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Abstract

Stabilization of a class of time-varying parabolic equations with uncertain input data us-
ing Receding Horizon Control (RHC) is investigated. The diffusion coefficient and the initial
function are prescribed as random fields. We consider both cases, uniform and log-normal
distributions of the diffusion coefficient. The controls are chosen to be finite dimensional and
enter into the system as a linear combination of finitely many indicator functions (actuators)
supported in open subsets of the spatial domain. Under suitable regularity assumptions, we
study the expected (averaged) stabilizability of the RHC-controlled system with respect to
the number of actuators. An upper bound is also obtained for the failure probability of RHC
in relation to the choice of the number of actuators and parameters in the equation.

Keywords— receding horizon control, random evolution PDEs, uncertainty, averaged stabilizability,
random fields, nonautonomous parabolic equations

Mathematics Subject Classification 93C20 · 35R60 · 93D20 · 93E03

1 Introduction

Mathematical models arising in real-world applications are typically affected by uncertainties that can
lead to significant differences between the real systems response and the corresponding deterministic
mathematical models. Therefore it is of great interest for applications to include uncertainty in these
models and quantify its effect on the predicted quantities of interest. Such uncertainty may reflect our
ignorance or inability to properly characterize all input parameters of the mathematical model, and it may
also describe an intrinsic variability of the physical system, see e.g., [5, 6]. Probability theory provides
a natural framework to describe and deal with such uncertainties which are characterized as random
variables or more generally random fields.

We investigate stabilization of the controlled systems governed by the following linear parabolic
equation utilizing the receding horizon control (RHC) strategy

∂ty −∇ · (ν(ω)∇y) + a(t)y +∇ · (b(t)y) =
∑N
i=1 ui(t)1Oi (t, x) ∈ (0,∞)×D,

y = 0 (t, x) ∈ (0,∞)× ∂D,
y(0) = y0(ω) x ∈ D,
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where D ⊂ Rn is a bounded rectangular with boundary ∂D and the functions 1Oi , represent the actuators.
They are modelled as the characteristic functions related to open sets Oi ⊂ D for i = 1, . . . , N . The
reaction term a(t) = a(t, x) and the convection term b(t) = b(t, x) are, respectively, real- and Rn-valued
functions of (t, x) ∈ (0,∞)×D. Further, the diffusion coefficient (the convective heat transfer coefficient)
ν(ω) = ν(ω, x) and the initial function y0(ω) = y0(x, ω) are very difficult to measure in practice and,
hence, they are affected by a certain amount of uncertainty with x ∈ D and ω ∈ Ω. These uncertainty
inputs are described as random fields defined on the complete probability space (Ω,F ,P), where Ω denotes
the set of outcomes, F is the associated σ-algebra of events, and P : F → [0, 1] is a probability measure.

In this work, we aim at deriving a stabilizing control that is robust with respect to the perturbations
of the dynamics caused by all possible realizations of the random parameter ω. For this purpose we
consider the notion of averaged stability and verify that the expected value of the distance of the state to
the steady state with respect to the random parameter converges asymptotically to zero. More concretely,
the control objective is to find a (spatially) finite-dimensional control u ∈ L2((0,∞);U) for which

E
[
‖y(t)‖2L2(D;R)

]
:=

∫
Ω

‖y(t, ω)‖2L2(D;R)dP(ω)→ 0 as t→∞

holds. Here we will consider the both cases deterministic U = RN and stochastic U = L2
P(Ω;R) ⊗ RN

controls. The stabilizing control u is computed by a receding horizon framework. In this framework, the
current control action is obtained by minimizing a performance index defined on a finite time interval,
ranging from the current time t0 to some future time t0 + T , with T ∈ (0,∞] and t0 ∈ (0,∞). Here we
set

JT (u; t0, y0) :=
1

2

∫ t0+T

t0

E [`(t, y(t))] dt+
β

2

∫ t0+T

t0

‖u(t)‖2Udt, (1)

for β ≥ 0, ` : R≥0 ×H1
0 (D;R) → R≥0 satisfying `(t, y) ≥ α`‖y‖2L2(D;R) with α` > 0, and `(t, 0) = 0. As

an example one may consider `(t, y) = α`‖y‖2L2(D;R). Then, the stabilization of the control system (CS)
can be formulated as the following infinite-horizon optimal control problem

min{J∞(u; 0, y0) | (y,u) satisfies (CS),u ∈ L2((0,∞);U)}. OP∞(y0)

