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Abstract

Previous research using evolutionary computation in
Multi-Agent Systems indicates that assigning fitness
based on team vs. individual behavior has a strong im-
pact on the ability of evolved teams of artificial agents
to exhibit teamwork in challenging tasks. However, such
research only made use of single-objective evolution. In
contrast, when a multiobjective evolutionary algorithm is
used, populations can be subject to individual-level objec-
tives, team-level objectives, or combinations of the two.
This paper explores the performance of cooperatively co-
evolved teams of agents controlled by artificial neural net-
works subject to these types of objectives. Specifically,
predator agents are evolved to capture scripted prey agents
in a torus-shaped grid world. Because of the tension be-
tween individual and team behaviors, multiple modes of
behavior can be useful, and thus the effect of modular neu-
ral networks is also explored. Results demonstrate that
fitness rewarding individual behavior is superior to fitness
rewarding team behavior, despite being applied to a coop-
erative task. However, the use of networks with multiple
modules allows predators to discover intelligent behavior,
regardless of which type of objectives are used.

1 Introduction
Evolutionary algorithms mimic real life evolution to de-

velop solutions to difficult problems. Such algorithms al-
low teams of agents to develop complex, specialized be-
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havior in evolutionary robotics, video games, and other
agent-based simulations.

Past research has studied the effects of selection pres-
sures [27], coevolution [[17, 28], modular neural networks
[19} 20], and multiple objectives [[18| 24] in the evolution
of complex agent behavior, but none of this research stud-
ies all at once. This paper explores how these concepts
work in tandem. Various combinations of different types
of selection (using multiple objectives) and different num-
bers of network output modules show how these compo-
nents interact in the evolution of cooperative behavior.

The concept of selection pressures in this research
stems from prior research focusing on the rewarding of
individual vs. team behavior [27]. For instance, if agents
were part of a basketball team and their goal was to score
as many points as possible, individual selection would
reward each individual player based on the number of
points that the individual scored, while team selection
would reward each individual player based on the num-
ber of points that the entire team scored. So if the whole
team performed poorly, but the individual player being as-
sessed performed comparatively well, individual selection
would grant that player higher fitness, while team selec-
tion would grant lower fitness.

Multiple objectives are applied with the use of Pareto-
based multiobjective optimization [4]. This framework
allows both individual and team fitness functions to be
used, thus going beyond the simple either/or comparison
explored previously [27]. One goal of this research is to
compare and contrast the effects of various types of selec-
tive pressures (individual, team, and both).



Studying the effects of modular networks is another
goal. Networks with multiple output modules can more
easily generate multimodal behavior [19, 20]. Such mod-
ules can also make up for bad sensors [20], and similarly,
this paper shows that these modules can also make up
for bad fitness functions, allowing success for a team of
agents even with less effective selection pressures.

This research utilizes cooperative coevolution, with
separate and distinct sub-populations for each of the
evolved agents. The sub-populations are evolved together,
allowing them to develop specialized teamwork behav-
iors. This is in contrast to past research [[19], which used
multimodal networks with homogeneous teams.

The next Section (2) describes related work and some
background information that is relevant to this research.
Section [3] describes the specifics of the predator/prey do-
main used. Section [] describes the components of the
evolutionary algorithm used. Section [5]describes the ex-
perimental setup, while Section [6] provides and analyzes
the results of the experiments. Section [/|discusses inter-
esting discoveries as well as some ideas for future experi-
ments. Finally, SectionB] summarizes and concludes.

2 Background

This research tests the effects of different selective pres-
sures, multiple objectives, and modular networks on co-
operatively coevolved agent behavior in a predator/prey
domain. Each of these individual components has been
studied in domains requiring intelligent agent behavior
before, but they have not all been combined in one study.

Some of the most relevant past research explored the
connections between the evolution of team work, different
types of team composition, and different types of selec-
tion pressures [6} [27]. Specifically the effects of individ-
ual vs. team selection were explored using heterogeneous
and homogeneous teams. One major finding was that het-
erogeneous teams performed poorly in cooperative tasks,
but did better with individual selection. However, only
single-objective evolution was used in these experiments,
and teams were selected from a single population rather
than separate isolated populations. Both of these distinc-
tions have a meaningful impact in this paper.

Many domains have multiple objectives, so it is natural
to apply Pareto-based evolutionary methods [4]. How-

ever, it is still common to use single objectives instead,
even if this means creating a complicated fitness func-
tion that takes various different components into account
[17, 16]. However, most team tasks have objectives
that measure individual performance as well as objectives
that measure team performance, which begs the ques-
tion of which combination of such objectives will lead
to the best results. Although the merits of individual
vs. team selection with multiple objectives have not been
directly studied before, researchers are increasingly ap-
plying multiobjective approaches to the kind of agent-
based domain (mostly video games) that this paper fo-
cuses on [18, 24} (19, 20]].

