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ABSTRACT

Data stream processing systems have become ubiquitous in aca-
demic and commercial sectors, with application areas that include
financial services, network traffic analysis, battlefield monitoring
and traffic control. The append-only model of streams implies that
input data is immutable and therefore always correct. But in prac-
tice, streaming data sources often contend with noise (e.g., embed-
ded sensors) or data entry errors (e.g., financial data feeds) result-
ing in erroneous inputs and by implication, erroneous query results.
Many data stream sources (e.g., Reuters ticker feeds) issue “revi-
sion tuples” (revisions) that amend previously issued tuples (e.g.
erroneous share prices). A stream processing engine might reason-
ably respond to revision inputs by generating revision outputs that
correct previously emitted query results. We know of no stream
processing system that presently has this capability.

In this paper, we describe how a stream processing engine can be
extended to support revision processing via replay. Replay-based
revision processing techniques assume that a stream engine main-
tains an archive of recent data seen on each of its input streams.
These archives are then queried in response to a revision, with the
resulting tuples replayed through the system so as to generate cor-
rected query outputs. We first present the design and implemen-
tation of the revision processing engine for the Borealis stream
processing engine [1]. We then compare techniques for archiv-
ing streams to support replay, and then compare the performance
and overhead of two revision processing techniques that replay in-
put tuples to recompute and thereby revise previously output query
results. These experiments reveal scalability issues due to the over-
head required to maintain stream archives, and has motivated our
current research on using sampling and data summarization (e.g.,
histograms) to reduce the data that must be stored in a stream archive.
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1. INTRODUCTION

Stream processing systems have become ubiquitous in academic
[1,2, 4, 7] and commercial [18] sectors, with application areas that
include financial services, network traffic analysis, battlefield mon-
itoring and traffic control [3]. The append-only model of streams
implies that input data is immutable and therefore correct. But in
practice, streaming data sources often contend with noise (e.g., em-
bedded sensors) or data entry errors (e.g., financial data feeds) re-
sulting in erroneous inputs. So common are such errors in prac-
tice, that many ticker feeds (e.g. Reuters) issue revision tuples (or,
revisions) to amend previously issued tuples. For example, a revi-
sion might announce that the 2:00 price of $75/share for IBM that
was reported earlier should in fact have been reported as $72/share.
This is an example of a replacement revision (or, just replacement):
a revision that changes the value associated with a non-key field of
a tuple in the stream (in this case, Pri ce). A revision can also
be a deletion, which reports that a tuple that was previously issued
should not have been, or a late insertion, which reports a tuple that
should have been issued previously but wasn’t.!

Depending on the needs of the stream processing application,
a stream processing engine might respond to the IBM share price
revision in any of the following ways:

1. Ignore it.

2. Revise stored history: Modify any stream archive that recorded
the incorrect 2:00 price for IBM.

3. Revise previously emitted query results: Correct (by issuing
revisions) any streaming query result previously emitted by
the stream processing engine and invalidated by the revision.

The three options shown reflect an increasingly sophisticated and
complex response to a revision. The first option is what stream
processing engines we know of do by default. The second option
assumes that all streamed tuples are stored in a stream archive [6]
to enable ad hoc querying or to support high availability [11], and
that revisions are processed by modifying invalidated data in the
archive. For example, a system responding in this way to the re-
vision would ensure that any future query computation sees that
IBM’s price at 2:00 was $72. The third option not only modifies
the stream archive, but also revises previously emitted stream query
outputs generated from the original, incorrect quote. For example,
a system responding in this way to the revision would itself issue
a revision that corrects the hourly average for IBM from 2:00-2:59
that it previously emitted. From conversations with customers who
use stream processing engines (especially in financial services), we
have learned that the latter of the three options is often the sole ac-
ceptable response to a revision, but that it presently falls on stream

'A late insertion is sometimes referred to as an out-of-order tuple.



query application designers to ensure that revisions are handled
in this way. But leaving an application to process revisions adds
unnecessary complexity to the application, is error-prone and can
miss potential optimizations. Our work focuses on how a stream
processing engine can internally support revision processing.

In this paper, we consider replay-based techniques to revision
processing. Replay-based techniques process revisions by replay-
ing (i.e., reprocessing) all tuples that were originally processed with
the revised tuple so as to regenerate and revise the results originally
generated from these inputs. Our contributions are enumerated be-
low:

1. A performance comparison of replay-based revision process-
ing techniques: In Section 3, we introduce two replay-based
revision processing techniques and compare their performance
in Section 4.2.

2. Identification of an effective storage strategy for stream archives:
All replay-based techniques require maintaining an input stream

archive: a very large window of the most recently received
tuples on every input stream. In Section 4.1, we show that
horizontally partitioning is an effective strategy for maintain-
ing and querying an input stream archive.

3. Identification of stream characteristics which make replay-
based revision processing practical: We show in Section 4.2
that replay-based revision processing techniques do not scale
well to streams with high arrival rates because of the over-
head of inserting stream data into stream archives. This ob-
servation has motivated follow-up work on approximate revi-
sion processing (described in Section 4.3) which incurs lower
overhead at the expense of sacrificing some accuracy in re-
sponding to revisions.

The paper proceeds as follows. In Section 2, we present a set of
requirements that must be satisfied by any stream processing en-
gine for which these replay-based techniques would apply. We also
describe the Borealis stream processing engine [1] and show how
it was adapted to meet these requirements. In Section 3, we present
two different replay-based revision processing techniques. Then in
Section 4, we compare possible representations of stream archives
that are required to perform replay, and then compare the perfor-
mance and overhead of the two replay-based revision processing
techniques as implemented on Borealis. Finally, we discuss related
work in Section 5 and conclude in Section 6.

