
ε-Lexicase Selection for Regression

William La Cava
∗

Department of Mechanical
and Industrial Engineering

University of Massachusetts
Amherst, MA 01003

wlacava@umass.edu

Lee Spector
School of Cognitive Science

Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

Kourosh Danai
Department of Mechanical
and Industrial Engineering

University of Massachusetts
Amherst, MA 01003

danai@engin.umass.edu

ABSTRACT
Lexicase selection is a parent selection method that consid-
ers test cases separately, rather than in aggregate, when per-
forming parent selection. It performs well in discrete error
spaces but not on the continuous-valued problems that com-
pose most system identification tasks. In this paper, we de-
velop a new form of lexicase selection for symbolic regression,
named ε-lexicase selection, that redefines the pass condition
for individuals on each test case in a more effective way. We
run a series of experiments on real-world and synthetic prob-
lems with several treatments of ε and quantify how ε affects
parent selection and model performance. ε-lexicase selection
is shown to be effective for regression, producing better fit
models compared to other techniques such as tournament se-
lection and age-fitness Pareto optimization. We demonstrate
that ε can be adapted automatically for individual test cases
based on the population performance distribution. Our ex-
periments show that ε-lexicase selection with automatic ε
produces the most accurate models across tested problems
with negligible computational overhead. We show that be-
havioral diversity is exceptionally high in lexicase selection
treatments, and that ε-lexicase selection makes use of more
fitness cases when selecting parents than lexicase selection,
which helps explain the performance improvement.1

Keywords
genetic programming, system identification, regression, par-
ent selection

1. INTRODUCTION
Genetic programming (GP) traditionally tests programs

∗corresponding author
1Note: this is a corrected version of the original GECCO ’16
conference paper. Equations 2 and 5 have been corrected to
indicate that the pass conditions for individuals in ε-lexicase
selection are defined relative to the best error in the popu-
lation on that training case, not in the selection pool.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20 - 24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908898

on many test cases and then reduces the performance into
a single value that is used to select parents for the next
generation. Typically the fitness f of an individual is quan-
tified as its aggregate performance over the training set T =
{(yt,xt)}Nt=1, using e.g. the mean absolute error (MAE),
which is quantified for individual program i ∈ P as:

f(i, T) =
1

N

∑
t∈T

|yt − ŷt(i,xt)| (1)

where x ∈ RD represents the variables or features, the tar-
get output is y and ŷ(i,x) is the program’s output. As a
result of the aggregation of the absolute error vector e(i) =
|y − ŷ(i,x)| in Eq. (1), the relationship of ŷ to y is rep-
resented crudely when choosing models to propagate. As
others have pointed out [12], aggregate fitnesses strongly re-
duce the information conveyed to GP about i relative to the
description of i′s behavior available in e(i), thereby under-
utilizing information that could help guide the search. In
addition, many forms of aggregation assume all tests are
equally informative (although there are exceptions, includ-
ing implicit fitness sharing which is discussed below). There-
fore individuals that are elite (i.e. have the lowest error in
the population) for portions of e are not selected if they per-
form poorly in other regions and therefore have a higher f .
By providing equivalent selection pressure with respect to
test cases, GP misses the opportunity to identify programs
that perform especially well in certain regions of the prob-
lem, most importantly those portions of the problem that
are more difficult for the process to solve. We expect GP
to solve problems through the induction, propagation and
recombination of building blocks (i.e. subprograms) that
provide partial solutions to our desired task. Hence we wish
to select those programs that imply a partial solution by
performing uniquely well on subsets of the problem.

Several methods have been proposed to reward individuals
with uniquely good test performance, such as implicit fitness
sharing (IFS) [19], historically assessed hardness [10], and
co-solvability [11], all of which assign greater weight to fit-
ness cases that are judged to be more difficult in view of the
population performance. Perhaps the most effective parent
selection method recently proposed is lexicase selection [7,
27]. In particular, “global pool, uniform random sequence,
elitist lexicase selection”[27], which we refer to simply as lex-
icase selection, has outperformed other similarly-motivated
methods in recent studies [6, 17]. Despite these gains, it
fails to produce such benefits when applied to continuous
symbolic regression problems, due to its method of select-
ing individuals based on test case elitism. We demonstrate

ar
X

iv
:1

90
5.

13
26

6v
1

 [
cs

.N
E

]
 3

0
M

ay
 2

01
9

http://dx.doi.org/10.1145/2908812.2908898

in this paper that by re-defining the test case pass condi-
tion in lexicase selection using an ε threshold, the benefits
of lexicase selection can be achieved in continuous domains.

We begin by describing the ε-lexicase selection algorithm
in §2 and discuss how it differs with respect to standard
lexicase selection. Several definitions of ε are proposed. We
briefly review related work in §3 and describe the relation
between lexicase selection and multiobjective methods. The
experimental analysis is presented in §4, beginning with a
parameter variation study of ε and ending with a comparison
of several GP methods on a set of real-world and symbolic
regression problems. Given the results, we propose future
research directions in §5 and summarize our findings in §6.

