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A FINITE STATE VERSIONOF THE KRAFT-MCMILLAN THEOREMFR�ED�ERIQUE BASSINO �, MARIE-PIERRE B�EAL � , AND DOMINIQUE PERRIN �Abstrat. The main result is a �nite-state version of the Kraft-MMillan theorem haraterizingthe generating sequene of a k-ary regular tree. The proof uses a new onstrution alled the multisetonstrution whih is a version with multipliities of the well-known subset onstrution of automatatheory.Key words. generating series, regular trees, nonnegative matries.AMS subjet lassi�ations. 68Q45, 68R10, 94A45, 37B101. Introdution. The Kraft inequality Pn�0 snk�n � 1 haraterizes the gen-erating sequenes (sn)n�0 of leaves in a k-ary tree. It is used in onnexion withHu�man algorithm to build pre�x odes or searh trees and usually restrited to thease of �nite trees. We are interested here in the ase of in�nite sequenes orre-sponding to in�nite trees. These in�nite trees arise for example as searh trees inin�nite sets. They also appear in the ontext of �nite automata having nested loopsto represent the set of �rst returns to a given state. The tree thus obtained is alled aregular tree. It has only a �nite number of non-isomorphi subtrees sine two subtreesorresponding to the same state of the automaton are isomorphi. The generatingsequenes of suh in�nite trees are of interest in the appliations of �nite automatato text ompression or hannel oding.Our main result is a haraterization of the generating sequenes of leaves ofregular k-ary trees. Its essene is that the two onditions of being the generatingsequene of(i) a k-ary tree(ii) a regular treeare independent in the sense that their onjuntion is enough to guarantee that asequene is the generating sequene of a regular k-ary tree.The proof uses a new onstrution on graphs alled the multiset onstrutionwhih is a ounterpart for automata with multipliities of the well-known subset on-strution of automata theory.Our results have a onnexion with symboli dynamis. Atually, in both ases,the emphasis is on the spae of paths in a �nite graph. Even if we do not use resultsfrom symboli dynamis, some of the methods used, like state-splitting or the Perrontheory are similar. Using an expression of Lind and Marus [15℄, our treatment is\dynamial in spirit". The relationship with symboli dynamis is disussed morelosely in [7℄ and [8℄.The paper is organized as follows. Setion 2 ontains preliminary results andde�nitions on graphs, trees, regular sequenes and the Perron-Frobenius theory. InSetion 3, we present the multiset onstrution. Setion 4 ontains the proof of ourmain result (Theorem 4.2). The following setion (Setion 5) treats a similar problem,with the set of leaves replaed by the set of all nodes.The results ontained in this paper represent the terminal point of a series ofsteps. In a previous paper [7℄ (with a preliminary version in [5℄), we proved Theorem�Institut Gaspard Monge, Universit�e de Marne-la-Vall�ee,77454 Marne-la-Vall�ee Cedex 2 Frane.fbassino,beal,perring�univ-mlv.fr. 1



2 F. Bassino, M.-P. B�eal and D. Perrin4.2 in the partiular ase of a strit inequality. The proof uses the tehnique ofstate-splitting from symboli dynamis. In the same paper, we also give a proofof Theorem 5.3 whih is di�erent from the proof given here, whih is based on themultiset onstrution and is more simple. Part of the results of the present paperwas presented at the onferene LATIN'98 [6℄. Finally, the survey paper [8℄ gives anoverview of length distributions and regular sequenes.2. De�nitions and bakground. In this setion, we �x our notation onern-ing graphs, trees and regular sequenes. We also reall some notions onerningpositive matries.A word on the terminology used here. We onstantly use the term regular wherea riher terminology is often used. In partiular, what we all here a regular sequeneis, in Eilenberg's terminology, an N-rational sequene (see [11℄, [19℄ or [10℄).2.1. Graphs and trees. In this paper, we use direted multigraphs i.e. graphswith possibly several edges with the same origin and the same end. We simply allthem graphs in all what follows. We denote G = (Q;E) a graph with Q as set ofverties and E as set of edges. We also say that G is a graph on the set Q.A tree T on a set of nodes N with a root r 2 N is a funtion T : N � frg �! Nwhih assoiates to eah node distint from the root its father T (n), in suh a waythat, for eah node n, there is a nonnegative integer h suh that T h(n) = r. Theinteger h is the height of the node n.A tree is k-ary if eah node has at most k hildren. A node without hildren isalled a leaf. A node whih is not a leaf is alled internal. A node n is a desendantof a node m if m = T h(n) for some h � 0. A k-ary tree is omplete if all internalnodes have exatly k hildren and have at least one desendant whih is a leaf.For eah node n of a tree T , the subtree rooted at n, denoted Tn is the treeobtained by restriting the set of nodes to the desendants of n.Two trees S; T are isomorphi, denoted S � T , if there is a map whih transformsS into T by permuting the hildren of eah node. Equivalently, S � T if there is abijetive map f : N !M from the set of nodes of S onto the set of nodes of T suhthat f Æ S = T Æ f . Suh a map f is alled an isomorphism.If T is a tree with N as set of nodes, the quotient graph of T is the graphG = (Q;E) where Q and E are de�ned as follows. The set Q is the quotient of N bythe equivalene n � m if Tn � Tm. Let �m denote the lass of a node m. The numberof edges from �m to �n is the number of hildren of m equivalent to n.Conversely, the set of paths in a graph with given origin is a tree. Indeed, letG = (Q;E) be a graph. Let r 2 Q be a partiular vertex and let N be the setof paths in G starting at r. The tree T having N as set of nodes and suh thatT (p0; p1; : : : ; pn) = (p0; p1; : : : ; pn�1) is alled the overing tree of G starting at r.Both onstrutions are mutually inverse in the sense that any tree T is isomorphito the overing tree of its quotient graph starting at the image of the root.Proposition 2.1. Let T be a tree with root r. Let G be its quotient graph andlet i be the vertex of G whih is the lass of the root of T . For eah vertex q of G andfor eah n � 0, the number of paths of length n from i to q is equal to the number ofnodes of T at height n in the lass of q.A tree is said to be regular if it admits only a �nite number of non-isomorphisubtrees, i.e. if its quotient graph is �nite.For example, the in�nite tree represented on Figure 2.1 is a regular tree. Itsquotient graph is represented on Figure 2.2.
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Fig. 2.1. A regular tree.1 342Fig. 2.2. And its quotient graph.There is also a lose onnexion between trees and sets of words on an alphabet.Let X be a set of words on the alphabet f0; 1; : : : ; k � 1g. The set X is said to bepre�x-losed if any pre�x of an element of X is also in X . When X is pre�x losed,we an build a tree T (X) as follows. The set of nodes is X , the root is the emptyword � and T (a1a2 � � �an) = a1a2 � � �an�1.Let for example X = f�; 0; 1; 10; 11g. The tree T (X) is represented on Figure 2.3.
Fig. 2.3. The tree T (X).2.2. Regular sequenes. We onsider sequenes of natural integers s = (sn)n�0.We shall not distinguish between suh a sequene and the formal series s(z) =Pn�0 snzn:We usually denote a vetor indexed by elements of a set Q, also alled a Q-vetor,with boldfae symbols. For v = (vq)q2Q we say that v is nonnegative, denoted v � 0,(resp. positive, denoted v > 0) if vq � 0 (resp. vq > 0) for all q 2 Q. The sameonventions are used for matries. A nonnegative Q � Q-matrix M is said to beirreduible if, for all indies p; q, there is an integer m suh that (Mm)p;q > 0. The



