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SECOND-ORDER FAST-SLOW STOCHASTIC SYSTEMS

NHU N. NGUYEN∗ AND GEORGE YIN†

Abstract. This paper focuses on systems of nonlinear second-order stochastic differential equa-
tions with multi-scales. The motivation for our study stems from mathematical physics and statistical
mechanics, for examples, Langevin dynamics and stochastic acceleration in a random environment.
Our effort is to carry out asymptotic analysis to establish large deviations principles. Our focus is on
obtaining the desired results for systems under weaker conditions. When the fast-varying process is a
diffusion, neither Lipschitz continuity nor linear growth needs to be assumed. Our approach is based
on combinations of the intuition from Smoluchowski-Kramers approximation, and the methods initi-
ated in [34] relying on the concepts of relatively large deviations compactness and the identification
of rate functions. When the fast-varying process is under a general setup with no specified structure,
the paper establishes the large deviations principle of the underlying system under the assumption
on the local large deviations principles of the corresponding first-order system.

Key words. Second-order stochastic differential equation, random environment, large deviation,
local large deviation, averaging principle.
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1. Introduction. In recent years, much effort has been devoted to analyzing
stochastic systems arising from a wide variety of fields. For example, averaging prin-
ciple for complex Ginzburg–Landau equations was studied by Gao [17], homogeniza-
tion in ergodic media was treated in Chen et al. [3], homogenization of stochastic
convection-diffusion equation was studied in Bessaih et al. [1], mean field limits
of particle-based stochastic systems were obtained in Isaacson et al. [21], Freidlin–
Wentzell type large deviation results were obtained for multi-scale stochastic partial
differential equations in Hong et al. [19]. One of the salient features in many applica-
tions is time scale separation. For example, in Khasminskii and Yin [24], we treated
diffusions with fast and slow motions. Although the first-order stochastic differential
equations have been analyzed extensively, properties associated with the second-order
stochastic differential equations are less well known. In applications, for example, in
numerous systems in mathematical physics and statistical mechanics, such equations
naturally arise; see for example, the work of Kesten and Papanicolaou in [22, 23].

Because of the need, this paper is devoted to fully nonlinear second-order stochas-
tic systems. We begin with the study of a class of second-order stochastic differential
equations

(1.1)




ε2Ẍε

t = F εt (X
ε
t , Y

ε
t )− λεt (X

ε
t , Y

ε
t )Ẋ

ε
t , Xε

0 = xε0 ∈ Rd, Ẋε
0 = xε1 ∈ Rd,

Ẏ εt =
1

ε
bεt (X

ε
t , Y

ε
t ) +

1√
ε
σεt (X

ε
t , Y

ε
t )Ẇt, Y ε0 = yε0 ∈ Rl,

where ε > 0 is a small parameter. Equation (1.1) is a multi-scale and fully nonlinear
system. In the above, for each ε > 0, F εt (x, y) : R+ × Rd × Rl → Rd, λεt (x, y) :
R+ × Rd × Rl → R, bεt (x, y) : R+ × Rd × Rl → Rl, σεt (x, y) : R+ × Rd × Rl → Rl×m

are measurable functions of their arguments (t, x, y), and Wt is an m-dimensional
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vector-valued standard Brownian motion with Ẇt being its formal derivative. For
each ε > 0, the weak solution of (1.1) is defined in the usual way, i.e., there exists
a suitable probability space and an adapted Brownian motion Wt such that there
are adapted processes (Xε, Y ε) satisfying the system of stochastic integral equations
corresponding to (1.1) almost surely.

Equations given in (1.1) may be considered as a singular perturbation problem
with multiple-time scales. Intuitively, as ε2 → 0 in the first equation of (1.1), it can
be approximated by a first-order equation, whereas Y ε in the second equation of (1.1)
can be viewed as a fast-varying process, which will be so referred to in what follows.
Further heuristic reasoning can be found in the beginning of Section 2.1.1.

Our main effort is devoted to obtaining asymptotic properties of the underlying
systems. Under mild conditions, we establish the large deviations principle (LDP for
short) for the family of coupled processes {(Xε, µε)}ε>0 with µε being the occupation
measures of the fast-varying process Y ε. Neither Lipschitz continuity nor growth
condition of F ε, bε, σε is assumed. From the LDP of such couples, we can obtain
averaging and large deviations principles for {Xε}ε>0. In addition, continuing our
investigation, in this paper, we further reveal asymptotic properties without assuming
specific structure of the fast process. In lieu of (1.1), we consider

(1.2) ε2Ẍε
t = F εt (X

ε
t , ξ

ε
t )− λεt (X

ε
t , ξ

ε
t )Ẋ

ε
t ,

with ξεt being a process without a specified structure. We refer to ξεt as a fast-varying
process for similar reason as that of Y εt in the previous paragraph.

Why do we care of the second-order stochastic systems? This is because numerous
problems in physics, statistical mechanics, and engineering, etc., involve such systems.
In fact, in the study of ordinary differential equations, we encountered many second-
order equations, including Airy’s equations, Duffing equations, Liénard equations,
Rayleigh’s equations, etc. They have been used in a wide variety of applications.
Adding stochastic perturbations to these equations leads to second-order stochastic
differential equations of various kind.

To further illustrate, consider the motions of a net of particles in a net of random
force fields, described by the Newton’s law as ẍε(t) = F̃ε(t, ω, xε(t), ẋε(t), χε(t)), where

xε(t) denotes the location of the particles at time t. The F̃ε denotes the random force
fields depending on time t, sample point ω, the particle’s locations xε, the particle’s
velocities ẋε, and the random environments χε(t) interacting with the system. To
begin, turbulent diffusions and stochastic accelerations were considered by Kesten
and Papanicolaou in [22, 23] under suitable conditions. Here we focus on the motions
of particles, in which the Reynolds number (see e.g., [35] for a definition) is very small
so that inertial effects are negligible compared to the damping force by assuming that

F̃ε(t, ω, xε(t), ẋε(t), χε(t)) = Fε(t, xε(t), χε(t))−
λε(t, xε(t), χε(t))

ε
ẋε(t).

Now, by scalingXε
t := xε(t/ε), and ξ

ε
t := χε(t/ε), the system can be rewritten as (1.2).

One of the examples of χε(t) is a diffusion process. In this case, ξεt is a fast diffusion
process that is fully coupled with the system, which leads to the system of equations
in (1.1). Another motivation is from the averaging and large deviations principles for
systems of stochastic differential equations. System (1.1) can be viewed as the second-
order version of the problem considered in [28] and references therein. It should be
mentioned that there have been much recent interests in studying stochastic second-
order systems in random environment. For example, the work [44] studied stochastic
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Hamiltonian systems living in random environments with the random environment
represented by a random switching process.

Because ε is a small parameter, as ε is getting smaller and smaller, we expect
the system to display certain limit behavior, in which the averaging principle plays
an important role in studying heterogeneity that often occurs in physics as well as
in biology, economics, queuing theory, game theory, among others; see, e.g., [14].
Typically, analyzing and simulating heterogeneous models are much more challenging
than the corresponding homogeneous models, in which the heterogeneous property is
replaced by its average value. The averaging principle for a system guarantees the
validity of this replacement. On the other hand, the LDPs (see [11, 10]), characterizing
quantitatively the rare events, play an important role in many areas with a wide
range of applications. To mention just a few, they include equilibrium and non-
equilibrium statistical mechanics, multi-fractals, thermodynamics of chaotic systems,
among others [36]. By establishing the LDPs for system (1.1) and (1.2), we provide
an insight about the motions of (small) particles in random force fields, which is
heterogeneous and the heterogeneity is allowed to interact with the system. Not only
will it illustrate averaging of the heterogeneity works in this case, but also provide
the picture of the dynamics around the averaged system.

From the development of homogenization and large deviations point of view,
much effort has been devoted to studying averaging and large deviations principles
of the first-order differential equations under random environment (given by diffusion
process, switching process, wideband noise, and others) in the setting of fast-slow sys-
tems. Such problems have been addressed in [18, 25, 26, 40, 41, 42, 43] under certain
settings, in which, the fast process is often not fully coupled with the slow system.
Very recently, the question for the fully-coupled system was addressed in [34]. Some
other related studies can be found in [2, 20, 28]. Reference [26] considered systems un-
der wideband noise; [33] studied systems under rough path noise; [7, 8, 9] investigated
systems in infinite dimensional settings. In contrast to the systems considered in the
aforementioned works with emphases on first-order equations, we consider systems
of second-order differential equations of the forms (1.1) and (1.2). From a statistical
physics point of view, there were some works treating the stochastic accelerations and
the Langevin equations such as [4, 15, 39] for the study of Smoluchowski-Kramers
approximation, the work [6] for the LDPs, [5] for the MDPs (moderate deviations
principles) in the absence of the random environment, and [31, 32] for the LDPs of
Langevin systems with random environment under certain specific settings. To the
best of our knowledge, this paper is one of the first works addresses the problem
of averaging and large deviations principle for second-order equations in random en-
vironment that are fully coupled. We establish the LDPs under mild and natural
conditions.

To establish the desired LDPs for system (1.1), in light of the work of [28, 34] on
the first-order SDEs, we first establish the LDP for the family of coupled processes
{(Xε, µε)}ε>0, where µ

ε is defined as a random occupation measure of Y ε. Then,
the LDPs for the families {Xε}ε>0 and/or {µε}ε>0 can be handled by some standard
projection techniques in the large deviations theory. Without assuming any regularity
of F ε, bε, and σε, we could not establish a “good” connection between the solution of
the second-order equations and the corresponding first-order equations. Our approach
is based on a combination of the approach of Puhaskii in [34] for the first-order
coupled system (namely, obtaining the relatively large deviations compactness and
then carefully identifying the rate functions), and the intuition of Smoluchowski-
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Kramers approximation. To establish LDPs of SDEs, the weak convergence methods
initiated by Dupuis and Ellis [12], have been used by many authors (see e.g., [2, 6,
12, 26] and references therein), which is shown to be effective to prove the LDPs
for many systems. However, using weak convergence approach for our problem may
require stronger assumptions such as Lipschitz continuity of coefficients in equation of
Xε (as shown in, e.g., [2, Assumption 2.1.] and [6, Hypothesis 1]). Such conditions are
needed in Budhiraja, Dupuis, and Ganguly [2] because of the need to prove the lower
bound [2, (2.13)], in which some uniqueness properties of auxiliary optimal controls
are required. The paper [2] studied the first-order SDEs with a fast-varying jump
process, the aforementioned difficulty arises in [2] due to the presence of multiple time
scales rather than the presence of the jump process. Here, we are dealing with fully
nonlinear second-order stochastic systems with multi-scales, but we do not use the
weak convergence method to avoid requiring the Lipschitz continuity and other growth
conditions. In [6], Cerrai and Freidlin considered the second-order SDEs without
coupling with another fast-varying processes. To establish the desired convergence,
Lipschitz continuities of coefficients in the system are necessary. In [13], Feng and
Kurtz introduced the HJB equations/viscosity solutions approach. In [13, Section
11.6], first-order SDEs is considered, and conditions for the validity of LDPs are
derived. However, these conditions rely on the existence of functions possessing certain
properties, which are often difficult to verify in terms of the coefficients. Although
Feng and Kurtz were able to provide explicit conditions on the coefficients, a key
requirement is that σεt (x, y) being independent of x (see [13, Lemma 11.60 on p.278]).
As to be seen later, we do not need the Lipschitz continuity for (1.1) neither do we
need σεt (x, y) being independent of x as in [13]. In this paper, we manage to establish
LDPs of Xε in multiscale and fully coupled system (1.1) under mild conditions, which
is another of our goal.

To establish the desired LDP for the system under general fast random pro-
cess (1.2), we have to use a different approach. We assume that the corresponding
first-order equation satisfies the local LDP, which will be shown to be verifiable and
satisfied in many problems. To prove the LDP, we show that the family of {Xε}ε>0

is exponentially tight and satisfies the local LDP.
The rest of the paper is arranged as follows. We divide the presentation of the

rest of the paper into two parts. The first part, Section 2, is devoted to the second-
order systems with a fast-varying diffusion (1.1). Section 2.1 formulates the problem
and states the results. The detailed proof of results is provided in Section 2.2. The
second part of the paper, presented in Section 3, substantially extends the results to
that of second-order equations with general fast-varying random processes (1.2). The
formulation, conditions, results, and detailed proofs are presented. Finally, Section 4
presents two examples to illustrate our formulation and results.

2. Fast-Slow Second-Order Systems with Fast Diffusion.

2.1. Notation, Formulation, and Results. Throughout the paper, |·| denotes
an Euclid norm while ‖ · ‖ indicates the operator sup-norm, C(X ,Y) is the space of
continuous functions from X to Y and if Y is an Euclid space, we write C(X ,Y) as
C(X ) for simplicity. Let M(Rl) be the set of finite measures on Rl endowed with
the weak topology, and P(Rl) be the set of probability densities m(y) on Rl such
that m ∈ W

1,1
loc(R

d) and
√
m ∈ W1,2(Rl), where W1,2(Rl) (resp., W1,1

loc(R
d)) is the

Sobolev space (resp., local Sobolev space) with suitable exponents, and C1
0(R

l) be
the space of continuously differentiable functions with compact supports in Rl. Let
C↑(R+,M(Rl)) represent the subset of C(R+,M(Rl)) of functions µ = (µt, t ∈ R+)
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such that µt − µs is an element of M(Rl) for t ≥ s and µt(R
l) = t. It is endowed

with the subspace topology and is a complete separable metric space, being closed in
C(R+,M(Rl)). We define the random process µε = (µεt , t ∈ R+) of the fast process
Y ε by

(2.1) µεt (A) :=
∫ t
0
1A(Y

ε
s )ds, ∀A ∈ B(Rl).

Then, µε is a random element of C↑(R+,M(Rl)) and we can regard (Xε, µε) as a ran-
dom element of C(R+,R

d)×C↑(R+,M(Rl)). Note that the elements of C↑(R+,M(Rl))
can be regarded as a σ-finite measures on R+ × Rl. As a result, we use the notation
µ(dt, dy) for µ ∈ C↑(R+,M(Rl)). For a symmetric positive definite matrix A and ma-
trix z of suitable dimensions, we define ‖z‖A := z⊤Az. Following Puhaski’s notation,
‖z‖A can be either matrices or numbers, depending on the dimension z. We also use
∇x, ∇xx, divx to denote the gradient, the Hessian, and the divergence, respectively,
with respect to indicated variables. It should be clear from the context.

We will establish the LDP and describe explicitly the rate function for the family
{(Xε, µε)}ε>0 in C(R+,R

d) × C↑(R+,M(Rl)). The LDP and the rate function of
{Xε}ε>0 are obtained directly by standard projections in the large deviations theory.
To proceed, we recall briefly the basic definitions of the LDP. For further references,
see [11, 10, 27].