Some of this work has also focused on how to develop
multimodal agent behavior using both multiple objectives
and modular neural network controllers [19, 20|]. There
are many different concepts of modularity that are rele-
vant to the evolution of neural networks [3} 10} 25} 20].
This research utilizes networks with explicit output mod-
ules that can be selected by an agent on each time step.
This technique has been applied in situations similar to
the predator/prey domain used in this paper (Section [3):
teams of homogeneous agents were evolved to alternately
attack/flee a scripted vulnerable/threatening opponent in
a domain called Fight or Flight [19], as were skilled Ms.
Pac-Man controllers that could both catch edible ghosts
and flee threatening ghosts [20]. The need for multimodal
behavior in these domains came from the need to han-
dle different dynamics when enemy agents switched roles
(attack vs. flee and catch vs. flee). In the predator/prey
domain of this paper, the need for multimodal behavior
emerges from the tension between selfish and cooperative
actions, which may be promoted in different ways by dif-
ferent types of fitness functions.

Because this paper coevolves separate sub-populations
that contribute members to a single cooperating team, it
is possible for the available fitness functions to influence
each sub-population differently. Therefore, the teams in
this paper are heterogeneous, in contrast to those from the
Fight or Flight study [19]. However, the previously men-
tioned research indicating that heterogeneous teams from
a single population perform poorly in cooperative tasks
[6 27] does not apply to these teams, because selecting
individual team members from specific sub-populations
allows them to specialize in a way that actually promotes
cooperation [[7, 115} 13} [14]].



Such cooperation is necessary for a team of evolved
predator agents to capture fleeing prey agents in the do-
main described next.

3 Predator/Prey Domain

Predator/prey scenarios have been used by researchers
in many ways [7, 17, 23} I8, 28]. A survey by Stone
and Veloso [22] describes many variants of the simple
predator/prey domain. Additionally, there are more com-
plex domains that are essentially extensions of the preda-
tor/prey dynamic, such as the previously mentioned Fight
or Flight domain [19]] and Ms. Pac-Man [20]. However,
even in a basic predator/prey domain, agents must exhibit
intelligent cooperative behavior to succeed.

The predator/prey domain of this paper is a torus-
shaped grid world comprised of three predator agents at-
tempting to catch two prey agents. The torus shape allows
agents to wrap around from one edge of the world to the
opposite edge. This design allows for infinite movement
within a finite space. Consequently, even though the grid
world has a fixed size the agents are always allowed to
move in any direction. This makes catching the prey a
difficult task for predator agents, as prey cannot be cor-
nered or walled in.

Distance in the grid world is measured by Manhattan
Distance. The grid world itself consists of a 100 by 100
space square grid where agents each occupy a space; thus,
the maximum horizontal or vertical distance from one
agent to another is 50, and the maximum diagonal dis-
tance is 100. Agents can be located in the same space
simultaneously, and if this is the case for a predator and a
prey agent then the predator has caught the prey and the
prey disappears. The domain also has a time limit of 1,000
time steps, where one time step is a single action for all
agents (all actions happen simultaneously). The available
actions are up, down, left, and right movements, as well
as a null action (staying still).

Each predator wants to maximize the number of prey
it catches, but rewarding only this result will not be suc-
cessful against competent prey. Therefore, use of other
shaping objectives is common. The objectives in this pa-
per are loosely based on Rawal et al. [[17], except that the
complicated single objective from that work was split into
simple components for multiobjective optimization.

Predators must work together in order to herd and cap-
ture prey. Selfishly chasing the prey generally leads to
all agents going in circles around the torus. The success
of the individual at least partially relies on the success of
the team and the development of complex specialization.
Predators develop jobs as valuable members of the team.
Some common roles that emerge in successful teams are
blocker, herder, and aggressor. The blockers do not move
very much but just align themselves at a distance with the
side to side movement of the more aggressive predators so
that they can force the prey to run toward the blocker. The
herders work to keep the prey in front of the aggressors
by running parallel to the prey’s direction of movement,
so that is does not slip by to one side. The job of the ag-
gressor is to simply close the gap on the prey as quickly
as it can.

Though simple to describe, success in this domain is
not trivial, which is why it has been widely studied by
so many researchers. Therefore, sufficiently sophisticated
methods are needed to evolve agents worth studying for
this domain. The evolutionary methods used in this paper
are described next.

4 Evolutionary Algorithm

Predator agents were evolved using Modular Multi-
objective Neuro-Evolution of Augmenting Topologies
(MM-NEAT [20]])), which combines the multiobjetive
evolutionary algorithm Non-Dominated Sorting Genetic
Algorithm-IT (NSGA-II [4]) and standard NEAT [21].
MM-NEAT also allows for the evolution of networks with
multiple output modules. MM-NEAT has been extended
in this paper to support cooperative coevolution of sepa-
rate sub-populations.

