
Improving Duplicate Elimination in Storage

Systems

Deepak R. Bobbarjung and Suresh Jagannathan

Department of Computer Sciences, Purdue University

and

Cezary Dubnicki

NEC Laboratories America

Elimination of redundant data has become a critical concern in the design of storage architectures.

Content addressable storage engines eliminate data at the block level by mapping data blocks with

the same content to the same physical storage location. Intelligent object partitioning techniques

leverage block level content addressing in order to improve duplicate elimination. In this paper,

we propose a novel object partitioning technique – fingerdiff that is designed to improve storage

consumption of existing object partitioning techniques while at the same time reducing associated

costs. We present a detailed evaluation of fingerdiff and other existing object partitioning schemes,

and we show that fingerdiff meets its design goals as it improves the effectiveness of block level
duplicate elimination while reducing overhead costs.

Categories and Subject Descriptors: [Distributed Storage]: Duplicate Elimination

Additional Key Words and Phrases: Rabin’s fingerprints, content based addressing, distributed
storage systems

1. INTRODUCTION

Storage systems can use content-based addressing to reduce the cost of storage
and simplify the process of storage management. Such systems use the hash of
an object’s contents to effectively serve as a key to identify the object. Content
addressability also introduces a unique, transparent and scalable way to name and
identify data objects, and to store and search data in a distributed storage system.
Because two objects with the same content will have the same key, it is straight-
forward to eliminate or avoid maintaining duplicate copies of the same content.
Eliminating unnecessary redundancy in this fashion improves storage utilization
and also reduces the cost of associated storage management.

Duplicate elimination is particularly useful for applications that require periodic
backup or archival capability where high-levels of redundancy with previously writ-
ten versions is expected. Increasing the regularity with which such applications
are required to backup all data imposes storage space demands on the storage sub-
system that necessitate the use of intelligent redundancy elimination techniques.
Systems such as Venti [Quinlan and Dorwards 2002] or Oceanstore [Kubiatowicz
et al. 2000] are examples of storage architectures that critically rely on content-
based addressing to reduce storage consumption and management costs. These
systems are intended to operate seamlessly supporting a variety of storage applica-
tions ranging from file systems to databases.

Typically, the unit of storage in a content-addressable system is a block; ap-

ACM Transactions on Database Systems, Vol. V, No. N, April 2005, Pages 1–0??.

2 · Deepak Bobbarjung et al.

plication objects such as files are divided into a series of blocks, with each block
having a hash key derived from its content. This key is used to map a block to
a persistent location. A metadata block for a given version of an object contains
enough information required to retrieve the object from the store when required.
In a content-addressable store, this information would consist of the hash keys of
each block, along with the offset of each block in the object.

When a new object is written into a content-based store, it is partitioned into
blocks and each block is stored based on content. When this object is modified
and a consequent version is written, the partitioning algorithm again creates blocks
and writes them into the store. Some of these blocks will be the same as blocks
written previously and the rest will be new. Old blocks are not written to the store
because of content-based addressing, while new blocks are written as usual. If the
object is modified several times, several versions of the object written written to
the store, each time a new version is written, there will be some blocks that are
new and add to overall storage space consumption and some blocks that are old
and therefore do not consume extra space. Deciding an efficient partition of an
object that minimizes the size of the new blocks written for each version is critical
to exploiting storage benefits that arise from a content-addressable storage system.
Apart from total storage space, there are other overheads associated with writing
and storing each block on the storage system. These overheads depend largely on
the nature of the storage system itself, and their quantification cannot be general-
ized. In general, we believe partitioning techniques that create a fewer number of
blocks will have smaller overheads than those that create more blocks. However,
there is a cutoff that reveals the inherent tension between these two concerns: a
system that supports very small block sizes to maximize duplicate elimination may
incur unacceptable overheads in terms of storage management, while a system that
supports very large block sizes to minimize management overheads may exhibit
poor storage utilization characteristics.

We now look at practical techniques that have been deployed in order to store
objects into a realistic content-addressable store.

An object may be divided into either fixed-size or variable-sized blocks. A fixed
block-size strategy which we refer to as fixed-sized chunking (or FSC) is found in
systems such as Venti and Oceanstore. In such systems, a fixed block size is chosen
a priori, independent of the content of the objects being stored, and objects are
partitioned into blocks of that size.

The effectiveness of this approach on duplicate elimination is highly sensitive to
the sequence of edits and modifications performed on consecutive versions of an
object. For example an insertion of a single byte at the beginning of a file can
change the content of all blocks in the file resulting in no sharing with existing
blocks. In spite of this limitation, fixed-size chunking techniques can be effectively
utilized in certain scenarios. For example, these techniques are appropriate when it
is known that changes are in-place substitutions rather than insertions or deletions,
or when changes are appended at the end of the object rather than at the begin-
ning. However, in scenarios where there are arbitrary deletions and insertions, FSC
techniques can be inadequate in meeting desirable redundancy elimination goals.

Problems with the FSC technique can be alleviated to an extent by intelligently

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 3

partitioning objects into variable-sized blocks or chunks. Variable-sized block strate-
gies can potentially localize the effect of changes made to the object, by restricting
modifications to the blocks that lie in the vicinity of the changes. This can be
achieved by varying the size of the block that contains the changes so as to parti-
tion the remaining parts of the object at the same points as before. As a result,
blocks outside the change vicinity can be subject to duplicate elimination.

Such a partitioning technique will have to identify the regions of the object that
have changed in the current version, and then restrict the new chunks to those
regions, making sure that all other chunks remain the same. To do so, it will
also have to remember the points in the previous version where the object was
partitioned, and partition the current version at the same relative points.

Variable-sized block techniques can use the content of the object to determine
partitioning points. One such technique, which we refer to as Content defined
chunking (CDC) employs Rabin’s fingerprints to choose these partition points. Us-
ing fingerprints allows CDC to “remember” the relative points at which the object
was partitioned in previous versions without maintaining any state information.
By picking the same relative points in the object to be chunk boundaries, CDC
localizes the new chunks created with every version to regions where changes have
been made, keeping all other chunks as is. As a result CDC can be expected to
outperform FSC techniques in terms of storage space utilization on a content-based
storage backend. CDC is used in the Low-Bandwidth File System (LBFS) [Muthi-
tacharoen et al. 2001] to reduce network traffic between a file server and a client
by transferring only those chunks that are new across the network, and in the Pas-
tiche p2p backup system [Cox et al. 2002] to identify backup buddies that share
maximum data with a given peer in order to reduce the amount of data to be
transferred over the network for purposes of backup. A technique similar to CDC
is also proposed in [Brin et al. 1995] to identify plagiarism of documents in a digital
library.

While CDC is a variable-block sized technique, the “variability” of chunks sizes
is actually limited, in the sense that most chunk sizes are expected to be within a
margin of error from an expected chunk size that is a parameter to the partitioning
algorithm. We therefore refer to CDC as a limited variable-sized block technique.
Thus, the size of new chunks is actually dependent on the expected chunk size
parameter that the algorithm employs, and not on the size of the changes that
have occurred between the last version and the current version of the object.

In particular, a modification of even one byte will result in a new chunk, the
size of which varies depending upon this system-defined parameter. To reduce
the size of the new chunk, the expected chunk size parameter can be reduced.
However You and Karamanolis [You and Karamanolis 2004] show that reducing
the expected chunk size to less than 256 bytes can be counter productive as the
overheads associated with the additional metadata cost per chunk nullifies the effect
of storage savings obtained because of smaller average chunk sizes. It is argued that
that optimal storage space using CDC is obtained when the expected chunk size is
between 256 and 1024 bytes. Apart from storage space overheads associated with
maintaining metadata information about each chunk (e.g., the hash key map),
small chunk sizes can lead to other overheads as well. For example, in a distributed

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

4 · Deepak Bobbarjung et al.

storage environment, recording small chunks is likely to result in more network
communication on both reads and writes, and may induce greater fragmentation
overheads since the chunk size used by the storage system may be smaller than a
physical disk block. Most real systems therefore assume a fairly large chunk size.
For example LBFS assumes an expected chunk size of 8KB and Pastiche assumes
an expected chunk size of 16KB.

In order to overcome the tension between high overheads and better duplicate
elimination associated with smaller chunk sizes, we propose a chunking scheme
that improves upon CDC. Our technique, which we refer to as fingerdiff, relaxes
the restriction that chunk sizes reside within a fairly narrow size range. Instead,
the algorithm leverages information about the content of the data being written to
determine partitioning points. Like CDC, the challenges in deploying a fingerdiff
strategy concern tradeoffs between management overheads and redundancy elimi-
nation.