Definition 2.1. We said the family of {Pε}ε>0 in some metric space S enjoys the
LDP with a rate function I if the following conditions are satisfied: 1) I : S → [0,∞]
is inf-compact, that is, the level sets {z ∈ S : I(z) ≤ L} are compact in S for any
L > 0; and 2) for any open subset G of S,

lim inf
ε→0

ε logPε(G) ≥ −I(G) := − inf
z∈G

I(f);

and 3) for any closed subset F of S,

lim sup
ε→0

ε logPε(F ) ≤ −I(F ) := − inf
z∈F

I(f).

We say that a family of random elements of S obeys the LDP if the family of their
laws obeys the LDP. Our main effort in this section is to consider system (1.1) and
to establish LDP for the family of the processes {(Xε, µε)}ε>0 with µε being the
empirical process associated with Y ε as in (2.1), where (Xε, Y ε) is a solution of the
second-order differential equation with random environment given in (1.1). Such a
solution is defined as follows.

One can rewrite (1.1) as

(2.2)





Ẋε
t = pεt , Xε

0 = xε0 ∈ Rd,

ε2ṗεt = F εt (X
ε
t , Y

ε
t )− λεt (X

ε
t , Y

ε
t )p

ε
t , pε0 = xε1 ∈ Rd,

Ẏ εt =
1

ε
bεt (X

ε
t , Y

ε
t ) +

1√
ε
σεt (X

ε
t , Y

ε
t )Ẇt, Y ε0 = yε0 ∈ Rl.

Recall that for each ε > 0, the coefficients F εt (x, y) : R+ × Rd × Rl → Rd, λεt (x, y) :
R+ × Rd × Rl → R, bεt (x, y) : R+ × Rd × Rl → Rl, σεt (x, y) : R+ × Rd × Rl →
Rl×m are functions of (t, x, y); xε0, x

ε
1 ∈ Rd, yε0 ∈ Rl are initial values that can be

random. Throughout the paper, we assume that these functions are measurable and
locally bounded in (t, x, y) such that the system of equations (2.2) admits a weak
solution (Xε, pε, Y ε) with trajectories in C(R+,R

d×Rd×Rl) for every initial condition
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(xε0, x
ε
1, y

ε
0); and then the system of equations (1.1) admits a weak solution (Xε, Y ε)

with trajectories in C(R+,R
d × Rl). More precisely, we assume that there exist a

complete probability space (Ωε,Fε,Pε) with filtration Fε = (Fε
t , t ∈ R+), a Brownian

motion (Wt, t ∈ R+) with respect to Fε, processes Xε = (Xε
t , t ∈ R+), p

ε = (pεt , t ∈
R+), and Y ε = (Y εt , t ∈ R+) that are Fε-adapted and have continuous trajectories
satisfying the following equations





Xε
t = xε0 +

∫ t

0

pεsds,

pεt = xε1 +
1

ε2

∫ t

0

(
F εs (X

ε
s , Y

ε
s )− λεs(X

ε
s , Y

ε
s )p

ε
s

)
ds,

Y εt = yε0 +
1

ε

∫ t

0

bεs(X
ε
s , Y

ε
s )ds+

1√
ε

∫ t

0

σεs(X
ε
s , Y

ε
s )dWs,

for all t ∈ R+, Pε-a.s. It is noted that it may not guarantee the uniqueness of
the solution. [To ensure the uniqueness, one may need to require further that the
coefficients are Lipschitz continuous, which we do not assume here.] Next, we need
some conditions, which are mild and natural, to establish the LDP for the family of
coupled processes {Xε, µε}ε>0.

Assumption 2.1. Assume that for all L > 0 and t > 0,
(2.3)
lim sup
ε→0

sup
s∈[0,t]

sup
y∈Rl

sup
x∈Rd:|x|≤L

[
|F εs (x, y)|+ |λεs(x, y)|+ |bεs(x, y)|+ ‖Σεs(x, y)‖

]
<∞,

where Σεt (x, y) := σεt (x, y)[σ
ε
t (x, y)]

⊤,

(2.4) lim sup
ε→0

sup
s∈[0,t]

sup
y∈Rl

sup
x∈Rd

x⊤F εs (x, y)

(1 + |x|2)λεs(x, y)
<∞,

(2.5) lim
M→∞

lim sup
ε→0

sup
s∈[0,t]

sup
y∈Rl,|y|≥M

sup
x∈Rn,|x|≤L

[bεs(x, y)]
⊤y

|y| < 0,

(2.6)
lim sup
ε→0

sup
s∈[0,∞),y∈Rl,x∈Rd

[
|∇sλ

ε
s(x, y)|+ |∇xλ

ε
s(x, y)|

+|∇yλ
ε
s(x, y)|+ ‖∇yyλ

ε
s(x, y)‖

]
<∞,

and

(2.7) lim inf
ε→0

inf
s∈[0,∞],y∈Rl,x∈Rd

λεs(x, y) > κ0 > 0.

Remark 2.1. The condition (2.3) is (locally in (t, x) and globally in y) bounded-
ness conditions of F ε, bε and Σε. Note that (2.4) is a growth-rate condition, which is

milder than linear growth of
F ε

s (x,y)
λε
s(x,y)

, e.g.,
F ε

t (x,y)
λε
s(x,y)

= 1
x satisfies this condition but is not

linear growth. Moreover, it does not implies any growth-rate condition for F εs (x, y).
The condition (2.5) is a stability condition, which in fact is needed for the ergodic-
ity of the fast process. It is noted that we do not require any Lipschitz continuity
and growth-rate conditions for these coefficients. Lower boundedness and regularity
conditions (2.6) and (2.7) of λεt (x, y) are natural and often used in the literature of
mathematical physics; see, e.g., [5, 6].
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Assume that there are “limit” measurable functions Ft(x, y), λt(x, y), bt(x, y),
and σt(x, y) of the families of functions F εt (x, y), λ

ε
t (x, y), b

ε
t (x, y), σ

ε
t (x, y) as ε→ 0,

respectively, in the sense that for all t > 0 and L > 0,

(2.8)
lim
ε→0

sup
s∈[0,t]

sup
y∈Rl,|y|≤L

sup
x∈Rd,|x|≤L

[
|F εs (x, y)− Fs(x, y)|+ |λεs(x, y)− λs(x, y)|

+|bεs(x, y)− bs(x, y)| + ‖σεs(x, y)− σs(x, y)‖
]
= 0.

Assumption 2.2. Assume that the “limit” function bt(x, y) is Lipschitz contin-
uous in y locally uniformly in (t, x); bt(x, y) and Σt(x, y) := σt(x, y)[σt(x, y)]

⊤ are
continuous in x locally uniformly in t and uniformly in y; Σt(x, y) is of class C1 in
y, with the first partial derivatives being bounded and Lipschitz continuous in y lo-
cally uniformly in (t, x), and divyΣt(x, y) is continuous in (x, y). The matrix Σt(x, y)
is positive definite uniformly in y and locally uniformly in (t, x). In addition, the
“limit” function Ft(x, y) is locally Lipschitz continuous in x locally uniformly in t and
uniformly in y. The conditions (2.6) and (2.7) hold for λt. Moreover, for all t > 0,

(2.9) lim
|y|→∞

sup
s∈[0,t]

sup
x∈Rd

[bs(x, y)]
⊤y

|y|2 < 0.

Rate function. Denote by G the collection of (ϕ, µ) such that the function ϕ =
(ϕt, t ∈ R+) ∈ C(R+,R

d) is absolutely continuous (with respect to the Lebesgue
measure on R+) and the function µ = (µt, t ∈ R+) ∈ C↑(R+,M(Rl)), when considered
as a measure on R+×Rl, is absolutely continuous (with respect to Lebesgue measure
on R+ × Rl), i.e., µ(ds, dy) = ms(y)dyds, and for almost all s, ms(y) (as a function
of y) belongs to P(Rl).

For (ϕ, µ) ∈ G, µ(ds, dy) = ms(y)dyds, define

I1(ϕ, µ) =

∫ ∞

0

[
sup
β∈Rd

β⊤

(
ϕ̇s −

∫

Rl

Fs(ϕs, y)

λs(ϕs, y)
ms(y)dy

)

+ sup
h∈C1

0(R
l)

∫

Rl

(
[∇h(y)]⊤

(1
2
divy

(
Σs(ϕs, y)ms(y)

)
− bs(ϕs, y)ms(y)

)

−1

2
‖∇h(y)‖2Σs(ϕs,y)

ms(y)

)
dy

]
ds,

and define I1(ϕ, µ) = ∞ if (ϕ, µ) /∈ G.
Definition 2.2. The family of random variables with distributions {Pε}ε>0 is

said to be exponentially tight in the space S if there exists an increasing sequence of
compact sets (KL)L≥1 of S such that limL→∞ lim supε→0 ε logP

ε(KL) = −∞.
Theorem 2.1. Assume that Assumptions 2.1 and 2.2 hold, that the family of

initial values {xε0}ε>0 obeys the LDP in Rd with a rate function I0, that

lim sup
ε→0

ε|xε1| <∞ a.s.,

and that the family of initial values {yε0}ε>0 is exponentially tight in Rl. Then the
family {(Xε, µε)}ε>0 obtained from (1.1) obeys the LDP in C(R+,R

d)×C↑(R+,M(Rl))
with rate function I defined as I(ϕ, µ) = I0(ϕ0) + I1(ϕ, µ), if (ϕ, µ) ∈ G, I(ϕ, µ) =
∞, otherwise.

Corollary 2.2. Under the hypotheses of Theorem 2.1, the family {Xε}ε>0

satisfies the LDP in C(R+,R
d) with the rate function IX defined by

IX(ϕ) = inf
µ∈C↑(R+,M(Rl))

I(ϕ, µ).
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As an alternative representation, if function ϕ = (ϕt, t ∈ R+) ∈ C(R+,R
d) is abso-

lutely continuous with respect to Lebesgue measure on R+, then

(2.10)

IX(ϕ) = I0(ϕ0) +

∫ ∞

0

sup
β∈Rd

[
β⊤ϕ̇s − sup

m∈P(Rl)

(
β⊤

∫

Rl

Fs(ϕs, y)

λs(ϕs, y)
m(y)dy

+ sup
h∈C1

0(R
l)

∫

Rl

(
[∇h(y)]⊤

(1
2
divy

(
Σs(ϕs, y)m(y)

)
− bs(ϕs, y)m(y)

)

− 1

2
‖∇h(y)‖2Σs(ϕs,y)

m(y)

)
dy

)]
ds,

otherwise, IX(ϕ) = ∞.

2.1.1. Zero points of I(ϕ, µ), averaging principle of (1.1), and its large
deviations analysis. We start with an intuitive discussion on the behavior of (1.1)
as ε → 0. Intuitively, there are two phases as ε → 0. First, ε2 goes to 0. At this
phase, Xε

t is close to the solution of the following associated first-order equation (or
the over-damped equation in the language of statistical physics)

(2.11)





0 = F εt (X
ε

t , Y
ε,X
t )− λεt (X

ε

t , Y
ε,X
t )Ẋ

ε

t , X
ε

0 = xε0 ∈ Rd,

Ẏ ε,Xt =
1

ε
bεt (X

ε

t , Y
ε,X
t ) +

1√
ε
σεt (X

ε

t , Y
ε,X
t )Ẇt, Y ε,X0 = yε0 ∈ Rl.

Next, Y ε,Xt converges to its invariant distribution as ε → 0. More precisely, if we let

Ỹ Xt := Y ε,Xtε , then





Ẋ
ε

t =
F εt (X

ε

t , Ỹ
X
t/ε)

λεt (X
ε

t , Ỹ
X
t/ε)

, X
ε

0 = xε0 ∈ Rd,

˙̃
Y
X

t = bεtε(X
ε

tε, Ỹ
X
t ) +

√
εσεtε(X

ε

tε, Ỹ
X
t )

˙̃
W t, Ỹ ε,X0 = yε0 ∈ Rl,

where W̃t is another standard Brownian motion. As a consequence, because Ỹ Xt/ε will

come to and stay close to its invariant measure as ε → 0, X
ε

t will tend to Xt, the
solution of the following differential equation

Ẋt = F/λt(Xt), X0 = x0,

where x0 is the limit of xε0, and

F/λt1(x) :=

∫

Rl

Ft1(x, y)

λt1(x, y)
νt1,x(dy),

and for each fixed (t1, x), ν
t1,x(dy) is the invariant measure of the following stochastic

differential equation

˙̃
Yt = bt1(x, Ỹt) + σt1(x, Ỹt)

˙̃
W t.

The convergence of Xε
t to Xt as ε→ 0 forms an averaging principle of (1.1). However,

not only are we interested in the convergence of Xε to Xt, but also the tail probability
of this convergence, i.e., the rate of the convergence of the probability of the event
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{‖Xε −X‖ > η} to 0, for any η > 0. We show that the convergence is exponentially
fast. The answer to these questions can be obtained from the LDP for {Xε

t }ε>0 and
explicit representations of the rate function.

To proceed, we apply our results to make the above intuition rigorous. It is shown
later that that I1(ϕ, µ) = 0 provided that a.e.

ϕ̇s =

∫

Rl

Fs(ϕs, y)

λs(ϕs, y)
ms(y)dy,

and ms(y) satisfies the following equation
(2.12)∫

Rl

(1
2
tr(Σs(ϕs, y)[∇yyh(y)]) + [∇yh(y)]

⊤bs(ϕs, y)
)
ms(y)dy = 0, for all h ∈ C∞

0 (Rl),

and I0(ϕ0) = 0. Alternatively, ms(·) is the invariant density of the diffusion process
with the drift bs(ϕs, ·) and the diffusion matrix Σs(ϕs, ·). Therefore, as ε → 0, the
trajectories of {Xε}ε>0 hover around X with exponential tail probability, where X is
defined as the solution of the following ODE

(2.13) Ẋt = F/λt(Xt), X0 = x0,

with

F/λt(x) :=

∫

Rl

Ft(x, y)

λt(x, y)
mt(y)dy,

and mt(·) satisfies equation (2.12) and x0 satisfying I0(x0) = 0. Let

Bcη(X) :=
{
ϕ ∈ C(R+,R

d) : ‖ϕt −Xt‖C(R+,Rd) :=
∞∑

n=1

1

2n
(
1 ∧ sup

t≤n
|ϕt −Xt|

)
≥ η
}
,

the LDP established in this paper implies that

P
ε(Xε ∈ Bcη(X)) ∼ e−

1
ε
IX(Bc

η(X)),

where IX(Bcη(X)) = infϕ∈Bc
η(X) IX(ϕ). If we assume that X is the unique solution of

(2.13), it is the unique solution of IX(ϕ) = 0. As a result, IX(Bcη(X)) > 0. Indeed,

if IX(Bcη(X)) = 0, there exists {ϕk}∞k=1 ⊂ Bcη(X) such that limk→∞ IX(ϕk) = 0. Be-
cause of that IX is a rate function, there exists a convergent subsequence (still denoted
by ϕk) of {ϕk} with limit denoted by ϕ ∈ Bcη(X). Since IX is lower semi-continuous,
0 ≤ IX(ϕ) = IX(limk→∞ ϕk) ≤ limk→∞ IX(ϕk) = 0. It leads to IX(ϕ) = 0, which is
a contradiction. Because IX(Bcη(X)) > 0, P(‖Xε − X‖ > η) → 0 exponentially fast
for any η > 0.