4.1 Multiobjective Evolution

When evolving intelligent agents, researchers typically
use a single objective, but the objective is often com-
plex and consists of several components. It is simpler
and generally more effective to specify multiple objec-
tives. Pareto-based multiobjective optimization provides
a principled way of using multiple objectives that can dis-
cover trade-offs between objectives that are not attainable
by the common alternative of using a weighted sum. Even



in comparison with single objectives that are not weighted
sums [17], the Pareto-based approach makes objectives
easier to define, and can also help evolution avoid local
optima [11l]. This approach depends on the concepts of
Pareto Dominance and Pareto Optimality:

Pareto Dominance: Assuming a maximization prob-
lem, vector ¥ = (vy,...,v,) dominates vector & =
(w1, ..., up) iff

1.Vie{l,...,n} :v; > u;,and

2.3 ed{l,...,n} v > uy.

Each vector is a collection of objective scores that an
agent received during evaluation.

Pareto Optimality: A set of points A C F is Pareto
optimal iff it contains all points such that VZ € A: =35 €
F such that ¢/ dominates Z. The points in .4 are non-
dominated, and make up the non-dominated Pareto front
of F.

The above definitions indicate that one agent is better
than (i.e. dominates) another agent if it is strictly better
in at least one objective and no worse in the others. The
best agents are not dominated by any other agents, and
make up the Pareto front of the search space. The next
best individuals are those that would be in a recalculated
Pareto front if the actual Pareto front were removed first.
Layers of Pareto fronts can be defined by successively re-
moving the front and recalculating it for the remaining
individuals. Solving a multiobjective optimization prob-
lem involves approximating the first Pareto front as well
as possible.

The multiobjective optimization algorithm used in this
work is Non-Dominated Sorting Genetic Algorithm-II
(NSGA-II [4]) which uses (p + ) elitist selection favor-
ing individuals in higher Pareto fronts (i.e. closer to the
true Pareto front) over those in lower fronts. In the (u+ \)
paradigm, a parent population of size p is evaluated, and
then used to produce a child population of size A. Selec-
tion is performed on the combined parent and child pop-
ulation to give rise to a new parent population of size .
NSGA-II typically uses pu = A.

When performing selection based on which Pareto
layer an individual occupies, a cutoff is often reached such
that the layer under consideration holds more individuals
than there are remaining slots in the next parent popula-
tion. These slots are filled by selecting individuals from
the current layer based on a metric called crowding dis-
tance, which encourages the selection of individuals in

less-explored areas of the trade-off surface between ob-
jectives.

By combining the notions of non-dominance and
crowding distance, a total ordering of the population is
obtained: individuals in different layers are sorted based
on the dominance criteria, and individuals in the same
layer are sorted based on crowding distance. The result-
ing comparison operator for this total ordering is also used
by NSGA-II: Child populations are derived from parent
populations via binary tournament selection based on this
comparison operator.

Applying NSGA-II to a problem results in an approx-
imation to the true Pareto front. This approximation set
potentially contains multiple solutions, which must be an-
alyzed in order to determine which solutions fulfill the
needs of the user. In this paper, the primary objective of
interest is the number of prey captured. However, NSGA-
I is indifferent as to how solutions are represented. In
this paper, NSGA-II was used to evolve artificial neural
networks to control the predators. The process of evolv-
ing these networks is called neuroevolution.

4.2 Neuroevolution

Neuroevolution is the use of evolutionary algorithms to
evolve artificial neural networks [5]. The evolved net-
works can be used to control agents in sequential decision
making tasks by feeding in sensory input on every time
step and interpreting the output for each time step as an
action. This approach has been useful in many domains
(24} 120% 27, 7,126, 9]

The specific algorithm used in this work is a variant of
Neuro-Evolution of Augmenting Topologies (NEAT [21])
known as Modular Multiobjective NEAT (MM-NEAT
[20]). MM-NEAT combines the selection mechanism of
NSGA-II with the network representation of NEAT, and
adds additional features discussed in Section NEAT
evolves artificial neural networks with arbitrary topolo-
gies. The networks begin with empty hidden layers and
fully connected inputs and outputs, then evolution adds
hidden neurons and new (potentially recurrent) links grad-
ually via mutation in a process known as complexification.
Mutations can also change the weights of existing links.

Furthermore, every new link and neuron introduced by
mutation is given a unique innovation number to identify
it. The genotype that encodes each neural network stores



these innovations linearly in a consistent order across all
members of the population. NEAT can perform effi-
cient topological crossover by aligning genotypes based
on these innovation numbers.

Standard NEAT has been used to solve many challeng-
ing problems, but the resulting networks only define sin-
gle control policies. The next section describes how MM-
NEAT allows networks to have multiple policies, encour-
aging multimodal behavior.