2. BACKGROUND

It is important to distinguish revisions (with which this paper is
concerned) from updates [8, 9]. Unlike updates, revisions are cor-
rections. That is, they invalidate previously processed inputs and
by implication, all query results that were produced from them.
On the other hand, updates do not invalidate previously processed
inputs but simply end the interval during which they were valid.
Consider Figure 1 as an example. Figure la shows the price of
IBM shares between 2:00 and 2:59 assuming a 2:00 quote that re-
ported a price of $75, and a 2:30 update that changed this price to
$72. Figure 1b shows the price of IBM shares between 2:00 and
2:59 assuming a 2:00 quote that reported a price of $75, and a 2:30
revision that corrected the 2:00 price to $72. Note that the average
price of IBM shares from 2:00 to 2:59 is $73.50 as the result of the
2:30 update, but $72.00 as the result of the 2:30 revision.

We begin in Section 2.1 by describing two classes of techniques
(replay-based and direct) for revision processing and show that
replay-based techniques are more generally applicable. Then in

2:00 2:30 2:59 Average price for
2:00 - 2:59
Update | |
$75 $72 $73.50
@
Average price for
2:00 2:30 2:59 2:00 — 2:59
Revision ! $72.00
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Figure 1. Updatesvs. Revisions

Section 2.2, we describe the generic functionality required of a
stream processing engine to process revision using replay, and then
in Section 2.3, describe how the Borealis stream processing en-
gine [1] was extended to meet this functionality.

2.1 Approachesto Revision Processing

There are two possible approaches to processing revisions:

1. replay-based approaches respond to a revision by reprocess-
ing (replaying) the sequence of input tuples used to generate
any of the query results invalidated by the revision, and

2. direct approaches respond to a revision by finding all query
results invalidated by the revision, and modifying these re-
sults to reflect the effects of the revision.

To illustrate, consider a continuous query over a stream of quotes
that reports the hourly average price of every stock on the hour.
In response to a revision to the 2:00 price of IBM stock, a replay-
based technique might recompute the 2:00-2:59 average price by
replaying all IBM quotes that were issued between 2:00 and 2:59
(while revising the 2:00 quote according to the revision). On the
other hand, a direct technique would look up the average IBM price
emitted for the 2:00-2:59 timeframe (as well as other data required
to revise this result, such as the number of quotes used to generate
that average), and adjust this result according to the revision. Both
approaches would then emit a revision reporting the correction of
the 2:00-2:59 average price of IBM.

The example above illustrates the potential advantage of the di-
rect approach; rather than reprocessing an hour’s worth of quotes, it
need only look up one average price computation and adjust it. But
while this approach is often advantageous for speed, it is not gen-
erally applicable to all stream queries. For example, a query that
reports an hourly maximum price for every stock cannot be cor-
rected using the direct approach if the revision applies to the price
that was previously reported as the maximum. In general, the direct
approach to revision processing is only applicable when a revision
can be used to correct previously output query results without re-
quiring the additional tuples that were used for their computation.
On the other hand, replay-based techniques enable revision pro-
cessing for any stream queries. Ideally, a stream processing engine
would use some combination of replay-based and direct approaches
to respond to revisions, depending on the queries involved. In this
paper, we focus our study exclusively on pure replay-based revision
processing techniques.

2.2 Requirementsfor Replay

For a stream processing engine to process revisions using a replay-
based approach, it must satisfy the following requirements:



1. Ordered and Keyed Streams: The tuples on any input stream
are processed in ascending order of some field of the stream
(the stream’s order field). Typically, this attribute is a times-
tamp that marks the time when the tuple was issued, but in
the absence of such a field, a stream processing engine can
add a timestamp field that marks the time when the tuple ar-
rived to the system. Note that there is NO requirement that
tuples be processed in the order that they arrive to the sys-
tem. Systems such as STREAM [2] and Borealis [1] employ
a buffering strategy at the edges of the system to reorder tu-
ples whose disorder, according to the order field, does not
exceed some declared threshold.

Every input stream must also have a declared set of attributes
which serve as a key for the tuples that arrive on the stream.
For example, a stream of stock quotes might be keyed by
Ti me and Synbol given that a given symbol will have a
single price at any given time. This key serves as an identifier
for tuples being revised.

2. Input Stream Archives: Input tuples from every input stream
must be stored so as to enable a stream processing engine
to replay a set of tuples through the system in response to
a revision. A stream archive for a given input stream acts
much like a very large window over the stream, maintaining
a set of the last 7 tuples to arrive on that stream, for some
declared threshold 7. Note that input stream archives are of-
ten maintained by stream processing engines (e.g., Stream-
Base [18]) to support high availability [11] and historical ad-
hoc queries. Thus in such systems, revision processing can
leverage these archives and be supported without substantial
changes to the architecture.

3. Deterministic Execution: For the result of replay to be mean-
ingful, a stream engine must have deterministic execution.
That is, given the same sequence of input tuples and set of
queries, a system should always produce the same query an-
swers. This precludes, for example, queries that timeout as
the output of such a query can vary depending on the differ-
ence in arrival times of two consecutive inputs on a stream.

Ordered streams are required to ensure that replayed tuples are
replayed in the order that they were originally processed. Keyed
streams are required for a revision to uniquely identify the input tu-
ple that it revises. Input stream archives are required as the source
of tuples that get replayed. Deterministic execution is required
to ensure that replay-based revision processing corrects only those
query outputs that are invalidated by a revision.

For simplicity, we assume in this paper that a replacement revi-
sion contains the incorrect value of the revised field as well as its
corrected value. Note that if the incorrect previously reported value
cannot be provided by the stream’s source, we would simply add
this value upon the revision’s entry into the system via a lookup on
the input stream archive. With an appropriate archive representa-
tion (see Section 4.1), such a lookup takes roughly 30 msec, which
is negligible compared to the time required to process a revision.