The remainder of this document is organized as follows. Section 2 places our work
in the context of previous efforts. Section 3 illustrates the design and implementa-
tion of the various block encoding schemes. Section 4 establishes the experimental
framework that we employ to compare the effectiveness and performance of the
different techniques. Section 5 presents performance results. We discuss the results
in section 6 and conclude in section 7

2. BACKGROUND AND RELATED WORK

Fingerprints have been proposed to identify similar documents [Manber 1994; Broder
1997; 2000] in a large set of unrelated documents. Similarity detection has vari-
ous applications in domains such as copy-detection [Shivakumar and Garćıa-Molina
1995] and web clustering[Broder et al. 1997]. Among fingerprinting techniques, a
specific type, known as Rabin’s fingerprints [Rabin 1981] has been used exten-
sively for implementing fingerprint-based software systems. The chief advantage of
Rabin fingerprints is that they are very easy to compute over a sliding window of
substrings in a document. Thus the cost of computing fingerprints for an entire
document containing l substrings is much less than l times the cost of computing
the fingerprint of one substring.

Duplicate elimination (sometimes also referred to as duplicate suppression else-
where), differs from this area of research as it aims to eliminate redundancy due to
identical (and not similar) objects or blocks by comparing hashes of the object’s or
block’s content [Quinlan and Dorwards 2002; Kubiatowicz et al. 2000; W. J. Bolosky
and Douceur]. In these schemes, objects are hashed in their entirety or divided
into fixed sized blocks (FSC) and each block is then hashed.

fingerprints can be used to identify not only documents, but also boundary re-
gions inside documents that determine where blocks can be divided. Once blocks
have been identified, they can be hashed using robust hashing algorithms such as
SHA-1; this hash can then be used for duplicate elimination. Such content defined
chunking (CDC) schemes are used in the LBFS file system [Muthitacharoen et al.
2001] to reduce network traffic by sending only those blocks that are new across
the network, and in Pastiche [Cox et al. 2002] in order to identify backup buddies
in a peer-to-peer system. However CDC is equally applicable in a content-based

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 5

storage system, where applications have control over how objects are to be divided
into blocks that are recorded by the storage system.

Previous work has also compared CDC with FSC schemes [Policroniades and
Pratt]. Not surprisingly, it was concluded that CDC outperforms FSC with respect
to file system storage utilization.

Delta encoding [Ajtai et al. 2000; Hunt et al. 1998; Tichy 1984] is a technique
that attempts to encode the difference between two given strings (or objects) in the
most efficient way possible. This technique is used extensively in versioning systems
such as CVS [Cederqvist 1992], SCCS [Rochkind 1975] and RCS [Tichy 1985]. By
storing only the changes made to consecutive versions, delta encoding can reduce
storage overheads. Delta encoding has also been extended to pairs of objects that
do not share an explicit versioning relationship [Douglis and Iyengar 2003; Ouyang
et al.]. In these systems similarity detection on a vast collection of documents is
applied in order to identify candidate pairs for encoding. In [Douglis et al. 2004],
the authors combine these techniques to first eliminate identical objects and blocks;
they then identify similar blocks in the remaining set and apply delta encoding on
those blocks. Restoring versions in systems that rely on delta encoding however
can be complicated as it may involve reading a previous fixed version along with
a chain of changes and decoding the required version from the previous version
and the delta chain. In this study, we focus on object partitioning techniques
that simply divide objects into variable sized blocks. Restoring a given version in
such schemes will only involve reading all the individual blocks that comprise that
version and reassembling them.

Finally, data compression techniques [Ziv and Lempel 1977; Lelewer and Hirschberg
1987] eliminate redundancy internal to an object and generally reduce textual data
by a factor of two to six. We can leverage data compression techniques by com-
pressing chunks that are output by our object partitioning technique. We expect to
benefit from compression just as any other object partitioning technique or whole
file compression technique would.

3. DATA CHUNKING TECHNIQUES

We first present the design of a CDC algorithm, and then propose the design for our
fingerdiff algorithm. Subsection 3.5 discusses details about the implementation.

For the remainder of this article, we assume a system model that consists of a
distributed storage engine that accepts variable-sized blocks from storage clients for
persistent storage. The engine stores these chunks by computing a hash key based
on the content of each chunk and storing each chunk in a specified location based on
the value of the key. It returns the key to the client that wrote the chunk and the
client in turn retains the key as a capability or pointer to the chunk. We make no
particular assumptions about the architecture of the storage engine (for example,
whether it is centralized or distributed), or the techniques it employs to ensure
persistence and availability of the data sent to it. For example, our techniques and
analysis hold regardless of whether the storage engine uses replication or erasure
codes [Berlekamp 1968] to guarantee availability. However, we do assume that
chunks are never overwritten.

Storage clients periodically write data objects such as files to the store using

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

6 · Deepak Bobbarjung et al.

a client-specific driver. The driver uses one of the chunking techniques that we
discuss to divide client data objects into chunks and then writes these chunks ∗ to
the store.

3.1 CDC

We first briefly illustrate the CDC technique using fingerprints to partition files into
variable sized data chunks. CDC determines partition points based on the contents
of the object being partitioned. It assumes a parameter expected chunk size that de-
termines the average chunk size of all the chunks generated. Chunk sizes, although
variable, are expected to be within a margin of error of the expected chunk size.
CDC computes fingerprints (typically Rabin’s fingerprints) of all overlapping sub-
strings of a given size. In practice, the size of the substring typically varies from
32 bits to 96 bits. Depending on the value of expected chunk size, CDC compares
a given number of bits in each fingerprint with a magic value. For example, if the
expected chunk size is 8KB, CDC compares the last 13 bits of each fingerprint with
a fixed magic value. The reasoning behind this is that given the uniformity of the
fingerprint generating function, the last 13 bits of the fingerprint will equal the
magic value roughly every 8KB. As a result all chunks will be of size approximately
8KB.

3.2 Fingerdiff

The effectiveness of duplicate elimination achieved by CDC is tied to the ex-
pected chunk size parameter. As we decrease the expected chunk size we can ex-
pect better duplicate elimination since the changes made will be more likely to
be contained in smaller sized chunks. However decreasing the expected chunk size
increases the number of chunks generated, and induces overheads to manage these
chunks that may eventually outweigh benefits accrued by improved duplicate elim-
ination.
Fingerdiff on the other hand manages to nullify this tension between improved

duplicate elimination and increased overheads of smaller chunk sizes.
Essentially, fingerdiff expands on the concept of variable-sized chunks by allowing

larger flexibility in the variability of chunk sizes. Chunks no longer need to be within
a margin of error of an expected chunk size. The idea is to reduce chunk sizes in
regions of change to be small enough to capture these changes, while keeping chunk
sizes large in regions unaffected by the changes made.
Fingerdiff locally maintains information about subchunks - a unit of data that is

smaller than a chunk. Subchunks are not directly written to the storage engine.
Instead a collection of subchunks are coalesced together into chunks whenever pos-
sible and then the resultant chunk is the unit that is stored. Fingerdiff assumes
an expected subchunk size parameter instead of the expected chunk size parameter
used in CDC. Fingerdiff seeks to coalesce subchunks into larger chunks wherever
possible. A max scs parameter is used to determine the maximum number of sub-
chunks that can be coalesced to a larger chunk.

For example, if an object is being written for the first time, all its subchunks

∗Henceforth we will use the term data “chunk” to refer to variable sized data blocks and the term

data “block” to refer to fixed size data blocks.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 7

are new and fingerdiff coalesces all subchunks into large chunks, as large as allowed
by the max scs parameter. If a few changes are made to the object and it is
consequently written to the store again, fingerdiff consults a local database and
separates out those subchunks that have changed. Consecutive new subchunks are
coalesced into and written to the store. Consecutive old subchunks are stored as a
chunk or a part of a chunk that was previously written. To incorporate this notion
of chunk parts, fingerdiff expands the interface used to read and write data from
the store. Typically, a hash key along with the size of the chunk would be enough
to read a chunk. This interface is now extended to 〈hash-key, offset, length〉 where
offset indicates the beginning of the requested chunk part in the stored chunk.

3.3 Example

To illustrate the difference between the FSC, CDC and fingerdiff techniques we
consider an example where these three techniques are employed to chunk two con-
secutive versions of a file F. The second version has been modified from the first
version by means of inserting a few bytes at a region near the beginning of the file.

changes

B1 �� ������ �������� 	�	
 ��B2 B3 B32 B1
�
� �� ������������ ���� ����

Version 1 of F Version 2 of F

FSC(1K) FSC(1K)

B2’ B3’ B32’

Fig. 1. An example of FSC being employed to encode two consecutive versions of a file.