2. ε LEXICASE SELECTION
Lexicase selection is a parent selection technique based

on lexicographic ordering of test (i.e. fitness) cases. Each
parent selection event proceeds as follows:

1. The entire population is added to the selection pool.

2. The fitness cases are shuffled.

3. Individuals in the pool with a fitness worse than the
best fitness on this case among the pool are removed.

4. If more than one individual remains in the pool, the
first case is removed and 3 is repeated with the next
case. If only one individual remains, it is the chosen
parent. If no more fitness cases are left, a parent is
chosen randomly from the remaining individuals.

As evidenced above, the algorithm is quite simple to im-
plement. In this procedure, test cases act as filters, and a
randomized path through these filters is constructed each
time a parent is selected. Each parent selection event re-
turns a parent that is elite on at least the first test case used
to select it. In turn, the filtering capacity of a test case is di-
rectly proportional to its difficulty since it culls the individ-
uals from the pool that do not do the best on it. Therefore
selective pressure continually shifts to individuals that are
elite on cases that are not widely solved in the population.
Because each parent is selected via a randomized ordering of
test cases and these cases perform filtering proportional to
their difficulty, individuals are pressured to perform well on
unique combinations of test cases, which promotes individu-
als with diverse performance, leading to increased diversity
observed during evolutionary runs [7].

Lexicase selection was originally applied to multimodal [27]
and “uncompromising” [7] problems. An uncompromising
problem is one in which only exact solutions to every test
case produce a satisfactory program. For those types of
problems, using each case as a way to select only elite indi-
viduals is well-motivated, since each test case must be solved
exactly. In regression, exact solutions to test cases can only
be expected for synthetic problems, whereas real-world prob-
lems are subject to noise and measurement error. With re-
spect to the lexicase selection process, continuously-valued
errors are problematic, due to the fact that individuals in the
population are not likely to share elitism on any particular
case unless they are identical equations. On regression prob-
lems, the standard lexicase procedure typically uses only one
case for each parent selection, resulting in poor performance.

We hypothesize that lexicase selection performs poorly on
continuous errors because the case passing criteria is too

stringent in continuous error spaces. For individual i to
pass case t, lexicase requires that et(i) = e∗t , where e∗t is
the best error on that test case in the pool. To remedy
this shortcoming, we introduce ε-lexicase selection, which
modulates the pass condition on test cases via a parameter
ε, such that only individuals outside of a predefined ε are
filtered in step 3 of lexicase selection. We experiment with
four different definitions of ε in this paper. The first two, εe
and εy, are absolute thresholds that define the pass condition
pt(i) of program i on test case t as follows:

εe : pt(i) = I (et(i) < e∗t (1 + εe)) (2)

εy : pt(i) = I (et(i) < εy) (3)

Here I is the indicator function that returns 1 if true and 0
if false, and e∗t is the best error on case t in P . As shown
in Eq. (2), εe defines pt(i) relative to e∗t , and therefore is
always passed by at least one individual in P . Conversely, εy
(Eq. (3)) defines pt(i) relative to the target value yt, meaning
that ŷt(i) must be within ±εy of yt to pass case t. In this way
εy provides no selection pressure if there is not an individual
in the population within adequate range of the true value for
that case.
εe and εy are the simplest definitions of ε-lexicase selec-

tion, but have two distinct disadvantages: 1) they have to be
specified by the user, and 2) their optimal values are prob-
lem dependent. An absolute ε is unable to provide a desired
amount of filtering in each selection event since it is blind
to the population’s performance. Ideally ε should automat-
ically adapt to take into account the values of et(i) across

P , denoted et ∈ R|P |, so that it can modulate its selectivity
based on the difficulty of t. A common estimate of difficulty
in performance on a fitness case is variance [22]; in this re-
gard ε could be defined according to the standard deviation
of et, i.e. σ(et). Given the high sensitivity of σ to outliers,
however, we opt for a more robust estimation of variability
by using the median absolute deviation (MAD) [21] of et,
defined as

MAD(et) = λ(et) = medianj
(
|etj −mediank(etk)|

)
(4)

We use Eq. (4) in the definition of two ε values, εeλ and εyλ,
that are defined analogously to εe and εy as:

εeλ : pt(i) = I (et(i) < e∗t + λ(et)) (5)

εyλ : pt(i) = I (et(i) < λ(et)) (6)

An important consideration in parent selection is the time
complexity of the selection procedure. Lexicase selection has
a theoretical worst-case time complexity of O(|P |2N), com-
pared to a time complexity of O(|P |N) for tournament selec-
tion. Although clearly undesirable, this worst-case complex-
ity is only reached if every individual passes every test case
during selection; in practice [7], lexicase selection normally
uses a small number of cases for each selection and there-
fore incurs only a small amount of overhead. We quantify
the wall clock times for our variants of lexicase compared to
other methods in §4.4.