2.3 Boredlis

All of the revision processing techniques described in this pa-
per were implemented on top of Borealis [1]: a second-generation
distributed stream processing engine out of Brandeis, Brown, and
MIT. Borealis uses the boxes-and-arrows paradigm that is found
in most workflow systems to express continuous queries. Figure 2
illustrates the Borealis system model. In this Figure, a box (B;)
denotes a query operator and an arrow (or arc) between two boxes
represents the stream of data that is output from one box and sent
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Figure2: TheBorealis System Model

as input to the next. We refer to a workflow diagram that shows
one or more continuous queries over some set of input stream as a
query network. A path in a query network is a sequence of boxes
that are visited when traversing from an input stream to an output
stream (e.g., < B1, B2, Bz, Bg > in Figure 2).

Like other stream processing engines such as STREAM [2] and
TelegraphCQ [5], Borealis includes query operators that perform
filtering, transformation, aggregation, correlation and storage: Fil-
ter routes or filters incoming tuples according to predicates that
they satisfy; Map transforms individual tuples by adding, remov-
ing or adjusting the values of fields of incoming tuples; Aggregate
is a windowed aggregation operation that supports both SQL-like
row-based or range-based windows; and Join is a binary windowed
stream correlation operation.

We have modified the Borealis implementation by adding revi-
sion processing support to every operator, as well as modifying the
run-time system to meet the requirements for replay-based revision
processing described above. Ordered streams were guaranteed by
the input streams generated for our experiments (for the order field,
Ti me). Support for keyed streams was added by allowing keys
to be declared as part of the schema of each input stream. Input
stream archives were added to Borealis by adding Postgres tables
to maintain a recent history of tuples seen on all input streams.’
Deterministic execution was achieved by disallowing timeouts in
all queries supporting revision processing, and by globally times-
tamping input tuples across all streams in the order in which they
were processed so as to ensure that they can be processed in the
same order during replay.

3. REPLAY-BASED TECHNIQUES

All replay-based techniques respond to a revision by reprocess-
ing (i.e., replaying through the query network) all input tuples that
would have contributed to any query output to which the revision
applies. For replacements and deletions of some input tuple ¢, this
consists of all tuples that were involved in the same computations
as t. For late insertions of some tuple ¢, this consists of all tuples
that would have been involved in the same computations as ¢ had it
arrived “on time” (i.e., in order).

As an example, consider a windowed aggregation stream query,
q that computes a 5 minute average price of a stock every minute.
Suppose that the first 100 inputs streamed to this query are:

T =< t1,...,t100 > such that each tuple, ¢;, reports a price
as of minute j. Then, a revision to ¢z (correcting the price re-
ported) could be answered in a replay-based system by replay-
ing (and therefore reprocessing through ) the replay sequence,
Trs (tzo) =< ti6,...,t2a >, as this sequence contains all tuples
from the original input that contributed to the same 5 minute av-
erage computations as too. In fact, this sequence is the minimal

>We compare representations of stream archives in Section 4.1.
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replay sequence (T rs(t20)) as it contains no extraneous tuples
that did not contribute to the same query outputs as t2¢.
More formally, we define a minimal replay sequence as follows:

Given the set of inputs, 7, and outputs, O, to a stream
query, ¢, let [ be the lineage mapping function [19]
that maps every output, o € O, to the subset of I from
which o was derived (I(0)). Then, the minimal replay
sequence of ¢ wrt q is:

U o).

ocl—1(t)

Trvrs(t) =

The lineage mapping function determines the lineage set of an out-
put tuple, which is the set of of all input tuples used to produce
it. Figure 3 illustrates. Observe that in this example, input ¢, is
contained in the lineage sets of outputs: 01,02 and o3. Thus, the
minimal replay sequence of ¢ is:

Trurs(t) =1(o1) U l(o2) U l(03).

Although the above example considered the revision to t2 to be
areplacement that corrected the price previously reported, the min-
imal replay sequence of a revision that deletes ¢2¢ is also the same
and determined in exactly the same way. Now, consider a situation
where tuple t20 did not get reported until after all the tuples in 7'
(i.e., until after £100). In this situation, to¢ is considered a late in-
sertion. We know the query results that ¢20 would contribute to had
it arrived on time. Thus, when it is late, these query results must
be corrected. The minimal replay sequence is this case is also the
same as when the revision is a replacement or deletion. The pro-
cess of determining the minimal replay sequence is the same for all
types of revisions: first, determine which query results will change
as a result of processing the revision, then determine and replay
the input tuples that are required to produce those affected query
results.

In general, a revision processing technique can return as a re-
play sequence, any supersequence of the minimal replay sequence,
though extraneous tuples included in the replay sequence may re-
sult in corrections of results that have not changed (e.g., such cor-
rections may indicate that an average price has changed from $20
to $20). These are easily filtered from the result of revision pro-
cessing, though represent unnecessary computation performed in
response to a revision. The replay-based revision processing tech-
niques that we present in this paper differ by the replay sequences
that they generate in response to a revision. Those that return a re-
play sequence that is a close approximation of the minimal replay
sequence, do so by incurring some overhead while processing stan-
dard tuples. Conversely, those that return large supersequences of
the minimal replay sequence incur less overhead but must replay
and reprocess more data.

tl
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Figure4: Query Network with Two Aggregates

3.1 Replaying a Stream in Borealis

To support replay, all input tuples to a Borealis query network
are automatically stored in a dedicated input stream archive whose
schema includes the attributes shown below in Table 1.

Attribute | Value

Str an identifier for the stream on which the tuple arrived
Ti e a timestamp indicating when the tuple arrived into the system
Od the value of the order field for this tuple

Body a byte-sequence that constitutes the contents of the tuple

Table 1: Schema of the Input Stream Archive

The input stream archive is associated with a size threshold, 7,
which constrains how many of the most recently arrived tuples on
the streams the archive contains. Thus, 7 serves doubly as a size
constraint on the stream archive, as well as a “rough” bound on
the age of the tuples to which a revision can be applied. In fact, a
revision may not be able to refer to the oldest tuples in the stream
archive if regenerating all outputs that involved those tuples also
requires replaying older tuples not contained in the archive. In this
case, our system would throw a run-time exception in response to
the revision. In Section 4.1, we compare possible representation
schemes for stream archives.