First consider the two versions of F being stored using a FSC technique with
a fixed size of 512 bytes. Figure 1 illustrates the process for the first and second
versions of the file. For the first version, the FSC algorithm creates 32 new blocks
B1 through B32 each of which are exactly 1K bytes. The second version of the
file includes some changes (which are insertions) that are restricted in the region
of block B2. As a result, when FSC is run on this version, all blocks B2 through
B32 have been changed into new blocks B2’ through B32’ respectively. Changing
just a few bytes at the beginning of the file F results in the generation of many new
blocks.

Figure 2 shows the improvement obtained when FSC is substituted with CDC
and fingerdiff. For this example we employ a CDC algorithm parameterized by an
expected chunk size of 1K bytes, and a fingerdiff algorithm that uses a subchunk
size of 1K bytes and a max scs parameter of 16. In Figure 2 (a) F is being encoded
using fingerdiff for the first time. The CDC algorithm is called and let us assume
that it returns a series of 32 subchunks SC1 to SC32 with an average expected
size of 1K bytes. Assume each of these subchunks are marked new. The algorithm
therefore coalesces these 32 subchunks into two chunks C1 and C2 (because max scs
is 16) each of which has an expected size of 16K bytes. These two chunks are also
marked as new, and supplied to the storage system. In Figure 2 (b), F has been
modified and the changes are introduced in a region that corresponds to subchunk

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

8 · Deepak Bobbarjung et al.

SC2 in the original version. When this file is again partitioned, CDC returns a
series of 32 chunks as before; however only the subchunk SC2 is now replaced by
SC2’ because of a modification in this region. This marks an improvement of CDC
over FSC; in FSC all the blocks following B2 would be new.
Fingerdiff coalesces these subchunks into larger chunks depending on whether

they are old or new. It finds that SC1 is an old subchunk and records it as a chunk
C1’ which is a chunk part of old chunk C1. It finds that SC2’ is a new subchunk
which was not seen before and therefore writes this as a new chunk C3. It finds that
SC3 through SC16 are old subchunks that belong to old chunk C1 and therefore
coalesces these into chunk C1” which is a partial chunk that is part of old chunk C1.
Similarly, it coalesces subchunks SC17 through SC32 as old chunk C2. Note that
C1’ and C1” are parts of an old chunk C1, and start at an offset in C1. This offset
has to be maintained along with the key and size of C1 in order to read these parts
from the store. Since only C3 is new, it is the only chunk written to the store. The
remaining chunks are all either old chunks that were previously written or parts
of old chunks that were previously written to the store. Information about these
chunks are maintained on the client and are not written to the store. The output
of fingerdiff after having written two versions of the file F to the store contains only
3 chunks, as opposed to CDC whose output contains 33 chunks.

changes

SC1 SC2 SC3 SC32SC1 SC2 SC3 SC32

C1’
(old)

���� ���� ������ 	
 ��
�
��� ���� ���������� ������ ����

CDC(f,1K) CDC(f,1K)

Version 1 of F Version 2 of F

SC1 SC3 SC32SC2’

fingerdiff(f,1K,16)

(new) (old)
C1’’ C2

(old)

fingerdiff(f,1K,16)

C1
(new) (new)

C2

(a) (b)

C3

Fig. 2. An example of fingerdiff being employed to encode two consecutive versions of a file.

3.4 Algorithms

The CDC algorithm (shown in Figure 3) assumes an exp chunk size parameter and
depending on its value calculates a chunkMask. For example an 8k expected chunk
size value would result in a chunkMask of 13 bits (on average every 8kth fingerprint
will have its last 13 bits equal to the magic value)

It computes the Rabin fingerprints of each overlapping substring of a fixed size
substring size of the file. It chooses a particular byte position as chunk boundaries
if the the last chunkMask bits of the fingerprint of the substring starting at that
byte position equals a fixed magic number. In our algorithm, we choose this magic
number to be zero. Once chunk boundaries are identified, the corresponding chunks
are added to a list. Each of the chunks in the list are written as a single data entity

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 9

1 Procedure CDC

2 INPUTS: File f, Integer exp chunk size

3 OUTPUT: List L of chunks

4 BEGIN

5 List L := empty;

6 chunkMask := calculateMask(exp chunk size);

7 foreach byte position X in f do

8 window := substring(f,X,substring size);

9 fp := fingerprint(window);

10 if (fp & chunkMask = magic value)

11 then

12 mark X;

13 endif

14 endfor

15 mark last position in f

16 firstpos := 0;

17 foreach byte position X that is marked do

18 chunk := substring(f,firstpos, X-firstpos);

19 firstpos := X;

20 L.add(chunk);

21 endfor

22 return L;
23 END

Fig. 3. Fingerprint based chunking algorithm

(not shown in the algorithm). Figure 3 hides several implementation details; in
particular, it hides the fact that the fingerprints can be computed easily on sliding
window of file bytes. The algorithm can be further modified to mark a chunk
boundary if a chunk boundary is not marked after a certain maxval bytes have
been processed in order to avoid pathological cases [Muthitacharoen et al. 2001].

Note that while describing the CDC algorithm we used the term “chunk” to
describe both the unit of data identified by the fingerprinting algorithm and the
unit of data that is written to the data store.

To describe the fingerdiff algorithm, we slightly modify this terminology: we
introduce a new term called a subchunk which is a data unit that is identified by
CDC. A chunk on the other hand is defined as a series of contiguous subchunks
that can be written to the data store as one data entity.

The fingerdiff algorithm operates with two parameters; an exp sc size parameter,
expected subchunk size, that is similar to the exp chunk size parameter used by
CDC, and a max scs parameter that is the maximum number of subchunks that
can be contained in one chunk. A subchunk is therefore contained in a chunk at a
given offset. The chunk that contains a subchunk is referred to as the subchunk’s
superchunk.

The algorithm is illustrated in Figure 4. It takes as input a file f that has to be
chunked and the parameters, exp sc size and max scs and returns a list of chunks or
chunk parts. Once the chunks are returned, those chunks that are marked new are
emitted to the store. All the chunks and chunk parts are recorded in a metadata
block using their 〈chunk-key, size, offset〉 information. Depending on the design of
the application, this metadata block can also be written to the store and its key

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

10 · Deepak Bobbarjung et al.

1 Procedure fingerdiff

2 Inputs: File f, Integer exp sc size , Integer max scs

3 Output: List CL of Chunks

4 BEGIN

5 ChunkList CL := empty;

6 SubChunkList SL := CDC(f,exp sc size);

7 SubChunk SC := SL.next();

8 Type currentChunkType := lookup(SC);

9 while SL 6= empty do

10 Chunk C := new Chunk();

11 if (currentChunkType = new)

12 then

13 C.type := new;

14 while (currentChunkType = new and chunkSizeof(C) < max scs) do

15 C.add(SC);

16 SC := SL.next();

17 currentChunkType := lookup(SC);

18 endwhile

19 else

20 C.type = old;

21 while (currentChunkType = old and isContiguous(SC) do)
22 C.add(SC);
23 SC := SL.next();
24 currentChunkType := lookup(SC);
25 endwhile

26 endif

27 if (C.type = new)

28 then

29 foreach Subchunk SC in C do

30 size := sizeof(SC);
31 offset := getOffset(C,SC);
32 AddToLocalLookup(SC,C, offset,size);

33 endfor

34 endif

35 CL.add(C);
36 endwhile

37 return CL;
38 END

Fig. 4. The fingerdiff algorithm

can be maintained as a pointer to this particular version of the file.
The algorithm description hides the following details.

(1) The lookup procedure called on lines 8, 17 and 24 uses an auxiliary data struc-
ture that records information about subchunks. If a match is found it returns
the type as old; otherwise it returns the type as new.

(2) The isContiguous function called on line 21 ensures that the current subchunk
being processed is contiguous with the previous subchunk that was processed;
i.e they have the same superchunk and that the current subchunk appears im-
mediately after the previous subchunk that was processed in that superchunk.
In case some subchunk appears in multiple superchunks, the algorithm maps it
to the first superchunk it appeared in. By checking for the order of subchunks

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 11

in a superchunk, the isContiguous function ensures that this mapping is never
changed.

(3) The SL.next() function called on lines 7, 16 and 23 has the effect of removing
the next subchunk from the list and returning that subchunk.

(4) The chunkSizeof(C) function called on line 14 returns the number of subchunks
currently present in chunk C.

The algorithm begins by invoking CDC (line 6) with an expected chunk size value
equal to the exp sc size to obtain a sequence of subchunks. The key intuition here
is that the implementation can assume a lower exp sc size value than the expected
chunk size assumed in an implementation of CDC. This is because after calling
CDC, fingerdiff will merge the resultant subchunks into larger chunks wherever
possible before writing them to the store. Lines 11 through 26 coalesce contiguous
subchunks into chunks that are either new or old depending on whether or not
the local lookup for them succeed. Line 14 ensures that the number of subchunks
in a new chunk does not exceed max scs. Line 21 ensures that old subchunks are
coalesced only if they belong to the same superchunk and if they again appear in the
same order as they did in their superchunk. Lines 27 through 34 add the information
about the new subchunks to a client-local data structure that is consulted by the
lookup procedure.