As we will show, the receding horizon approach delivers a suboptimal approximation to the solution of
OP∞(y0). This approximation is constructed by concatenation of a sequence of finite horizon optimal
controls defined on overlapping intervals covering (0,∞). These finite horizon problems have the following
form. For a given initial time t̄0, initial functions ȳ0 = ȳ0(ω, x), and prediction horizon T consider

min
u∈L2((t̄0,t̄0+T );U)

JT (u; t̄0, ȳ0) OPT (t̄0, ȳ0)

s.t


∂ty −∇ · (ν(ω)∇y) + a(t)y +∇ · (b(t)y) =

∑N
i=1 ui(t)1Oi (t, x) ∈ (t̄0, t̄0 + T )×D,

y = 0 (t, x) ∈ (t̄0, t̄0 + T )× ∂D,
y(t̄0) = ȳ0(ω) x ∈ D.

(2)

In the receding horizon framework, we define sampling instances tk := kδ, for k = 0, 1, 2, . . . , and for a
chosen sampling time δ > 0. Then, at every current sampling instance tk sampling time δ > 0. Then,
at every current sampling instance tk with state yrh(tk) ∈ L2

P(Ω;R) ⊗ L2(D;R), an open-loop optimal
control problem OPT (tk, yrh(tk)) is solved over a finite prediction horizon [tk, tk + T ] for an appropriate
prediction horizon T > δ. Then, the associated optimal control is applied to steer the system from time
tk with the initial state yrh(tk) ∈ L2

P(Ω;R) ⊗ L2(D;R) until time tk+1 := tk + δ at which point, a new
measurement of the state yrh(tk+1) ∈ L2

P(Ω;R) ⊗ L2(D;R), is assumed to be available. The process is
repeated starting from this new measured state: we obtain a new optimal control and a new predicted
state trajectory by shifting the prediction horizon forward in time. The sampling time δ is the time period
between two sample instances. Throughout, we denote the receding horizon state- and control variables
by yrh(·, ·) and urh(·), respectively. Also, (y∗T (·, ·; t̄0, ȳ0),u∗T (·; t̄0, ȳ0)) stands for the optimal state and
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Algorithm 1 Robust RHC(δ, T )

Require: The sampling time δ, the prediction horizon T ≥ δ, and the initial state y0
Ensure: The stability of RHC urh.

1: Set (t̄0, ȳ0) := (0, y0) and yrh(0) = y0;
2: Find the solution (y∗T (·; t̄0, ȳ0)),u∗

T (·; t̄0, ȳ0)) over the time horizon (t̄0, t̄0 +T ) by solving the
open-loop problem OPT (t̄0, ȳ0);

3: For all τ ∈ [t̄0, t̄0 + δ), set yrh(τ) = y∗T (τ ; t̄0, ȳ0) and urh(τ) = u∗
T (τ ; t̄0, ȳ0);

4: Find a measurement yrh(t̄0 + δ; t̄0, ȳ0) of the state at time t̄0 + δ;
5: Update: (t̄0, ȳ0)← (t̄0 + δ, yrh(t̄0 + δ; t̄0, ȳ0));
6: Go to Step 2;

control of the optimal control problem with finite time horizon T , and initial function ȳ0 at initial time
t̄0. This is summarized in Algorithm 1.

Concerning the literature, there is a growing interest in partial differential equations (PDEs) that
involve some uncertainty. So far, there are only a few papers investigating parabolic PDEs with random
coefficients. Here we can quote e.g., [9, 13, 14, 21, 27]. Concerning control and stabilization, which are
well-studied for deterministic infinite-dimensional systems, and stochastic systems with the stochastic
terms appearing in an affine manner, there is little research on infinite-dimensional systems under uncer-
tainty. Among them, we can mention [2, 7, 17] in the context of controllability results and [11, 16, 18, 19]
for optimal control problems. To our knowledge, RHC has not yet been studied for control systems with
uncertainty inputs. In this project, we take a step in this direction and, relying on theoretical results
in [1], we investigate the performance and stability of the receding horizon framework for eq. (CS) with
both uniformly bounded and log-normally distributed random diffusions ν. For each case, separately,
this involves investigating the well-posedness of the state, the stabilizability of the controlled system by
(spatially) finite-dimensional controls, and deriving continuity- and observability-type of inequalities. We
also provide an upper bound for the failure probability for the receding horizon framework depending
on the choice of diffusion parameter ν, reaction and convection terms a and b, and the number N of
actuators.