In response to a revision, every replay-based revision processing
technique does the following:

1. determines a replay sequence for that revision,

2. issues a replay query to the stream archive to request the tu-
ples in the replay sequence, and

3. reprocesses the tuples returned by the replay query, gener-
ating revisions for any query results that have changed as a
result of the revision.

Note that newly arriving tuples are buffered at the input streams
by Borealis while a revision is being processed. If the queries have
stringent real-time deadlines to generate query results, then revision
processing can be deferred to periods of low workloads or can be
assigned to a different machine dedicated for revision processing.

To illustrate how replay-based revision processing is implemented
in Borealis, Figure 4a shows a Borealis query network consisting
of two Aggregate operators: A; and As such that both A; and As
have row-based windows of size 2, and both windows tumble, i.e.,
if Aq’s first window is {t1,¢2}, its next window will be {¢s3,t4},
and so on. For the purposes of discussion, we will refer to the tuple
produced by A;’s calculation over window {tl, tg} as o1, and its
calculation over window {¢3,t4} as 0a.

Suppose that a revision that modifies ¢3, is input to this query
network. This revision would affect (only) output o2 of A;. To
generate a revision for oz, input tuples {t3, ¢4} would need to be
replayed. As the result of replay, A; may generate a revision (r2)
to o2 that would then be input to A>. Now consider the minimal re-
play sequence for As. Its input revision (r2) affects the output, u1
resulting from aggregating over the {01, 02} window. To generate
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Figure5: Window Realignment in Row-based Windows

a revision to w1, A2 requires A; to regenerate its outputs o; and
02, and this in turn requires replay of tuples < ¢1, t2, t3,t4 > (Fig-
ure 4b). But note that in processing this replay sequence, A; must
generate not only a revision (for 02), but a replay tuple (for o1).
In general, once the replay sequence is determined for the query
network, every box processes its sequence of replay and revision
tuples, and produces as output, revision tuples for every output that
changes, and replay tuples for every output that remains the same.

A special consideration, however, has to be made to the replay
sequence when the stream query contains a row-based window.
The arrival order of tuples into an operator with a row-based win-
dow determines the sequence of tuples that are processed together.
Consider the sequence of tuples in a row-based window of size 2
that tumbles in Figure 5a. Observe that ¢, is missing from this se-
quence. The output from these three windows are o1, 02, and o3
respectively. Now, if a late insertion of ¢2 is received, the win-
dows need to be realigned so that we can process it as if it arrived
on time. Figure 5b shows the what the new windows will be. To
achieve this state, we must delete the old results o2 and o3 and
insert the new results o4 and os. Figure 5c shows what the win-
dows will be if 2 is deleted from the original sequence of tuples
in Figure 5a. Both Figures 5b and 5c show that when tuples are
deleted or inserted into row-based windows, all windows after the
ones directly affected by the revision must be realigned. Thus, to
deal with such situations, the replay query for a query network with
row-based windows must be modified so that the replay sequence
ends with the most recently processed input tuple. The start of the
replay sequence is determined by the replay-based technique being
used to process revisions.

3.2 Revision Processing Techniques

In this section, we present two possible approaches to replay-
based revision processing: Replay-All (RA), and Replay-Minimal
(RM). These two techniques differ by how each balances the trade-
off of:

1. overhead of processing standard tuples, and

2. the cost of processing revisions.

RA minimizes the overhead of processing standard tuples but in-
curs high processing cost for revision, while on the other hand, RM
reduces the processing cost per revision but at the expense of added
overhead for processing standard tuples.

3.2.1 Replay-All (RA)

The simplistic RA revision processing approach responds to a re-
vision by replaying the entire contents of the input stream archive.
For example, given a revision r, the replay query generated in re-
sponse to 7 is:

SELECT * FROM | nput St r eamAr chi ve
ORDER BY Ti me ASC.

In other words, the replay sequence generated by RA for any re-
vision is the set of all tuples in the stream archive in ascending
order of the time when they were processed. This replay query can
be improved somewhat if the computation over S involved group-
ing over some attribute, gat¢. In this case, the schema of the input
stream archive can be extended to include this attribute, and the
replay query becomes:

SELECT * FROM | nput St r eamAr chi ve
WHERE gatt == ' X' ORDER BY Tine ASC,

such that X is the value of gatt named in the revision. The replay
query is the same as above even when the stream query contains a
row-based window. Since all tuples in the input stream archive are
replayed, the replay sequence includes tuples necessary to realign
all windows following the ones affected by the revision.

Although this replay-based technique incurs no overhead to de-
termine a replay sequence in response to a revision, it may return
a very large replay sequence. Consider the example in Figure 4
and assume that tuples ¢1,...,ts are currently stored in the input
stream archive of this query network. When a revision to ¢3 is re-
ceived, RA replay all tuples in the input stream archive in response
to the revision, i.e., Trs(t3) =<t1,...,ta> .

It might appear that RA is a highly undesirable revision process-
ing technique because it can lead to very expensive revision pro-
cessing costs. On the other hand, because it adds the least possible
overhead to the processing of standard tuples, RA may be an effec-
tive approach to revision processing if revisions are rare and if the
size threshold for the input stream archives is small.

3.2.2 Replay-Minimal (RM)

Whereas RA incurs no overhead to produce a very large replay
sequence in response to a revision, RM incurs more overhead to
produce an almost minimal replay sequence in response to a revi-
sion. Beyond the input stream archive, RM also requires an output
stream archive that maps every output tuple (o) to its lineage set
of input tuples ({(0)) (as was illustrated in Figure 3). Given the
global timestamps associated with every input tuple, the lineage set
of o can be represented in the output stream archive by associat-
ing a range of timestamps for each input stream containing tuples
from which o was derived. Therefore, the schema of the output
stream archive for a query network with n input streams includes
the attributes shown below in Table 2.