4 F. Bassino, M.-P. B�eal and D. Perrinmatrix is primitive if there is an integer m suh that Mm > 0.The adjaeny matrix of a graph G = (Q;E) is the Q � Q-matrix M suh thatfor eah p; q 2 Q, the integer Mp;q is the number of edges from p to q. The adjaenymatrix of a graph G is irreduible i� the graph is strongly onneted. It is primitiveif, moreover, the g..d of lengths of yles in G is 1.Let G be a �nite graph and let I , T be two sets of verties. For eah n � 0, let snbe the number of distint paths of length n from a vertex of I to a vertex of T . Thesequene s = (sn)n�0 is alled the sequene reognized by (G; I; T ) or also by G if Iand T are already spei�ed. When I = fig and T = ftg, we simply denote (G; i; t)instead of (G; fig; ftg).A sequene s = (sn)n�0 of nonnegative integers is said to be regular if it isreognized by suh a triple (G; I; T ), where G is �nite. We say that the triple (G; I; T )is a representation of the sequene s. The verties of I are alled initial and those ofT terminal. Two representations are said to be equivalent if they reognize the samesequene.A representation (G; I; T ) is said to be trim if every vertex of G is on some pathfrom I to T . It is lear that any representation is equivalent to a trim one.A well known result in theory of �nite automata allows one to use a partiularrepresentation of any regular sequene s suh that s0 = 0. One an always hoose inthis ase a representation (G; i; t) of s with a unique initial vertex i, a unique �nalvertex t 6= i suh that no edge is entering vertex i and no edge is going out of vertext. Suh a representation is alled a normalized representation (see for example [17℄page 14).Let (G; i; t) be a trim normalized representation. If we merge the initial vertexi and the �nal vertex t in a single vertex still denoted by i, we obtain a new graphdenoted by G, whih is strongly onneted. The triple (G; i; i) is alled the losure of(G; i; t).Let s be a regular sequene suh that s0 = 0. The star s� of the sequene s isde�ned by s�(z) = 11� s(z) :Proposition 2.2. If (G; i; t) is a normalized representation of s, its losure(G; i; i) reognizes the sequene s�.Proof. The sequene s is the length distribution of the paths of �rst returns tovertex i in G, that is of �nite paths going from i to i without going through vertex i.The length distribution of the set of all returns to i is thus 1 + s(z) + s2(z) + : : : =1=(1� s(z)).An equivalent de�nition of regular sequenes uses vetors instead of sets I; F .Let i be a Q-row vetor of nonnegative integers and let t be a Q-olumn vetor ofnonnegative integers. We say that (G; i; t) reognizes the sequene s = (sn)n�0 if foreah integer n � 0 sn = iMnt;whereM is the adjaeny matrix of G. The proof that both de�nitions are equivalentfollows from the fat that the family of regular sequenes is losed under addition (see[11℄). A triple (G; i; t) reognizing a sequene s is also alled a representation of s andtwo representations are alled equivalent if they reognize the same sequene.