Once fingerdiff returns, the encoder program only writes the new chunks to the
store. The old chunks are remembered as a 〈superchunk-key,offset,size〉 tuple. To
read an old chunk, the superchunk is read from the store using the superchunk-key,
and indexed into using the offset and size information.

3.5 Implementation of fingerdiff

The subchunks are computed using a CDC implementation that identifies chunk
boundaries by computing Rabin’s fingerprints on a sliding window of 32 bit sub-
strings of the file. The lookup procedure maintains a tree in which each node
consists of information about one subchunk. This information includes:

—The hash of the subchunk.

—The hash of the subchunk’s superchunk.

—The offset of the subchunk in its superchunk

—The size of the subchunk.

The tree itself is indexed using the hash of the subchunk. All hashes are computed
using an implementation of the standard SHA-1 algorithm. The tree is stored
persistently on disk. Another tree is used to maintain a mapping between the
object being chunked and its corresponding lookup tree.

A given lookup tree is read from disk whenever its corresponding object is being
chunked. At any point of time, the tree of a given object will contain information
about all the subchunks of all the versions of that object that have been written
so far. We refer to this lookup tree as a local database in the following sections.
Maintaining a separate lookup tree for each object improves the time to lookup
information about subchunks of each object but it does eliminate the possibility of
cross-object duplicate elimination.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

12 · Deepak Bobbarjung et al.

4. EXPERIMENTAL FRAMEWORK

A major goal of this work is to measure the effectiveness of chunking techniques in-
cluding fingerdiff in eliminating duplicates in a content addressable storage system
with specific emphasis on applications that write consecutive versions of the same
object to the storage system. But apart from storage space utilization, we are also
interested in understanding the overheads associated with each technique. Subsec-
tion 4.1 elaborates on the different characteristics of each chunking technique that
we measure and why they are significant. Subsection 4.2 discusses the benchmarks
we use to measure the characteristics of each chunking technique.

4.1 Characterizing the different chunking techniques

The following characteristics of the chunking technique are measured and used to
differentiate between them.

(1) Storage utilization: For each technique that we study, we measure the storage
space utilization on a storage engine during and after a series of consecutive
versions have been written to the engine. The storage space includes the sum
of the size of both data and metadata chunks plus the size of one pointer per
chunk. This pointer has to be maintained on the storage backend to retrieve
the chunk whenever necessary. We assume a SHA-1 hash pointer and therefore
calculate the pointer size to be 20 bytes. In Section 5, we also explore the
effect of storing more than one pointer per data block.

(2) Number of chunks and distribution of chunk sizes: Apart from overall storage
space usage, we also measure the total number of chunks generated by the
different chunking techniques. Measuring this quantity is significant because
there are overheads associated with each chunk that vary among different stor-
age systems. For example, in systems that store more than one replica of each
chunk, an additional pointer needs to be stored for each replica. In peer-to-peer
systems retrieving an object composed of multiple chunks will result in rout-
ing and lookup overheads per chunk. Further a storage system that has lesser
chunks to store and maintain will have better lookup and update performance
than a system that manages more chunks.

The chunk size distribution is also relevant as it affects read and write band-
width in network storage architectures. Most storage systems are moving to-
ward increasing block sizes to improve bandwidth performance of data. From
this perspective we want data to be in relatively large chunks.

(3) Encoding latency: The latency of chunking the first and last version of each
version series is measured and reported. Chunking latency is is due to the
additional work done by the chunking technique while attempting to chunk
data objects intelligently so as to optimize storage space.

(4) Database size: A local database is maintained by fingerdiff to determine chunk-
ing sizes for objects. The sum of all individual lookup sizes is the size of the
database. We trace the size of the database for four fingerdiff instantiations as
they are used to write consecutive versions to a storage engine. We show that
though the size of the database grows over time, the percentage space saved
per byte on the backend also grows with time. We discuss methods to limit the

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 13

size of this database.

(5) Read overheads: We model the number of seeks (i.e., non-contiguous disk
accesses) required on a variable sized block device to read back a given version
of a file that has been written by our chunking techniques. We report these
numbers for each version of each of the benchmarks, and for each chunking
technique that we use.

4.2 Real life traces

We obtained a set of consecutive versions of real programs. These include the
following

—gnu emacs: A series of 8 emacs versions from 20.1 through 21.3.

—gnu gcc: A series of 21 gcc versions from 2.95.0 through 3.4.1.

—Linux kernel: A series of 11 versions of the Linux kernel from 2.6.0 through 2.6.3.

—gnu gdb: A series of 9 gnu gdb versions from 5.0 through 6.3.

Table I enumerates the characteristics of the first and last version of each of the
four benchmarks.

We measure the characteristics of seven instantiations of the different techniques
described thus far (explained in the next section) for each benchmark. We assume
a chunk store that accepts chunks and stores them based on their content. We then
write all the versions of the each series one at time. At each point, we measure the
characteristics discussed in this section.

benchmark emacs gcc Linux gdb

First Last First Last First Last First Last

(20.1) (21.3) (2.95.0) (3.4.1) (2.6.0) (2.6.10) (5.0) (6.3)

Version number 1 7 1 20 1 10 1 9

Size of gzipped 13 20 13 36 40 44 12 17
version (MB)

Size of tarred 46 73 56 191 179 196 56 88

version (MB)

Size of all 44 71 51 164 167 183 53 84
files (MB)

Number of files 1967 2553 2771 21817 15007 16448 3771 5255
in version

Table I. Characteristics of the first and last version of each benchmark

5. RESULTS

We consider three CDC and four fingerdiff technique instantiations for our measure-
ments. Using each of these seven instantiations we write each version of the four
benchmarks systems to a content addressable store. We compare different charac-
teristics of each chunking instantiation. We weigh the benefits and overheads of
each instantiation and identify scenarios where employing one has clear advantages
over the rest.

The seven instantiations considered are:

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

14 · Deepak Bobbarjung et al.

—cdc-8k : A content defined chunking (CDC) strategy with
exp chunk size of 8KB.

—cdc-2k : A CDC instantiation with exp chunk size of 2KB.

—cdc-256 : A CDC instantiation with exp chunk size of 256 bytes.

—fingerdiff(2k-32k) : A fingerdiff strategy with exp sc size 2KB and max scs of 16.
This results in variable sized chunks whose expected size can range from 2KB to
32KB.

—fingerdiff(512-32k) : A fingerdiff strategy with exp sc size 512 bytes and max scs
64. This results in variable sized chunk whose expected size can range from 512
bytes to 32k.

—fingerdiff(256-32k) : A fingerdiff strategy with exp sc size 256 bytes and max scs
128. This results in variable sized chunk whose expected size can range from 256
bytes to 32k.

—fingerdiff(128-32k) : A fingerdiff strategy with exp sc size 128 bytes and max scs
256. This results in variable sized chunk whose expected size can range from 128
bytes to 32k.

We chose to exclude FSC based instantiations as it has been well documented
elsewhere [Policroniades and Pratt] that CDC instantiations exploit commonality
of data better than FSC instantiations.

In order to understand the nature of both CDC and fingerdiff, we chose a range of
instantiations for each of these two techniques, varying the exp chunk size for CDC
and the exp sc size for fingerdiff. For CDC, we experimented with exp chunk sizes
of 8K, 2K and 256 bytes respectively. We expect that as the exp chunk size of CDC
is decreased, we would observe better storage utilization due to decreased chunk-
ing granularity. While this was true for exp chunk sizes from 8K to 256 bytes, we
observed for all benchmarks that reducing it to 128 bytes did not improve storage
utilization over the 256 byte instantiation. This was found to be because the over-
head of generating an excessive number of chunks, and the cost of storing each chunk
(a 20 byte pointer is used to maintain each chunk) for the 128 byte instantiation was
greater than the benefits accrued due to reduced chunking granularity. It should
be noted therefore that we found the cdc-256 instantiation to be the best CDC
instantiation in terms of storage utilization. For fingerdiff, we used exp sc sizes of
2K, 512 bytes, 256 bytes and 128 bytes. For each instantiation, we also varied the
max scs parameter, so that in all cases, the maximum expected size of a chunk
would be 32K. Recall that fingerdiff coalesces unchanged subchunks, allowing us to
have small chunking granularities, without generating excessive number of chunks.
As a result, unlike in the case of CDC, we observed that fingerdiff(128-32k) im-
proves storage utilization over fingerdiff(256-32k). We conclude that fingerdiff is
capable of reducing chunking granularity in order to improve duplicate elimination
without incurring excessive overheads of CDC. However for each benchmark reduc-
ing the exp sc size of fingerdiff does increase some of the overheads and we measure
and explain these overheads. More detailed discussion of results are presented in
the following subsections.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 15

5.1 Storage utilization

The storage space consumed by each chunking technique reflects the amount of
storage space saved by leveraging duplicate elimination on the store. The technique
which best utilizes duplicate elimination can be expected to consume the least
storage space. Figure 5 compares the storage utilization achieved on account of
duplicate elimination while storing consecutive versions of (a) gnu emacs, (b) gnu
gcc, (c) the Linux kernel and (d) gnu gdb for all seven instantiations.