Remark 2.2. In Section 2.1.1, we illustrate that from our LDP result, we can
establish the averaging principle of (1.1) with exponentially convergence rate in the
sense that Xε converges to X (of (2.13)) with exponential tail probability, i.e., for
any η > 0, P(‖Xε −X‖ > η) → 0 exponentially fast. From a different angle, refer-
ences [40, 41] treated convergence rate for averaging principles of different problems
using certain moments. In this process, just as treating L2 or Lp convergence rates
in numerical approximation of stochastic differential equations, global Lipschitz con-
ditions are needed. For our second-order equations, the Lipschitz continuity need not
be assumed. This is an advantage.
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2.1.2. Alternative representations of I(ϕ, µ). One can write the rate func-
tion I(ϕ, µ) as

I(ϕ, µ) = I0(ϕ0) +
∫∞

0

[
supβ∈Rd β⊤

(
ϕ̇s −

∫
Rl

Fs(ϕs,y)
λs(ϕs,y)

νs(dy)
)
+ Js,ϕs

(νs)
]
ds,

where νs(dy) = ms(y)dy and

Js,ϕs
(νs) := sup

h∈C1
0(R

l)

∫

Rl

(
[∇h(y)]⊤

(1
2
divx

(
Σs(ϕs, y)ms(y)

)
− bs(ϕs, y)ms(y)

)

−1

2
‖∇h(y)‖2Σs(ϕs,y)

ms(y)

)
dy.

In fact, for each (s, x) ∈ R+ ×Rd, Js,x(ν) is the large deviations rate function for the
empirical measures

νs,xt (dy) =
1

t

∫ t

0

1dx(Ỹ
s,x
r )dr

for rate ε = 1/t as t→ ∞ and

˙̃
Y
s,x

t = bs(x, Ỹ
s,x
t ) + σs(x, Ỹ

s,x
t )dW̃t;

see [34, Section 2, Corollary 2.2 and 2.3].
Moreover, if I(ϕ, µ) is finite, it is necessary that

ϕ̇s =

∫

Rl

Fs(ϕs, y)ms(y)

λs(ϕs, y)
dy a.e.,

and in this case, we have I(ϕ, µ) = I0(ϕ0) +
∫∞

0 Js,ϕs
(νs)ds. On the other hand, one

can also write the rate function (see [34, Section 2, Proposition 2.1])

(2.14) I(ϕ, µ) = I0(ϕ0) +
1

2

∫ ∞

0

∫

Rl

∥∥∥∇yms(y)

2ms(y)
− Js,ms(·),ϕs

(y)
∥∥∥
Σs(ϕs,y)

ms(y)dyds,

with µ(dy, ds) = ms(y)dyds, where for each s ∈ R+, each function ms(·) belongs to
P(Rl), and Jt,m(·),u is a function defined as follows. Denote L2(Rl,Rl,Σs(ϕs, y),ms(y)

dy) the Hilbert space of all Rd-valued functions (of y) in Rl with norm

‖f‖2Σ,m =

∫

Rl

‖f(y)‖2Σs(ϕs,y)
ms(y)dy

and L2
loc(R

l,Rl,Σt(x, y),m(y)dy) the space consisting of functions whose products
with arbitrary C∞

0 -functions belong to L2(Rl,Rl,Σt(x, y),m(y)dy), then Jt,m(·),u is
defined as a function of y by

Jt,m(·),u(y) = ΠΣt(x,·),m(·)(Σt(x, y)
−1(bt(x, y)− divxΣt(x, y)/2)),

where ΠΣt(x,·),m(·) maps φ(y) ∈ L2
loc(R

l,Rl,Σt(x, y),m(y)dy) to ΠΣt(x,·),m(·)φ(y),

which belongs to L
1,2
0 (Rl,Rl,Σt(x, y),m(y)dy) and satisfies that for all h ∈ C∞

0 (Rl),

∫

Rl

[∇h(y)]⊤Σt(x, y)ΠΣt(x,·),m(·)φ(y)m(y)dy =

∫

Rl

[∇h(y)]⊤Σt(x, y)φ(y)m(y)dy.
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If φ(y) ∈ L2(Rl,Rl,Σt(x, y),m(y)dy), then ΠΣt(x,·),m(·)φ(y) is nothing than the or-

thogonal projection of φ onto L
1,2
0 (Rl,Rl,Σt(x, y),m(y)dy).

In fact, I(ϕ, µ) is defined similarly to the rate function of the family of processes

{(Xε
, µε,X)}ε>0, where µ

ε,X
t (A) =

∫ t
0
1A(Y

ε,X
s )ds, A ∈ B(Rl), and (X

ε

t , Y
ε,X
t ) is

the solution of the following equation





Ẋ
ε

t =
F εt (X

ε

t , Y
ε,X
t )

λεt (X
ε

t , Y
ε,X
t )

, X
ε

0 = xε0 ∈ Rd,

Ẏ ε,Xt =
1

ε
bεt (X

ε

t , Y
ε,X
t ) +

1√
ε
σεt (X

ε

t , Y
ε,X
t )Ẇt, Y ε0 = yε0 ∈ Rl.

2.2. Proof of Theorem 2.1. This section is devoted to proving Theorem 2.1.
In the proof, we use C to represent a generic positive constant that is independent of
ε. The value C may change at different appearances; we will specify which parameters
it depends on if it is necessary.

2.2.1. A Road Map For the Development of Our Analysis and Proof.
To make the proof be more readable, we first provide a road map and then the details
will be illustrated in following sections. The proof of the LDP of {(Xε, µε)}ε>0 is
based on the approach of [34], which relies on the properties that if a family of
random elements is exponentially tight then it is sequentially large deviation (LD)
relatively compact, i.e., any subsequence contains a further subsequence enjoying the
LDP with some rate function. The remaining work is done by carefully identifying
the rate functions. Specifically, the details are as follows.

Step 1: The exponential tightness of {(Xε, µε)}ε>0 is proved in Section 2.2.2 by
applying the (extended) Puhalskii’s criteria. Particularly, dealing with Xε, we prove
(2.16), which shows that {Xε} cannot be large with exponentially small probability
and (2.17), leading to needed continuity properties. To prove these, a first step is
to use Lemma 2.1 to deal with the large factor 1

ε2 . Then, taking advantages of the
martingale property of stochastic integrals enables us to establish desired estimates.
It is similar for µε.

Step 2: After proving exponentially tightness of {(Xε, µε)}, thanks to Propo-
sition 2.1, {(Xε, µε)} is sequentially LP relatively compact (Definition 2.3). There-
fore, the second step is devoted to identifying the large deviations (LD) limit points.

More precisely, let Î be a large deviations limit rate functions or LD limit points of
{(Xε, µε)}ε>0 (i.e., a rate function of some subsequence of {(Xε, µε)}ε>0 that obeys

the LDP) and we prove that Î = I, (I is the rate function defined in Section 2.1).
Details for this step is as follows.

Step 2a: We introduce another characterization of the rate function in Section
2.2.3. Precisely, for each step function β(s), each f(t, x, y) real-valued C1,2,2(R+ ×
Rd×Rl)-function with compact support in y locally uniformly in (t, x), define Φβ,ft as

in (2.39). Then, I∗ is defined as the supremum of Φβ,ft∧τ over β, f , and stopping times
τ (see (2.40)). Later, as a byproduct of the study of the regularity of I∗ (in Section
2.2.5), it is shown that I∗ = I, thanks to their alternative representations (2.14) and
(2.54).

Step 2b: In Section 2.2.4, we prove the lower bound of LD limit, i.e., I∗ ≤ Î

for any (ϕ, µ) or sup(ϕ,µ)∈C(R+,Rd)×C↑(R+,M(Rl))

(
Φβ,ft∧τ(ϕ,µ)(ϕ, µ) − Î(ϕ, µ)

)
= 0. To

prove this claim, using Lemma 2.2 (or [11, Theorem 2.1.10]), it suffices to show that
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Eε exp
{

1
εΦ

ε,β,f
t∧τ(Xε,µε)(X

ε, µε)
}

= 1, and Φε,β,ft∧τ(ϕ,µ)(ϕ, µ) → Φβ,ft∧τ(ϕ,µ)(ϕ, µ) as ε → 0

uniformly in compact sets; see Theorem 2.4.

Step 2c: Section 2.2.5 is devoted to the proof of upper bound of LD limits, i.e.,
Î ≤ I∗. We first show this claim at sufficiently regular (dense) points; see Theorem
2.5. Then, it is shown for arbitrary points by an approximation using regular points
and applying some continuity properties of rate functions.

Remark 2.3. Although our proof is inspired by the approach of [34], let us high-
light briefly some differences in our works as follows. (i) System (1.1) is second-order
while [34] studied first-order equation. We do not assume any Lipschitz continuities
for coefficients. Therefore, it is not possible to get a “good estimate” (e.g., exponen-
tially close) between (1.1) and its corresponding overdampped first-order equation.
(ii) To identify the rate function in step 2, when defining I∗, we need to narrow the
space taking the supremum to control terms containing the derivative pε of Xε (which
is due to considering second-order system), specially the integral involving pε and the
diffusion part of the fast process (see (2.45)); see Remark 2.5.

2.2.2. Exponential Tightness of {(Xε, µε)}ε>0. In this section, we establish
the exponential tightness of {(Xε, µε)}ε>0 in C(R+,R

l)×C↑(R+,M(Rl)). To be self-
contained, we recall these preliminaries below; see [11, 10, 27] for more detail.

Definition 2.3. The family {Pε}ε>0 is said to be sequentially LD relatively com-
pact if any subsequence {Pεk}k≥1 of {Pε}ε>0 contains a further subsequence {Pεkj }j≥1

which satisfies the LDP with some large deviations rate function as j → ∞. We say
that a family of random elements of S is sequentially LD relatively compact (resp.
exponentially tight) if their laws have the indicated property.

Proposition 2.1. ([34, Theorem 4.1]) If a family {Pε}ε>0 is exponentially tight
then it is sequentially LD relatively compact.

To start, we introduce the following technical lemma, which will be used often in
some calculations in this section.

Lemma 2.1. For real-valued continuous function g(s), and real-valued continu-
ously differentiable function u(s), and real-valued Itô process w(s), w(s) > 0 ∀s with
the quadratic variation denoted by 〈dw, dw〉s, we have the following identity

(2.15)

1

ε2

∫ t

0

u(s)

∫ s

0

e−
1
ε2

∫
s
r
w(r′)dr′g(r)drds

=

∫ t

0

u(s)g(s)

w(s)
ds+

∫ t

0

∇su(s)

w(s)

(∫ s

0

e−
1
ε2

∫
s
r
w(r′)dr′g(r)dr

)
ds

− u(t)
w(t)

∫ t
0
e−

1
ε2

∫
t
s
w(r)drg(s)ds−

∫ t
0

u(s)
w(s)2

(∫ s
0
e−

1
ε2

∫
s
r
w(r′)dr′g(r)dr

)
dw(s)

+

∫ t

0

u(s)

w(s)3

(∫ s

0

e−
1
ε2

∫
s

r
w(r′)dr′g(r)dr

)
〈dw, dw〉s.

Moreover, the identity (2.15) still holds if g is Rd-valued function and u can be either
R-valued or Rd-valued (with the operations corresponding to u and g being understood
as the inner product in Rd).

Proof. Using integration by parts for

u(s)

∫ s

0

e
1
ε2

∫
r

0
w(r′)dr′g(r)dr and

e−
1
ε2

∫
s
0
w(r)dr

w(s)
,

(2.15) follows from standard calculations.
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Theorem 2.3. Suppose that Assumption 2.1 holds, that the family {(xε0, yε0)}ε>0

is exponentially tight, and that lim supε→0 εx
ε
1 <∞ a.s. Then {(Xε, µε)}ε>0 obtained

from (1.1) is exponentially tight and sequentially LD relatively compact in C(R+,R
l)×

C↑(R+,M(Rl)).
Since C(R+,R

l)×C↑(R+,M(Rl)) is a closed subset of C(R+,R
d)×C(R+,M(Rl))

and Pε
(
(Xε, µε) ∈ C(R+,R

d)× C↑(R+,M(Rl))
)
= 1, it is sufficient to prove that the

family {(Xε, µε)}ε>0 is exponentially tight in C(R+,R
d) × C(R+,M(Rl)). To prove

that, it suffices to verify {(Xε, µε)}ε>0 satisfying the (extended) Puhalskii’s criteria
(see [27, Theorem 3.1] and [13, Remark 4.2], namely, ∀ℓ, t > 0,

(2.16) lim
L→∞

lim sup
ε→0

ε logPε
(

sup
s∈[0,t]

|Xε
s | > L

)
= −∞,

(2.17) lim
δ→0

lim sup
ε→0

sup
s∈[0,t]

ε logPε
(

sup
s≤s1≤s+δ

∣∣Xε
s1 −Xε

s

∣∣ > ℓ
)
= −∞,

(2.18) lim
L→∞

lim sup
ε→0

ε logPε
(
µε
(
[0, t], {y ∈ R

l : |y| > L}
)
> ℓ
)
= −∞,

(2.19) lim
δ→0

lim sup
ε→0

sup
s∈[0,t]

ε logPε
(

sup
s1∈[s,s+δ]

d(µεs1 , µ
ε
s) > ℓ

)
= −∞.

Remark 2.4. In general, (2.16)-(2.19) only imply the sequentially exponential
tightness (i.e., any subsequence is exponentially tight). However, because (Xε, µε) is
continuous in ε in distribution, it is true that (Xε, µε) is exponentially tight although
in our proof, only the sequentially exponential tightness is needed.

From equation (2.2), by the variation of parameter formula, we obtain

(2.20) pεt = xε1e
−Aε(t) +

1

ε2

∫ t

0

e−Aε(t,s)F εs (X
ε
s , Y

ε
s )ds,

where for any 0 ≤ s ≤ t, ε > 0, Aε(t, s) :=
1

ε2
∫ t
s λ

ε
r(X

ε
r , Y

ε
r )dr, Aε(t) = Aε(t, 0).