A �nite state Kraft-MMillan theorem 5A sequene s = (sn)n�0 of nonnegative integers is rational if it satis�es a reur-rene relation with integral oeÆients. Equivalently, s is rational if there exist twopolynomials p(z); q(z) with integral oeÆients and with q(0) = 1 suh thats(z) = p(z)q(z) :Any regular sequene is rational. The onverse is however not true (see Setion5). For example, the sequene s de�ned by s(z) = z1�z�z2 is the sequene of Fibonai1 2Fig. 2.4. The Fibonai graph.numbers also de�ned by s0 = 0; s1 = 1 and sn+1 = sn + sn�1. It is reognized by thegraph of Figure 2.4 with I = f1g and T = f2g.2.3. Regular sequenes and trees. If T is a tree, its generating sequene ofleaves is the sequene of numbers s = (sn)n�0, where sn is the number of leaves atheight n. We also simply say that s is the generating sequene of T .The following result is a diret onsequene of the de�nitions.Theorem 2.3. The generating sequene of a regular tree is a regular sequene.Proof. Let T be a regular tree and let G be its quotient graph. Sine T is regular,G is �nite. The leaves of T form an equivalene lass t. By Proposition 2.1, thegenerating sequene of T is reognized by (G; i; t) where i is the lass of the root ofT . We say that a sequene s = (sn)n�1 satis�es the Kraft inequality for the integerk if Xn�0 snk�n � 1;i.e. using the formal series s(z) =Pn�0 snzn, ifs(1=k) � 1:We say that s satis�es the strit Kraft inequality for k if s(1=k) < 1. The followingresult is well-known (see [3℄ page 35 for example).Theorem 2.4. A sequene s is the generating sequene of a k-ary tree i� itsatis�es the Kraft inequality for the integer k.Proof. Let �rst T be a k-ary tree and let s be its generating sequene. It is enoughto prove that, for eah n � 0, the sequene (s0; : : : ; sn) satis�es the Kraft inequality.It is the generating sequene of the �nite tree obtained by restriting T to the nodesat height at most n. We may thus suppose T to be a �nite tree. We haves(z) = zt1(z) + : : :+ ztk(z)where t1; : : : ; tk are the generating sequenes of leaves of the (possibly empty) subtreesrooted at the hildren of the root of T . By indution on the number of nodes, wehave ti(1=k) � 1 whene the desired result.



6 F. Bassino, M.-P. B�eal and D. PerrinConversely, we use an indution on n to prove that there exists a k-ary tree withgenerating sequene (s0; : : : ; sn). For n = 0, we have s0 � 1 and T is either empty orredued to one node. Suppose by indution hypothesis to have already built a tree Twith generating sequene (s0; s1; : : : ; sn�1). We havenXi=0 sik�i � 1;then nXi=0 sikn�i � kn;and thus sn � kn � n�1Xi=0 sikn�i:This allows us to add sn leaves at height n to the tree T .Let us onsider the Kraft's equality ase. If s(1=k) = 1, then any tree T having sas generating sequene is omplete. The onverse property is not true in general (see[11℄ p. 231). However, it is a lassial result that when T is a omplete regular tree,its generating sequene satis�es s(1=k) = 1 (see Proposition 2.8).For the sake of a omplete desription of the onstrution desribed above in theproof of Theorem 2.4, we have to speify the hoie made at eah step among theleaves at height n. A possible poliy is to hoose to give as many hildren as possibleto the nodes whih are not leaves and of maximal height.If we start with a �nite sequene s satisfying Kraft's inequality, the above methodbuilds a �nite tree with generating sequene equal to s. It is not true that thisinremental method gives a regular tree when we start with a regular sequene, asshown in the following example.Let s(z) = z2=(1�2z2). Sine s(1=2) = 1=2, we may apply the Kraft onstrutionto build a binary tree with length distribution s. The result is the tree T (X) whereX is the set of pre�xes of the setY = [n�0 01n0f0; 1gn:whih is not regular.If s is a regular sequene suh that s0 = 0, there exists a regular tree T having sas generating sequene. Indeed, let (G; i; t) be a normalized representation of s. Thegenerating sequene of the overing tree of G starting at i is s. If s satis�es moreoverthe Kraft inequality for an integer k, it is however not true that the regular overingtree obtained is k-ary, as shown in the following example.Let s be the regular sequene reognized by the graph of Figure 2.5 on the leftwith i = 1 and t = 4. We have s(z) = 3z2=(1� z2). Furthermore s(1=2) = 1 and thuss satis�es Kraft's equality for k = 2. However there are four edges going out of vertex2 and its regular overing tree starting at 1 is 4-ary. A solution for this example isgiven by the graph of Figure 2.5 on the right. It reognizes s and its overing treestarting at 1 is the regular binary tree of Figure 2.1.The aim of Setion 4 is to build from a regular sequene s that satis�es the Kraftinequality for an integer k a tree with generating sequene s whih is both regularand k-ary.



A �nite state Kraft-MMillan theorem 71 2 34 1 342Fig. 2.5. Graphs reognizing s(z) = 3z2=(1� z2).2.4. Approximate eigenvetor. Let M be the adjaeny matrix of a graphG. By the Perron-Frobenius theorem (see [12℄, for a general presentation and [15℄,[14℄ or [9℄ for the link with graphs and regular sequenes), the nonnegative matrix Mhas a nonnegative real eigenvalue of maximal modulus denoted by �, also alled thespetral radius of the matrix.When G is strongly onneted, the matrix is irreduible and the Perron-Frobeniustheorem asserts that the dimension of the eigenspae of the matrix M orrespondingto � is equal to one, and that there is a positive eigenvetor assoiated to �.Let k be an integer. A k-approximate eigenvetor of a nonnegative matrix M is,by de�nition, an integral vetor v � 0 suh thatMv � kv:One has the following result (see [15℄ p. 152).Proposition 2.5. An irreduible nonnegative matrix M with spetral radius �admits a positive k-approximate eigenvetor i� k � �.For a proof, see [15℄ p. 152. WhenM is the adjaeny matrix of a graph G, we alsosay that v is a k-approximate eigenvetor of G. The omputation of an approximateeigenvetor an be obtained by the use of Franaszek's algorithm (see for example [15℄).It an be shown that there exists a k-approximate eigenvetor with elements boundedabove by k2n where n is the dimension of M [4℄. Thus the size of the oeÆients ofa k-approximate eigenvetor is bounded above by an exponential in n and an be inthe worst ase of this order of magnitude.The following result is well-known. It links the radius of onvergene of a sequenewith the spetral radius of the assoiated matrix.Proposition 2.6. Let s be a regular sequene reognized by a trim representation(G; I; T ). Let M be the adjaeny matrix of G. The radius of onvergene of s is theinverse of the maximal eigenvalue of M .Proof. The maximal eigenvalue � of M is � = lim supn�0 npkMnk, where k k isany of the equivalent matrix norms. Let � be the radius of onvergene of s and, foreah p; q 2 Q, let �pq be the radius of onvergene of the sequene upq = (Mnpq)n�0.Then 1=� = min �pq . Sine (G; I; T ) is trim, we have �pq � � for all p; q 2 Q. Onthe other hand, � � min �pq sine s is a sum of some of the sequenes upq. Thus�s = min �pq whih onludes the proof.As a onsequene of this result, the radius of onvergene � of a regular sequenes is a pole. Indeed, with the above notation, s(z) = i(1�Mz)�1t. Then det(I �Mz)is a denominator of the rational fration s, the poles of s are among the inverses ofthe eigenvalues of M . And sine 1=� is the radius of onvergene of s, it has to be apole of s. In partiular, s diverges for z = �.