4.3 Modular Networks

Some of the networks in this paper can have multiple out-
put modules. Each such module defines a different con-
trol policy. Arbitration between modules is discovered
using special preference neurons that allow evolution to
discover how to use the modules.

An output module is a collection of all output neurons
needed to define the agent’s behavior. These neurons are
called policy neurons. Each module also has one prefer-
ence neuron. Each module’s preference neuron outputs
the network’s relative preference for using that module.
Whenever inputs are presented to the network, the mod-
ule whose preference neuron output is the highest is used
to define the output of the network.

For example, the domain of this work requires 5 out-
puts to designate the behavior of an agent. Let us assume
a given network has 2 modules. Then the network has
12 outputs: 5 policy neurons and 1 preference neuron for
Module 1, and 5 policy neurons and 1 preference neuron
for Module 2. Whenever the output of Preference Neu-
ron 1 is higher than the output of Preference Neuron 2,
the 5 policy neurons of Module 1 define the behavior of
the agent. Otherwise, the policy neurons of Module 2 are
used.

It is important for evolution to have the freedom to dis-
cover its own task division in the predator/prey domain
due to the complex relationship between catching prey
and closing in on the prey, and finding the right balance
between the two. This means that an agent can have one
specialized job as a part of the team at one time, and it can
have completely different specialization at another time,
and the system develops these behavioral responses situa-
tionally.

Support for preference neuron networks is one of the
major innovations of MM-NEAT, but previous work with

MM-NEAT only ever evolved a single population. MM-
NEAT is extended in this work to support cooperative co-
evolution of multiple sub-populations as described next.

4.4 Cooperative Coevolution

Coevolution is when the fitness of agents depends on other
evolved agents. There are several models of coevolution,
but the one used in this paper is cooperative coevolution
with distinct sub-populations [15} [7]]. Specifically, each
team of agents is created by taking each team member
from a separate sub-population, which makes it easier for
specific team members to specialize into specific roles [2].

The coevolutionary process groups each genotype with
random genotypes from the other populations to form dif-
ferent randomized teams. Having each genotype partici-
pate in several randomized teams addresses the structural
credit-assignment problem [1] and ensures a more reli-
able evaluation of each individual. The structural credit-
assignment problem arises when the success of a team
could be the result of improved individual behavior or
improved team behavior, and it is difficult to ascertain
the source of the success. Consequently, it is uncertain
how to best reward any particular individual vs. the entire
team for the outcome. Having all individuals participate
in multiple random teams means that individual’s perfor-
mance can be assessed more accurately. So, a bad agent is
less likely to profit from getting lucky by being randomly
placed with a good team and achieving good scores since
this is unlikely to happen repeatedly.

Noisy evaluations are also relevant to this research,
partly because the starting locations of agents are random-
ized. It is therefore even more important that each geno-
type be evaluated multiple times to assure reliable results.

5 Experimental Setup

Predators are evolved against scripted prey agents using
several combinations of individual and team fitness func-
tions, and numbers of output modules. The input sen-
sors for the predators and most parameter settings remain
constant across experimental runs. These details are dis-
cussed below.



5.1 Agent Behavior

Predators were allowed to do nothing (as an action) in
addition to the four movement actions (up, down, left,
right), but prey were restricted to the four movement ac-
tions. Predators could better act as the blocker when they
did not have to learn to jump back and forth between the
same location and could instead just stand still. This de-
sign decision is in line with previous work [[17].

Predators act in accordance with their controlling neu-
ral networks. In contrast, prey controllers are hard-coded
to flee the nearest predator. These controllers first find
which predator is the closest in terms of Manhattan Dis-
tance, then they calculate which of the four actions would
result in the prey being the farthest possible distance from
the current closest predator. The controller breaks ties
randomly (another source of evaluation noise). So, if
there are predators who tie as the closest in distance, the
chosen predator is randomized among the set of the ty-
ing closest predators. Additionally, if multiple available
movement locations are equally distant from the closest
predator, then the specific movement is randomly chosen.

The static controller for the prey was simple to imple-
ment, but difficult for predators to learn to capture. There-
fore, effective fitness functions are needed in order for the
predators to succeed.

5.2 Fitness Functions

The goal of the predator teams is to maximize the num-
ber of prey captured across all evaluations, which means
consistently capturing both prey within the time limit of
each evaluation. However, because the scripted prey be-
havior is fairly challenging (Section [5.1)), predator agents
evolved using only an objective that takes captures into
account will not have a fitness gradient to follow when
they fail to catch any prey, which is likely in the early
stages of evolution when neural network genotypes are
both simple and random. Therefore, predators need at
least some reward for almost capturing a prey agent. Such
shaping can be accomplished with a distance fitness func-
tion, based on minimizing the final Manhattan Distances
between predators and prey. Such concerns have influ-
enced components of a single-objective fitness functions
used by others [[17} 28]].