The rest of the paper is organized as follows. We start the next section by introducing the notation
which is used throughout the paper. In Section 3, we consider time-varying parabolic equations with
uniformly bounded random diffusion. Under appropriate assumptions, we study the well-posedness of
the state equation, the stabilizability of the controlled system, and the stability of the receding horizon
framework. At the end of that section, we derive an upper bound for the failure probability of RHC.
In the forth section, we discuss the analogous questions for the case of log-normally distributed random
diffusion.

2 Notation and preliminaries

Let Banach spaces X and Y be given. We write X ↪−→ Y if the inclusion X ⊆ Y is continuous. The space
of continuous linear mappings from X into Y is denoted by L(X,Y ). We also write L(X) := L(X,X).
The continuous dual of X is denoted by X ′ := L(X,R). The adjoint of an operator L ∈ L(X,Y ) will be
denoted with L∗ ∈ L(Y ′, X ′).

Let a Hilbert space H endowed with scalar product (·, ·)H be given. Then the orthogonal complement
to a given subset B ⊂ H is denoted by B⊥ := {h ∈ H : (h, s)H = 0 ∀s ∈ B}.

For any two closed subspaces F and G of the Hilbert space H satisfying H = F ⊕ G, we define by
PGF ∈ L(H,F) the oblique projection in H onto F along G. That is, for every h ∈ H if we consider the

unique decomposition h = hF + hG with hF ∈ F and hG ∈ G, we have PGFh := hF . Then, clearly, PF
⊥

F
is the orthogonal projection in H onto F which is denoted by PF .
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For given Hilbert spaces H1 and H2, we use the notation H1 ⊗H2 for the tensor product of H1 with
H2.

We also consider the spaces V := H1
0 (D;R), V ′ := H−1(D;R), and H := L2(D;R) endowed with

their usual norms. Then, for every open interval (s1, s2) ⊂ R≥0, we can define

W (s1, s2) := {v ∈ L2((s1, s2);V ) : ∂tv ∈ L2((s1, s2);V ′)},

endowed with the norm ‖v‖W (s1,s2) :=
(
‖v‖2L2((s1,s2);V ) + ‖∂tv‖2L2((s1,s2);V ′)

) 1
2

.

For the probability space (Ω,F ,P), a Banach space X, and p ∈ [1,∞], we denote by LpP(Ω;X) the
Lebesgue-Bochner space, composed of all strongly measurable function v : Ω→ X whose norm is defined
by

‖v‖LpP (Ω;X) :=

{(∫
Ω
‖v(·, ω)‖pXdP(ω)

) 1
p p <∞,

ess supω∈Ω ‖v(·, ω)‖X p =∞.

We also assume that L2
P(Ω;R) is a separable Hilbert space. For this assumption it suffices to assume

that (Ω,F ,P) is separable see e.g., [22, Theorem II.10]. Then, if p = 2 and X is a separable Hilbert
space, the Bochner space L2

P(Ω;X) is isomorphic to the tensor product space L2
P(Ω;R) ⊗ X, that is

L2
P(Ω;X) ∼= L2

P(Ω;R)⊗X, see e.g., [3, Theorem 4.13].
For the sake of convenience, we abbreviate VP := L2

P(Ω;H1
0 (D;R)), V ′P := L2

P(Ω;H−1(D;R)), HP :=
L2
P(Ω;L2(D;R)) and UNP := L2

P(Ω;RN ). By identifying HP with its dual we obtain a Gelfand triple
VP ↪→ HP ↪→ V ′P of separable Hilbert spaces with dense injections. Finally, for every open interval
(s1, s2) ⊂ R≥0, we consider the space WP(s, t) defined

WP(s1, s2) := {v ∈ L2((s1, s2);VP) : ∂tv ∈ L2((s1, s2);V ′P)},

and endowed with the norm ‖v‖WP(s1,s2) :=
(
‖v‖2L2((s1,s2);VP) + ‖∂tv‖2L2((s1,s2);V ′P )

) 1
2

. It is well known

that WP(s1, s2) ↪→ C([s1, s2];HP). Further, due to the fact that L2
P(Ω;R) is separable, we can write for

any Hilbert space X that

L2
P(Ω;R)⊗ L2((s1, s2);X) ∼= L2

P(Ω;L2((s1, s2);X)) ∼= L2(Ω× (s1, s2);X)

∼= L2((s1, s2);L2
P(Ω;X)) ∼= L2((s1, s2);R)⊗ L2

P(Ω;X).