The “Total data size” plot indicates the storage that would have been necessary
in a storage system which provides no duplicate elimination; i.e it is the sum of
the sizes of each version written so far. The difference between this plot and the
plot of any chunking instantiation is a measure of the storage space saved by that
instantiation.

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5 6 7

St
or

ag
e

si
ze

(i
n

M
B

)

 Version Number

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20

St
or

ag
e

si
ze

(i
n

M
B

)

 Version Number

(a) (b)

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10

St
or

ag
e

si
ze

(i
n

M
B

)

 Version Number

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8 9

St
or

ag
e

si
ze

(i
n

M
B

)

 Version Number

(c) (d)

Total data size
 cdc-8k
 cdc-2k

 cdc-256
 fingerdiff(2k-32k)
 fingerdiff(512-32k)

 fingerdiff(256-32k)
 fingerdiff(128-32k)

Fig. 5. Comparison of the total storage space consumed by the six chunking tech-
nique instantiations while writing a series of (a) emacs, (b) gcc (c) Linux kernel
and (d) gdb versions to a content addressable chunk store. The “total storage size”
plot is the storage space for each benchmark on a store that does not provide any
duplicate elimination.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

16 · Deepak Bobbarjung et al.

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7

N
o.

 o
f

C
hu

nk
s

ge
ne

ra
te

d

 Version Number

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

N
o.

 o
f

bl
oc

ks
 g

en
er

at
ed

 Version Number

(a) (b)

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10

N
o.

 o
f

ch
un

ks
 g

en
er

at
ed

 Version Number

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7 8 9
N

o.
 o

f
C

hu
nk

s
ge

ne
ra

te
d

 Version Number

(c) (d)

 cdc-8k
 cdc-2k
 cdc-256

 fingerdiff(2k-32k)
 fingerdiff(512-32k)
 fingerdiff(256-32k)

 fingerdiff(128-32k)

Fig. 6. Comparison of the number of chunks generated by the the six chunking
technique instantiations while writing a series of (a) emacs, (b) gcc (c) Linux kernel
and (d) gdb versions to a content addressable chunk store. Note that the Y axis is
a log plot.

All four benchmarks indicate that among the seven instantiations, fingerdiff(128-
32k) consumes the least and cdc-8k the most storage. Note that fingerdiff(2k-32k)
and cdc-2k have similar storage consumption for all benchmarks. This is because
they both use the same chunking granularity, and although fingerdiff(2k-32k) gener-
ates lesser chunks than cdc-2k (figure 6) the effect of the reduced number of chunks
in terms of storage space is not significant enough for the difference to be visible
in the graphs. However reducing chunking granularities below 2K changes this
relation. For example, observe that for all benchmarks, fingerdiff(256-32k) con-
sumes far less storage than cdc-256. (In fact cdc-256 consumes more storage than
even fingerdiff(512-32k).) As noted earlier this is due the metadata overheads of
the massive number chunks generated by cdc-256 adversely impacting its storage
consumption. On the other hand reducing chunking granularity to 128 bytes con-
tinues to reduce storage consumption of fingerdiff further validating our claim that
fingerdiff allows us to decrease chunk sizes without incurring the overheads of cdc.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 17

The gcc and emacs results have sharp spikes at some points (Version 4 for emacs
and version 14 for gcc). This is the effect of multiple version series of gcc and
emacs being grouped together. When a gcc 3.0 version is written after a series
of 2.95 versions, the amount of duplicates encountered drops drastically resulting
in an unusually steep increase in storage consumption at this point. Such steep
points represent the end of one version series and the beginning of another within
a benchmark.

5.2 Chunks and chunk size distribution

Figure 6 shows the number of chunks that were generated by each chunking tech-
nique when writing the four benchmarks to a content addressable store. From the
system point of view we would like to have as few chunks as possible to reduce the
overheads associated with each chunk. These overheads include at least one 20 byte
pointer per chunk. Depending on the storage architecture, the overheads could also
involve one disk request per chunk on reads, and one network request per chunk
from either a client to the server or a peer to another on reads and writes.
Cdc-256 and fingerdiff(2k-32k) generate the maximum and minimum number of

chunks respectively for all four benchmarks. Note that the log scale is used for the
Y axis to accommodate the excessively large number of chunks generated by cdc-
256. A fingerdiff instantiation with a lower exp sc size generates more chunks than
one with a higher exp sc size; but much fewer than a cdc instantiation with the
same exp chunk size. For example while fingerdiff(256-32k) generates more chunks
than fingerdiff(512-32k), it generates far fewer chunks than cdc-256.

These results reflect the tension between storage consumption and associated
overheads of CDC due to large number of chunks. Among the CDC instantiations
cdc-256 provides better duplicate elimination than cdc-2k and cdc-8k; however it
also generates the maximum number of chunks. The fingerdiff instantiations at-
tempt to strike a balance. For example fingerdiff(2k-32k) gives us approximately the
same duplicate elimination as cdc-2k but generates far fewer chunks. Fingerdiff(256-
32k) not only consumes lesser storage space than cdc-256 but generates fewer chunks
as well. Similarly fingerdiff(512-32k) consumes lesser space and generates fewer
chunks than cdc-2k.

As storage designers are moving toward increasing block sizes in order to improve
system throughput, we deemed it important to understand the distribution of chunk
sizes generated by the fingerdiff instantiations. Figure 7 shows the distribution of
chunk sizes in terms of the percentage of total bytes on the backends that belong to
a chunk of a certain size range. We measure this distribution after writing the last
version of each benchmark for all four fingerdiff instantiations. (The distribution for
CDC was expected to be constant, with all chunks expected be of size exp chunk size
with a margin of error.) Observe that in each of the four benchmarks series, and
for three of the four fingerdiff techniques (fingerdiff(128-32k) being the exception)
more than half of all data is still contained in chunks of size 16k or higher even
after the last version of each series has been written. For fingerdiff(128-32k) more
than 45% of all data resides in chunks of size 16k or higher after the last version of
each benchmark is written. In contrast, if cdc-128 were to be employed instead of
fingerdiff(128-32k), all data would reside in chunks of size 128 bytes.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

18 · Deepak Bobbarjung et al.

 0

 20

 40

 60

 80

 100

<
 5

12

51
2-

1k

1k
-2

k

2k
-4

k

4k
-8

k

8k
-1

6k

16
k-

32
k

>
 3

2k

Pe
rc

en
ta

ge
 o

f
ch

un
ks

 Chunk size ranges

 0

 20

 40

 60

 80

 100

<
 5

12

51
2-

1k

1k
-2

k

2k
-4

k

4k
-8

k

8k
-1

6k

16
k-

32
k

>
 3

2k

Pe
rc

en
ta

ge
 o

f
ch

un
ks

 Chunk size ranges

(a) (b)

 0

 20

 40

 60

 80

 100

<
 5

12

51
2-

1k

1k
-2

k

2k
-4

k

4k
-8

k

8k
-1

6k

16
k-

32
k

>
 3

2k

Pe
rc

en
ta

ge
 o

f
ch

un
ks

 Chunk size ranges

 0

 20

 40

 60

 80

 100

<
 5

12

51
2-

1k

1k
-2

k

2k
-4

k

4k
-8

k

8k
-1

6k

16
k-

32
k

>
 3

2k

Pe
rc

en
ta

ge
 o

f
ch

un
ks

 Chunk size ranges

(c) (d)

fingerdiff(2k-32k) fingerdiff(512-32k) fingerdiff(256-32k) fingerdiff(128-32k)

Fig. 7. Percentage of total bytes belonging to chunks of a certain size range after
writing the first and last versions of the (a) emacs, (b) gcc ,(c) Linux and (d) gdb
series using the four fingerdiff instantiations.