3. RELATED WORK
Although to an extent the ideas of multiobjective opti-

mization apply to multiple test cases, they are qualitatively
different: objectives are the defined goals of a task, whereas

test cases are tools for estimating progress towards those ob-
jectives. Objectives and test cases therefore commonly exist
at different scales: symbolic regression often involves one or
two objectives (e.g. accuracy and model conciseness) and
hundreds or thousands of test cases. One example of using
test cases explicitly as objectives occurs in Langdon’s work
on data structures [16] in which small numbers of test cases
(in this case 6) are used as multiple objectives in a Pareto
selection scheme. Other multi-objective approaches such as
NSGA-II [2], SPEA2 [33] and ParetoGP [26] are used com-
monly with a small set of objectives in symbolic regression.
The “curse of dimensionality” prevents the use of objectives
at the scale of typical test case sizes, since most individuals
become nondominated2, leading to selection based mostly on
expensive diversity measures rather than performance. Scal-
ing issues in many-objective optimization are reviewed in [9].
In lexicase selection, parents are guaranteed to be nondom-
inated with respect to the fitness cases. Pareto strength in
SPEA2 promotes individuals based on how many individu-
als they dominate, and similarly lexicase selection increases
the probability of selection for individuals who solve more
cases and harder cases (i.e. cases that are not solved by
other individuals) and decreases for individuals who solve
fewer or easier cases.

A number of GP methods attempt to affect selection by
weighting test cases based on population performance. In
non-binary Implicit Fitness Sharing (IFS) [13], the fitness
proportion of a case is scaled by the performance of other in-
dividuals on that case. Similarly, historically assessed hard-
ness scales error on each test case by the success rate of
the population [10]. Discovery of objectives by clustering
(DOC) [12] clusters test cases by population performance,
and thereby reduces test cases into a set of objectives for
search. Both IFS and DOC were outperformed by lexicase
selection on program synthesis and boolean problems in pre-
vious studies [6, 17]. Other methods attempt to sample a
subset of T to reduce computation time or improve per-
formance, such as dynamic subset selection [3], interleaved
sampling [4], and co-evolved fitness predictors [22]. Unlike
these methods, lexicase selection begins each selection with
the full set of training cases, and allows selection to adapt
to program performance on them.

The conversion of a model’s real-valued fitness into dis-
crete values based on an ε threshold has been explored in
other research; for example, Novelty Search GP [18] uses a
reduced error vector to define behavioral representation of
individuals in the population. This paper proposes it for the
first time as a solution to applying lexicase selection effec-
tively to regression.

As a behavioral-based search driver, lexicase selection be-
longs to a class of GP systems that attempt to incorporate
a program’s behavior explicitly into the search process, and
as such shares a general motivation with recently proposed
methods such as Semantic GP [20] and Behavioral GP [14],
despite differing strongly in approach. Although lexicase is
designed with behavioral diversity in mind, recent studies
suggest that structural diversity can also significantly affect
GP performance [1].

4. EXPERIMENTAL ANALYSIS
2Program i1 dominates i2 if fj(i1) ≤ fj(i2) ∀j and fj(i1) <
fj(i2) for at least one j (f is minimized).

We define the problems used to assess ε-lexicase selection
here, as well as a set of existing GP methods used for com-
parison. We then analyze and tune the value of εe and εy
on an example problem and discuss the results. Finally we
test all of the methods on each problem and summarize the
findings.

4.1 Problems
Three synthetic and three real-world problems were cho-

sen for benchmarking different GP methods. The first prob-
lem is the housing data set [5] that seeks a model to es-
timate Boston housing prices. The second problem is the
Tower problem3 that consists of 15-minute averaged time se-
ries data taken from a chemical distillation tower, with the
goal of predicting propelyne concentration. The third prob-
lem, referred to as the Wind problem [15], features data col-
lected from the Controls and Advanced Research Turbine, a
600 kW wind turbine operated by the National Wind Tech-
nology Center. The data set consists of time-series mea-
surements of wind speed, control actions, and acceleration
measurements that are used to predict the bending moment
measured at the base of the wind turbine. In this case so-
lutions are formulated as first-order discrete-time dynamic
models of the form ŷ = f(x,xt−1, ŷt−1). The fourth and
fifth problem tasks are to estimate the energy efficiency of
heating (ENH) and cooling (ENC) requirements for various
simulated buildings [30]. The last problem is the UBall5D
problem4 which has the form

y =
10

5 +
∑5
i=1 (xi − 3)2

The Tower problem and UBall5D were chosen from the bench-
mark suite suggested by White et. al. [32]. The dimensions
of all data sets are shown in Table 1. Aside from UBall5D
which has a pre-defined test set [31], the problems were di-
vided 70/30 into training and testing sets. These sets were
normalized to zero mean, unit variance and randomly par-
titioned for each trial.