8 F. Bassino, M.-P. B�eal and D. PerrinThe following result, due to Berstel, is also well-known. It allows one to omputethe radius of onvergene of the star of a sequene.Proposition 2.7. Let s be a regular sequene. The radius of onvergene of theseries s�(z) = 1=(1 � s(z)) is the unique real number r suh that s(r) = 1: For aproof, see [11℄ pp 211-214, [10℄ p. 82 or [9℄ p. 84. As a onsequene, we obtain thefollowing result.Proposition 2.8. Let s be a regular sequene and let � be the inverse of the radiusof onvergene of s�. The sequene s satis�es the Kraft strit inequality s(1=k) < 1(resp. equality s(1=k) = 1) if and only if � < k (resp. � = k).We have thus proved the following result, whih is the basis of the onstrutionsof the next setions.Proposition 2.9. Let s be a regular sequene satisfying Kraft's inequality s(1=k) �1. Let (G; i; t) be a normalized representation of s and let (G; i; i) be the losure of(G; i; t). The adjaeny matrix M of G admits a k-approximate eigenvetor.Atually, under the hypothesis of Proposition 2.9, the graph G itself also admitsa k-approximate eigenvetor. Indeed, let w = (wq)q2Q�t be a k-approximate eigen-vetor of G. Then the vetor w = (wq)q2Q de�ned by wq = wq for q 6= t and wt = wiis a k-approximate eigenvetor of G. This is illustrated in the following example.
1 2 34 1 2 3

Fig. 2.6. The graphs G and G.Let us for example onsider again s(z) = 3z2=(1 � z2) (see Figure 2.5). Thesequene s is reognized by the normalized representation (G; 1; 4) where G is thegraph represented on the left of Figure 2.6. The graph G is represented on the right.The vetors w = 266432133775 ;w = 2432135are 2-approximate eigenvetors of G and G respetively.3. The multiset onstrution. In this setion, we present the main onstru-tion used in this paper. It an be onsidered as a version with multipliities of thesubset onstrution used in automata theory to replae a �nite automaton by anequivalent deterministi one. We use only unlabeled graphs but the onstrution anbe easily generalized to graphs with edges labeled by symbols from an alphabet.Our onstrution is also linked with one used by D. Lind to build a positive matrixwith given spetral radius (see [15℄, espeially Lemma 11.1.9).