5.2.1 Erasure coded stores. As mentioned earlier, the overheads imposed on the
storage system due to each chunk generated depends on the system architecture.
In this section we analyze these overheads for a specific kind of storage system
– erasure coded stores. Systems such as Oceanstore [Kubiatowicz et al. 2000]
and Intermemory [Goldberg and Yianilos 1998] propose the use of erasure codes
[Berlekamp 1968; Blomer et al. 1995] for archival storage. In such systems, a data
block is divided into m equally-sized fragments and these m fragments are encoded
into n fragments (where n > m). These n fragments can be dispersed across n or
less nodes in a potentially distributed system. The key property of erasure codes
is that the original data block can be re-assembled(decoded) by obtaining any m
of the encoded n fragments. The value r = m/n is called the rate of encoding
and the value 1/r gives a measure of redundancy introduced. Note that we can
increase the availability guarantees that we provide by increasing proportionately
the values of m and n, but as long as the rate of encoding, r is kept constant,

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 19

the aggregate storage space consumed by the data is constant[Weatherspoon and
Kubiatowicz 2002a]. In contrast, replication necessitates a linear increase in the ag-
gregate storage space consumed in order to achieve the same increase in availability
guarantees [Weatherspoon and Kubiatowicz 2002b].

However for each fragment that is stored in a node there is at least one reference to
that fragment. More fragments dispersed over more nodes will automatically mean
more storage consumed by these references. For example in [Goldberg and Yianilos
1998], the authors propose each block to be fragmented into 65536 fragments to
guarantee that the block lasts until eternity. Assuming the standard 20 byte SHA-1
pointer per fragment, this would mean a 65536 * 20 = 1310720 byte overhead per
each block, irrespective of the size of the block. From this perspective, we would
want the number of chunks generated by the chunking technique to be as less as
possible.

 1000

32 64 128 256

St
or

ag
e

si
ze

(i
n

M
B

)

 Number of fragments

 1000

 10000

32 64 128 256

St
or

ag
e

si
ze

(i
n

M
B

)

 Number of fragments

(a) (b)

 1000

 10000

32 64 128 256

St
or

ag
e

si
ze

(i
n

M
B

)

 Number of fragments

 1000

 10000

32 64 128 256

St
or

ag
e

si
ze

(i
n

M
B

)

 Number of fragments

(c) (d)

 cdc-8k
 cdc-2k
 cdc-256

 fingerdiff(2k-32k)
 fingerdiff(512-32k)
 fingerdiff(256-32k)

 fingerdiff(128-32k)

Fig. 8. Comparison of storage overhead of each of the chunking technique instan-
tiations as the number of nodes used to disperse fragments of generated chunks is
increased exponentially

For this set of experiments, we assume an erasure coded back end as opposed to
the previously assumed chunk store. Figure 8 measures the growth in storage space

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

20 · Deepak Bobbarjung et al.

for each of the seven chunking technique instantiations and for each benchmark as
we increase the number of nodes among which the fragments are dispersed upon
from 32 to 256. Because of the nature of the erasure codes, the overall size of data
remains a constant; however the metadata size increases since an additional pointer
is required to maintain every fragment (as before we assume a 20 byte pointer for
each fragment). The x-axis indicates the number of fragments and therefore number
of nodes and the y-axis shows the total storage consumed by both data data and
metadata in MB. Note both x and y axes are drawn on a logarithmic scale. We
start by measuring the storage space consumed by all versions of a given benchmark
on a back end that stores each fragment of chunks on 32 nodes and then increase
the number of nodes and fragments to 256.

For all four benchmarks, fingerdiff(128-32k) consumes the least space when every
chunk is coded into 32 fragments. This is because as we saw in the previous exper-
iments this instantiation of fingerdiff gives us the best storage utilization. However
observe that as we increase the number of fragments, fingerdiff(2k-32k) eventually
outperforms all the other techniques for all four benchmarks. This is simply be-
cause, fingerdiff(2k-32k) generates chunks that are significantly fewer than the rest.
As we increase the number of nodes on which fragments are stored, the overhead of
storing each additional fragment dominates the cost of storage making the dupli-
cate elimination obtained by the various techniques insignificant. Also observe that
storage space consumed by the instantiations that generates more chunks (cdc-256)
increases more rapidly than instantiations which generate fewer chunks. This indi-
cates that as we increase the number of fragments used to store data, eventually
the technique which generates more chunks will consume more storage than tech-
niques which generate fewer chunks, i.e the cost of storing increasing metadata will
eventually be greater than the benefit of data saved due to duplicate elimination.
Clearly the benefits of duplicate elimination are valid only in systems that do not
erasure code blocks into extremely large number of fragments as is proposed in
[Goldberg and Yianilos 1998].

5.3 Chunking Latency

Table II presents the latency of chunking the first version and the last version
for all four benchmarks and for of each of the seven instantiations. For CDC,
the chunking time includes only the time to compute Rabin’s fingerprints on fixed
size substrings of each file of the version, and to identify chunk boundaries in the
file. For fingerdiff, the chunking time includes the time spent in identifying chunk
boundaries as in CDC, and also the time required to compute hashes on subchunks,
look up the local database for hashes, and update the database if necessary.
fingerdiff(128-32k) and cdc-8k spend the maximum and minimum amount of time

respectively chunking each version. The chunking latency of CDC increases with
decreasing exp chunk sizes, although only slightly. Recall that the same substring
size is used to compute Rabin’s fingerprints for all CDC instantiations resulting
in only marginal differences between their chunking latencies. On the other hand
the size of the version being chunked impacts the chunking latency of CDC more
directly as more fingerprints have to be computed for larger versions.

Note that both CDC and fingerdiff instantiations spend the same amount of
time computing fingerprints because the same substring size is used for all in-

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 21

stantiations. Fingerdiff instantiations spend more time chunking than their CDC
counterparts because of the overheads involved with looking up subchunks in the
database. These overheads include hashing each subchunk, looking up the hash in
the database, checking for subchunks that can be coalesced, and then inserting new
hashes into the database if necessary. The time required for database operations
depends on the size of the database, which in turn depends on the subchunk size
of the fingerdiff instantiation. Fingerdiff(128-32k) has the greatest sub chunk size
granularity among the fingerdiff instantiations we measure. As it has to compute
the most subchunk hashes and perform the most database operations, it has the
maximum chunking latency. Using the same argument, fingerdiff(2k-32k) has the
least chunking latency among the fingerdiff instantiations we measure, which is still
more than any CDC instantiation.

benchmark emacs gcc Linux gdb

instantiation First Last First Last First Last First Last

cdc-8k 2.8 4.6 3.4 10.2 11.7 12.0 3.3 5.3
cdc-2k 2.9 4.7 3.6 12.2 11.8 12.9 3.5 5.6
cdc-256 3.3 4.8 3.8 13.0 11.9 13.4 3.9 5.9

fd(2k-32k) 6.1 8.7 7.7 21.9 20.8 24.3 7.2 11.2
fd(512-32k) 6.8 9.5 8.1 25.1 21.6 26.2 7.9 11.8
fd(256-32k) 7.9 11.1 9.5 28.2 24.5 30.2 9.2 13.1
fd(128-32k) 11.1 14.2 12.8 37.9 33.2 41.5 12.4 17.2

Table II. Chunking latency in seconds measured while writing the first and last
version of each benchmark for all chunking technique instantiations.

5.4 Database size

As mentioned previously, a local database is used on the client to support fingerdiff
chunking. This database contains a tree that maps hashes of subchunks to informa-
tion about that subchunk. This database resides in disk persistently, but is pulled
into memory when an object that is mapped to it is being chunked. As can be ex-
pected, this database grows as more versions are written to the store. We measure
the size of the database for all our fingerdiff instantiations. We also measure the
efficiency of the database; we define efficiency as the number of bytes gained from
duplicate elimination on the back end per each byte of the database, assuming only
one client has written this data to the back end.

Figure 9 shows the results for the (a) emacs, (b) gcc (c) Linux kernel and (d)
gdb benchmarks respectively. These graphs show that the database size grows with
every new version in each of the four traces. They also indicate that the smaller
the size of the exp sc size of the fingerdiff instantiation, the faster the growth of the
database. Having said that, observe that the storage savings on account of duplicate
elimination per byte of database size also grows more rapidly for instantiations with
smaller values of exp sc size. So although fingerdiff(128-32k) requires a larger local
database, it also saves more space per byte of its database than the other fingerdiff
instantiations that we measure.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

22 · Deepak Bobbarjung et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7
 0

 50

 100

 150

 200

 250

 300

 350

St
or

ag
e

si
ze

 o
f

fi
ng

er
di

ff
 d

at
ab

as
e(

in
 M

B
)

N
um

be
r

of
 b

yt
es

 s
av

ed
 p

er
 d

at
ab

as
e

by
te

 Version Number

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10
 0

 100

 200

 300

 400

 500

 600

 700

St
or

ag
e

si
ze

 o
f

fi
ng

er
di

ff
 d

at
ab

as
e(

in
 M

B
)

N
um

be
r

of
 b

yt
es

 s
av

ed
 p

er
 d

at
ab

as
e

by
te

 Version Number

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10
 0

 500

 1000

 1500

 2000

St
or

ag
e

si
ze

 o
f

fi
ng

er
di

ff
 d

at
ab

as
e(

in
 M

B
)

N
um

be
r

of
 b

yt
es

 s
av

ed
 p

er
 d

at
ab

as
e

by
te

 Version Number

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10
 0

 100

 200

 300

 400

 500

 600

 700

St
or

ag
e

si
ze

 o
f

fi
ng

er
di

ff
 d

at
ab

as
e(

in
 M

B
)

N
um

be
r

of
 b

yt
es

 s
av

ed
 p

er
 d

at
ab

as
e

by
te

 Version Number

(c) (d)

 fingerdiff(2k-32k) fingerdiff(512-32k) fingerdiff(256-32k) fingerdiff(128-32k)

Fig. 9. Comparison of database characteristics of fingerdiff(2k-32k) and
fingerdiff(512-32k) instantiations while writing a series of (a) emacs, (b) gcc (c)
Linux kernel and (d) gdb versions to a content addressable chunk store. The solid
lines show the absolute database size for each technique; whereas the dotted lines
plot the efficiency of the database; i.e the number of bytes saved in the back end
per one database byte assuming only one client has written this version to the back
end.