4.2 Compared Methods
Our definitions of ε in §2 yield four methods which we an-

alyze in our experiments, abbreviated as Lex εe, Lex εy, Lex
εeλ, Lex εyλ. We compare these variants to standard lexicase
selection (denoted as simply Lex) and standard tournament
selection of size 2 (denoted Tourn). To control for the ef-
fect of selection in GP, we also compare these methods to
random parent selection, denoted Rand Sel.

In addition to these methods, many state-of-the-art sym-
bolic regression tools leverage Pareto optimization [26, 23,
1] and/or age layering [8] to improve symbolic regression
performance. With this in mind, we also compare ε-lexicase
selection to age-fitness Pareto survival (AFP) [24], in which
each individual is assigned an age equal to the number of
generations since its oldest ancestor was created. Each gen-
eration, a new individual is introduced to the population as
a means of random restart. Selection for breeding is random,
and during breeding a number of children are created equal
to the overall population size. Survival is conducted accord-
ing to the environmental selection algorithm in SPEA2 [33],
as in [25].

3http://symbolicregression.com/?q=towerProblem
4UBall5D is also known as Vladislavleva-4.

Table 1: Symbolic regression problem settings.

Setting Value

Population size 1000
Crossover / mutation 80/20%
Program length limits [3, 50]
ERC range [-1,1]
Generation limit 1000
Trials 30
Terminal Set {x, ERC, +, −, ∗, /, sin, cos, exp, log}
Elitism keep best

Problem Dimension Training Cases Test Cases

Housing 14 354 152
Tower 25 2195 940
Wind 6 4200 1800
ENH 8 538 230
ENC 8 538 230
UBall5D 5 1024 5000

Every method uses sub-tree crossover and point mutation
as search operators. For each method, we include a parame-
ter hill climbing step each generation that perturbs the con-
stants in each equation with Gaussian noise and saves those
changes that improve the model’s MAE (Eq. (1)). The com-
plete code for these tests is available online5.

4.3 Parameter tuning
In the cases of εe and εy, the user must specify fixed pa-

rameter values. For both cases we tested the set of param-
eter values {0.01, 0.05, 0.10, 0.50, 1.0, 5.0, 10.0} over 15
trials. For εe, these values mean that an individual’s et(i)
must be within 1% to 1000% of e∗t to pass test t. For εy,
ŷt(i) must be within that range of yt. The parameter study
was conducted on the Tower symbolic regression problem,
the details of which are shown in Table 1. It is important to
note that the optimal value of these parameters is problem-
dependent, although the best values from the parameter tun-
ing experiment were used for all problems in the subsequent
sections.

The test fitness results for different values of εe are shown
in Figure 1. The best results are obtained for εe = 5.0. The
number of cases used during selection are shown in Figure 2.
This figure matches our intuition about the sensitivity of
case usage to εe: larger tolerances for error use more cases
in each selection event. For εe = 1.0, we observe steady
growth in case usage, suggesting population convergence.
The diversity of the population’s behavior also grows with
εe, as shown by the unique output vectors, i.e. unique ŷ, plot
in Figure 3. For subsequent experiments we use εe = 5.0
which corresponds to the lowest median test fitness for the
Tower problem.

The test fitness results for different values of εy are shown
in Figure 4. From εy = 1.0 and upward, we note that Lex εy
uses all fitness cases for nearly every selection event, caus-
ing long run-times and suggesting that selection has become
random. As we show in §4.4, Rand Sel performs similarly
to εy > 0.50 on this problem, further supporting the idea of
selection pressure loss. We set εy = 0.10 for the subsequent
experiments, again corresponding to the lowest median test
fitness.

4.4 Results
We summarize the experimental results in Table 2. The

5https://www.github.com/lacava/ellen

0.2

0.25

0.3

0.35

0.4

0.01 0.05 0.10 0.50 1.00 5.00 10.00
ε

e

Tower

B
e
s
t
F

it
n
e
s
s
 (

te
s
t)

Figure 1: Best-of-run fitness on the test set for var-
ious levels of εe.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Generation

M
e
d
ia

n
 #

 c
a
s
e
s
 u

s
e
d
 f
o
r

s
e
le

c
ti
o
n

Tower

ε
e
 = 0.01

ε
e
 = 0.05

ε
e
 = 0.10

ε
e
 = 0.50

ε
e
 = 1.00

ε
e
 = 5.00

ε
e
 = 10.00

Figure 2: Number of test cases used for selection
for various levels of εe. All cases of εe ≤ 0.50 have a
median of one case each generation.