Hence, we can conclude
L2
P(Ω;R)⊗W (s1, s2) ∼= WP(s1, s2). (3)

In the following, we define the finite- and infinite-horizon value functions. These will be used frequently
in the analysis of RHC.

Definition 2.1. For any y0 ∈ HP the infinite-horizon value function V∞ : HP → R≥0 is defined by

V∞(y0) := min
u∈L2((0,∞);U)

{J∞(u; 0, y0) subject to (CS)}.

Similarly, for every (T, t̄0, ȳ0) ∈ R2
≥0 × HP, the finite-horizon value function VT : R≥0 × HP → R≥0 is

defined by
VT (t̄0, ȳ0) := min

u∈L2((t̄0,t̄0+T );U)
{JT (u; t̄0, ȳ0) subject to (2)}.

3 Parabolic PDEs with uniform random diffusion

In this section we are concerned with the case when the diffusion coefficient is uniformly bounded away
from zero and from above. This allows us to use the weak formulation directly. Throughout this section,
we impose the following conditions:
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Assumption 3.1. We assume that:

A1: There are random variables νmin, νmax, and constants ν, ν such that

0 < ν ≤ νmin(ω) ≤ ν(ω, x) ≤ νmax(ω) ≤ ν <∞ for a.e. x ∈ D and ω ∈ Ω a.s.. (4)

A2: For the reaction parameter a and convection vector b, we impose

a ∈ L∞((0,∞);Lr(D;R)) with r ≥ n := dim(D), and b ∈ L∞((0,∞)×D;Rn), (RA)

and set N (a, b) := ‖a‖L∞((0,∞);Lr(D;R)) + ‖b‖L∞((0,∞)×D;Rn).

We mention the two following examples for the diffusion ν satisfying A1.

Example 3.1. The case of the (truncated) log-normal fields, i.e.,

ν(ω, x) = ν0(x) + exp(

M∑
j=1

zj(ω)ψj(x)), (5)

where ψj ∈ L∞(D;R) for j = 0, . . . ,M and ν0 ∈ L∞(D;R) with ess infx∈D ν0(x) = ν > 0 . The random
variables zj : Ω → R have zero means, they are pairwise uncorrelated, and they are truncated at some
large enough lower and upper bounds, see e.g., [20, page 25] for more details. For every z = (z1, . . . , zM ),
the following quantities are assumed to be well defined.

νmax(ω) = ess sup
x∈D

ν0(x) + exp(

M∑
j=1

|zj(ω)|‖ψj‖L∞(D;R)),

νmin(ω) = ess inf
x∈D

ν0(x) + exp(−
M∑
j=1

|zj(ω)|‖ψj‖L∞(D;R)).

(6)

Since the ranges of zj for j = 1, . . . ,M are bounded, we have (4) for numbers ∞ > ν ≥ ν > 0.

Example 3.2. We can also consider the coefficient ν to be characterized by a sequence of scalar random
variables {zj}j≥1 with

ν(ω, x) = ν0(x) +

∞∑
j=1

zj(ω)ψj(x), (7)

where ψj ∈ L∞(D;R) for j ≥ 1, and zj : Ω → R for j = 1, 2, · · · are independent random variables
which are distributed identically and uniformly in [−1, 1] such that the range of zj is in [−1, 1]. Then
all realizations of the random vector z = (z1, z2, . . . ) are supported in the cube [−1, 1]N. Further, with
ν∗ := ess infx∈D ν0(x) and some κ > 0, the functions ψj are supposed to satisfy

∞∑
j=1

‖ψj‖L∞(D;R) ≤
κ

1 + κ
ν∗.