5.5 Read overheads

The chunking techniques introduce certain overheads for reading a given version of
a file from the store.

In order to read a given version of a file back from the store, the client must
request each chunk corresponding to that file from the store, and then group all
chunks together in the right order to regenerate the file. A request for each chunk
will translate into a read request on some disk system in the storage system, if the
chunk is not found in any of the system caches. It is safe to assume that a request
for archival data will miss the cache and translate into disk requests. In order to
better measure the cost of reading chunks from the storage system and understand
the impact of each chunking technique on this cost, we developed a simple model

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 23

to calculate the overhead of reading from a disk store. The goal of our model
is to calculate the penalty paid while reading a given version from a disk store.
Specifically our model assumes that whenever two chunks are read one after the
other from disk, and the chunks are not contiguous in disk, one disk “seek” is made
to read the second chunk. We report the total number of such “seeks” necessary
to read each version of a file after it has been encoded and stored using our seven
chunking technique instantiations. Note however that the value we return is not
technically the number of disk seeks made by the disk head, but simply a notion
of locality of data placement; We assume an ideal value of 1, which is when the
entire version is stored contiguously on disk and can be read in just one disk “seek”.
Hence lesser the number of seeks, the higher the locality and vice-versa. To avoid
confusion with actual disk seeks, we will refer to the value returned by the model
as “read-overhead”.

The specific details of our model are as follows:

—While writing data: An infinite disk log is assumed that stores each new data
chunk irrespective of its size at the end of the log. This position is recorded as an
offset from the beginning of the log. If the chunk already exists it is not stored
again. A hash table that maps chunk keys to disk locations (offsets) is maintained
to look up each chunk. In the scenario where the first version of a file is written,
all chunks will be written contiguously one after the other on disk (assuming
no duplicates for the first version). However, when a later version of the file is
written, some of the chunks will be old and therefore will not be appended at the
end of the log. Only new chunks for this version will be contiguously written on
disk.

—While reading data: To read a given version of a file, a series of chunks that
comprise the file is requested. A disk pointer variable is assumed that keeps
track of the position of the disk chunk currently being read. Each time the disk
pointer has to be moved to a chunk in the disk that is not contiguous with the last
chunk read, the number of seeks is incremented. The final value of the number
of seeks is returned.

Figure 10 presents the read overhead of each of the seven chunking technique
instantiations while reading every version of the (a) emacs, (b) gcc (c) Linux, and
(d) gdb traces back from the store as measured by our model.
Fingerdiff(128-32k) and cdc-8k has the maximum and minimum overheads re-

spectively. Fingerdiff(128-32k) in its attempt to maximize duplicate elimination
produces chunks that are more likely to be already on disk; therefore these chunks
are more dispersed throughout the disk than the other instantiations. Reading a
version from the disk will therefore result in fewer chunks being contiguous. This is
the price paid by fingerdiff for attempting to optimize duplicate elimination. CDC-
8k on the other hand provides poor duplicate elimination and subsequently writes
contiguous chunks more often to disk. Another interesting comparison in figure 10
is between fingerdiff(256-32k) and cdc-256. Recall that both instantiations gener-
ate chunks of expected size 256, but fingerdiff coalesces them whenever possible
to form larger chunks. As a result it generates fewer number of chunks. Hence,
fingerdiff(256-32k) not only outperforms cdc-256 in terms of storage space(figure 5),

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

24 · Deepak Bobbarjung et al.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1 2 3 4 5 6 7

D
is

k
re

ad
 o

ve
rh

ea
d

 Version number

 0

 20000

 40000

 60000

 80000

 100000

 0 5 10 15 20

D
is

k
re

ad
 o

ve
rh

ea
d

 Version number

(a)
(b)

 0

 20000

 40000

 60000

 80000

 100000

 0 2 4 6 8 10

D
is

k
re

ad
 o

ve
rh

ea
d

 Version number

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 1 2 3 4 5 6 7 8 9

D
is

k
re

ad
 o

ve
rh

ea
d

 Version number

(c) (d)

 cdc-8k
 cdc-2k
 cdc-256

 fingerdiff(2k-32k)
 fingerdiff(512-32k)
 fingerdiff(256-32k)

 fingerdiff(128-32k)

Fig. 10. Comparison of the read overhead while reading back each of the (a)
emacs, (b) gcc, (c) Linux kernel and (d) gdb versions for each of the seven chunking
technique instantiations. The abrupt fall in read overheads at specific points for all
instantiations is because of multiple version sets of the benchmarks being clubbed
together into one versions series.

but also in terms of read overhead. Similarly fingerdiff(2k-32k) outperforms cdc-
2k in terms of both storage space and read overheads; clearly a win-win situation
and a strong case for the use of fingerdiff. The read overhead falls abruptly for all
instantiations at certain points in the emacs and gcc traces. This is because the
benchmarks we use have multiple version sets clubbed together as one continuous
series. For example in figure 10(a), version point 4 on the x-axis corresponds to
emacs 20.7 whereas version point 5 corresponds to emacs 21.1. Emacs 21.1 being a
new version set, has a disproportionate amount of differences when compared with
20.7. As a result, at this point there is an increase in the amount of data that is
new and therefore contiguous on disk – resulting in the decrease in read overhead
for all chunking technique instantiations at this point.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 25

6. DISCUSSION

Storage consumption is a direct measure of the ability of chunking techniques to
maximize duplicate elimination by leveraging content addressability. Each tech-
nique imposes certain overheads that vary depending on the design and architecture
of the storage system. In general a technique that generates more chunks imposes
greater overheads on the system because of the increased cost of managing and
storing greater volumes of metadata on the backends.

Figure 11 plots storage consumption as a function of the number of chunks gen-
erated by each of the seven instantiations for the four benchmarks. Each point in
the lines of figure 11 represents a version in the benchmark. Note that the cdc-256
instantiation generates the most number of chunks, while the cdc-8k instantiation
consumes the maximum space.

 0

 100

 200

 300

 400

 500

 600

 700

512 2k 8k 32k 128k

St
or

ag
e

si
ze

(i
n

M
B

)

 No. of chunks generated

 cdc-8k
 cdc-2k
 cdc-256
 fingerdiff(2k-32k)
 fingerdiff(512-32k)
 fingerdiff(256-32k)
 fingerdiff(128-32k)

 0

 500

 1000

 1500

 2000

512 2k 8k 32k 128k 512k 2M

St
or

ag
e

si
ze

(i
n

M
B

)

 No. of chunks generated

(a) (b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

512 2k 8k 32k 128k 512k 2M

St
or

ag
e

si
ze

(i
n

M
B

)

 No. of chunks generated

 0

 200

 400

 600

 800

 1000

512 2k 8k 32k 128k 512k

St
or

ag
e

si
ze

(i
n

M
B

)

 No. of chunks generated

(c) (d)

 cdc-8k
 cdc-2k
 cdc-256

 fingerdiff(2k-32k)
 fingerdiff(512-32k)
 fingerdiff(256-32k)

 fingerdiff(128-32k)

Fig. 11. The storage utilization as a function of the number of chunks generated
for the six chunking technique instantiations when writing a series of (a) emacs, (b)
gcc, (c) Linux kernel, and (d) gdb versions to a content addressable chunk store.
The X-axis is plotted using a log scale in order to accommodate the large number
of chunks generated by cdc-256.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

26 · Deepak Bobbarjung et al.