0 100 200 300 400 500 600 700 800 900 1000
86

88

90

92

94

96

98

100

Generation

%
 U

n
iq

u
e
 O

u
tp

u
t
V

e
c
to

rs

Tower

ε
e
 = 0.01

ε
e
 = 0.05

ε
e
 = 0.10

ε
e
 = 0.50

ε
e
 = 1.00

ε
e
 = 5.00

ε
e
 = 10.00

Figure 3: Unique output vectors for various levels
of εe.

https://www.github.com/lacava/ellen

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.01 0.05 0.10 0.50 1.00 5.00 10.00
ε

y

Tower

B
e
s
t
F

it
n
e
s
s
 (

te
s
t)

Figure 4: Best-of-run fitness the test sets for various
levels of εy.

median best fitness of all runs on the test sets, the mean
ranking of each method across problems, and the total run-
time to conduct the trials for each method is shown. Figure 6
shows the distributions of MAE (Eq. (1)) on the test sets for
the best-of-run models. We also visualize the best fitness on
the training set each generation in Figure 7.

Figure 7 shows that most of the differences in learning on
the training set occurs in the first 250 generations, although
in all cases Lex εeλ or εyλ maintains the lowest final training
set error. Across all problems, the median best fitness on the
test sets is obtained by either Lex εeλ or Lex εyλ. According
to the pairwise tests annotated in Table 2 , Lex εeλ or Lex εyλ
perform significantly better than Rand Sel, Tourn, Lex and
Lex εe on 6/6 problems, better than AFP on 5/6 problems,
and better than Lex εy on one problem. In terms of the
mean ranking across tests (Table 2), Lex εeλ and Lex εyλ
rank the best, followed by Lex εy, AFP, Lex εe, Tourn, Lex,
and Rand Sel, in that order. We conduct a Friedman’s test
of the mean rankings across problems, the intervals of which
are shown in Figure 5. This comparison indicates that the
performance improvement of Lex εeλ and Lex εyλ relative
to Tourn, Lex, and Rand Sel is significant across all tested
problems. The intervals show partial overlap with respect
to AFP and Lex εe that may warrant further experiments.

The median total trial times reported in Table 2 indicate
that ε-lexicase selection takes nearly the same time to finish
as tournament selection in practice, despite its higher theo-
retical worst-case time complexity. On average, Lex εy, εe,
εyλ and εeλ report wall clock times that are 96%, 82%, 120%,
and 120% the duration of tournament selection, respectively,
giving a negligible average of 105%. Rand Sel finishes the
fastest due to no selection, and AFP finishes the slowest,
most likely due to the overhead of computing dominance
relations for P and, in the case of non-dominated popula-
tions, densities in objective space [33]. It is possible that the
tournament selection-based version of AFP [24] would have
a lower run-time, although it may have difficulty scaling to
more than two objectives [25].

Lex takes only 41% of the time of tournament selection to
finish, which is explained by its case usage. The number of
fitness cases used by lexicase selection variants for four of the
problems is shown in Figure 8. Note that Lex uses only one

−2 0 2 4 6 8 10
Mean Treatment Ranking

Lex ε
eλ

Lex ε
yλ

Lex ε
e

Lex ε
y

Lex

AFP

Tourn

Rand Sel

Figure 5: Multiple comparison of the Friedman test
of mean rankings across all problems, with approxi-
mate intervals of significance. Two treatments being
compared are significantly different if their intervals
do not overlap. Signficant differences from Lex εeλ
(shown in blue) are denoted in red.

test case during parent selection due to the rarity of elitism
in continuous error space; the fact that parents are chosen
based on single cases also explains its poor performance.
On the Tower and Wind problems, ε-lexicase variants show
small increases in case usage over the course of evolution.
Lex εe uses the highest number of cases on Tower and Wind,
but the lowest number of cases for ENH and ENC among
ε-lexicase variants. On ENH and ENC, a higher percent
of total cases are used during selection compared to Tower
and Wind, indicating the problem-dependent nature of GP
population structures and performance. Lex εyλ and Lex
εeλ use nearly the same numbers of cases for selection on
each problem, which suggests that the performance of λ-
based ε is robust to being defined relative to e or y (Eq. (5)
and (6)). Lex εe and εy, on the other hand, vary strongly
across problems in terms of their case usage, again indicating
their parametric sensitivity.

We observe exceptionally high population diversity for the
lexicase methods, which supports observations in [7]. We
measure diversity by the percent of unique ŷ among pro-
grams in P , plotted as an average across problems in Fig-
ure 9. Interestingly, the diversity is higher using lexicase
than random selection, which indicates lexicase selection’s
ability to exploit behavioral difference to increase diversity
beyond the search operator effects. The differential perfor-
mance between Rand Sel and ε-lexicase selection shown in
Table 2 demonstrates that the gains afforded by ε-lexicase
selection are not due to simply increased randomization, but
rather the promotion of individuals with exceptionally good
performance on diverse orderings of test cases.