This paper splits these types of objectives up into sepa-

rate fitness functions, and also establishes individual and
team versions of these objectives to evaluate a variety of
different types of selection pressures. Predators can be
evaluated by how many prey they personally catch, or
the number the team catches. They can also be evaluated
based on how close they are to prey when an evaluation
ends, or by how close all predators are to the prey. Finally,
multiobjective optimization makes it easy to combine all
of these objectives as well.

Using only individual fitness functions applies differ-
ent types of selective pressures than using only team fit-
ness functions. Team fitness functions would seem more
likely to promote team behavior, but perhaps some degree
of selfish individual selection can actually lead to better
overall group behavior. The concept of group selection is
quite controversial in the realm of naturalistic evolution
[12], but in a computer simulation it is straight-forward
to test the effectiveness of such an approach without any
concern as to its biological plausibility. Lastly, combin-
ing both types of selection seems as though it would be
likely to provide the benefits of both. However, multi-
objective optimization methods like NSGA-II are known
to struggle when the number of objectives grows, since a
higher-dimensional space is more likely to contain non-
dominated points, making it difficult to make meaningful
distinctions between candidate solutions. It is thus not
obvious which scheme will be most effective in evolving
effective behavior in the predator/prey domain.

The specific fitness functions used are defined as fol-
lows. First recall that each evaluation contains three
predators and two prey. Then define ¢; ; to be 1 if preda-
tor ¢ caught prey j within the time limit, and 0 otherwise.
Also, define d; ; to be the final Manhattan Distance from
predator ¢ to prey j, or 0 if prey j was ever caught by any
predator. These definitions are used to define the fitness
functions used in this paper.

The IndCatch objective defines how many prey are
caught by a particular predator. Note that it is technically
possible for two predators to catch the same prey simulta-
neously. For predator 4,

IndCatch(i) = ¢; 0 + ¢ 1 (M

A single objective, called TeamCatch, is also defined for
the whole team to indicate how many prey were caught by



predators overall.

1

TeamCatch = ()

max
—i1€{0,1,2}
Jj=0

Ci,j
The IndDist objective is defined for each combination of
one predator and one prey. If a predator cannot catch a
prey, it should at least decrease its distance from that prey
by the end of the evaluation. The best possible score in
this objective is zero, indicating that the prey was eaten.
Specifically, for predator ¢ with respect to prey 7,

IndDist(i,j) = —di’j 3)

The team equivalent of this objective is TeamDist, which
is actually a set of objectives defined for each prey agent.
The objective measures the average distance of all preda-
tors from one prey agent. Specifically, for prey j,

2
Zi:o dw'

TeamDist(j) = — 3

(€]

These individual fitness functions were combined in
three ways summarized in Table [I| The three specific
groups of fitness functions used focus either entirely on
individual selection, entirely on team selection, or on
both:

1. Individual: There are three total fitness functions.
For the population corresponding to predator i, the
fitness functions used are IndCatch(#), IndDist(3, 0),
and IndDist (4, 1).

2. Team: There are three total fitness functions.
Each population uses the same fitness functions:
TeamCatch, TeamDist(0), and TeamDist(1).

3. Both: There are six total fitness functions. For
the population corresponding to predator ¢, the
fitness functions used are IndCatch(%), IndDist(, 0),
IndDist(é, 1), TeamCatch, TeamDist(0), and
TeamDist(1). Note that the final three of these do
not actually depend on 3.

In summary, the number of prey caught is the primary
metric of interest, but distance provides a fitness gradient
when no prey are caught. Specifically, we care most about
the number of prey caught by the team, but it is unclear

Table 1: Objectives For Each Sub-population
| “IndCatch[IndDist[TeamCatch TeamDist

Individual Selection||1 2 0 0
Team Selection 0 0 1 2
Both Selection 1 2 1 2

This table shows the number of fitness functions for each indi-
vidual sub-population in each type of experiment. These num-
bers are the same for experiments where networks have either
one or two modules. Ind stands for Individual Selection, and
Team stands for Team Selection. Catch indicates the maximiza-
tion of the number of prey caught. Dist indicates the minimiza-
tion of distances between predators and prey (two distinct fitness
functions of this type measure distances to the two distinct prey
agents). The specific fitness functions used are defined in Equa-

tions [T} 21 3] and [}

whether rewarding team behavior, individual behavior, or
both is the best way to achieve this goal. The use of modu-
lar networks can also have an influence on a team’s ability
to achieve this goal.

5.3 Numbers of Modules

Each experimental setup in this paper utilizes either one
or two modules, as shown in Figure [I| Preliminary ex-
periments were also conducted with more modules, but
results indicated that any additional modules beyond two
ended up being unnecessary, and were mostly ignored.