A �nite state Kraft-MMillan theorem 9We use for onveniene the term multiset of elements of a set Q as a synonymof Q-vetor. If u = (uq)q2Q is suh a multiset, the oeÆient uq is also alled themultipliity of q. The degree of u is the sum Pq2Q uq of all multipliities.We start with a triple (G; i; t) where G = (Q;E) is a �nite graph and i (resp. t)is a row (resp. olumn) Q-vetor. We denote by M the adjaeny matrix of G.Let m be a positive integer. We de�ne another triple (H;J;X) whih is said tobe obtained by the multiset onstrution. The graph H is alled an extension of thegraph G. The extension is not unique and depends as we shall see on some arbitraryhoies. The set S of verties of H is formed of multisets of elements of Q of totaldegree at most m. Thus, an element of S is a nonnegative vetor u = (uq)q2Q withindies in Q suh thatPq2Q uq � m. This ondition ensures that H is a �nite graph.We now desribe the set of edges of the graph H by de�ning its adjaeny matrixN . Let U be the S � Q-matrix de�ned by Uu;q = uq . Then N is any nonnegativeS � S-matrix whih satis�es NU = UM:Equivalently, for all u 2 S, Xv2SNu;vv = uM:Let us omment informally the above formula. We an desribe the onstrution ofthe graph H as a sequene of hoies. If we reah a vertex u of H , we partition themultiset uM of verties reahable from the verties omposing u into multisets ofdegree at most m to de�ne the verties reahable from u in H . The integer Nu;vis the multipliity of v in the partition. The formula simply expresses the fat thatthe result is indeed a partition. In general, there are several possible partitions. Thematrix U is alled the transfer matrix of the extension.We further de�ne the S-row vetor J and the S-olumn vetor X. Let J be theS-row vetor suh that Ji = 1 and Ju = 0 for u 6= i. Let X be the S-olumn vetorsuh that Xu = u � t.Thus JU = i; X = Ut:To avoid unneessary omplexity, we only keep in S the verties reahable from i.Thus, we replae the set S by the set of elements u of S suh that there is a pathfrom i to u.The number of multisets of degree at most m on a set Q with n elements isnm+1�1n�1 . Thus the number of verties of a multiset extension is of order nm. It ispolynomial in n if m is taken as a onstant.Let for example G be the graph represented on Figure 3.1 on the left. The graphH represented on the right is a multiset extension of G withi = �1 0� ; j = �01� :The matries M;N and U areM = �2 10 1� ; N = �1 10 2� ; U = �1 01 1� ;J = �1 0� ;X = �01� :
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1 2 1 12Fig. 3.1. The graphs G and H.In this ase, the matrix U is invertible and the matries M;N are onjugate.The basi property of an extension is the following one.Proposition 3.1. Let H be an extension of G. The triple (H;J;X) is equivalentto (G; i; t).Proof. For eah n � 0, we haveUMn = NnU:Consequently, for eah integer n � 0,JNnX = JNnUt= JUMnt= iMnt:This shows that (H;J;X) reognizes s.We will also make use of the following additional property of extensions.Proposition 3.2. Let H be an extension of G. Let M (resp. N) be the adjaenymatrix of G (resp. H) and let U be the transfer matrix. If w is a k-approximateeigenvetor of M , the vetor W = Uw is a k-approximate eigenvetor of N . If w ispositive, then W is also positive.Proof. We have NW = NUw = UMw � kUw = kW:Sine all rows of U are distint from 0, the vetorW is positive wheneverw is positive.In the next setion, we will hoose a partiular extension of the graph G alledadmissible and whih is de�ned as follows. Let w be a positive Q-vetor and let mbe a positive integer. Let H be an extension of G, let U be the transfer matrix, andlet W = Uw. We say that H is admissible with respet to w and m if for eahu 2 S, all but possibly one of the verties v suh that (u;v) is an edge of H satisfyWv � 0 mod m.Theorem 3.3. For any graph G on Q, any positive Q-vetor w and any integerm > 0, the graph G admits an admissible extension with respet to w and m.The proof relies on the following ombinatorial lemma. This lemma is also usedin a similar ontext by Adler et al. and Marus [16℄,[1℄. It is atually presented in [2℄as a nie variant of the pigeon-hole priniple.Lemma 3.4. Let w1; w2; : : : ; wm be positive integers. Then there is a non-emptysubset S � f1; 2; : : : ;mg suh that Pq2S wq is divisible by m.Proof. The partial sums w1; w1+w2; w1+w2+w3; : : : ; w1+w2+� � �+wm either areall distint (mod m), or two are ongruent (mod m). In the former ase, at least one



A �nite state Kraft-MMillan theorem 11partial sum must be ongruent to 0 (mod m). In the latter, there are 1 � p < r � msuh that w1 + w2 + � � �+ wp � w1 + w2 + � � �+ wr( mod m)Hene wp+1 + wp+2 + � � �+ wr � 0 (mod m).Proof. of Theorem 3.3. We build progressively the set of edges of H . Let u bean element of S. We prove by indution on the degree d(uM) =Pq2Q(uM)q of uMthat there exists v1; : : : ;vn 2 S suh that uM = Pni=1 vi and Wvi � 0 mod m for1 � i � n � 1. If uM 2 S, i.e. if d(uM) � m, we hoose n = 1 and v1 = uM .Otherwise, there exists a deomposition uM = v + u0 suh that d(v) = m. Letw1; w2; : : : ; wm be the sequene of integers formed by the wq repeated vq times. ByLemma 3.4 applied to the sequene of integers wi, there is a deomposition v = v0+rwith v0 6= 0 suh that Wv0 � 0 mod m. We have uM = v0 +w0 with w0 = r + u0.Sine d(w0) < d(uM), we an apply the indution hypothesis to w0, giving the desiredresult.For an S-vetorW, we denote by dWm e the S-vetor Z suh that for eah u in S,Zu = dWum e:Summing up the previous results, we obtain the following statement.Proposition 3.5. Let H be an admissible extension of G with respet to w andm. Let M (resp. N) be the adjaeny matrix of G (resp. H), let U be the transfermatrix and let W = Uw. If w is a positive k-approximate eigenvetor of M , thendWm e is a positive k-approximate eigenvetor of N .Proof. By Proposition 3, the vetorW is a positive k-approximate eigenvetor ofN . Thus NW � kW:Let u be an element of S. We haveWv � 0 mod m for all indies v suh that Nu;v > 0exept possibly for an index v0. The previous inequality implies thatXv2S�fv0gNu;vWvm +Nu;v0Wv0m � k Wum :Sine Wvm is a nonnegative integer for v 2 Q� fv0g, we getXv2S�fv0gNu;vWvm +Nu;v0dWv0m e � k dWum e:This proves that NdWm e � kdWm e:



