	3.1 Modelling of Timing Specifications
	3.2 Modelling of Test Cases
	3.3 Testing with UIO Sequences

	4 Testing Timed Automata with Time Uncertainty: Open Issues
	4.1 Generation of UIO sequences from TAs
	4.2 Soundness and effectiveness of test oracles
	4.3 Scalability of testing

	5 The STUIOS approach
	5.1 An Overview
	5.2 Probability Estimation with UPPAAL
	5.3 Generating Stochastic Test Cases
	5.4 Test Execution

	6 Implicit Time Uncertainty, Non-Deterministic Transitions and UIO sequences availability
	6.1 Implicit Modelling of Time Uncertainty
	6.2 Non-deterministic Transitions
	6.3 Availability of UIO Sequences

	7 Empirical Evaluation
	7.1 Subject of the study
	7.2 Experiment setup
	7.3 Results
	7.4 Threats to Validity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