Attribute | Value
D identifier for the output tuple
S1 min Ti e of tuples from stream 1 in lineage set of o
Eq max Ti me of tuples from stream 1 in lineage set of o
Sn min Ti e of tuples from stream n in lineage set of o
En max Ti me of tuples from stream n in lineage set of o

Table 2: Output Stream Archive Schema for n Input Streams

Leaving aside for the moment how this archive gets populated,
the replay query generated in response to a revision, r, that revises
an input tuple i that arrived at Ti me = t on the k*® input stream
involves a query to the output stream archive followed by a query
to the input stream archive, as shown below:



SELECT M N(S;) AS S;, MAX(E;) AS Ei, ...,
M N(S.) AS S,, MAX(E,) AS E,

I NTO Tenp

FROM Qut put St reamAr chi ve

VWHERE t BETWEEN Sy AND Ex

SELECT * FROM | nput StreamArchive I, Tenp T
VWHERE
(I.Str =1 AND |. Time BETWEEN T.S; AND T.E;)
(I.Str = n AND |. Time BETWEEN T.S, AND T. Ep)
ORDER BY | . Tine.3

The initial query on the output stream archive identifies, with the
WHERE clause, all output tuples that include ¢ in their lineage sets,
and with the subsequent FROMclause, the input tuples on all streams
required to regenerate all of these output tuples. The subsequent
query uses the one-line result of the initial query (Tenp) to return
the sequence of input tuples identified.

In the RM technique, the emission of any standard tuple on any
output stream automatically results in the addition of a row repre-
senting the lineage set of that tuple in the output stream archive.
Every operator in Borealis was modified to compute lineage set
for every tuple it produced, expressed (as with the output stream
archive) as time intervals over the streams containing data from
which the tuple was derived. All input tuples are initialized to have
lineage sets containing only themselves. Filter and Map operators
pass on the lineage sets of input tuples to their corresponding out-
put tuples. Aggregate and Join pass on the union of lineage sets of
all input tuples to the output tuples they produce. All lineage set in-
formation is carried by each tuple using the time interval technique
described for output stream archives.

In the example in Figure 4, the lineage sets for input tuples are
initialized to include only themselves, i.e., [(¢t1) = {1,1} and so
on. When o; is produced from the window calculation consisting
of ¢1 and ¢, its lineage set consists of the union of the lineage sets
for ¢t1 and t2, i.e., [(01) = {1, 2}. Tuple o carries this lineage set
information as it is output by A;. Similarly, for 02, [(02) = {3, 4}.
Now, the lineage set for u; consists of the union of the lineage
sets for 01 and o2, i.e., I(u1) = {1, 2, 3,4}, since u1 is produced
from the window calculation consisting of 01 and o2. The output
stream archive extracts this lineage set information from tuple u1
and stores the smallest and largest values as described in Table 2.
When 3 is revised, the lineage set information stored in the out-
put stream archive identifies w1 as the query result that included t3
and causes the input stream archive to replay the following tuples:
Trs(t3) = Tmrs(ts) =<ti,...,ta>.

It should be noted that because time intervals are used to com-
pactly represent lineage sets, the RM technique is not guaranteed
to return a minimal replay sequence. This is because a given output
tuple can be derived from non-consecutive tuples on a stream, in
which case the tuples that fall between will also be included in the
replay sequence.

4. EXPERIMENTS

In this section, we compare the performance of the replay-based
techniques presented in this paper over workloads with a variety of
mixes of revisions and standard tuples and with stream queries of
varying complexity. All of our experiments were performed on
a 2.40 GHz Pentium 4 machine with 1 GB of memory running
Linux and using Postgres (8.2) table for stream archives. The ap-
plication scenario for our experiments were derived from financial
services, with the input stream (( Ti me, Synbol, Price))a

3As with RA, this query can be further qualified with a selection
on the grouping attribute of the stream query if one exists.

stock quote feed arriving in ascending order of Ti me. For the ex-
periments in Section 4.1, we padded the tuples with an extra field
so that each tuple was about 100 bytes wide. The input stream as-
sumes 200 different stocks with each stock reporting a price every
second.

Every experiment was run assuming a day’s worth of data in the
stream archive (17.25M rows or 2.16 GB) to start, and 83 minutes
(1M rows or 128 MB) of data streaming into the system thereafter.

Reflecting the frequencies with which revisions occur in finan-
cial data feeds, we generated 3 different streams varying according
to their revision frequencies:

e HIGH denotes an input stream with high frequencies of revi-
sions (1 per 100,000 standard tuples),

e MOD denotes an input stream with moderate frequencies of
revisions (1 per 500,000 standard tuples), and

e LOW denotes an input stream with low frequencies of revi-
sions (1 per 1,000,000 standard tuples)

All revisions are generated randomly in random positions in the
stream, and change a price for some stock whose original value
had appeared in the previous 23 hours*. The three streams were
generated a priori, so that every experiment was run with the exact
same streams. Tuples are inserted into the input stream archive in
batches that are constrained in size by some parameter, k. Thus,
input stream data is buffered until either £ standard tuples arrive,
or fewer than k standard tuples arrive followed by 1 revision, the
latter case ensuring that that the replay query that follows sees all
data prior to the revision. To ensure no caching effects, each run
was preceded by flushing the database buffer (by scanning a table
with 2M rows (256 MB)), and the I/O buffer (by reading a 1.27 GB
file).

For each experiment we report the following: STP (standard
tuple processing time), RTP (revision tuple processing time) and
COM (completion time). STP is the total time spent processing
standard tuples from the input stream including index maintenance
for stream archive representations that maintain an index. RTP is
the total time spent processing revisions from the input stream,
which includes deleting “aged-out” data (i.e., data more than 24
hours old) from the stream archive, issuing a replay query and re-
processing the query returns.” COM is the sum of STP and RTP.