12 F. Bassino, M.-P. B�eal and D. Perrin4. Generating sequene of leaves. In what follows, we state and prove, usingthe multiset onstrution, our main result onerning the generating sequenes ofregular trees. We begin with the following lemma, whih is also used in the nextsetion. We use the term leaf for a vertex of a graph without outgoing edges.Lemma 4.1. Let G be a graph on a set Q of verties. Let i 2 Q and T � Q. IfG admits a k-approximate eigenvetor w, there is a graph G0 and a set of verties I 0of G0 suh that1. G0 admits the k-approximate eigenvetor w0 with all omponents equal to 1.2. the triple (G; i;w) is equivalent to the triple (G0; I 0;w0);3. If wp = 1 for all p 2 T , there is a set of verties T 0 of G0 suh that the triple(G; i; T ) is equivalent to the triple (G0; I 0; T 0). Moreover, if T is the set ofleaves of G, we an hoose for T 0 the set of leaves of G0.Proof. We �rst show that one an replae G by a graph without multipliities,i.e. suh that the adjaeny matrix has oeÆients 0 or 1.For this, let n be the maximal value of the oeÆients of M . Let Q0 be theset of all pairs (p; j) for p 2 Q and 1 � j � n. Let E0 be the set of all pairs((p; j); (q; h)) 2 Q0 � Q0 suh that 1 � j � n and 1 � h � Mp;q. Let i0 = (i; 1) andT 0 = f(t; j) j t 2 T; 1 � j � ng. Let G0 = (Q0; E0). The triple (G0; i0; T 0) reognizesthe same sequene as (G; i; T ). Let w0(p;j) = wp for all p 2 Q and all 1 � j � n.The triple (G0; i0;w0) reognizes the same sequene as (G; i;w). The vetor w0 is ak-approximate eigenvetor of M 0.We may thus suppose that all oeÆients of M are 0 or 1, i.e. that the set E ofedges of G an be identi�ed with a subset of Q�Q. We now transform the graph Ginto a graph G0 suh that there are at most k edges going out of every vertex. Forthis, let Q0 be the set of pairs (q; j) with q 2 Q and 1 � j � wq . For eah p 2 Q, wehave Xqj(p;q)2Ewq � kwp:We may thus partition the pairs (q; h) 2 Q0 in suh a way that (p; q) 2 E, in wpgroups X1; X2; : : : ; Xwp of at most k elements. The edges going out of (p; j) are allthe pairs ((p; j); (q; h)) suh that (q; h) 2 Xj . One an atually identify G with amultiset extension of G0, where the set of multisets is fS1�j�wp(p; j) j p 2 Qg thatwe identify to Q. Let I 0 = f(i; j) j 1 � j � wig. Let w0(p;j) = 1 for all (p; j) with p 2 Qand 1 � j � wp. Then, aording to Proposition 3.1, the triple (G0; I 0;w0) reognizesthe same sequene as (G; i;w). Moreover, if wp = 1 for all p 2 T , let T 0 be set of all(p; 1) 2 Q0 with p 2 T . Then the triple (G0; I 0; T 0) reognizes the same sequene as(G; i; T ). If T is the set of verties that have no outgoing edges, it is lear that thesame holds for T 0.We now ome to our main result.Theorem 4.2. Let s = (sn)n�0 be a regular sequene of nonnegative integers andlet k be a positive integer suh that Pn�0 snk�n � 1. Then there is a k-ary rationaltree having s as its generating sequene.Proof. Let us onsider a regular sequene s and an integer k suh thatPn�0 snk�n �1. Sine the result holds trivially for s(z) = 1, we may suppose that s0 = 0. Let(G; i; t) be a normalized representation of s and let G be the losure of G as de�nedat the beginning of Setion 2.2. We denote by M (resp. M) the adjaeny matrix ofG (resp. G). Let Q = Q� ftg be the vertex set of G. Let � be the spetral radius of



A �nite state Kraft-MMillan theorem 13M . By Proposition 2.8, the matrix M admits a positive k-approximate eigenvetorw. By de�nition, we have Mw � kw.Let w be the Q-vetor de�ned by wq = wq for all q 2 Q and wt = wi. Then, sinethere is no edge going out of t in G, w is a positive k-approximate eigenvetor of M .Let t be the Q-vetor whih is the harateristi vetor of the vertex t. Let m = wi.By Theorem 3.3 there exists an admissible extension H of G with respet to wand m. Let U be the transfer matrix and let W = Uw. Sine wt � 0 mod m, wemay hoose H with the following additional property. For all u 2 S either ut = 0 oru = t.Aording to Proposition 3.1, the sequene s is reognized by (H;J;X) where Jis the harateristi row vetor of i and X is the harateristi olumn vetor of t.This means that s is reognized by the normalized representation onsisting in thegraph H , the initial vertex i, that we identify to i, and the terminal vertex t, that weidentify to t.Let N be the adjaeny matrix of H . By Proposition 3.5, the vetor dWm e is apositive k-approximate eigenvetor of N . Remark that dWm ei = dWm et = 1.We may now apply Lemma 4.1 to onstrut a triple (H 0; I 0; T 0) equivalent to(H; i; t). The set T 0 is the set of leaves of H 0. Sine dWm ei = 1, I 0 is redued to onevertex i0. Sine H 0 admits a k-approximate eigenvetor with all omponents equal toone, the graph H 0 is of outdegree at most k. Finally s is the generating sequene ofthe overing tree of H 0 starting at i0. This tree is k-ary and regular.Let us onsider the above onstrutions in the partiular ase of the equality inKraft's inequality. In this ase, the result is a omplete k-ary tree. Indeed, by Propo-sition 2.8, the matrix M admits a positive integral eigenvetor w for the eigenvaluek. We have for all p 2 Q, Xq2QMp;qwq = kwp:As a onsequene, for any u 6= t, we haveXv2SNu;vWv = kWu:Then the graph onstruted in Lemma 4.1 is of onstant outdegree k. Thus the k-arytree obtained is omplete.Let us onsider the omplexity of the onstrution used in the proof of Theorem4.2. Let n be the number of verties of the graph G giving a normalized representationof s. The size of the integer m = wi is exponential in n (see Setion 2.4). Thus thenumber of verties of the graph H is bounded by a double exponential in n. The �nalregular tree is the overing tree of a graph whose set of verties has the same size inorder of magnitude.Let for example s be the sequene de�ned bys(z) = z2(1� z2) + z2(1� 5z3) :Sine s(1=2) = 1, it satis�es the Kraft equality for k = 2. The sequene s is reognizedby (G; i; t) whereG = (Q;E) is the graph given in Figure 4 with Q = f1; 2; 3; 4; 5; 6; 7g,i = 1, t = 4. The adjaeny matrix of G admits the 2-approximate eigenvetor
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Fig. 4.1. A normalized representation of srepresented on Figure 4, where the oeÆients of w are represented in squares besidethe verties. Thus m = 3.An admissible extension H of G with respet to w andm is given in Figure 4.2. Inthis �gure, eah multiset of S is represented by a sequene of verties with repetitionsorresponding to the multipliity. For example, the multiset u = (0; 0; 1; 0; 0; 2; 0) isrepresented by (3; 6; 6). The sequene s is reognized by the normalized representation(H; 1; 4), where the initial and �nal verties are named as they appear on Figure 4.2.The oeÆients of dWm e are represented in squares beside the verties.
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Fig. 4.2. An admissible extension H.A regular binary tree T having s as generating sequene of leaves, is given inFigure 4.3. In this �gure, the nodes have been renumbered, with the hildren of anode with a given label represented only one. The leaves of the tree are indiated byblak boxes. The tree itself is obtained from the graph of Figure 4.2 by appliation ofthe onstrution of Lemma 4.1. For example, the vertex (2; 5), whih has oeÆient6 in W, is split into two verties named 2 and 3 in the tree.This example was suggested to us by Christophe Reutenauer [18℄.5. Generating sequene of nodes. In this setion, we onsider the generatingsequene of the set of all nodes in a tree instead of just the set of leaves. This is