Proof. [Proof of (2.16)] It is readily seen that
(2.21)

ln(1 + |Xε
t |2)− ln(1 + |xε0|2) =

∫ t

0

2(Xε
s )

⊤pεs
1 + |Xε

s |2
ds

=

∫ t

0

2(Xε
s )

⊤xε1
1 + |Xε

s |2
e−Aε(s)ds+

1

ε2

∫ t

0

2

1 + |Xε
s |2

(Xε
s )

⊤
(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
.

Denote vεt = 2
1+|Xε

t |
2 (X

ε
t )

⊤
( ∫ t

0
e−Aε(t,r)F εr (X

ε
r , Y

ε
r )dr

)
. We have from (2.21) and

Lemma 2.1 that
(2.22)
ln(1 + |Xε

t |2)− ln(1 + |xε0|2)

=

∫ t

0

2(Xε
s )

⊤xε1
1 + |Xε

s |2
e−Aε(s)ds+

∫ t

0

2(Xε
s )

⊤F εs (X
ε
s , Y

ε
s )

(1 + |Xε
s |2)λεs(Xε

s , Y
ε
s )
ds

+

∫ t

0

2

λεs(X
ε
s , Y

ε
s )

(
pεs

1 + |Xε
s |2

− 2(Xε
s [X

ε
s ]

⊤)pεs
(1 + |Xε

s |2)2
)⊤(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
ds

− vεt
λεt (X

ε
t , Y

ε
t )

−
∫ t

0

vεs
[λεs(X

ε
s , Y

ε
s )]

dλε(Xε
s , Y

ε
s )

+

∫ t

0

vεs
[λεs(X

ε
s , Y

ε
s )]

3
〈dλεs(Xε

s , Y
ε
s ), dλ

ε
s(X

ε
s , Y

ε
s )〉s.



14 NGUYEN, YIN

Combining (2.22) and the Itô Lemma, one has

ln(1 + |Xε
t |2)− ln(1 + |xε0|2)

=

∫ t

0

2(Xε
s )

⊤xε1
1 + |Xε

s |2
e−Aε(s)ds+

∫ t

0

2(Xε
s )

⊤F εs (X
ε
s , Y

ε
s )

(1 + |Xε
s |2)λεs(Xε

s , Y
ε
s )
ds

+

∫ t

0

2

λεs(X
ε
s , Y

ε
s )

(
pεs

1 + |Xε
s |2

− 2(Xε
s [X

ε
s ]

⊤)pεs
(1 + |Xε

s |2)2
)⊤ ( ∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
ds

− vεt
λεt (X

ε
t , Y

ε
t )

−
∫ t

0

vεs
[λεs(X

ε
s , Y

ε
s )]

2
∇sλ

ε
s(X

ε
s , Y

ε
s )ds

−
∫ t

0

vεs
[λεs(X

ε
s , Y

ε
s )]

2
[∇Xλ

ε
s(X

ε
s , Y

ε
s )]

⊤pεsds

− 1

ε

∫ t

0

vεs
[λεs(X

ε
s , Y

ε
s )]

2
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤bεs(X
ε
s , Y

ε
s )ds

− 1

2ε

∫ t

0

vεs
[λεs(X

ε
s , Y

ε
s )]

2
‖∇Y Y λ

ε
s(X

ε
s , Y

ε
s )‖

2
Σε

s(X
ε
s ,Y

ε
s ) ds

+
1

ε

∫ t

0

vεs
[λεs(X

ε
s , Y

ε
s )]

3
‖∇Y λ

ε
s(X

ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε
s ) ds

− 1√
ε

∫ t

0

vεs
[λεs(X

ε
s , Y

ε
s )]

2
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs

=: Kε
t +

1√
ε

∫ t

0

−vεs
[λεs(X

ε
s , Y

ε
s )]

2
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs,

where Kε
t is the remaining in the right-hand side. Therefore, we get

(2.23)
1

ε

[
ln(1 + |Xε

t |2)− ln(1 + |xε0|2)
]
=

1

ε
K̂ε
t +Dε

t ,

where

K̂ε
t :=

[
Kε
t +

1

ε2

∫ t

0

|vεs |2
[λεs(X

ε
s , Y

ε
s )]

4
‖∇Y λ

ε
s(X

ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε
s ) ds

]
, and

Dε
t =

1

ε
√
ε

∫ t

0

−vεs
[λεs(X

ε
s , Y

ε
s )]

2
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs

− 1

ε3

∫ t

0

|vεs |2
[λεs(X

ε
s , Y

ε
s )]

4
‖∇Y λ

ε
s(X

ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε
s ) ds.

Let ζεL = inf {t ≥ 0 : |Xε
t | > L}. It is obvious that ζεL is an Fε-stopping time. Since

Dε
t is a local martingale, we have from (2.23) that

(2.24) E
ε exp

{
1

ε

[
ln(1 + |Xε

t∧ζε
L
|2)− ln(1 + |xε0|2)− K̂ε

t∧ζε
L

]}
≤ 1.

On the other hand, from (2.20) and Assumption 2.1, and noting
∫ t
0
e−Aε(t,s)ds ≤

∫ t
0
e−

κ0(t−s)

ε2 ds ≤ ε2

κ0
, one obtains that there is a finite constant Ct,L depending only

on t, L satisfies that for all sufficiently small ε,

(2.25) |pεt∧ζεL | ≤ Ct,L + xε1e
−Aε(t).

Similarly, we have for ε small

(2.26) |vεt∧ζε
L
| ≤ Ct,L

∫ t
0 e

−
κ0(t−s)

ε2 ds ≤ ε2Ct,L.
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Combining (2.25), (2.26), the definition of K̂ε
t , Assumption 2.1, and lim supε→0 εx

ε
1 <

∞ yields that as ε being small

(2.27) |K̂ε
t∧ζε

L
| ≤ C + εCt,L,

where C is some finite constant depending neither ε nor t, L. Therefore, from (2.24)
and (2.27), we have that for all ε sufficiently small,

Eε exp
{

1
ε

[
ln(1 + |Xε

t∧ζε
L
|2)− ln(1 + |xε0|2)− C − εCt,L

]}
≤ 1.

Thus, one has for any t, L,N > 0,
(2.28)

Pε
(

sup
s∈[0,t]

|Xε
s | > L

)
= P

ε(|Xε
t∧ζε

L
| > L)

≤ P
ε(|xε0| > N) + E

ε exp

{
1

ε

[
ln(1 + |Xε

t∧ζε
L
|2)− ln(1 + L2)

]}
1{|xε

0|≤N}

≤ P
ε(|xε0| > N) + exp

{
1

ε

[
ln(1 +N2) + C + εCt,L − ln(1 + L2)

]}
.

From (2.28) and the logarithm equivalence principle [10, Lemma 1.2.15], we obtain
that for all t, N > 0,

(2.29) lim
L→∞

lim sup
ε→0

ε logP
(

sup
s∈[0,t]

|Xε
s | > L

)
≤ lim sup

ε→0
ε logPε

(
|xε0| > N

)
.

Because {xε0}ε>0 is exponentially tight and (2.29), we obtain (2.16) for any t > 0.

Proof. [Proof of (2.17)] By applying Lemma 2.1 to (2.20), one has
(2.30)

Xε
t= xε0 +

∫ t

0

pεsds = xε0 +

∫ t

0

xε1e
−Aε(s)ds+

1

ε2

∫ t

0

∫ s

0

e−Aε(s,r)F εs (X
ε
r , Y

ε
r )drds

= xε0 + xε1

∫ t

0

e−Aε(r)dr +

∫ t

0

F εr (X
ε
r , Y

ε
r )

λεr(X
ε
r , Y

ε
r )
dr

− 1

λεt (X
ε
t , Y

ε
t )

∫ t

0

e−Aε(t,r)F εr (X
ε
r , Y

ε
r )dr

−
∫ t

0

1

[λεs(X
ε
s , Y

ε
s )]

2

(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
dλεs(X

ε
s , Y

ε
s )

+

∫ t

0

1

[λεs(X
ε
s , Y

ε
s )]

3

(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
〈dλεs(Xε

s , Y
ε
s ), dλ

ε
s(X

ε
s , Y

ε
s )〉s.
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We obtain from (2.30) and Itô’s formula that

(2.31)

Xε
t = xε0 + xε1

∫ t

0

e−Aε(r)dr +

∫ t

0

F εr (X
ε
r , Y

ε
r )

λεr(X
ε
r , Y

ε
r )
dr

− 1

λεt (X
ε
t , Y

ε
t )

∫ t

0

e−Aε(t,r)F εr (X
ε
r , Y

ε
r )dr

−
∫ t

0

∇sλ
ε
s(X

ε
s , Y

ε
s )

[λεs(X
ε
s , Y

ε
s )]

2

(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
ds

−
∫ t

0

[∇Xλ
ε
s(X

ε
s , Y

ε
s )]

⊤pεs
[λεs(X

ε
s , Y

ε
s )]

2

(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
ds

− 1

ε

∫ t

0

[∇Y λ
ε
s(X

ε
s , Y

ε
s )]

⊤bεs(X
ε
s , Y

ε
s )

[λεs(X
ε
s , Y

ε
s )]

2

(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
ds

− 1

2ε

∫ t

0

‖∇Y Y λ
ε
s(X

ε
s , Y

ε
s )‖

2
Σε

s(X
ε
s ,Y

ε
s )

[λεs(X
ε
s , Y

ε
s )]

2

(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
ds

+
1

ε

∫ t

0

‖∇Y λ
ε
s(X

ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε
s )

[λεs(X
ε
s , Y

ε
s )]

3

(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
ds

− 1√
ε

∫ t

0

( ∫ s
0 e

−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)

[λεs(X
ε
s , Y

ε
s )]

2

(
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs

)

=: K
ε

t −D
ε

t ,

where

D
ε

t :=
1√
ε

∫ t

0

(∫ s
0 e

−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)

[λεs(X
ε
s , Y

ε
s )]

2

(
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs

)
,

and K
ε

t is the remaining in the right-hand side of (2.31). By the regularity of λεt , it
is not difficult to see that
(2.32)∣∣∣ 1

λεt (X
ε
t , Y

ε
t )

∫ t

0

e−Aε(t,r)F εr (X
ε
r , Y

ε
r )ds−

1

λεs(X
ε
s , Y

ε
s )

∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )ds

∣∣∣

≤
∣∣∣ e−Aε(t)

λεt (X
ε
t , Y

ε
t )

− e−Aε(s)

λεs(X
ε
s , Y

ε
s )

∣∣∣
∫ s

0

eAε(r)|F εr (Xε
r , Y

ε
r )|dr

+
e−Aε(t)

λεt (X
ε
t , Y

ε
t )

∫ t

s

eAε(r)|F εr (Xε
r , Y

ε
r )|dr

≤ C
|t− s|
ε2

sup
r∈[s,t]

|λεr(Xε
r , Y

ε
r )|
∫ s

0

e−
κ0
ε2

(s−r)|F εr (Xε
r , Y

ε
r )|dr

+ C

∫ t

s

e−
κ0
ε2

(t−r)|F εr (Xε
r , Y

ε
r )|dr.

We obtain from definition of K
ε

t , an application of (2.32), and recalling definition of
ζεL that there is a finite constant CL depending only on L such that for all small ε,

(2.33) sup
s∈[0,T ]

sup
t∈[s,s+δ]

|Kε

t∧ζεL
−K

ε

s∧ζεL
| ≤ CT,Lδ, for all T > 0, 0 < δ < 1.

Now, let T > 0, ℓ > 0 be fixed, and L > 0 be fixed but otherwise arbitrary. We
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have that for any small δ satisfying δ < 1, CT,Lδ < ℓ/2 and small ε

(2.34)

Pε
(

sup
t∈[s,s+δ]

|Xε
t −Xε

s | > ℓ
)

≤ P
ε(ζεL ≤ T + 1) + P

ε
(

sup
t∈[s,s+δ]

|Xε
t∧ζε

L
−Xε

s∧ζε
L
| > ℓ

)

≤ P
ε(ζεL ≤ T + 1) + P

ε
(

sup
t∈[s,s+δ]

|Dε

t∧ζεL
−D

ε

s∧ζεL
| > ℓ

2

)

≤ P
ε( sup
t∈[0,T+1]

|Xε
t | > L) +

d∑

k=1

P
ε
(

sup
t∈[s,s+δ]

|Dε,k

t∧ζεL
−D

ε,k

s∧ζεL
| > ℓ

2

)
,

where D
ε,k

t is the k-th component of D
ε

t , k = 1, . . . , d. It is readily seen that {Dε,k

t∧ζεL
−

D
ε,k

s∧ζε
L
}t≥s is a martingale with the quadratic variations bounded by

CL
ε

∫ t∧ζεL

s∧ζεL

∫ s

0

e−
2κ0(s−r)

ε2 drds ≤ εCLδ.

By the exponential martingale inequality [29, Theorem 7.4, p. 44], we have

(2.35)

Pε
(

sup
t∈[s,s+δ]

|Dε,k

t∧ζε
L
−D

ε,k

s∧ζε
L
| > ℓ

2

)

≤ P
ε
(

sup
t∈[s,s+δ]

|Dε,k

t∧ζεL
−D

ε,k

s∧ζεL
| > ℓ

4
+

ℓ

4εCLδ
εCLδ

)

≤ exp
{
− ℓ2

8εCLδ

}
.

Combining (2.34) and (2.35), the logarithm equivalence principle [10, Lemma 1.2.15]
yields that

(2.36)

lim
δ→0

lim sup
ε→0

sup
s∈[0,T ]

ε logPε
(

sup
t∈[s,s+δ]

|Xε
t −Xε

s | > ℓ
)

≤ lim sup
ε→0

ε logPε( sup
t∈[0,T+1]

|Xε
t | > L), ∀L > 0.

Letting L→ ∞ and using (2.16), we obtain (2.17).

Proof. [Proof of (2.18) and (2.19)] Once we established the exponential tightness
of {Xε}ε>0, the proof of (2.18) and (2.19) for {µε}ε>0, which is in fact the occupation
measure of a diffusion, is similar to that of the first-order coupled systems. As a
consequence, such proofs can be found in [34, p. 3134].

2.2.3. Characterization of Rate Function. Let β(s) ∈ C(R+,R
d) be a step

function satisfying that there are 0 = t0 < t1 < · · · < tm <∞ and βi ∈ R, i = 1, . . . ,m
such that

(2.37) β(s) =
∑m

i=1 βi1[ti−1,ti)(s).