Before evaluating the replay-based techniques, we first compare
possible representations for the input and output stream archives.
Note that while input stream archives are required for both replay-
based techniques, output stream archives are also required for the
RM technique. We compare indexed and unindexed representa-
tions of stream archives with one or more tables in Section 4.1.
The conclusions drawn from this set of experiments will be used
to guide the stream archive representation for the experiment that
compares the performance of the replay-based techniques in Sec-
tion 4.2. Finally, we look at scalability issues of our replay-based
revision processing system in Section 4.3.

“Because a replay set can contain data that arrived prior to the data
revised by the revision, we constrained the revision to refer back to
at least an hour after the oldest data in the stream archive.)

3In our technical report [13], we discuss sensitivity analysis exper-
iments that show that best COM times are achieved when aged-out
data is deleted from the archive only when necessary (i.e., just prior
to issuing a replay query, and thus deletion from the archive is ac-
counted for as part of revision processing time). In the interest of
space, we omit the discussion here.



4.1 Input Stream Archives

An input stream archive differs from a standard OLTP table in a
number of respects. Firstly, the update pattern for an input stream
archive is consistent: new tuples are appended to the end and old
tuples are deleted from the beginning to maintain a constant size
(much like a very large window). Stream archives are also naturally
clustered on the order field of the input stream (usually Ti ne), are
subject to high insertion rates (equivalent to stream arrival rates),
and only need to support range queries over the clustering attribute,
Ti me (i.e., replay queries). Thus, it is worth considering alter-
native stream archive representations besides a single indexed or
unindexed table.

4.1.1 Srream Archive Representation

In this section, we compare the performance (STP, RTP, COM)
of different input stream archive representations. The RTP times
reported in this experiment do not include the cost of reprocessing
tuples returned by replay queries, as this cost is dependent upon
the revision processing technique used. The purpose of this ex-
periment is to choose a storage representation for the input stream
archive that will be used for the experiments of Section 4.2 where
the replay-based techniques will be compared. These experiments
examine whether the stream archive should consist of a single table,
or should be horizontally partitioned into multiple tables (buckets)
each containing no more than k tuples for some value of k. We
also examine the costs and benefits of indexing both single table
and bucket-based representations. Thus, the representations exam-
ined are:

1. a single unindexed table (UT)
2. asingle table with a clustered indexed on Time (IT)
3. multiple unindexed “buckets” of size <= k tuples (Bx), and

4. multiple “buckets” of size <= k tuples (Bj) with clustered
indexes on Symbol +Ti e on each bucket (IBy)

For both bucketing techniques (B, and IBj), STP involves inserting
each batch of tuples into a new (or recycled) table, and then updat-
ing a separate bucket index table (BIT) which maintains a record for
every bucket indicating the range of values of Ti e found in tuples
contained in the bucket. To answer a replay query, both bucketing
techniques first examine the BIT to limit the subsequent search to
the buckets where the data requested by the query can be found.

Limitations in the current release of Postgres (8.2) make it im-
possible to maintain the UT and IT representations in the most
natural and cost-effective ways. The proper way to respond to
a revision tuple assuming the UT representation is to both delete
aged-out tuples and return the results of a replay query in one pass
of the input stream archive. While not expressible in SQL, this
single-pass delete-and-replay revision processing implementation
could be expressed as a cursor-based external procedure. However,
Postgres identifies cursor-based deletion of tuples as a feature for
a future release [14]. Hence, we report two numbers for UT. UT-1
reports an RTP time that is the sum of performing two queries over
the stream archive (one that deletes aged-out tuples and one that
answers replay queries). We also report a second number (UT-2)
where we predict the cost of doing delete-and-replay by halving
the RTP time reported for UT-1. (This is a rough estimate of the
time to perform this operation in one pass instead of two.)

The stream archive representation, IT, maintains a clustered in-
dex on Ti me over a single table. Postgres supports clustered in-
dexes by declaring all indexes to be secondary, but allowing ta-
bles to be reordered according to the index via the explicit com-
mand, CLUSTER. Examination of query plans before and after the

CLUSTER command has been issued show that the effect of call-
ing CLUSTER after every insertion is equivalent to maintaining a
clustered index. However, because data inserted into the archive
is already ordered on Ti me, CLUSTER sorts an already sorted ta-
ble. But the Postgres optimizer won’t exploit clustering unless this
command has been issued since the most recent table update. To ac-
count for this unnecessary cost in our experiment results, our imple-
mentation of IT calls CLUSTER before issuing every replay query,
but we discount the time Postgres uses to perform the operation
in reporting the RTP and COM times. We should note that even
with this favorable accounting procedure for techniques UT and IT,
these techniques by far were outperformed by the bucketing-based
techniques.

Figures 6a, 6b, and 6¢ show the STP, RTP and COM times for
the input stream archive representations: UT-1, UT-2, IT, Bsox and
IB50x®) assuming a replay query that returns 600 tuples (as would
be required to reproduce an aggregate result with a window size of
10 minutes for a given stock). For all mixes of revisions and stan-
dard tuples examined, unindexed representations (UT-x and Bsoxk)
require less time for STP than do their indexed counterparts (IT and
IBsok ). This was expected as indexed representations must update
their indexes as tuples are added to the stream archive. Also, for
all mixes the unindexed single table representations (UT-x) require
more time for RTP time than do the other representations, even ac-
counting for the predicted one-pass delete-and-replay time (UT-2).
This is because even streamlined revision processing requires a full
pass over the entire stream archive to process a revision, whereas
bucketing data allows both deletion and replay queries to target
only the affected buckets.