5. DISCUSSION
ε-lexicase selection is a global pool, uniform random se-

quence, non-elitist version of lexicase selection [27] that per-
forms well on symbolic regression problems according to the
experimental analysis presented in the last section. “Global
pool” refers to the fact that each selection event begins with
the whole population (step 1 in §2). Smaller pool sizes have

Table 2: Comparison of median best-of-run MAE on the test sets and total trial time. The best fitness results
are highlighted. Significant improvements with respect to each method are denoted by a− h according to the
method labels. Significance is defined as p < 0.05 according to a pairwise Wilcoxon rank-sum test with Holm
correction. The median total time to run 30 trials of each algorithm is shown on the right.

Method Housing Tower Wind ENH ENC UBall5D
Mean
Rank

Median Total Trial
Time (hr:min:s)

aRand Sel 0.469 0.458 0.463 0.288 0.272 d 0.128 7.83 00:07:25
bTourn a 0.408 a 0.402 ad 0.397 a 0.207 a 0.236 ad 0.113 6.33 00:24:37
cAFP abd 0.354 abd 0.319 abd 0.381 abd

f 0.138 abd
f 0.171 abd 0.094 4.00 01:09:18

dLex a 0.402 ab 0.355 a 0.419 a 0.210 a 0.237 0.142 6.83 00:10:11
eLex εy

abd
f 0.325 abcd 0.260 ad 0.386 abcd

f 0.113 abcd
f 0.150 abcd

f 0.079 3.17 00:23:44
fLex εe

a 0.386 abcd 0.263 ad 0.386 abd 0.165 abd 0.193 abcd 0.082 4.50 00:20:24
gLex εyλ

abcd
f 0.321 abcd

f 0.239 abd 0.378 abcd
ef 0.101 abcd

f 0.137 abcd 0.080 1.67 00:29:26
hLex εeλ

abcd
f 0.309 abcd

f 0.233 abd
ef 0.381 abcd

f 0.106 abcd
f 0.141 abcd

fg 0.078 1.67 00:29:37

0.25

0.3

0.35

0.4

0.45

0.5

R
a
n
d
 S

e
l

T
o
u
rn

A
F
P

L
e
x

ε
y

ε
e

ε
y

λ
ε

e
 λ

Housing

B
e
s
t
F

it
n
e
s
s
 (

T
e
s
t)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
a
n
d
 S

e
l

T
o
u
rn

A
F
P

L
e
x

ε
y

ε
e

ε
y

λ
ε

e
 λ

Tower

0.36

0.38

0.4

0.42

0.44

0.46

0.48

R
a
n
d
 S

e
l

T
o
u
rn

A
F
P

L
e
x

ε
y

ε
e

ε
y

λ
ε

e
 λ

Wind

0.05

0.1

0.15

0.2

0.25

0.3

R
a
n
d
 S

e
l

T
o
u
rn

A
F
P

L
e
x

ε
y

ε
e

ε
y

λ
ε

e
 λ

ENH

0.15

0.2

0.25

0.3

0.35

R
a
n
d
 S

e
l

T
o
u
rn

A
F
P

L
e
x

ε
y

ε
e

ε
y

λ
ε

e
 λ

ENC

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

R
a
n
d
 S

e
l

T
o
u
rn

A
F
P

L
e
x

ε
y

ε
e

ε
y

λ
ε

e
 λ

UBall5D

Figure 6: Best-of-run fitness statistics on the test sets for all problems.

0 500 1000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Housing

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(T
ra

in
in

g
)

Generation
0 500 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Tower

Generation
0 500 1000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Generation

Wind

Rand Sel

Tourn

AFP

Lex

Lex ε
y

Lex ε
e

Lex ε
yλ

Lex ε
eλ

0 500 1000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ENH

Generation
0 500 1000

0.1

0.15

0.2

0.25

0.3

0.35

ENC

Generation
0 500 1000

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

UBall5D

Generation

Figure 7: Best-of-run fitness each generation on the training sets for all problems. The bars indicate the
standard error across all runs.

0 500 1000
0

5

10

15

20

25
Tower

M
e

d
ia

n
 #

 t
e

s
t

c
a

s
e

s
 u

s
e

d
 f

o
r

s
e

le
c
ti
o

n

Generation
0 500 1000

0

5

10

15

20
Wind

M
e

d
ia

n
 #

 t
e

s
t

c
a

s
e

s
 u

s
e

d
 f

o
r

s
e

le
c
ti
o

n

Generation

0 500 1000
0

100

200

300

400

500

600

Generation

M
e

d
ia

n
 #

 t
e

s
t

c
a

s
e

s
 u

s
e

d
 f

o
r

s
e

le
c
ti
o

n

ENH

Lex

Lex ε
y

Lex ε
e

Lex ε
yλ

Lex ε
eλ

0 500 1000
0

50

100

150

200

250

300

350

400

450
ENC

M
e

d
ia

n
 #

 t
e

s
t

c
a

s
e

s
 u

s
e

d
 f

o
r

s
e

le
c
ti
o

n

Generation

Figure 8: Number of fitness cases used in selection
for different lexicase methods. The bars indicate the
standard error.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100
All Problems