For ϕs ∈ C(R+,R
d) and β(s) of the form (2.37), we define

(2.38)
∫ t
0
β(s)dϕs :=

∑m
i=1 β

⊤
i (ϕt∧ti − ϕt∧ti−1).
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Now, for each step function β(s), each f(t, x, y) real-valued C1,2,2(R+ × Rd × Rl)-
function with compact support in y locally uniformly in (t, x), and each (ϕ, µ) ∈
C(R+,R

d)× C↑(R+,M(Rl)), let

(2.39)

Φβ,ft (ϕ, µ) :=

∫ t

0

β(s)dϕs −
∫ t

0

∫

Rl

[β(s)]⊤Fs(ϕs, y)

λs(ϕs, y)
µ(ds, dy)

−
∫ t

0

∫

Rl

[∇yf(s, ϕs, y)]
⊤bs(ϕs, y)µ(ds, dy)

− 1

2

∫ t

0

∫

Rl

tr
(
Σs(ϕs, y)∇yyf(s, ϕs, y)

)
µ(ds, dy)

− 1

2

∫ t

0

∫

Rl

‖∇yf(s, ϕs, y)‖2Σs(ϕs,y)
µ(ds, dy).

Moreover, let τ(ϕ, µ) be a continuous function of (ϕ, µ) ∈ C(R+,R
d)×C↑(R+,M(Rl))

that is also a stopping time relative to the flow G = (Gt, t ∈ R+) on C(R+,R
d) ×

C↑(R+,M(Rl)) of the σ-algebra Gt generated by the mappings ϕ → ϕs and µ → µs
for s ≤ t. Let us also assume that ϕt∧τ(ϕ,µ) is a bounded function of (ϕ, µ). It is seen

that under Assumption 2.2, Φβ,ft (ϕ, µ) is continuous in (ϕ, µ).
Next, define

(2.40) I
∗(ϕ, µ) = sup

β,f,t,τ
Φβ,ft∧τ(ϕ,µ)(ϕ, µ),

where the supremum is taken over β(s), f(s, x, y), and τ(ϕ, µ) satisfying the require-
ments as the above and over t ≥ 0. It is seen that I∗ is lower semi-continuous in
(ϕ, µ).

Now, let Î be a large deviations limit rate functions or (large deviations) LD limit
points of {(Xε, µε)}ε>0 (i.e., a rate function of some subsequence of {(Xε, µε)}ε>0

that obeys the LDP) such that Î(ϕ, µ) = ∞ unless ϕ0 = x̂, where x̂ is a preselected
element of Rd. This restriction will be removed in Section 2.2.6. We will identify the
rate functions. For any such a large deviation limit point Î, we aim to prove Î = I∗

by showing the upper bound Î ≥ I∗ and the lower bound Î ≤ I∗; see detail in Section
2.2.4 and Section 2.2.5. Moreover, it will be seen that I∗(ϕ, µ) = I(ϕ, µ) provided
I∗(ϕ, µ) < ∞, ϕ0 = x̂, and I0(x̂) = 0. Throughout this section, the assumptions in
Theorem 2.1 are always assumed to be satisfied.

Remark 2.5. Note that I∗ is defined similarly but not identical as that in the
case of first-order coupled systems in [34] although the solution of (1.1) shares the
same rate function with the corresponding first-order system. Compared with [34],
I∗ is defined by taking the supremum over smaller space when we did not allow β to
be a function of X . This modification has an important role in the proof of the lower
bound of the LD limits, i.e., the inequality I∗ ≤ Î. Otherwise, it would be impossible
to control terms containing the derivative pε of Xε, specially the integral involving pε

and the diffusion part of the fast process (see (2.45)). Meanwhile, it would have led

to a difficulty in proving the upper bound of the LD limits, i.e., the inequality I∗ ≥ Î.
However, it will be shown that we still can get the upper bound, as in the first-order
system (in [34]); see the details in Section 2.2.5.

2.2.4. Lower Bound of Large Deviations Limits. This section is devote to
proving I∗ ≤ Î. We have the following theorem.
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Theorem 2.4. Let Î be a LD limit point of {(Xε, µε)}ε>0. For any t > 0, β, f, τ
are as given above,

(2.41) sup(ϕ,µ)∈C(R+,Rd)×C↑(R+,M(Rl))

(
Φβ,ft∧τ(ϕ,µ)(ϕ, µ)− Î(ϕ, µ)

)
= 0.

Then I∗(ϕ, µ) ≤ Î(ϕ, µ) for all (ϕ, µ) ∈ C(R+,R
d)× C↑(R+,M(Rl)).

Proof. For β(s) being of the form (2.37) and f(s, x, y) being a function with
compact support in y locally uniformly in (t, x), denote
(2.42)

Γε,βt (ϕ, µ)

= −
∫ t

0

∫

Rl

[β(s)]⊤xε1e
−Aϕ,y

ε (s)µ(ds, dy)

+

∫ t

0

∫

Rl

β(t)

λεt (ϕt, y)
e−A

ϕ,y
ε (t,s)F εs (ϕs, y)µ(ds, dy)

+

∫ t

0

∫

Rl

[β(s)]⊤
(∫ s

0

e−A
ϕ,y
ε (s,r)F εr (ϕr , y)dr

) ∇sλ
ε
s(ϕs, y)

[λεs(ϕs, y)]
2
µ(ds, dy)

+

∫ t

0

∫

Rl

[β(s)]⊤
(∫ s

0

e−A
ϕ,y
ε (s,r)F εr (ϕr , y)dr

)
[∇Xλ

ε
s(ϕs, y)]

⊤ϕ̇s
[λεs(ϕs, y)]

2
µ(ds, dy)

+
1

ε

∫ t

0

∫

Rl

[β(s)]⊤
(∫ s

0

e−A
ϕ,y
ε (s,r)F εr (ϕr , y)dr

)
[∇Y λ

ε
s(ϕs, y)]

⊤bεs(ϕs, y)

[λεs(ϕs, y)]
2

µ(ds, dy)

+
1

2ε

∫ t

0

∫

Rl

[β(s)]⊤
(∫ s

0

e−A
ϕ,y
ε (s,r)F εr (ϕr , y)dr

) ‖∇Y Y λ
ε
s(ϕs, y)‖2Σε

s(ϕs,y)

[λεs(ϕs, y)]
2

µ(ds, dy)

− 1

ε

∫ t

0

∫

Rl

[β(s)]⊤
(∫ s

0

e−A
ϕ,y
ε (s,r)F εr (ϕr , y)dr

) ‖∇Y λ
ε
s(ϕs, y)‖2Σε

s(ϕs,y)

[λεs(ϕs, y)]
3

µ(ds, dy)

− 1

2ε2

∫ t

0

∫

Rl

∣∣∣[β(s)]⊤
(∫ s

0
e−A

ϕ,y
ε (s,r)F εr (ϕr , y)dr

) ∣∣∣
2

[λεs(ϕs, y)]
4

‖∇Y λ
ε
s(ϕs, y)‖2Σε

s(ϕs,y)
µ(ds, dy),

+
1

ε

∫ t

0

∫

Rl

[β(s)]⊤
(∫ s

0
e−A

ϕ,y
ε (s,r)F εr (ϕr, y)dr

)

[λεs(ϕs, y)]
2

‖∇Y λ
ε
s(ϕs, y)‖

2
Σε

s(ϕs,y)
µ(ds, dy),

where Aϕ,yε (t, s) := 1
ε2

∫ t
s

∫
Rl λ

ε
r(ϕr , y)µ(dr, dy), and

(2.43)
Ψε,β,ft (ϕ, µ) := f(t, ϕt, Y

ε
t )− f(0, ϕ0, y

ε
0)−

∫ t

0

∫

Rl

∇sf(s, ϕs, y)µ(ds, dy)

−
∫ t

0

∫

Rl

[∇xf(s, ϕs, y)]
⊤ϕ̇sµ(ds, dy),

and

(2.44)

Φε,β,ft (ϕ, µ) :=

∫ t

0

β(s)dϕs −
∫ t

0

∫

Rl

[β(s)]⊤F εs (ϕs, y)

λεs(ϕs, y)
µ(ds, dy)

−
∫ t

0

∫

Rl

[∇yf(s, ϕs, y)]
⊤bεs(ϕs, y)µ(ds, dy)

−1

2

∫ t

0

∫

Rl

tr
(
Σεs(ϕs, y)∇yyf(s, ϕs, y)

)
µ(ds, dy)

−1

2

∫ t

0

∫

Rl

‖∇yf(s, ϕs, y)‖2Σε
s(ϕs,y)

µ(ds, dy).
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We have from (2.20) and Lemma 2.1 that
(2.45)∫ t

0

[β(s)]⊤dXε
s =

∫ t

0

[β(s)]⊤pεsds

=

∫ t

0

[β(s)]⊤xε1e
−Aε(s)ds+

1

ε2

∫ t

0

[β(s)]⊤
∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

=

∫ t

0

[β(s)]⊤xε1e
−Aε(s)ds+

∫ t

0

[β(s)]⊤F εs (X
ε
s , Y

ε
s )

λεs(X
ε
s , Y

ε
s )

ds

− β(t)

λεt (X
ε
t , Y

ε
t )

∫ t

0

e−Aε(t,s)F εs (X
ε
s , Y

ε
s )ds

−
∫ t

0

[β(s)]⊤
(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

) ∇sλ
ε
s(X

ε
s , Y

ε
s )

[λεs(X
ε
s , Y

ε
s )]

2
ds

−
∫ t

0

[β(s)]⊤
(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
[∇Xλ

ε
s(X

ε
s , Y

ε
s )]

⊤pεs
[λεs(X

ε
s , Y

ε
s )]

2
ds

−1

ε

∫ t

0

[β(s)]⊤
(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

)
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤bεs(X
ε
s , Y

ε
s )

[λεs(X
ε
s , Y

ε
s )]

2
ds

− 1

2ε

∫ t

0

[β(s)]⊤
(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

) ‖∇Y Y λ
ε
s(X

ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε
s )

[λεs(X
ε
s , Y

ε
s )]

2
ds

+
1

ε

∫ t

0

[β(s)]⊤
(∫ s

0

e−Aε(s,r)F εr (X
ε
r , Y

ε
r )dr

) ‖∇Y λ
ε
s(X

ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε
s )

[λεs(X
ε
s , Y

ε
s )]

3
ds

− 1√
ε

∫ t

0

[β(s)]⊤
(∫ s

0
e−Aε(s,r)F εr (X

ε
r , Y

ε
r )dr

)

[λεs(X
ε
s , Y

ε
s )]

2
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs.

Moreover, Itô’s formula yields that
(2.46)

f(t,Xε
t , Y

ε
t )− f(0, xε0, y

ε
0) =

∫ t

0

∇sf(s,X
ε
s , Y

ε
s )ds+

∫ t

0

[∇Xf(s,X
ε
s , Y

ε
s )]

⊤pεsds

+
1

ε

∫ t

0

[∇Y f(s,X
ε
s , Y

ε
s )]

⊤bεs(X
ε
s , Y

ε
s )ds+

1√
ε
[∇Y f(s,X

ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs

+
1

2ε

∫ t

0

tr
(
Σεs(X

ε
s , Y

ε
s )∇Y Y f(s,X

ε
s , Y

ε
s )
)
ds.

Combining (2.46), (2.45), the definition of Φε,β,ft , Γε,βt , Ψε,β,ft in (2.44), (2.42),
and (2.43), we obtain that
(2.47)

1

ε

[
Φε,β,ft (Xε, µε) + Γε,βt (Xε, µε)

]
+Ψε,β,ft (Xε, µε)

=
1√
ε

∫ t

0

[∇Y f(s,X
ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs

− 1

2ε

∫ t

0

‖∇Y f(s,X
ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε)ds

− 1

ε
√
ε

∫ t

0

[β(s)]⊤
(∫ s

0
e−Aε(s,r)F εr (X

ε
r , Y

ε
r )dr

)

[λεs(X
ε
s , Y

ε
s )]

2
[∇Y λ

ε
s(X

ε
s , Y

ε
s )]

⊤σεs(X
ε
s , Y

ε
s )dWs

− 1

2ε3

∫ t

0

∣∣[β(s)]⊤
(∫ s

0
e−Aε(s,r)F εr (X

ε
r , Y

ε
r )dr

) ∣∣2

[λεs(X
ε
s , Y

ε
s )]

4
‖∇Y λ

ε
s(X

ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε
s ) ds

+
1

ε2

∫ t

0

[β(s)]⊤
(∫ s

0 e
−Aε(s,r)F εr (X

ε
r , Y

ε
r )dr

)

[λεs(X
ε
s , Y

ε
s )]

2
‖∇Y λ

ε
s(X

ε
s , Y

ε
s )‖2Σε

s(X
ε
s ,Y

ε
s ) ds.

Since the right-hand side of (2.47) is a local martingale and τ(Xε, µε) is a stopping
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time with respect to Fε due to the measurability of Xε
t , µ

ε
t with respect to Fε

t , we
have that
(2.48)

Eε exp
{

1
ε

[
Φε,β,ft∧τ(Xε,µε)(X

ε, µε)+Γε,βt∧τ(Xε,µε)(X
ε, µε)+εΨε,β,ft∧τ(Xε,µε)(X

ε, µε)
]}

= 1.

Lemma 2.2. ([11, Theorem 2.1.10]) Assume that the net {νε}ε>0 is exponen-

tially tight and let Î represent an LD limit point of {νε}ε>0. Let Φε be a net of
uniformly bounded real-valued functions on S such that

∫
S
exp(1εΦε(z))νε(dz) = 1. If

Φε converges to Φ uniformly on compact sets (as ε → 0) with the function Φ being

continuous, then supz∈S
(Φ(z)− Î(z)) = 0.

As in the proof of (2.16) and (2.17) in Section 2.2.2, it is not difficult to obtain
from Assumption 2.1 and the fact ϕt∧τ(ϕ,µ) is bounded function of (ϕ, µ) that there
is finite a constant C, which is independent of ε such that for all small enough ε
|Γε,βt∧τ(ϕ,µ)(ϕ, µ)| ≤ Cε uniformly over (ϕ, µ). Similarly, there is a constant C such

that for ε sufficiently small, |Ψε,β,ft∧τ(ϕ,µ)(ϕ, µ)| < C uniformly over (ϕ, µ). As a result,

one has

(2.49) Γε,βt∧τ(ϕ,µ)(ϕ, µ) + εΨε,β,ft∧τ(ϕ,µ)(ϕ, µ) → 0

as ε→ 0 uniformly in compact sets. Finally, by assumption (2.8), we have

(2.50) Φε,β,ft∧τ(ϕ,µ)(ϕ, µ) → Φβ,ft∧τ(ϕ,µ)(ϕ, µ)

as ε → 0 uniformly in compact sets. Combining (2.48) and (2.49) and then applying

Lemma 2.2 yields (2.41). Then, it follows immediately that I∗(ϕ, µ) ≤ Î(ϕ, µ) for all
(ϕ, µ) ∈ C(R+,R

d)× C↑(R+,M(Rl)). The proof is complete.