Networks with one module (1M) are standard neural
networks with a single behavior developed through evo-
lution. Networks with two modules (2M) use preference
neurons to switch between output modules, as described
in Section 4.3] Although these network types have dif-
ferent output configurations, they both use the same input
sensors, described next.

5.4 Sensors

Each predator’s sensors are the normalized x and y dis-
tance offsets (in the range [-1.0, 1.0]) to each other agent.
Since the predators are given the ability to sense team-
mates, the sensors include every agent (not just the prey),
except the sensing agent. There is also a single constant
bias input which always has a value of one. This means
that there will be twice the number of sensor values as
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Figure 1: Starting Network Configurations. Both network
configurations used by evolved predators are shown. New pop-
ulations start with no hidden neurons, but each output is fully
connected to all inputs. [(a)] Networks with one module have out-
puts for moving up, down, left, and right, as well as an output
for staying still. Whenever inputs are fed into the network, the
agent it controls picks the action with the highest output. The
inputs are the x/y offsets to each other agent in the grid world,
followed by a constant bias of 1.0. The agent inputs are grouped
into predators and prey, and sorted according to proximity in
terms of Manhattan Distance. [(b)] Networks with two modules
use the same inputs, but have two distinct output modules. Each
module has all of the outputs possessed by the one module net-
work, as well as a preference neuron. For each set of inputs,
the two module network will pick the action from the module
whose preference neuron output is higher. The additional mod-
ule makes learning multimodal behavior easier.

there are sensed agents, plus one for the bias, for a total of
nine sensor values (x/y coordinates for each of two prey,
and two predators besides the sensing predator). The sen-
sor values become inputs into the network on each time
step.

The sensors are organized first by type (predator vs.
prey) of agent being sensed, and secondly in ascending
order of distance to each agent of that type. So within
the predator and prey groups, the sensors begin with the
closest agent in terms of overall Manhattan Distance, fol-
lowed by the second closest, and so on. Also, when a prey
is eaten, the distance to that prey from every other agent is
set to the maximum distance (sensor value of 1.0), mean-
ing that the other prey instantly becomes the priority.

5.5 Experimental Parameters

Combinations of the three different types of selection
pressures discussed (Individual, Team, and Both) and

the two different numbers of modules (1M or 2M) yield
six experiments total. These experimental runs have the
following labels: Individual 1M, Individual2M, Team1M,
Team2M, Both1M, Both2M.

The following settings were consistent across exper-
iments. Each experimental setup was run 30 times.
There were three predators chosen from separate sub-
populations, and two scripted prey. Every predator from
each sub-population is evaluated in exactly ten randomly
chosen teams. Since each team results in a separate
trial, this design decision mitigates both the effects of
noisy evaluations, and makes fitness values more reliable
in the face of the structural credit assignment problem.
Ten trials/teams were found to be enough to provide re-
liable evaluations for each genotype. Each experimen-
tal run lasts for 300 generations. A population size of
= A = 200is used, so selection is performed across 400
individuals. When offspring are produced, each network
link has a 5% chance of Gaussian perturbation. Addi-
tionally, each network has a 40% chance of having a new
random link added between existing neurons, and a 20%
chance of a new neuron being spliced along a randomly
chosen link. Finally, topological network crossover has
a 50% chance of being applied when offspring are pro-
duced, with parents chosen via binary tournament selec-
tion. These settings lead to the results discussed next.

6 Results

The results show that two modules is better than one mod-
ule and that individual selection and combination setups
are better than the purely team selection setup. Results
during evolution are presented, followed by a discussion
of the resulting behaviors.

6.1 Evolution

Fitness plots of the average number of prey caught by
the champion of each generation across 30 runs for each
method are shown in Figure 2| By comparing all 1M ex-
periments to each other, results indicate that team selec-
tion is significantly inferior to other selection methods for
this task (p < 0.05). Curiously enough, the performance
of individual selection and the combination of individual
and team selection were almost identical, and greatly su-
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Figure 2: Average Number of Prey Caught For Each Ap-
proach. Average prey caught by champions across 30 runs of
each method are plotted by generation with 95% confidence in-
tervals shown. All 2M variants are superior to their 1M coun-
terparts. Among 1M configurations, Both1M and Individual1M
are superior to Team1M.

perior to team selection. However, the final 1M perfor-
mance is slightly short of perfect even for these two suc-
cessful approaches.

Every 2M variant is superior to its 1M counterpart. The
starkest difference is for team selection, whose 1M vari-
ant is awful, but whose 2M variant is great (significantly
better, p < 0.05). Every single predator team with two
modules was able to reach a successful ceiling, captur-
ing nearly all the prey on nearly every trial. The teams
were even able to reach this point of optimization incred-
ibly quickly, becoming almost completely leveled out by
generation 150. Although the final performance levels of
2M runs are not significantly different from Individual IM
and Both1M, they are better, and differences are signifi-
cant (p < 0.05) for roughly the first 100 generations.