A �nite state Kraft-MMillan theorem 15
1 23

�45�
6789

101112�10131212

��14555�5
�1

Fig. 4.3. A regular binary tree with length distribution s.motivated by the fat that in searh trees, the information an either be arried by theleaves or by all the nodes of the tree. We will see that the omplete haraterization ofthe generating sequenes of nodes in regular trees (Theorem 5.1) is more ompliatedthan the one for leaves.Soittola (see [19℄ p. 104) has haraterized the series whih are the generatingsequenes of nodes in a regular tree. We haraterize the ones that orrespond tok-ary trees (Theorem 5.1). We also give a more diret onstrution in a partiularase (Theorem 5.3).Let T be a tree. The generating sequene of nodes of the tree T is the sequenet = (tn)n�0, where tn is the number of nodes of T at height n. The sequene t satis�est0 � 1 and, moreover, if T is a k-ary tree, the onditiontn � ktn�1for all n � 1. If T is a regular tree, then t is a regular sequene. We now ompletelyharaterize the regular sequenes t that are the generating sequenes of nodes of ak-ary regular tree.Theorem 5.1. Let t = (tn)n�0 be a regular sequene and let k be a positiveinteger. The sequene (tn)n�0 is the generating sequene of nodes of a k-ary regulartree i� it satis�es the following onditions.(i) the onvergene radius of t is stritly greater than 1=k,(ii) the sequene s(z) = t(z)(kz � 1) + 1 is regular.Proof. Let us �rst show that the onditions are neessary. Let T be the ompletek-ary tree obtained by adding i new leaves to eah node that has k� i hildren. SineT is a regular tree, T is also regular.Let s be the generating sequene of leaves of T . Sine T is omplete, s(1=k) = 1.Sine ktn = sn+1 + tn+1 for all n � 0, we have1� s(z) = t(z)(1� kz):Sine s is a regular sequene, its radius of onvergene is stritly larger than 1=k (see



16 F. Bassino, M.-P. B�eal and D. PerrinSetion 2.4). Sine the value of the derivative of s at z = 1=k is kt(1=k), the sameholds for t. This proves the neessity of the onditions.Conversely, if t satis�es the onditions of the theorem, the regular series s(z) =t(z)(kz � 1) + 1 satis�es s(1=k) = 1. Thus, by Theorem 4.2, s is the generatingsequene of leaves of a omplete k-ary regular tree. The internal nodes of this treeform a k-ary regular tree whose generating sequene of nodes is t.The sequene s de�ned by ondition (ii) is rational as soon as t is regular andtherefore rational. Given a regular sequene t, ondition (ii) is deidable in view ofa theorem of Soittola [19℄, also found independently in [13℄ and realled below. Wesay that a rational sequene has a dominating root, either if it is a polynomial or if ithas a real positive pole whih is stritly smaller than the modulus of any other one.A sequene r is a merge of the sequenes ri if there is an integer p suh thatr(z) = p�1Xi=0 ziri(zp):Theorem 5.2 (Soittola). A sequene of nonnegative integers r = (rn)n�0 isregular if and only if it is a merge of rational sequenes having a dominating root.This result shows that it is deidable if a rational series is regular (see [19℄). Inthe positive ase, there is an algorithm omputing a representation of the sequene.We may observe that ondition (ii) of the theorem implies the non-negativity ofthe oeÆients of the series s and thus the inequality 8n � 1; tn � ktn�1. It alsoimplies that t0 � 1.We now show that there are regular sequenes t satisfying tn � ktn�1 for all n � 1,and ondition (i) of the theorem and suh that the sequene s(z) = t(z)(kz � 1) + 1is not regular. The example is based on an example of a rational sequene withnonnegative oeÆients and whih is not regular (see [10℄ page 95). Letrn = b2nos2(n�)with os(�) = ab where the integers a; b are suh that b 6= 2a and 0 < a < b. Thesequene r is rational, has nonnegative integer oeÆients and is not regular. Its polesare 1b2 , 1b2 e2i� and 1b2 e�2i�. We now de�ne the sequene t as follows:t2h = kh;t2h+1 = kh + rh:We also assume that b2 < k. By Soittola's theorem, the sequene t is regular sine itis a merge of rational sequenes having a dominating root. The onvergene radiusof t is 1pk > 1k . Therefore the sequene t satis�es the �rst ondition of Theorem 5.1.Let s be the sequene de�ned by s(z) = t(z)(kz � 1) + 1. If h = 2p is even,sh = kth�1 � th= kkp�1 + krp�1 � kp + 1 = krp�1 + 1:Thus the sequene s is not regular.The above example does not work for the small values of k (the least value isk = 10). We do not know of similar examples for 2 � k � 9.We �nally desribe a partiular ase of Theorem 5.1 in whih one has a relativelysimple method, based on the multiset onstrution, to build the regular tree with a