2.2.5. Upper Bound of Large Deviations Limits. Let Î be a large deviations
limit point of {(Xε, µε)}ε>0 such that Î(ϕ, µ) = ∞ unless ϕ0 = x̂, a preselected

element of Rd. In this section, we aim to prove that Î(ϕ, µ) ≤ I∗(ϕ, µ), for any
(ϕ, µ) ∈ C(R+,R

d) × C↑(R+,M(Rl)) such that ϕ0 = x̂. The completion of the proof
will be given later in Section 2.2.6. With the results established in Sections 2.2.2
and 2.2.4, this part can be done similarly to that of [34, Sections 6-8] because the
rate function has a similar variational representation. Although our I∗ is defined as
the supremum in a smaller space than in [34], we can still prove Î ≤ I∗ by a similar
argument as in [34]. We will only provide a sketch of the main ideas and highlight
the differences, whereas detailed arguments will be referred to [34, Sections 6-8].

It is obvious that it suffices to consider the case I∗(ϕ, µ) < ∞. Therefore, we
should investigate the regularity of (ϕ, µ) provided I∗(ϕ, µ) < ∞ first. It is shown in
[34, Section 6] that if (ϕ, µ) ∈ C(R+,R

d)×C↑(R+,R
l), I∗(ϕ, µ) <∞ then µ(ds, dy) =

ms(y)dyds and ϕs is absolutely continuous (w.r.t Lebesgue measure on R+), ms(y) is
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a probability density function in Rl. In this case, I∗ has the following representation
(2.51)

I
∗(ϕ, µ)

=

∫ ∞

0

(
sup
β∈Rd

(
β⊤ϕ̇s − β⊤

∫

Rl

Fs(ϕs, y)ms(y)

λs(ϕs, y)
dy

)

+ sup
h∈C1

0(R
l)

∫

Rl

[∇yh(y)]
⊤

(
1

2
div(Σs(ϕs, y)ms(y))− bs(ϕs, y)ms(y)

)
dy

− 1

2

∫

Rl

‖∇yh(y)‖2Σs(ϕs,y)
ms(y)dy

)
ds

=

∫ ∞

0

(
sup
β∈Rd

(
β⊤ϕ̇s − β⊤

∫

Rl

Fs(ϕs, y)ms(y)

λs(ϕs, y)
dy

)

+ sup
g∈L

1,2
0 (Rl,Rl,Σs(ϕs,y),ms(y)dy)

∫

Rl

(
[g(y)]⊤Σs(ϕs, y)

(∇yms(y)

2ms(y)
− Js,ms(·),ϕs

(y)

)

− 1

2
‖g(y)‖Σs(ϕs,y)

)
ms(y)

)
dy

)
ds.

In the above, L
1,2
0 (Rl,Rl,Σs(ϕs, y),ms(y)dy) represents the closure of the set of

the gradients of functions from C∞
0 (Rl) in L2(Rl,Rl,Σs(ϕs, y),ms(y)dy), in which

L2(Rl,Rl,Σs(ϕs, y),ms(y)dy) is the Hilbert space of Rd-valued functions (of y) in
Rl endowed with the norm ‖f‖2Σ,m=

∫
Rl‖f(y)‖2Σs(ϕs,y)

ms(y)dy, and for each (t, x) ∈
R+ × Rd, each function m(·) being a probability density function in Rl, Jt,m(·),u is a
function of y defined by

Jt,m(·),u(y) = ΠΣt(x,·),m(·)(Σt(x, y)
−1(bt(x, y)− divxΣt(x, y)/2)),

where ΠΣt(x,·),m(·) maps a function φ(y) ∈ L2
loc(R

l,Rl,Σt(x, y),m(y)dy), which is the
space consisting of functions whose products with arbitrary C∞

0 -functions belong to
L2(Rl,Rl,Σt(x, y),m(y)dy), into

ΠΣt(x,·),m(·)φ(y) ∈ L
1,2
0 (Rl,Rl,Σt(x, y),m(y)dy)

and satisfies that, for all h ∈ C∞
0 (Rl),

∫

Rl

[∇h(y)]⊤Σt(x, y)ΠΣt(x,·),m(·)φ(y)m(y)dy =

∫

Rl

[∇h(y)]⊤Σt(x, y)φ(y)m(y)dy.

If φ(y) ∈ L2(Rl,Rl,Σt(x, y),m(y)dy), then ΠΣt(x,·),m(·)φ(y) is nothing than the or-

thogonal projection of φ onto L
1,2
0 (Rl,Rl,Σt(x, y),m(y)dy). Moreover, it is readily

seen from (2.51) that

(2.52) if I∗(ϕ, µ) <∞ then ϕ̇s =

∫

Rl

Fs(ϕs, y)

λs(ϕs, y)
ms(y)dy.

In addition, the supremum in the last term in (2.51) is attained at

(2.53) ĝ(y) =
∇yms(y)

2ms(y)
− Js,ms(·),ϕs

(y)
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so that

(2.54) I
∗(ϕ, µ) =

1

2

∫ ∞

0

∫

Rl

∥∥∥∇yms(y)

2ms(y)
− Js,ms(·),ϕs

(y)
∥∥∥
2

Σs(ϕs,y)
ms(y)dyds.

This combining with (2.14) also show the equality of I and Î∗.
Now, we proceed to the proof, which contains two main steps.

Step (i): Identify the LD limits at sufficiently regular (dense) points.

Theorem 2.5. Assume that the assumptions of Theorem 2.1 hold. Let Î be a LD
limit point of {(Xε,µε)}ε>0 such that Î(ϕ, µ) = ∞ unless ϕ0 = x̂. Let (ϕ̂, µ̂) ∈ G be
such that ϕ̂0 = x̂ and µ̂(ds, dy) = m̂s(dy)ds, where m̂s(y) has the form

(2.55) m̂s(y) =Ms

(
m̃s(y)η̂

2
( |y|
r

)
+ e−a|y|

(
1− η̂2

( |y|
r

)))
,

where m̃s(y) is a probability density in y locally bounded away from zero and belonging
to C1(Rl) as a function of y with |∇ms(y)| being locally bounded in (s, y), and η̂(y) is
a nonincreasing [0, 1]-valued C1

0(R+)-function, with y ∈ R+, that equals 1 for y ∈ [0, 1]
and equals 0 for y ≥ 2; r > 0 and a > 0, andMs is the normalizing constant. For given
m̃s(y), η̂(y), and r, there exists a0 > 0 such that for all a > a0, Î(ϕ, µ) = I∗(ϕ̂, µ̂).

Technical lemmas. Before proving Theorem 2.5, we first need some technical lem-
mas. For β, h as in Section 2.2.3, we denote
(2.56)

τβ,hN (ϕ, µ)

= inf

{
t ∈ R+ :

∫ t

0

∫

Rl

‖∇yhs(ϕs, y)‖Σs(ϕs,y)µ(ds, dy) + sup
s∈[0,t]

|ϕs|+ t ≥ N

}
.

Performing integrating by parts in (2.39) yields that
(2.57)

Φβ,ht (ϕ, µ) :=

∫ t

0

(
β(s)ϕ̇s − [β(s)]⊤

∫

Rl

Fs(ϕs, y)ms(y)

λs(ϕs, y)

+

∫

Rl

[∇yh(s, ϕs, y)]
⊤

(
1

2
div(Σs(ϕs, y)ms(y))− bs(ϕs, y)ms(y)

)
dy

− 1

2

∫

Rl

‖∇yh(s, ϕs, y)‖2Σs(ϕs,y)
ms(y)dy

)
ds.

Let

(2.58) θβ,hN (ϕ, µ) := Φβ,h
τβ,h
N

(ϕ, µ),

and for each δ > 0, Kδ := {(ϕ, µ) : Î(ϕ, µ) ≤ δ}. The following are some technical
lemmas needed for the proof of Theorem 2.5.

Lemma 2.3. ([34, Lemma 7.1]) (Approximation of τ, θ) Under the following
conditions for the boundedness, and the convergence (uniformly in Kδ) of {βis}∞i=1,
{his(x, y)}∞i=1 to βs, hs(x, y):

(2.59)
∫ N
0 |βs|2ds+

∫ N
0 ess sup(ϕ,µ∈Kδ)

∫
Rl |∇hs(ϕs, y)|ms(y)dyds <∞,

(2.60)

limi→∞

∫ N

0

|βs − βis|2ds

+ lim
i→∞

sup
(ϕ,µ)∈Kδ

∫ N

0

∫

Rl

|∇hs(ϕs, y)−∇his(ϕs, y)|2ms(y)dyds = 0,
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we have the convergence

τβ
i,hi

N (ϕ, µ)
i→∞−→ τβ,hN (ϕ, µ) and θβ

i,hi

N (ϕ, µ)
i→∞−→ θβ,hN (ϕ, µ) uniformly in Kδ.

Lemma 2.4. ([34, Lemma 7.2]) (Localizing supremum) If hs(x, y) is measurable
and belongs to class W

1,1
loc in y, vanishes when y is outside of some open ball in Rl

locally uniformly in (s, x), and such that the derivative Dhs(x, y) is continuous in

(x, y) for almost all s ∈ R+, and that
∫ N
0 supx∈Rd:|x|≤L

∫
Rl |Dhs(x, y)|qdyds < ∞ for

all q > 1 and L > 0. Then, sup(ϕ,µ)∈Kδ
(θβ,hN (ϕ, µ)− Î(ϕ, µ)) = 0, and the supremum

is attained.
Lemma 2.5. ([34, Lemma 7.3]) (Regularities and growth-rate properties

of a certain (dense) class) Assume ms(y) is an R+-valued measurable function
and is a probability density in y for almost every s and is bounded away from zero on
bounded sets of (s, y) and is in C1(Rl), with |∇ms(y)| being locally bounded in (s, y),
and ms(y) = Mse

−a|y| (a > 0) for all |y| large enough locally uniformly in s. There
exists an a0 such that if a > a0, there is a ws(x, ·) such that Js,ms(·),u(·) = ∇ws(x, ·)
and satisfies certain regularity and growth-rate properties [34, (7.13)-(7.15)].

Proof. [Proof of Theorem 2.5] Let a0 and then ŵs(x, y) be as in Lemma 2.5 for

m̂s(y). Let β̂ = 0 and ĥs(x, y) =
1
2 ln m̂s(y) − ŵs(x, y). Then ∇ĥs(x, y) = ∇m̂s(y)

2m̂s(y)
−

∇ŵs(x, y). We want to apply Lemma 2.4 for β̂, ĥs(x, y). However, ĥs(x, y) might not
have a compact support in y. Hence, in order to use Lemma 2.4, we need to restrict
it to a compact set. Therefore, we shall truncate ĥs(x, y). Let η(t) represent an R+-
valued nonincreasing C∞

0 (R+)-function such that η(t) = 1 for 0 ≤ t ≤ 1 and η(t) = 0

for t ≥ 2. Let ŵis(x, y) = ŵs(x, y)η(
|y|
i ) and ĥis(x, y) =

1
2η
(

|y|
i

)
ln m̂s(y) − ŵis(x, y).

As in [34, Lemma 7.4], we can prove that ĥs(x, y) satisfies the conditions in Lemma
2.4.

Next, given N ∈ N, let τ0,ĥ
i

N and θ0,ĥ
i

N be defined by the respective equations

(2.56) and (2.58) with β = 0 and h = ĥis(x, y). Since the functions β = 0 and

ĥis(x, y) satisfy the hypothesis in Lemma 2.4, there exists (ϕN,i, µN,i) ∈ G such

that θ0,ĥ
i

N (ϕN,i, µN,i) = Î(ϕN,i, µN,i) and (ϕN,i, µN,i) ∈ K2N+2 for all i. In par-
ticular, µN,i(ds, dy) = mN,i

s (y)dyds, where mN,i
s (·) belongs to P(Rl), and the set

{(ϕN,i, µN,i), i = 1, 2, . . . } is relatively compact. Since Î(ϕN,i, µN,i) ≥ I∗(ϕN,i, µN,i)

and θ0,ĥ
i

N (ϕN,i, µN,i) ≤ I∗(ϕN,i, µN,i), one has

(2.61) θ0,ĥ
i

N (ϕN,i, µN,i) = I
∗(ϕN,i, µN,i) = Î(ϕN,i, µN,i).

Extract a convergent subsequence (still denoting the index by i) µN,i → µN in
C↑(R+,M(Rl)) and ϕN,i → ϕN in C(R+,R

d).

Because of (2.61) and (2.57), I∗(ϕN,i, µN,i) obtains supremum at ĥis(x, y) when

s ≤ τ0,ĥN (ϕN,i, µN,i). Therefore, by using (2.53), we can characterize mN,i
s (noted that

µN,i(ds, dy) = mN,i
s (y)dyds) and then can show that the convergence of (2.59) and

(2.60) in the hypothesis of Lemma 2.3 are satisfied (see [34, (7.46)-(7.48)]). Thus,

by Lemma 2.3, we have that τ0,ĥ
i

N (ϕN,i, µN,i) → τ0,ĥN (ϕN , µN ) as i → ∞, and that

mN,i
s (y) → m̂s(y) in L1([0, τ0,ĥN (ϕN , µN )] × Rl). Therefore, µN (ds, dy) = m̂s(y)dyds

for almost all s ≤ τ0,ĥN (ϕN , µN ).

Using ϕ̇N,is =
∫
Rl

Fs(ϕ
N,i
s ,y)mN,i

s (y)

λs(ϕ
N,i
s ,y)

dy due to (2.52) and applying [34, Lemma 6.7],

we obtain from the convergence of ϕN,i → ϕN in C(R+,R
d) and mN,i

s (y) → m̂s(y)
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in L1([0, τ0,ĥN (ϕN , µN )] × Rl) as i → ∞ that ϕ̇Ns =
∫
Rl

Fs(ϕ
N
s ,y)m̂s(y)

λs(ϕN
s ,y)

dy a.e. for s ≤
τ0,ĥN (ϕN , µN ). By the uniqueness, ϕNs = ϕ̂s for s ≤ τ0,ĥN (ϕN , µN ). As a byproduct,

ϕ̇N,is → ˙̂ϕs as i→ ∞ a.e. on [0, τ0,ĥN (ϕN , µN )].

We have proved that τ0,ĥN (ϕN , µN ) = τ0,ĥN (ϕ̂, µ̂) and ϕNs = ϕ̂s, µ
N
s = µ̂s for

s ≤ τ0,ĥN (ϕ̂, µ̂) so that θ0,ĥN (ϕN , µN ) = θ0,ĥN (ϕ̂, µ̂). We can show that θ0,ĥN (ϕN , µN ) =

limi→∞ θ0,ĥ
i

N (ϕN,i, µN,i). Therefore, taking the limit in (2.61), we have I∗(ϕN , µN ) ≥
θ0,ĥN (ϕN , µN ) ≥ Î(ϕN , µN ), which together with the fact I∗ ≤ Î obtained in previous

section implies that I∗(ϕN , µN ) = θ0,ĥN (ϕN , µN ) = Î(ϕN , µN). Therefore, we have for
all N > 0,

(2.62) I
∗(ϕ̂, µ̂) ≥ θ0,ĥN (ϕ̂, µ̂) = θ0,ĥN (ϕN , µN ) = Î(ϕN , µN ).