The reasons for the success of 2M methods can be un-
derstood by analyzing the behaviors of evolved champi-
ons, discussed next.

6.2 Behavior

Behaviors of the champion agents are observed to see
what kinds of behaviors predators develop to capture
the prey. Additionally, for the 2M champions, move-
ment paths were colored in a accordance with the mod-
ules being used in order to identify how behaviors were

split up across modules. Videos of representative behav-
iors can be seen at southwestern.edu/~schrum2/
SCOPE/predprey.html.

The ability to easily switch between a more selfish Ag-
gressor module and a more cooperative Support module
is what allows 2M runs to succeed with all fitness combi-
nations. In contrast, 1M champion teams tend to confine
their specializations more to specific sub-populations and
are unable to switch between different modes of behavior,
which makes them less flexible, although IndividuallM
and BothlM teams eventually overcome this restriction
because of effective selection pressures.

Some complexity is witnessed in the behavior of agents
in even the worst of runs (i.e. Team1M). In both good and
bad runs, all predators focus on the closest prey agent at
the same time. One predator usually behaves as a blocker.
This behavior is essential in a torus world, because the
prey needs to be surrounded and trapped in order to be
captured. Successful teams included at least one agent
which had this specialization. This predator typically
moved in just a vertical or a horizontal line while the other
predators performed the more complicated movements to
force the prey to run towards/into the blocker.

Other predators herd the prey towards the blocker. This
herding behavior typically developed in each of the preda-
tor populations to at least some extent, though it was sel-
dom the primary specialization. Rather, herding behavior
was more of an auxiliary behavior that could be used as
needed, at least within the more skilled populations, but it
is still true that one predator will typically focus on herd-
ing behaviors more than the other two. This job includes
chaotic, often side to side movements in relation to the
targeted prey. Essentially, the herder moves parallel to the
path of the prey’s movement so that it will not escape in
that direction. Simultaneously, this predator closes in on
the prey whenever the movement does not sacrifice any
of its herding positioning surrounding the prey. So, this
second predator is a mix between the blocker and an ag-
gressor, which is discussed next.

The role of aggressor is the most prominent one across
runs, likely because this behavior most obviously im-
proves the distance fitness functions for an agent exhibit-
ing this role. For some teams, this predator simply takes
the movement action that will get it as close to the tar-
get prey as possible. In skilled populations, the aggressor
is able to switch to a herding behavior when necessary,
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and will try to pick movements that help with the herding
process (parallel to the prey).

None of these specializations are strictly tied to one
population. Predators can sometimes learn to take on dif-
ferent specializations at different times, as the need arises.
For example, a predator could sometimes take on the roll
of the blocker, and at other times be the aggressor. Such
behavior is particularly prominent in agents with two pref-
erence modules.

The most prominent result from the fitness scores is the
poor performance of Team1M. Therefore, it is not surpris-
ing that Team 1M included more observable bad behaviors
than the other setups. The most clearly visible example is
that the predator team did not evolve specializations quite
as strongly. These teams of predators did not develop par-
ticularly focused blocking agents, as the closest thing to a
blocker was much more active in attempting to capture the
prey, which made it harder for the other predators to herd
and definitively surround the prey. Instead of confining
the prey, these teams often let it slip through their grasp,
which would then cause them to scatter before eventually
homing in on the prey again.

In contrast, the Individual1M teams had clear blockers
that made movements that corresponded to its teammates
and stopped or slowed down a lot more often to allow its
teammates to re-position and re-surround the prey. Since
Team1M’s closest thing to a blocker was moving so much,
predators had to have more precise timing as they were
closing in so that the prey wouldn’t slip by them. This ex-
tra need for precise timing was avoided altogether by the
Individual 1M teams which ensured capture much more
often with clear blocking behavior.

The best teams consisted of agents with two preference
modules, and the reasons for their success can be seen
in their behavior, and how they use their modules. The
predators regularly switch between the two modules in
useful ways in every final champion 2M team. The two
modules also appear to be dedicated to similar roles in
each 2M run. One module is used when the predators are
attempting to surround, herd, or block the prey, so this
module will be referred to as the Support module. The
other module is used when the predators are aggressively
chasing the prey, so it will be called the Aggressive mod-
ule. The Support module enacts long stretches of hori-
zontal or vertical movements, without many changes in
direction, since the predator is using the module to re-
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position. In contrast, the Aggressive module is used more
often when the predators are closing in on the prey, so the
predators’ movements are as chaotic as those of the prey,
with many changes in direction.