A �nite state Kraft-MMillan theorem 17given generating sequene of nodes. This avoids the use of Soittola's haraterizationwhih leads to a method of higher omplexity.A primitive representation of a regular sequene s is a representation (G; i; t) suhthat the adjaeny matrix of G is primitive. The following result is proved in [7℄ witha di�erent proof using the state-splitting method of symboli dynamis. The proofgiven here relies on a simpler onstrution.Theorem 5.3. Let t = (tn)n�0 be a regular sequene and let k be a positiveinteger suh that t0 = 1, tn � ktn�1 for all n � 1 and suh that(i) the onvergene radius of t is stritly greater than 1=k,(ii) t has a primitive representation.Then (tn)n�0 is the generating sequene of nodes by height of a k-ary regular tree.We are going to give a proof of the theorem whih uses the multiset onstrution.We shall use the following lemma that we establish �rst.Lemma 5.4. Let M be a primitive matrix with spetral radius �. Let v be a non-null and nonnegative integral vetor and let k be an integer suh that � < k. Thenthere is a positive integer n suh that Mnv is a positive k-approximate eigenvetor ofM . Proof. For a primitive matrix M with spetral radius �, it is known that thesequene ((M� )n)n�0 onverges to r:l where r is a positive right eigenvetor and l apositive left eigenvetor ofM for the eigenvalue � with l �r = 1 (see for example [15℄ p.130). Thus (Mn�n v)n�0 onverges to r:l:v whih is equal to �r where � is a nonnegativereal number. Sine Mr = �r, we get, for a large enough integer n,MMn�n v � kMn�n vor equivalently MMnv � kMnv. If n is large enough, we moreover have Mnv > 0sine M is primitive.We now give the proof of Theorem 5.3. It uses a shift of indies of the sequeneto obtain a new sequene to whih a simple appliation of the multiset onstrutionan be applied.Proof. Sine t is regular, it is reognized by a triple (G; i; t), where G = (Q;E) isa �nite graph. Let M be the adjaeny matrix of G.For eah n � 0, we have tn = iMnt:We denote by � the spetral radius ofM . By Proposition 2.6 the positive real number1=� is the radius of onvergene of t. Thus � < k by hypothesis (i). Sine M is aprimitive matrix, by Lemma 5.4, there exists a positive integer n0 suh that Mn0t isa positive k-approximate eigenvetor of M .Let w =Mn0t, and let t0 be the sequene de�ned by t0n = tn+n0 for n � 0. Thus,for eah n � 0, t0n = iMnw:The sequene t0 is thus reognized by the triple (G; i;w). Note that t00 = i �w.Let H = (S;R) be the extension of G obtained by the multiset onstrution inthe following way. When we reah a vertex u of H , we partition uM in multisets vof degree 1, i.e. suh that v is a 0; 1-vetor with vq = 0 for all q 2 Q exept one.All elements of S are thus elements of Q exept perhaps the initial vertex i. If i is ofdegree 1, the number of elements of S is then equal to the number of elements of Q.



18 F. Bassino, M.-P. B�eal and D. PerrinLet U be the transfer matrix of the extension. Sine w is a positive k-approximateeigenvetor ofM , by Proposition 3.2, the vetorW = Uw is a positive k-approximateeigenvetor of the adjaeny matrix of H . By Proposition 3.1, the triple (H; i;W) isequivalent to (G; i;w).We now apply Lemma 4.1 to the graph H . We use i as initial vertex and thek-approximate eigenvetorW. Sine we only use the �rst assertion of the lemma, wewill not use any set T of terminal states. Aording to the lemma, we onstrut agraph H 0 and a set of verties I 0 of H 0 suh that H 0 admits the k-approximate vetorW0 with all omponents equal to 1, and (H 0; I 0;W0) is equivalent to (H; i;W). ThusH 0 is k-ary. Note that I 0 has Wi = i �w = tn0 elements.Let Tp be the overing tree of H 0 starting at the state p of I 0. Eah Tp is a regulark-ary tree. Then t0 is the sum the generating sequenes of nodes of the trees Tp forp 2 I 0.Finally, we build a �nite k-ary tree T 0 whose generating sequene of nodes is(t0; t1; : : : ; tn0). This an atually be done sine t0 = 1 and tn � ktn�1 for n � 1. Wethen identify bijetively eah leaf at height n0 of T 0 to the root of a tree Tj . We geta regular k-ary binary tree whose generating sequene of nodes is t.1 2 3Fig. 5.1. A primitive representation G of t.Let for example t be the series reognized by the graph G of Figure 5.1 withi = �1 0 0� and t = 2411035 :The adjaeny matrix M of G is the primitive matrixM = 241 1 00 0 11 0 035 :Its spetral radius is less than 2. The hypothesis of Theorem 5.3 are thus satis�ed.We apply the method desribed above. We haveM2t = 2421235 and M3t = 2432235 :Sine M3t � 2M2t, M2t is an approximate eigenvetor of M . We thus set n0 = 2and w = M2t. The graph H is the same as the graph G of Figure 5.1. The vetorW is thus W = 2421235 :



A �nite state Kraft-MMillan theorem 19The graph H 0 is represented on the left side of Figure 5.2. We �nally obtain thebinary regular tree T represented on the right side of Figure 5.2 (the nodes of the treehave been renumbered).
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