Interestingly, the RTP cost of the indexed single table representa-
tion (IT) exceeds the RTP cost for unindexed buckets (Bsox ). This
is because the replay query costs are largely equivalent for the two
representations, as the BIT acts like the index of IT in identifying
buckets to search. The difference in RTP costs is due to the dif-
fering costs of deleting aged-out tuples from the archive prior to
issuing the replay query. For the bucket representations, deletion
requires identifying which buckets consist solely of aged-out tu-
ples (a simple query on the BIT) and deleting the contents of these
buckets with the inexpensive Postgres TRUNCATE command. For
IT, deletion requires the additional cost of updating the index with
each aged-out tuple that is removed.

From these experiments, we can conclude that indexing over a
stream archive incurs more cost than the benefit it provides. Be-
cause revisions tend to be relatively infrequent compared to stan-
dard tuples, the overhead of maintaining an index outweighs the
benefit it provides for the replay queries that get issued. We also
conclude that horizontally partitioning the moving window of tu-
ples in the input stream archive into buckets is a good idea because
it serves as a light-weight indexing technique that exploits the natu-
ral clustering of data arriving in ascending order of the index search
key and reduces maintenance costs.

4.1.2 Partition Szing

A natural question arises from the previous experiment as to
whether bucketing techniques might perform better given buck-
ets of sizes other than 50K. Smaller bucket sizes would lead to
finer-grained Ti e ranges and potentially, reads of less unneces-
sary data. But larger bucket sizes would lead to a smaller BIT to
search prior to examining the buckets.

For this experiment, we compared the STP, RTP and COM times
for By and IBj archive representations assuming values of k of

SWe will experiment with different bucket sizes in Section 4.1.2.
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As in the previous experiments where k was fixed to 50K, this HIGH || 5.80 20.77 2657 | 6.03 044 6.47
experiment shows that regardless of the mix of revisions assumed @Q O (Minutes)
of the input stream, the COM time for By, is far less than that of By, a)Ruery 1 (Vunutes
for all values of k tried. While the indexed buckets have somewhat

. . o . Stream RA RM

lower RTP times due to the use of indexes within buckets, unin- STP RTP_COM T STP RTP_COM
dexed buckets have far lower COM times given that these indexes LOW || 511 480 991 | 649 063 7.12
do not need to be built. The smaller the bucket size, the more the MOD 536 6.73 12.09 | 7.30 092 8.22
COM cost of an index dominates the RTP benefits because of the HIGH || 6.72 2099 27.70 | 836 0.89 9.26
limited query improvement provided by indexing over small tables. (b) Query Q2 (Minutes)

From these experiments, we conclude that the input stream archive
should contain bigger-sized partitions when there are very few re- Stream RA RM
visions. Insertion of tuples into the input stream archive is the most STP RIP  COM | STP RIP COM
expensive operation. When the size of the buckets are larger, the LOW || 442 387 829 [515 035 550
frequency of insertions is fewer, thus saving a lot of overhead. MOD || 477 6.64 1141 |5.18 074 592
However, if revisions are more frequent, smaller-sized partitions HIGH || 504 1855 23.59 | 537 071 6.08

have an advantage because fewer number of tuples in the appropri-
ate buckets are scanned for replay tuples.

We have used the results of these experiments (and specifically,
the COM time results) to determine the appropriate input stream
archive representations in comparing the three revision processing
techniques introduced in Section 3. For the HIGH input stream
which has one revision for every 100K tuples in the stream, we
chose the Bsox representation. For the MOD and LOW input
streams which have one revision for every 500K and 1M tuples
respectively, we chose the Bsoox representation. Because it sees
similar update patterns and queries to the input stream archive, runs
that measure the performance of the RM technique assume equiva-
lent unindexed bucket representations on the output stream archive
as well.

4.2 Revision Processing Techniques

In this section, we compare the performance of the two replay-
based revision processing techniques presented in Section 3.2, as-
suming queries of varying complexity and different mixes (HIGH,
MOD and LOW) of revisions. As with the previous experiments,
the measurements are taken for a stream of 1M tuples assuming that
the input stream archives already contain a days worth of quote data
(and in the case of the RM technique, the output stream archive con-
tains the query results produced from the data in the input stream
archive).

For this experiment, we compared the STP, RTP and COM times
over HIGH, MOD and LOW concentrations of revisions for three
stream queries:

1. Query (1 reports the 5-minute average stock price for each
company every 5 minutes (using an Aggregate with a Tum-

(c) Query Q3 (Minutes)

Table 3: Revision Techniques Compared

bling Window),

2. Query @2 reports the 5S-minute average stock price for each
company every minute (using an Aggregate with a Sliding
Window), and

3. Query 3 issues a “BUY” whenever the 1-minute average
price of IBM exceeds the 5-minute average price of IBM, and
a “SELL” command otherwise’ (using a Filter, Aggregate’s
with both Sliding and Tumbling windows and a Join.)

Tables 3a, 3b, and 3c show the performance of the three queries
over HIGH, MOD and LOW mixes of revisions respectively. RA
has lower STP costs than does RM for all queries and all input
streams costs because whereas both techniques insert into the input
stream archive as part of standard tuple processing, RM addition-
ally determines the lineage set of each tuple in the query result and
inserts this information into the output stream archive. On the other
hand, the RTP time for RA is significantly higher because it replays
all the tuples in the input stream archive whereas RM only replays
the minimal replay sequence.

Observe that the RTP time for RM for the HIGH mix of revi-
sions is lower than that of the MOD input stream. This is because
the bucket size in the HIGH input stream is 50K as opposed to

"This is a simplistic algorithmic trading technique that compares
the long and short-term price trends of a stock to predict its future
value.
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the 500K in the MOD input stream, which means that each replay
query in MOD has to scan more data to retrieve the replay tuples.
These experiments show that it is worth paying the overhead of
maintaining the lineage of query results so that revisions are pro-
cessed more efficiently.

4.3 Scalability and Current Research Direc-
tions

Support for replay-based revision processing incurs overhead in
standard tuple processing regardless of the revision processing tech-
nique used. For RA, this overhead is the cost of maintaining the
input stream archive. For RM, this overhead includes the cost of
maintaining both the input and output stream archives. In this sec-
tion we quantify these costs.