From (2.62), the fact ϕNs = ϕ̂s, µ
N = µ̂ until τ0,ĥN (ϕ̂, µ̂) and the fact Î is lower semi-

continuous and inf-compact, we obtain I∗(ϕ̂, µ̂) ≥ Î(ϕ̂, µ̂). As a result, we can conclude

that I∗(ϕ̂, µ̂) = Î(ϕ̂, µ̂) for all (ϕ̂, µ̂) satisfying the requirements in Theorem 2.5.

Step (ii): Approximating the LD limits in arbitrary points by regular

points. Let Î be a LD limit point of {(Xε, µε)}ε>0 and be such that Î(ϕ, µ) = ∞ un-
less ϕ0 = x̂. In this step, it is proven (see [34, Theorem 8.1]) that if I∗(ϕ, µ) <∞, then
there exists a sequence (ϕ(k), µ(k)), whose elements have the properties as in Theorem
2.5 such that (ϕ(k), µ(k)) → (ϕ, µ) and I∗(ϕ(k), µ(k)) → I∗(ϕ, µ) as k → ∞. Therefore,

one has Î(ϕ, µ) ≤ I∗(ϕ, µ) = limk→∞ I∗(ϕ(k), µ(k)) = limk→∞ Î(ϕ(k), µ(k)) ≥ Î(ϕ, µ).
Hence, we have obtained desired properties in this Section.

2.2.6. Completion of the Proof of Theorem 2.1. We will complete the proof
of Theorem 2.1 by removing the restriction that Î(ϕ, µ) = ∞ unless ϕ0 = x̂ in Section
2.2.3, where x̂ is a preselected element such that I0(x̂) = 0. This can be done similarly
as in [34, Section 9] which will be omitted here.

3. Fast-Slow Second-Order Systems with General Fast Random Pro-
cesses. In this section, we treat (1.2), in which the fast-varying random process ξεt
is under a more general setup without specified structure. We need the following
assumptions. By a glance, the conditions may seem to be abstract. Nevertheless,
Remark 3.1 illustrates that these assumptions are mild, verifiable, and natural.

Assumption 3.1. The functions F εt (x, y) and λεt (x, y) are Lipschitz continuous
in x locally uniformly in t and globally uniformly in y, and λεt (x, y) is bounded below
(uniformly) by a positive constant κ0. Either F

ε
t (x, y) and λ

ε
t (x, y) have linear growth

in (t, x) globally in y, i.e., there is a universal constant C̃ such that

(3.1) |F εt (x, y)| + |λεt (x, y)| ≤ C̃(1 + |t|+ |x|),

or F εt (x, y) and λεt (x, y) have linear growth in x locally in y, i.e., the constant C̃ in
(3.1) is uniformly in bounded sets of y and ξεt is such that for any T > 0

(3.2) lim
L→∞

lim sup
ε→0

ε logP
(

sup
0≤t≤T

|ξεt | > L
)
= −∞.
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Definition 3.1. A family of stochastic processes {Xε}ε>0 is said to satisfy the
local LDP in C([0, 1],Rd) with rate function J, if for any ϕ ∈ C([0, 1],Rd),

lim
δ→0

lim sup
ε→0

ε logP (Xε ∈ B(ϕ, δ))

= lim
δ→0

lim inf
ε→0

ε logP (Xε ∈ B(ϕ, δ)) = −J(ϕ),

where B(ϕ, δ) is the ball centered at ϕ with radius δ in C([0, 1],Rd). J is called local
rate function.

Assumption 3.2. The family of processes {Zε}ε>0 given by

(3.3) Żεt =
F ε

t (Zε
t ,ξ

ε
t )

λε
t (Z

ε
t ,ξ

ε
t )
, Zε0 = xε0,

satisfies the local LDP with a rate function J.
Remark 3.1. Seemingly abstract, Assumption 3.2 is not restrictive. In fact, it

is the LDP for the first-order systems, which is relatively well-understood now. For
example, the condition is verified when ξεt is a (fast-varying) diffusion process

dξεt =
1

ε
bεt (X

ε
t , ξ

ε
t )dt+

1√
ε
σεt (X

ε
t , ξ

ε
t )dWt,

where Wt is a standard Brownian motion; see [28, 42, 43]. It is also verified when
ξεt is a (fast-varying) Markovian switching process with generator Q(t)/ε and Q(t)
being a time-inhomogeneous and irreducible generator of a Markov chain, or ξεt is a
(fast-varying) jump process having jumps at rate O(ε−1); see [2]. Furthermore, the
condition is verified when ξεt has no specific representation but satisfies exponential
ergodicity [18]. Note also that condition (3.2) in Assumption 3.1 is essentially an ex-
ponential tightness of the fast processes, which is readily verified for ξεt being diffusion
processes or Markovian switching processes. When we deal with general fast processes
without any specific formulation, the assumption on tightness (3.2) and Assumption
3.2 are very natural. Without the tightness and ergodicity of the fast processes, it is
unlikely one can obtain the averaging and large deviations principles for a fast-slow
system under the setting of general fast processes.

Remark 3.2. We did not assume any regularity and growth-rate conditions of
the coefficients of the slow component when dealing with (1.1). However, for general
fast random process, it seems to be impossible to use the same assumptions because
we do not require any structure for the fast process. As a result, the assumptions in
this section are stronger than that of Section 2. In particular, we need the Lipschitz
continuity and growth-rate conditions of F εt (x, y). It is worth noting that we used
two totally different approaches for the cases of fast diffusions and general fast-varying
processes. If the fast process is a diffusion, thanks to the nice structure of martingales,
we can identify the rate function after estimating the exponential moment. Therefore,
in the first case, after obtaining the exponential tightness and then relatively LD
compactness (see Definition 2.3), our remaining work is to identify the rate functions.
In the general case, we use a different approach that relies on the property that
exponential tightness and the local LDP imply the full LDP. In this situation, we need
to connect directly the solutions of the second-order and the first-order equations.

We are now in a position to present the main theorem. The result is stated next
and proof is given in the next section.

Theorem 3.1. Assume that Assumptions 3.1 and 3.2 hold, that the family
{xε0}ε>0 is exponentially tight, and that lim supε→0 ε|xε1| < ∞ a.s. Then, the fam-
ily {Xε}ε>0 of (1.2) obeys the LDP in C(R+,R

d) with rate function J.
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3.1. Proof of Theorem 3.1. The proof of this theorem is based on the fact
that the exponential tightness and local LDP implies the full LDP. The following
result is well-known in large deviations theory; see, e.g., [11, 10, 27].

Proposition 3.1. The exponential tightness and the local LDP for a family
{Xε}ε>0 in C([0, 1],Rd) with local rate function J imply the full LDP in C([0, 1],Rd)
for this family with rate function J.

In what follows, we prove the LDP of {Xε}ε>0 in C([0, 1],Rd). It will be seen
that it can be extended to the space C([0, T ],Rd) endowed with the sup-norm topology
for any T > 0. As a consequence, the LDP still holds in C([0,∞),Rd), the space of
continuous function on [0,∞) endowed with the local supremum topology. (This fact
follows from the Dawson-Gärtner theorem; see [10, Theorem 4.6.1], which states that
it suffices to check the LDPs in C([0, T ],Rd) for any T in the uniform metric.) We will
still use C to represent a generic positive constant that is independent of ε. The value
C may change at different appearances; we will specify which parameters it depends
on if it is necessary.

Exponential tightness. We aim to prove (2.16) and (2.17). We have

(3.4) Xε
t = xε0 +

∫ t

0

xε1e
−Aξ

ε(s)ds+
1

ε2

∫ t

0

∫ s

0

e−A
ξ
ε(s,r)F εs (X

ε
r , ξ

ε
r)dr,

where for any 0 ≤ s ≤ t ≤ 1, ε > 0, Aξε(t, s) :=
1

ε2
∫ t
s λ

ε
r(X

ε
r , ξ

ε
r)dr, A

ξ
ε(t) = Aξε(t, 0).

So, we can obtain from some direct calculations and Assumption 3.1 that

(3.5) |Xε
t | ≤ |xε0|+ Cε2|xε1|+ C

∫ t

0

sup
r∈[0,s]

|F εr (Xε
r , ξ

ε
r)|ds,

and by noting further that
∫ t
s e

−
κ0r

ε2 dr ≤ Cε2(1 − e−
t−s

ε2 ) ≤ Cε
√
|t− s|, we get

(3.6) |Xε
t −Xε

s | ≤ Cε|xε1|
√
|t− s|+ C|t− s| sup

r∈[s,t]

|F εr (Xε
r , ξ

ε
r)|.

If (3.1) in Assumption 3.1 holds, (2.16) follows immediately from (3.5) and Gronwall’s
inequality on noting that lim supε→0 ε|xε1| < ∞ a.s., {xε0}ε>0 is exponentially tight;
and then (2.17) follows from (2.16) and (3.6).

Otherwise, assume that (3.2) holds. Let C̃N be constant in (3.1) uniformly in |y| <
N . We get from (3.5) that supt∈[0,1] |Xε

t | ≤ C(C̃N +N)eC̃N provided supt∈[0,1] |ξεt | <
N , |xε0| < N . Therefore, for any N > 0, for L > C(C̃N +N)eC̃N one has

P
ε( sup
t∈[0,1]

|Xt| > L) ≤ P
ε(|xε0| > N) + P

ε( sup
t∈[0,1]

|ξεt | > N).

Letting L → ∞ and N → ∞ and using the logarithm equivalence principle [10,
Lemma 1.2.15] and (3.2) in Assumption 3.1, we get (2.16). Thus, we also obtain
(2.17).

Local LDP. It is noted that we do not assume any structure of ξεt . As a result, we
could not use the integration by parts (Lemma 2.1) to connect the first-order and the
second-order systems. Therefore, we will establish a relationship in a local sense.

For each continuous function ϕ, we introduce the auxiliary processes Xε,ϕ
t , the

solution of the following equation

(3.7) ε2Ẍε,ϕ
t = F εt (ϕt, ξ

ε
t )− λεt (ϕt, ξ

ε
t )Ẋ

ε,ϕ
t , Xε

0 = xε0, Ẋ
ε
0 = xε1,
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and Zε,ϕt , the solution of

(3.8) Żε,ϕt =
F εt (ϕt, ξ

ε
t )

λεt (ϕt, ξ
ε
t )
, Zε,ϕ0 = xε0.

We have from (3.7) and the variation of parameters formula that

(3.9) Xε,ϕ
t = xε0 +

∫ t

0

xε1e
−Aξ

ε,ϕ(s)ds+
1

ε2

∫ t

0

∫ s

0

e−A
ξ
ε,ϕ(s,r)F εs (ϕr, ξ

ε
r)dr,

where for any 0 ≤ s ≤ t ≤ 1, ε > 0, Aξε,ϕ(t, s) :=
1

ε2
∫ t
s λ

ε
r(ϕr, ξ

ε
r)dr, and Aξε,ϕ(t) =

Aξε,ϕ(t, 0). From the fact that Aξε(s, r), A
ξ
ε,ϕ(s, r) ≥ κ0(s−r)

ε2 , and the property of λ, we
obtain that

(3.10)

∣∣∣e−A
ξ
ε(s,r) − e−A

ξ
ε,ϕ(s,r)

∣∣∣ ≤Ce
−κ0(s−r)

ε2 · 1

ε2

∫ s

r

|Xε
r − ϕr| dr

≤Ce
−κ0(s−r)

ε2 · s− r

ε2
· sup
r∈[0,s]

|Xε
r − ϕr|.

A change of variable leads to

(3.11)

∫ s

0

exp

{−κ0(s− r)

ε2

}
· s− r

ε2
ds = ε2

∫ s

ε2

0

e−κ0rrdr ≤ Cε2.

Therefore, we obtain from the Lipschitz property of the coefficients and (3.10) that

(3.12)

∫ s

0

∣∣∣e−A
ξ
ε(s,r)F εr (X

ε
r , ξ

ε
r)− e−A

ξ
ε,ϕ(s,r)F εr (ϕr, ξ

ε
r)
∣∣∣ dr

≤
∫ s

0

e−A
ξ
ε(s,r) |F εr (Xε

r , ξ
ε
r)− F εr (ϕr, ξ

ε
r)| dr

+

∫ s

0

|F εr (ϕr, ξεr)|
∣∣∣e−A

ξ
ε(s,r) − e−A

ξ
ε,ϕ(s,r)

∣∣∣ dr

≤ Cε2 sup
0≤r≤s

|Xε
r − ϕr|+ Cε2 sup

r∈[0,s]

|F εr (ϕr, ξεr)| sup
0≤r≤s

|Xε
r − ϕr| .

Combining (3.4), (3.9), and applying (3.12) and noting that lim supε→0 ε|xε1| < ∞
leads to
(3.13)

sup
s∈[0,t]

|Xε
s −Xε,ϕ

s | ≤ Cε sup
s∈[0,t]

|Xε
s − ϕs|+ C sup

r∈[0,t]

|F εr (ϕr, ξεr)|
∫ t

0

sup
r∈[0,s]

|Xε
r − ϕr|ds.

From (3.7) and (3.8), we obtain that

(3.14)
|Xε,ϕ

t − Zε,ϕt | =
∣∣∣
∫ t

0

ε2Ẍε,ϕ
r

λεr(ϕr, ξ
ε
r)
dr
∣∣∣ ≤ Cε2 sup

s∈[0,t]

|Ẋε,ϕ
t |

≤ Cε2(|xε1|+ sup
r∈[0,t]

|F εr (ϕr, ξεr)|).

One also gets from (3.3), (3.8), and the Lipschitz continuity of F ε, λε that
(3.15)

sup
s∈[0,t]

|Zε,ϕs − Zεs | ≤ C
(

sup
r∈[0,t]

|F εr (ϕr, ξεr)|+ sup
r∈[0,t]

|λεr(ϕr, ξεr)|
)∫ t

0

sup
r∈[0,s]

|Zεr − ϕr|ds.
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Now, if (3.1) in Assumption 3.1 holds, combining (3.13), (3.14), and (3.15), we get

sups∈[0,t] |Xε
s − ϕs| ≤ Cε sup

s∈[0,t]

|Xε
s − ϕs|+ Cε(1 + sup

r∈[0,1]

|ϕr|)

+C(1 + sup
r∈[0,1]

|ϕr|) sup
r∈[0,1]

|Zεr − ϕr |

+C(1 + sup
r∈[0,1]

|ϕr|)
∫ t

0

sup
r∈[0,s]

|Xε
r − ϕr |ds,

and

sups∈[0,t] |Zεs − ϕs| ≤ Cε(1 + sup
r∈[0,1]

|ϕr |) + C(1 + sup
r∈[0,1]

|ϕr|) sup
r∈[0,1]

|Zεr − ϕr|

+C(1 + sup
r∈[0,1]

|ϕr |)
∫ t

0

sup
r∈[0,s]

|Xε
r − ϕr|ds.