It has been well-documented that CDC provides better duplicate elimination
than FSC techniques. [Policroniades and Pratt]. Unfortunately, in order to further
improve storage consumption of CDC, we have to reduce its expected chunk size.
Observe that storage consumption of cdc-2k is less than that of cdc-8k. But this
improvement comes at the cost of increased number of chunks generated by the
smaller-sized CDC instantiation. Observe also in figure 11 that cdc-2k generates
more than twice as many chunks as cdc-8k for all four benchmarks. Further, due to
increasing metadata overheads associated with large number of chunks, decreasing
the expected size of CDC below a certain threshold results in no further improve-
ment in storage consumption. For example in our experiments we observed that
cdc-128 did not improve the storage consumption beyond that of cdc-256.
Fingerdiff overcomes these problems by coalescing chunks into larger chunks

wherever possible. As a result it manages to provide better duplicate elimination
than CDC at lower overheads. For example fingerdiff(256-32k) consumes less than
90% of the space consumed by cdc-256 while generating less than half the number
of chunks. Also observe that fingerdiff(128-32k) and fingerdiff(256-32k) lines are
the shortest lines in all four graphs of figure 11 representing the fact that these
instantiations store the same data by consuming the least space for a given num-
ber of chunks generated --the best cost benefit ratio among all chunking technique
instantiations.

The improved storage efficiency of Fingerdiff comes with a cost. A local database
that maintains information about each of the subchunks that have been written so
far must be maintained. Note, however, that the database need not be main-
tained with the same availability and persistence guarantees as data on the storage
end. Losing information stored in the database to a disk failure will not result in
catastrophic loss of data; at worst, it will result in lower storage utilization on the
backend because of sub-optimal duplicate elimination. Fingerdiff also necessitates a
lookup against a database-managed tree to chunk objects. Since this tree resides on
disk, it has to be fetched into main memory, resulting in one or more disk accesses
per object. Thus, the chunking latency of fingerdiff is greater than both CDC and
FSC(table II). This latency can be masked by effectively caching the database in
memory, and by writing asynchronously to the store while acknowledging writes to
the application.

In addition, the growth of the fingerdiff database can be moderated if the algo-
rithm is modified so as to delete subchunk information for those subchunks that
are not likely to be accessed. The intuition here is that once a subchunk ceases to
be a part of the latest version of an object, the probability that it will become a
part of a later version is low. We can exploit this observation to bound the size
of the database without adversely affecting storage utilization. Such a technique
will also have a positive impact on chunking latency of fingerdiff as the overheads
associated with database operations will be reduced.

7. CONCLUSIONS

As a result of the limited variability in chunk sizes of CDC, we show that attempting
to improve storage consumption of CDC will result in greater number of chunks and
smaller chunk sizes. As storage hardware moves towards increasing disk block sizes

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

Improving Duplicate Elimination in Storage Systems · 27

in order to improve system throughput, it is unreasonable to reduce chunk sizes
in order to improve duplicate elimination alone. Further increasing the number of
chunks impose metadata overheads on the storage engine. These observations moti-
vated us to discover a chunking technique that would improve duplicate elimination
over existing CDC techniques without increasing its overheads.

We propose a new chunking algorithm fingerdiff that is designed to improve upon
the storage consumption of CDC while lowering the overheads it imposes on the
storage system. We have measured storage consumption along with associated over-
heads of several CDC and fingerdiff instantiations as they write a series of versions
of four different real-world software systems to a content addressable store. For
all these benchmarks, we show that fingerdiff instantiations improve upon existing
CDC techniques without increasing storage overheads.

Our contention is not that a particular fingerdiff technique is the best choice in
all content based storage engines. But, by allowing for greater variability of block
sizes, and by being able to better localize the changes made to consecutive object
versions into smaller chunks, fingerdiff is able to minimize the size of new chunks
introduced with every version, while keeping the average size of all blocks relatively
large. This in turn allows it to provide the best storage consumption for the least
overhead costs. By choosing the range of fingerdiff chunk sizes that is most suited
to their storage architecture, storage managers can significantly reduce the amount
of data they have to store and manage.

REFERENCES

Ajtai, M., Burns, R., Fagin, R., Long, D., and Stockmeyer, L. 2000. Compactly encoding
unstructured input with differential compression. In IBM Research Report RJ 10187.

Berlekamp, E. R. 1968. Algebraic Coding Theory. McGraw Hill.

Blomer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., and Zuckerman, D. 1995. An

xor-based erasure-resilient coding scheme. Technical report, International Computer Science
Institute, Berkeley, California.

Brin, S., Davis, J., and Garćıa-Molina, H. 1995. Copy detection mechanisms for digital doc-
uments. In Proceedings of the ACM SIGMOD Annual Conference. 398–409.

Broder, A. 1997. On the resemblance and containment of documents. In SEQUENCES ’97:
Proceedings of the Compression and Complexity of Sequences 1997. IEEE Computer Society,
21.

Broder, A., Glassman, S., Manasse, M., and Zweig, G. 1997. Syntactic clustering of the web.
In Proc. of the 6th International WWW Conference. 391–404.

Broder, A. Z. 2000. Identifying and filtering near-duplicate documents. In COM ’00: Proceedings

of the 11th Annual Symposium on Combinatorial Pattern Matching. Springer-Verlag, 1–10.

Cederqvist, P. 1992. Version management with cvs.

Cox, L., Murray, C., and Noble, B. 2002. Pastiche: Making backup cheap and easy. In

Proceedings of Fifth USENIX Symposium on Operating Systems Design and Implementation.
Boston, MA.

Douglis, F. and Iyengar, A. 2003. Application-specific deltaencoding via resemblance detection.

In Usenix Annual Technical Conference. 59–72.

Douglis, P. K. F., LaVoie, J., and Tracey, J. M. 2004. Redundancy elimination within large
collections of files. In Usenix Annual Technical Conference. 59–72.

Goldberg, A. V. and Yianilos, P. N. 1998. Towards an archival intermemory. In IEEE Advances

in digital libraries.

Hunt, J. J., Vo, K.-P., and Tichy, W. F. 1998. Delta algorithms an empirical analysis. ACM

Transactions on Software Engineering and Methodology 7, 2, 192–214.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

28 · Deepak Bobbarjung et al.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R.,

Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. 2000. Oceanstore:

An Architecture For Global Store Persistent Storage. In Proceedings of the Ninth international

Conference on Architectural Support for Programming Languages and Operating Systems (AS-

PLOS 2000). Cambridge, MA.

Lelewer, D. A. and Hirschberg, D. S. 1987. Data compression. ACM Computing, Springer

Verlag (Heidelberg, FRG and NewYork NY, USA)-Verlag Surveys, ; ACM CR 8902-0069 19, 3.

Manber, U. 1994. Finding Similar Files in a Large File System. In Usenix Winter Conference.

1–10.

Muthitacharoen, A., Chen, B., and Mazieres, D. 2001. A low-bandwidth network file system.

In Symposium on Operating Systems Principles. 174–187.

Ouyang, Z., Memon, N., Suel, T., and Trendafilov, D. Cluster-based delta compression of

a collection of files. In International Conference on Web Information Systems Engineering

(WISE).

Policroniades, C. and Pratt, I. Feasibility of data compression by eliminating repeated data

in practical file systems. http://www.cl.cam.ac.uk/users/cbp25/fyr.pdf.

Quinlan, S. and Dorwards, S. 2002. Venti: a new approach to archival storage. In Usenix

Conference on File and Storage Technologies.

Rabin, M. 1981. Fingerprinting by Random Polynomials. Tech. Rep. TR-15-81, Center for

Research in Computing Technology, Harvard University.

Rochkind, M. J. 1975. The source code control system. IEEE Trans. on Software Engineer-
ing 1(4), 364–370.

Shivakumar, N. and Garćıa-Molina, H. 1995. SCAM: A copy detection mechanism for digital
documents. In Proceedings of the Second Annual Conference on the Theory and Practice of
Digital Libraries.

Tichy, W. F. 1984. String to string correction problem with block moves. ACM Transactiosn
on Software Engineering 2, 4 (December), 364–370.

Tichy, W. F. 1985. RCS — a system for version control. Software — Practice and Experi-
ence 15, 7, 637–654.

W. J. Bolosky, S. Corbin, D. G. and Douceur, J. R. Single instance storage in windows 2000.
In Usenix Annual Technical Conference.

Weatherspoon, H. and Kubiatowicz, J. 2002a. Erasure coding vs. replication: A quantitative
comparison. In First International Workshop on Peer-to-Peer Systems (Cambridge, MA).

Weatherspoon, H. and Kubiatowicz, J. 2002b. Erasure coding vs. Replication: A Quantitative
Study. In Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS

’02), Boston, MA, USA.

You, L. L. and Karamanolis, C. 2004. Evaluation of efficient archival storage techniques. In
proceedings. of the 21st IEEE Symposium on Mass Storage Systems and Technologies (MSST).

Ziv, J. and Lempel, A. 1977. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23, 3, 337–343.

ACM Transactions on Database Systems, Vol. V, No. N, April 2005.