%
 U

n
iq

u
e

 O
u

tp
u

t
V

e
c
to

rs

Generation

Rand Sel

Tourn

AFP

Lex

Lex ε
y

Lex ε
e

Lex ε
yλ

Lex ε
eλ

Figure 9: Mean population diversity as a function of
generation for each method over all problems. The
bars indicate the standard error.

yet to be tried, but could potentially improve performance
on certain problems that historically respond well to relaxed
selection pressure. Pools could also be defined geographi-
cally [28]. “Uniform random sequence” refers to the shuf-
fling procedure for cases in step 2 (§2), and, as is the case
with pool size, other orderings of test cases have yet to be re-
ported in literature. One could consider biasing the ordering
of cases in some ways that could select parents with certain
desired properties. In [17], Liskowski attempted to use de-
rived objective clusters as cases in lexicase selection, but
found that this actually decreased performance. Still, there
may be a form of ordering or case reduction that improves
lexicase selection’s performance over random shuffling.

The ordering of the test cases that produce a given par-
ent also contains potentially useful information that could
be used by the search operators in GP. Helmuth [6] ob-
served that lexicase selection creates large numbers of dis-
tinct behavioral clusters in the population (an observation
supported by Figure 9). In that regard, it may be advan-
tageous, for instance, to perform crossover on individuals
selected by differing orders of cases such that their offspring
are more likely to inherit subprograms with unique partial
solutions to a given task. On the other hand, one could ar-
gue for pairing individuals based on similar selection cases,
to promote niching and minimize the destructive nature of
subtree crossover.

6. CONCLUSIONS
We find that ε-lexicase selection, especially with auto-

matic threshold adaptation (εeλ and εyλ), performs the best
on the regression problems studied here in comparison to
the other GP methods studied. The performance in terms of
test fitness is promising, as well as the measured wall clock
times, which are comparable to tournament selection. In
addition to introducing a non-elitist version of lexicase that
defines test case pass conditions using an ε threshold, we
demonstrated that ε can be set automatically based on the
dispersion of error across the population on a test case. We
observed that the definition of this threshold is insensitive
to the elite error offset e∗t . The results should motivate the
use of ε-lexicase selection as a parent selection technique for
symbolic regression, and should motivate further research
using non-elitist lexicase selection methods for continuous-
valued problems in GP.

7. ACKNOWLEDGMENTS
The authors would like to thank Thomas Helmuth, Nic

McPhee and Bill Tozier for their feedback as well as members
of the Computational Intelligence Laboratory at Hampshire
College. This work is partially supported by NSF Grant
Nos. 1068864, 1129139 and 1331283. Any opinions, find-
ings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation. This
work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by NSF grant
number ACI-1053575 [29].

8. REFERENCES
[1] A. R. Burks and W. F. Punch. An Efficient Structural

Diversity Technique for Genetic Programming. In
GECCO, pages 991–998. ACM Press, 2015.

[2] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
Fast Elitist Non-dominated Sorting Genetic Algorithm
for Multi-objective Optimization: NSGA-II. In PPSN
VI, volume 1917, pages 849–858. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000.

[3] C. Gathercole and P. Ross. Dynamic training subset
selection for supervised learning in Genetic
Programming. In PPSN III, number 866 in Lecture
Notes in Computer Science, pages 312–321. Springer
Berlin Heidelberg, Oct. 1994.

[4] I. Gonçalves and S. Silva. Balancing learning and
overfitting in genetic programming with interleaved
sampling of training data. In EuroGP 2013, pages
73–84, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[5] D. Harrison and D. L. Rubinfeld. Hedonic housing
prices and the demand for clean air. Journal of
environmental economics and management,
5(1):81–102, 1978.

[6] T. Helmuth. General Program Synthesis from
Examples Using Genetic Programming with Parent
Selection Based on Random Lexicographic Orderings
of Test Cases. PhD thesis, UMass Amherst, Jan. 2015.

[7] T. Helmuth, L. Spector, and J. Matheson. Solving
Uncompromising Problems with Lexicase Selection.
IEEE Transactions on Evolutionary Computation,
PP(99):1–1, 2014.

[8] G. S. Hornby. ALPS: The Age-layered Population
Structure for Reducing the Problem of Premature
Convergence. In GECCO, pages 815–822, New York,
NY, USA, 2006. ACM.

[9] H. Ishibuchi, N. Tsukamoto, and Y. Nojima.
Evolutionary many-objective optimization: A short
review. In IEEE CEC 2008, pages 2419–2426.
Citeseer, 2008.