Thus, for small ε, one has

(3.16)

sup
t∈[0,1]

|Xε
t − ϕt| ≤ C1,ϕε+ Cϕ sup

t∈[0,1]

|Zεt − ϕt|, and

sup
t∈[0,1]

|Zεt − ϕt| ≤ C2,ϕε+ Cϕ sup
t∈[0,1]

|Xε
t − ϕt|,

for some constants C1,ϕ, C2,ϕ depending only on supr∈[0,1] |ϕr | and independent of ε.
So, for any δ > 0 we have from (3.16) that

P
ε( sup
t∈[0,1]

|Xε
t − ϕt| < δ) ≤ P

ε( sup
t∈[0,1]

|Zεt − ϕt| < 2δC2,ϕ), ∀ε < δ/C2,ϕ, and

P
ε( sup
t∈[0,1]

|Xε
t − ϕt| < δ) ≥ P

ε
(

sup
t∈[0,1]

|Zεt − ϕt| <
δ

2C1,ϕ

)
, ∀ε < δ/C1,ϕ.

Therefore, the local LDP of {Xε}ε>0 follows directly from the local LDP of {Zε}ε>0.

If (3.1) in Assumption 3.1 only holds locally and (3.2) holds, then in the event
supt∈[0,1] |ξεt | < N , we still have (3.16) with C1,ϕ, C2,ϕ replaced by C1,ϕ,N , C2,ϕ,N

depending only on ϕ,N . So, for any δ > 0 one also has that ∀ε < δ/C1,ϕ,N∧δ/C2,ϕ,N ,

P
ε( sup
t∈[0,1]

|Xε
t − ϕt| < δ)

≤ P
ε( sup
t∈[0,1]

|Zεt − ϕt| < 2δC2,ϕ,N) + P
ε( sup
t∈[0,1]

|ξεt | > N),

and

P
ε( sup
t∈[0,1]

|Xε
t − ϕt| < δ)

≥ P
ε
(

sup
t∈[0,1]

|Zεt − ϕt| <
δ

2C1,ϕ,N

)
− P

ε( sup
t∈[0,1]

|ξεt | > N).

By letting ε → 0, N → ∞, and δ → 0 and using the logarithm equivalence principle
[10, Lemma 1.2.15] and (3.2) in Assumption 3.1, we obtain the local LDP for {Xε}ε>0.
Therefore, the proof of Theorem 3.1 is complete.

4. Examples. In this section, we consider some examples drawn from physics
to illustrate our formulation and results in these cases.
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4.1. Stochastic Acceleration with Small-mass Particles. Stochastic accel-
eration considers motions of a net of particles in a net of random force fields, which is
described by the Newton’s law as ẍε(t) = F̃ε(t, ω, xε(t), ẋε(t), χε(t)), where F̃ε denotes
the random force fields. Such models were considered by Kesten and Papanicolaou
in [22, 23] and references therein. Note that small and large are relative terms. Here
we focus on small-mass particles, by which we mean that the Reynolds number is
small (see e.g., [35] for a definition) so that inertial effects are negligible compared
to the damping force, or the ratio ‘inertial effects/damping force’ is parameterized

by ε ≪ 1. Therefore, random force field F̃ε can be written as F̃ε = Fε − λε

ε , and

the motion is described by ẍε(t) = Fε(t, xε(t), χε(t)) − λε(t,xε(t),χε(t))
ε ẋε(t). Now, by

scaling Xε
t := xε(t/ε), and ξ

ε
t := χε(t/ε), the system can be rewritten as (1.2), i.e.,

(4.1) ε2Ẍε
t = F εt (X

ε
t , ξ

ε
t )− λεt (X

ε
t , ξ

ε
t )Ẋ

ε
t , Xε

0 = x0 ∈ R
d, Ẋε

0 = x1 ∈ R
d.

The above illustrates how the fast-varying process (or fast-varying random environ-
ment) ξεt = χε(t/ε) comes in. To further demonstrate, we consider some common
models of the fast-varying processes for random environment ξεt and illustrate our
results.

4.1.1. Fast-Varying Diffusion. Consider the case fast-varying process ξεt is
modeled as a (fast) diffusion, which is common in modeling stochastic process in
physical phenomena, i.e.,

(4.2) ξ̇εt =
1

ε
bεt (X

ε
t , ξ

ε
t ) +

1√
ε
σεt (X

ε
t , ξ

ε
t )Ẇt, ξε0 = ξ0 ∈ R

l.

In this situation, stochastic acceleration (4.1)-(4.2) become coupled second-order
SDEs (1.1). The LDP for stochastic acceleration in this case is established in Theo-
rem 2.1 with rate function given in variational form (2.10) or representation (2.14).
It is important to note that we establish LDP for stochastic acceleration assuming
neither Lipschitz continuity nor linear growth-rate of F ε; see Assumptions 2.1, 2.2,
and Remarks 2.1.

Theorem 4.1. Under Assumptions 2.1, 2.2, and (2.8), stochastic acceleration
under fast-varying diffusion environment (4.1)-(4.2) obeys LDP with the rate function
given in (2.10).

4.1.2. Fast-Varying Jumps. Consider the case ξt is a jump process taking
finite values in M = {1, . . . , |M|}, where |M| denotes the cardinality of the set
M. Similar to [2], the evolution of the jump fast component is constructed through a
jump intensity function c(x, y) = cy(x) : R

d×M → [0,∞) and a transition probability
function r(x, y, y′) = ryy′(x) : R

d ×M×M → [0, 1], both of which are coupled with
Xε. To be self-contained, we describe the construction of jump processes ξεt as follows.

Assume that for all (x, y) ∈ Rd × M,
∑

y′∈M ryy′(x) = 1, ryy(x) = 0. Let ζ =

sup(x,y)∈Rd×M cy(x) + 1, Eyy′(x) = [0, cy(x)ryy′ (x)] for all (x, y, y
′) ∈ Rd ×M×M,

y 6= y′, and T =: {(y, y′) ∈ M ×M : ryy′(x) > 0 for some x ∈ Rd}. For (i, j) ∈ T,
let N ij be a Poisson random measure on [0; ζ] × [0, T ]× R+ with intensity measure
µζ ⊗ µT ⊗ µ∞, where µT and µ∞ denote the Lebesgue measures on [0, T ] and R+,
respectively, such that for t ∈ [0, T ], N ij(A × [0, t] × B) − tµζ(A)µ∞(B) is a Ft-
martingale for all A ∈ B[0, ζ] and B ∈ B(R+) with µ∞(B) < 1. Then, we define

Nε−1

ij (dr × dt) = N ij(dr × dt × [0, ε−1]), which is a Poisson random measure on

[0, ζ]× [0, T ] with intensity ε−1µζ ⊗ µT . The processes (Nε−1

ij )(i,j)∈T are taken to be
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mutually independent. We will assume that for 0 ≤ s ≤ t ≤ T , {Nε−1

ij (A× (s; t]×B) :
A ∈ B[0, ζ], B ∈ B(R+), (i, j) ∈ T} is independent of Fs. Now, we consider the
following stochastic acceleration with fast-varying jumps

(4.3)





ε2Ẍε
t = F ε(Xε

t , Y
ε
t )− λε(Xε

t , Y
ε
t )Ẋ

ε
t ,

dY εt =
∑

(i,j)∈T

∫
r∈[0,ζ](j − i)1{Y ε(t−)=i}1Eij(Xε

t )
(r)Nε−1

ij (dr × dt),

Xε
0 = x0 ∈ Rd, Ẋε

0 = x1 ∈ Rd, Y ε0 = y0 ∈ M.

According to [2], we make following assumption for the jump process.
Assumption 4.1. The function c is a bounded and there exists a finite constant

C > 0 such that for all y, y′ ∈ M and x1, x2 ∈ Rd,

|cy(x1)− cy(x2)|+ |ryy′(x1)− ryy′(x2)| ≤ C|x1 − x2|.

Moreover,

inf
x∈Rd

min
y,z∈M

|M|∑

n=1

rnyz(x) > 0, inf
x∈Rd

min
y∈M

cy(x) > 0, inf
x∈Rd

min
(y,y′)∈T

ryy′(x) > 0.

The rate function for the LDP of (4.3) is constructed as follows. For ψ =
(ψ(j))j∈M, with ψj : [0, ζ] → R+ being a measurable map for every j, define

Φψij(x) =

{ ∫
Eij(x)

ψj(z)µζd(z), if i 6= j,

−
∑
y:y 6=j Φ

ψ
jy(x), if i = j,

and R = {v = (vij)(i,j)∈T, vij : [0, 1] × [0, ζ] → R+ is measurable for all (i, j) ∈ T}.
For ϕ ∈ C([0, 1],Rd), let V(ϕ) be the collection of all

(
u = (ui), v = (vih), π = (πi)

)
∈ M([0, 1] : Rd)|M| ×R×M([0, 1] : P(M)),

where M([0, 1] : P(M)), M([0, 1] : Rd) denote the space of measurable maps from
[0, 1] to P(M) and from [0, 1] to Rd, respectively, with P(M) being the space of
probability measures on M equipped with the topology of weak convergence], such

that
∫ 1

0 ‖ui(s)‖2πi(s)ds <∞ for each i ∈ M, and

ϕt = x0 +
∑

j∈M

∫ t

0

F (ϕs, j)

λ(ϕs, j)
πj(s)ds;

∑

j∈M

πj(s)Φ
vj·(s,·)
ji (ϕs) = 0, a.e. s ∈ [0, 1], ∀i ∈ M.

Combining Theorem 3.1 and [2] yields the following result.
Theorem 4.2. Assume Assumptions 3.1 and 4.1 hold. Then the family of pro-

cesses {Xε}ε>0 in stochastic acceleration system with fast-varying jump (4.3) satisfies
the LDP with the rate function I given by

(4.4)

I(ϕ) = inf
(u,v,π)∈V(ϕ)

{
∑

i∈M

1

2

∫ 1

0

‖ui(s)‖2πi(s)ds

+
∑

(i,j)∈T

∫

[0,ζ]×[0,1]

ℓ(vij(s, z))πi(s)µζ(dz)ds

}
,

where ℓ(x) = x lnx− x+ 1.
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4.2. Liénard equation with relaxation oscillations. The Liénard equations,
named after physicist Alfred-Marie Liénard, have been extensively studied in the
literature of ordinary differential equations. During the development of radio and
vacuum tubes, the Liénard equations were used to model oscillating circuits. These
equations were also used in mechanical systems in physics and engineering. In the
exploration of radio and vacuum tube technologies, much attention was devoted to
the study of Liénard equations and such equations with relaxation oscillations. A
notable important equation is the following

(4.5)
1

ν2
ẍν(t) = g(xν(t))− κẋν(t),

where ν ≫ 1 is a large number, κ is a positive constant, and g is a function. Equation
(4.5) has been studied in detail in [30] with the motivation from the familiar van der
Pol equation [37]. Its variations can also be found in [38] and references therein.

Now, we consider the case that the environment is perturbed by random factors
so that the function g and coefficient κ depend on a random process, which varies very
fast. Such a fast-slow setting is natural as multiscale systems arise in many problems
in various fields. For example, many processes (e.g., signals, cellular processes) are
inherently multiscale in nature with reactions occurring at varying speeds. As a
result, we consider the following Liénard equation with relaxation oscillations in a
fast-varying random environment

(4.6)
1

ν2
ẍν(t) = g(xν(t), ξν(t))− κ(ξν(t))ẋν(t),

where ξν(t) is a (fast-varying) random process, which interacts with xν(t). In par-
ticular, the time-scale separation comes from applications; see for example, [30] and
references therein. Using our results, we can establish LDP for the family of solutions
{xν(·)}ν≫1 of (4.6). (i) If ξν(t) has the form of a (fast) diffusion, LDP of {xν(·)}ν≫1

is established by Theorem 2.1 without any assumption about Lipschitz continuity of
g. (ii) If ξν(t) is a (fast) jump process, LDP of {xν(·)}ν≫1 can be obtained as in Sec-
tion 4.1.2 (Theorem 4.2). For brevity, we only state the results without the verbatim
derivations.

Theorem 4.3.

(i) Assume dξν(t) = νbνt (x
ν(t), ξν(t)) +

√
νσνt (x

ν
t , ξ

ν(t))dW (t), ξν0 = ξ0 ∈ Rl.
Under Assumptions 2.1, 2.2, and (2.8), {xν(·)}ν≫1 satisfies LDP with the
rate function

(4.7)

IX(ϕ) = I0(ϕ0) +

∫ ∞

0

sup
β∈Rd

[
β⊤ϕ̇s − sup

m∈P(Rl)

(
β⊤

∫

Rl

g(ϕs, y)

κ(y)
m(y)dy

+ sup
h∈C1

0(R
l)

∫

Rl

(
[∇h(y)]⊤

(1
2
divy

(
Σs(ϕs, y)m(y)

)
− bs(ϕs, y)m(y)

)

− 1

2
‖∇h(y)‖2Σs(ϕs,y)

m(y)
)
dy
)]
ds,

if ϕ is absolutely continuous; otherwise, IX(ϕ) = ∞.
(ii) Assume dξν(t) =

∑
(i,j)∈T

∫
r∈[0,ζ](j − i)1{ξν(t−)=i}1Eij(xν

t )
(r)Nν

ij(dr × dt),

where Nν
ij is a Poisson random measure with (fast) intensity rate O(ν) con-

structed precisely as in Section 4.1.2. Under Assumptions 3.1 and 4.1, The
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{xν}ν≫1 satisfies the LDP with the rate function I given by

(4.8)

I(ϕ) = inf
(u,v,π)∈V(ϕ)

{ ∑

i∈M

1

2

∫ 1

0

‖ui(s)‖2πi(s)ds

+
∑

(i,j)∈T

∫

[0,ζ]×[0,1]

ℓ(vij(s, z))πi(s)µζ(dz)ds
}
,

where ℓ(x) = x lnx − x + 1, and V(ϕ) be the collection of all
(
u = (ui), v =

(vih), π = (πi)
)
such that

∫ 1

0
‖ui(s)‖2πi(s)ds < ∞ for each i ∈ M, and

ϕt = x0 +
∑

j∈M

∫ t
0
g(ϕs,j)
κ(j) πj(s)ds, and

∑
j∈M πj(s)Φ

vj·(s,·)
ji (ϕs) = 0, a.e. s ∈

[0, 1], ∀i ∈ M.
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