Figure 8 shows the overhead analysis for both revision process-
ing techniques measured over all three stream queries considered
in this paper. Assuming an input stream consisting of 1M standard
tuples (and no revisions), we compare the STP time for a version
of Borealis that has no support for revision processing to the STP
time for versions of Borealis extended with RA and RM for revi-
sion processing, assuming Bsoox input and output stream archive
representations.

As the graphs show, the extension of Borealis to support replay-
based revision processing techniques has increased the cost of pro-
cessing a standard tuple by more than 500%! The graphs also reveal
that the bottleneck of replay-based revision processing is the inser-
tion of tuples into the input stream archive. For all queries and re-
vision mixes examined, the insertion of tuples into the input stream
archive accounts for approximately 80% of the reported STP times.
Recall that the input stream archive is horizontally partitioned into
buckets, each containing 500K tuples, without indexes and input
tuples are inserted into the input stream archive in batches of S00K
tuples. Thus, it is clear that the cost of maintaining an input stream
archive in the presence of high volume of insertions dominates the
overhead introduced by the implementation of replay-based revi-
sion processing.

These scalability concerns have motivated our current research
direction, which is to determine how best to sample or summarize
input stream data prior to storing it in an input stream archive, and
how to modify the replay mechanism accordingly. The goal of this
work is to counter the high overhead of insertions into the input
stream archive by inserting less data, at the expense of producing
approximate rather than exact revisions in response to an input revi-
sion. This work is attempting to find the balance between reducing
the overhead of maintaining the input stream archive and making
revision responses as accurate as possible.

Given that we want to reduce the amount of data stored by a cer-
tain percentage, we have developed some heuristics that determine
which input tuples should be stored in an input stream archive. The
simplest way to achieve this is to pick a sample of the input tuples
to store. Although simple, this heuristic assumes that all tuples are
equally important. A more complicated heuristic we are consider-
ing stores the tuples that have the biggest “impact” on the query re-
sults. For example, if a query is calculating the sum of a window of
tuples, then the tuples with the largest values will have the most sig-
nificant impact on the query result and thus should be stored. The
idea behind this heuristic is that when a revision is later processed,
the replay sequence will contain the tuples that contribute the most
to the query results, thereby minimizing the error on the revised
result. Another technique to reduce the amount of data stored in
the input stream archives is to use summary-based techniques such
as histograms. Input tuples are grouped into distinct sets and a his-
togram is created for each set. In response to a revision, the range of
tuples that need to be replayed are determined and then the appro-
priate histograms are identified to recreate the tuples for the replay
sequence. In all these heuristics, our main goal is to reduce the
amount of data needed to be stored in the input stream archives.

5. RELATED WORK

A stream processing system with support for revisions is in a
way similar to a temporal database [12, 17] as it allows chang-
ing the value for a key as of some time in the past (unlike an up-
date in a traditional database which changes a value for a key as
of “now”). However, there is a significant difference since after a
value is changed in a temporal database, it means that both the orig-
inal and revised values are valid but during different time intervals.
In our work we consider revisions to be corrections, so as soon as
a revision for a certain tuple is issued (by the source or a box), the
new value is considered to be valid for all the time during which
this tuple existed in the system.

We used a bucketing scheme to maintain our historical data. This
is similar to a simple, one-level tree index. Wave-indices [16] sug-
gests using an indexing scheme similar to our bucketing scheme
when the number of updates are significantly higher than the num-
ber of queries. The data is partitioned and each partition is in-




dexed separately. Rather than deleting entries in the index for data
that have expired from the window, the index is dropped when all
the data in that partition has expired. This is similar to what we
do with our bucketing scheme, however, our buckets are not in-
dexed. Through experiments we found that the cost of indexing
each bucket is higher than scanning the contents of the bucket.
If buckets are much larger, then an index may be beneficial. Us-
ing partitions to speed up B-Tree updates have also been suggested
in [10]. Although these work focused on reducing the cost of main-
taining a B-Tree index for high update rates, through experiments
we found that in our case because the input data was ordered, sim-
ply partitioning the data achieved better results than when those
partitions were indexed.

Querying historical data in streaming systems have been known
to be a bottleneck [6, 15]. Some techniques to alleviate this bottle-
neck include storing a random sample of historical data and even
aggregated values as suggested in [6]. Although this approximation
is a great way to optimize the cost of retrieving and reprocessing
this data, it can only produce approximate query results. Thus, we
are looking to leverage this work as the basis for our ongoing work
on producing approximate output revisions in response to revisions
in the input.

6. CONCLUSIONS

The append-only model of stream processing engines implies
that stream data is immutable and therefore correct. But in prac-
tice, streaming data sources often have errors. So important is error
correction, that many of these sources issue revisions once the er-
rors are detected. No other streaming data management solution
we know of does anything with revisions other than ignore them.

In this paper, we introduced and compared two replay-based re-
vision processing techniques. Replay-based techniques assume the
existence of an input stream archive that keeps some history of the
most recently input tuples to the system. These techniques then
process a revision by querying this archive for the context in which
the tuple being revised was originally processed, and reprocessing
the entire sequence to determine how query results previously emit-
ted have changed. This approach to revision processing is the only
one that can be used to process revisions over any stream query.

After discussing the necessary requirements for replay-based re-
vision processing, we described how the Borealis stream process-
ing engine was extended to meet them. We then described two
revision processing techniques that vary in how they approach the
tradeoff of minimizing overhead when processing standard tuples
vs avoiding replaying unnecessary data when processing revisions.
We experimentally determined the best approach for implement-
ing stream archives using Postgres, and then compared the two ap-
proaches on a workload that assumed storage of the last day’s worth
of stock quotes while streaming of an hour’s worth of quotes. Dur-
ing this analysis, we discovered the huge overhead added by the
introduction of replay-based revision processing. This scalability
issue has motivated our current research on approximate revision
processing.
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