[10] J. Klein and L. Spector. Genetic programming with
historically assessed hardness. GPTP VI, pages 61–75,
2008.

[11] K. Krawiec and P. Lichocki. Using Co-solvability to
Model and Exploit Synergetic Effects in Evolution. In
PPSN XI, pages 492–501. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[12] K. Krawiec and P. Liskowski. Automatic derivation of
search objectives for test-based genetic programming.
In Genetic Programming, pages 53–65. Springer, 2015.

[13] K. Krawiec and M. Nawrocki. Implicit fitness sharing
for evolutionary synthesis of license plate detectors.
Springer, 2013.

[14] K. Krawiec and U.-M. O’Reilly. Behavioral
programming: a broader and more detailed take on
semantic GP. In GECCO, pages 935–942. ACM Press,
2014.

[15] W. La Cava, K. Danai, L. Spector, P. Fleming,
A. Wright, and M. Lackner. Automatic identification
of wind turbine models using evolutionary
multiobjective optimization. Renewable Energy, 87,
Part 2:892–902, Mar. 2016.

[16] W. B. Langdon. Evolving Data Structures with
Genetic Programming. In ICGA, pages 295–302, 1995.

[17] P. Liskowski, K. Krawiec, T. Helmuth, and L. Spector.
Comparison of Semantic-aware Selection Methods in

Genetic Programming. In GECCO Companion, pages
1301–1307, New York, NY, USA, 2015. ACM.

[18] Y. Mart́ınez, E. Naredo, L. Trujillo, and
E. Galván-López. Searching for novel regression
functions. In IEEE CEC 2013, pages 16–23. IEEE,
2013.

[19] R. I. B. McKay. An Investigation of Fitness Sharing in
Genetic Programming. The Australian Journal of
Intelligent Information Processing Systems,
7(1/2):43–51, July 2001.

[20] A. Moraglio, K. Krawiec, and C. G. Johnson.
Geometric semantic genetic programming. In PPSN
XII, pages 21–31. Springer, 2012.

[21] T. Pham-Gia and T. L. Hung. The mean and median
absolute deviations. Mathematical and Computer
Modelling, 34(7-8):921–936, Oct. 2001.

[22] M. Schmidt and H. Lipson. Coevolution of Fitness
Predictors. IEEE Transactions on Evolutionary
Computation, 12(6):736–749, Dec. 2008.

[23] M. Schmidt and H. Lipson. Distilling free-form natural
laws from experimental data. Science,
324(5923):81–85, 2009.

[24] M. Schmidt and H. Lipson. Age-fitness pareto
optimization. In GPTP VIII, pages 129–146. Springer,
2011.

[25] M. D. Schmidt. Machine Science: Automated
Modeling of Deterministic and Stochastic Dynamical
Systems. PhD thesis, Cornell University, Ithaca, NY,
USA, 2011. AAI3484909.

[26] G. F. Smits and M. Kotanchek. Pareto-front
exploitation in symbolic regression. In GPTP II, pages
283–299. Springer, 2005.

[27] L. Spector. Assessment of problem modality by
differential performance of lexicase selection in genetic
programming: a preliminary report. In GECCO, pages
401–408, 2012.

[28] L. Spector and J. Klein. Trivial geography in genetic
programming. In GPTP III, pages 109–123. Springer,
2006.

[29] J. Towns, T. Cockerill, M. Dahan, I. Foster,
K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop,
D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and
N. Wilkens-Diehr. XSEDE: Accelerating Scientific
Discovery. Computing in Science and Engineering,
16(5):62–74, 2014.

[30] A. Tsanas and A. Xifara. Accurate quantitative
estimation of energy performance of residential
buildings using statistical machine learning tools.
Energy and Buildings, 49:560–567, 2012.

[31] E. Vladislavleva, G. Smits, and D. den Hertog. Order
of Nonlinearity as a Complexity Measure for Models
Generated by Symbolic Regression via Pareto Genetic
Programming. IEEE Transactions on Evolutionary
Computation, 13(2):333–349, 2009.

[32] D. R. White, J. McDermott, M. Castelli, L. Manzoni,
B. W. Goldman, G. Kronberger, W. Jaśkowski, U.-M.
O’Reilly, and S. Luke. Better GP benchmarks:
community survey results and proposals. Genetic
Programming and Evolvable Machines, 14(1):3–29,
Dec. 2012.

[33] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:

Improving the strength Pareto evolutionary algorithm.
ETH Zürich, Institut für Technische Informatik und
Kommunikationsnetze (TIK), 2001.

	1 INTRODUCTION
	2 Lexicase Selection
	3 Related Work
	4 Experimental Analysis
	4.1 Problems
	4.2 Compared Methods
	4.3 Parameter tuning
	4.4 Results

	5 Discussion
	6 Conclusions
	7 Acknowledgments
	8 References