7 Discussion and Future Work

The results clearly demonstrate the effectiveness of us-
ing multiple modules. This is due to the ability of agents
to utilize two distinct behaviors whenever they are most
helpful, specifically the effectiveness of having both self-
ish and cooperative behaviors at various times for this
task. The predators were able to use one module (Sup-
port module) to re-position, surround, and be the blocker
(supportive behavior) and one module (Aggressor mod-
ule) to close in aggressively on the prey for the capture
(selfish behavior).

Interestingly, the supportive behaviors may still lead di-
rectly to individual fitness increases. Whether a predator
is chasing the prey, or blocking it, there will come a point
when multiple predators are equi-distant from the prey.
At this point, due to how prey agents randomly break ties
when fleeing the nearest predator, it is up to chance to
determine whether the aggressive or supportive predator
captures the prey.

Results showed that one module team selection was
quite ineffective for this task. Although, it is interesting
that this ineffectiveness is overcome through the usage of
multiple modules. Figure 2] shows that even though team
fitness functions are by far the least successful, they are
still able to perform incredibly well when the networks are
given two modules. It seems that with only one module
available, team fitness functions will push agent behav-
ior in a direction that makes the more complex blocking
and herding behaviors more difficult to develop. How-
ever, given two modules, behaviors that provide only a
marginal benefit early in evolution can be retained in a
less used module until they have time to flourish in later
generations. The multimodal network capitalizes on only
the positive effects from each of the selection pressures
by not activating that particular behavior when it could
perform better with the other one.

However, it is surprising that team fitness, which would
seemingly focus on supportive behaviors and cooperation,
would be less effective at developing blocking and herd-



ing behaviors. The TeamDist fitness functions are per-
haps to blame, because in assessing the whole team they
are encouraging all predators to be close to the prey at
the end of an evaluation. As a result, any blocking agents
that were distant from the prey at the end of the evalua-
tion would have lower fitness. Furthermore, predators that
are close to the prey would be punished by teammates at-
tempting to take on a blocking role, which would encour-
age even more aggressive behavior overall. In contrast,
the IndDist functions at least allow aggressors to not be
punished by the behavior of blockers. Furthermore, since
a population that tends toward blocking early in evolution
will only be competing within its own niche, such a pop-
ulation would be pushed less strongly toward aggressive
behaviors. There would still be a slight pressure toward
such behaviors because of the IndDist functions, but since
blocking behavior does eventually lead to more prey being
caught, and therefore optimal IndDist values, a lessening
of this selection pressure could provide enough genera-
tions for effective cooperation to emerge before blocking
behavior is replaced with aggressive behavior.

Modular networks have already been frequently stud-
ied in conjunction with multiple objectives [[19} 20], but
it would be interesting to see more work done combin-
ing these attributes with coevolution and various selec-
tion pressures, as is done in this paper. In particular, it
would be interesting to see if the results regarding team
selection are strongly tied to the specific fitness functions
used in this paper, or are more general. Additionally, the
effects of coevolution could be further studied by using
competitive coevolution to also evolve the prey, in hopes
of establishing an evolutionary arms race, as was done by
Rawal et al. [17]. An alternative way of expanding this
research would be to expand it to more complex domains,
such as Ms. Pac-Man. Although MM-NEAT has already
been used to generate successful Ms. Pac-Man behavior, it
has not yet been used to generate behavior for the ghosts.
Since the ghosts function as a team, cooperative coevolu-
tion could be applied. Furthermore, the role of different
selection pressures would likely be important.

It would also be interesting to try a similar experiment
with and without the sensing of teammates. This paper al-
lowed the sensing of teammates, but past research 28] in-
dicates that lacking such sensors can sometimes improve
performance. According to this work, predators can coor-
dinate effectively despite not sensing each other through
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stigmergy, meaning that predators are able to take actions
that complement the behaviors of fellow teammates by
observing how the prey agents respond to all predators.
That is, if a prey agent is approaching a predator despite
being close, it stands to reason that it is being chased in
that direction by a fellow predator. We have conducted
our own preliminary experiments that indicate the poten-
tial of stigmergy within our experimental setup as well.
Another means of changing the sensor configuration to
adjust the challenge of the domain would be to organize
the sensors with respect to particular agents rather than in
terms of which agents are closest.

8 Conclusion

The predator/prey task is an interesting domain requiring
teamwork and specialization. Results demonstrate that
multimodal networks are extremely helpful. Addition-
ally, this research indicates the superiority of individual
selection in a teamwork oriented domain when coevolu-
tion across distinct sub-populations is used. This research
also demonstrates the potential benefit of a mixture of in-
dividual and team selection. A combination is not only
more flexible, but could also be the key to the full opti-
mization of agent behavior. The usage of multiple objec-
tives, multiple modules, coevolution, and the situationally
appropriate selection pressures could be useful in more
complex domains in the future.
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