This assumption implies that the fluctuations (resp., deviations) from mean of the random coefficient
ν(x, ω) in (7) are dominated by the mean field, i.e., that they are small with respect to the deterministic
mean field. Then, we have

νmax(ω) = ess sup
x∈D

ν0(x) +

∞∑
j=1

|zj(ω)|‖ψj‖L∞(D;R),

νmin(ω) = ν∗ −
∞∑
j=1

|zj(ω)|‖ψj‖L∞(D;R),

(8)

and the inequality in the right hand side of (4) holds with ν := ν∗ − κ
1+κν

∗ = 1
1+κν

∗.
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3.1 Well-posedness of state equation

We start with the well-posedness of (CS). In this regard, we consider for ω ∈ Ω a.s., the following
auxiliary random linear parabolic equation

∂ty −∇ · (ν(ω, x)∇y) + a(t, x)y +∇ · (b(t, x)y) = f(t, x, ω) (t, x) ∈ (t0, t0 + T )×D,
y = 0 (t, x) ∈ (t0, t0 + T )× ∂D,
y(t0) = y0(ω, x) x ∈ D,

(9)

and define the following notion of weak solution.

Definition 3.1. Let (T, t0, y0, f) ∈ R2 × HP × L2((t0, t0 + T );V ′
P
) be given. Then, a random field

y ∈WP(t0, t0 + T ) is referred to as a weak solution of (9), if it satisfies∫ t0+T

t0

〈∂ty(t), ϕ(t)〉V ′P ,VP dt+

∫ t0+T

t0

∫
ω

∫
D

ν∇y(t) · ∇ϕ(t) dx dP(ω) dt

+

∫ t0+T

t0

〈a(t)y(t), ϕ(t)〉V ′P ,VP dt−
∫ t0+T

t0

∫
Ω

∫
D

y(t)b(t) · ∇ϕdx dP(ω) dt

=

∫ t0+T

t0

〈f(t), ϕ〉V ′P ,VP dt for all ϕ ∈ L2((t0, t0 + T );VP),

(10)

and y(t0) = y0 is satisfied in HP. Here we use 〈·, ·〉V ′P ,VP := E [〈·, ·〉V ′,V ].

In the following we present the existence result and various a-priori estimates for the weak solution
of (9). These estimates will be used frequently in the sequel.

Theorem 3.1. For every multiple (T, t0, y0, f) ∈ R2
≥0 ×HP × L2((t0, t0 + T );V ′P) equation (9) admits a

unique weak random field y ∈WP(t0, t0 + T ) satisfying the following estimates

‖y‖2C([t0,t0+T ];HP) + ‖y‖2WP(t0,t0+T ) ≤ c1
(
‖y0‖2HP

+ ‖f‖2L2((t0,t0+T );V ′P )

)
, (11)

with c1 depending on (T, ν, ν, a, b,D). Moreover, we have the following observability inequality

‖y0‖2HP
≤ c2

(
1 + T−1 +N (a, b)

)
‖y‖2L2((t0,t0+T );VP) + ‖f‖2L2((t0,t0+T );V ′P ), (12)

with c2 depending only on (T, ν, ν,D).

Proof. From (4) and Assumption A2 it follows that the sesquilinear form

b(t, ψ, ϕ) =

∫
Ω

∫
D

ν∇ψ · ∇ϕdx dP(ω) dt+ 〈a(t)y(t), ϕ(t)〉V ′P ,VP

−
∫

Ω

∫
D

y(t)b(t) · ∇ϕdx dP(ω) ∀ψ,ϕ ∈ VP,
(13)

is coercive and continuous. Thus there exist positive constants cmin, cmax, and c0, such that for every
ψ,ϕ ∈ VP and a.e. t ∈ (t0, t0 + T ) we have

|b(t, ψ, ϕ)| ≤ cmax‖ψ‖VP‖ϕ‖VP , and b(t, ψ, ψ) ≥ cmin‖ψ‖2VP
− c0‖ψ‖2HP

. (14)

The rest of proof follows by using a Galerkin approximation with orthonormal basis functions {ψi ⊗
φj}i,j≥1 ⊂ L2

P(Ω;R)⊗ V ∼= VP and passing to the limit in the weak formations (10), where {ψi}i,≥1 and
{φj}j≥1 are orthonormal bases for the spaces L2

P(Ω;R) and V , respectively. The energy estimate (11)
and (12) are obtained with the same arguments as in [1, Proposition 3.2.].
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3.2 Stabilizability of the controlled system

In this section, we study the stabilizability of (CS) with respect to the number of actuators. Here we
restrict ourselves to the rectangular domain, that is D = [0, Ld]

d ⊂ Rd and follow the arguments given
in [25, Theorem 4.1] and [24].

It is well-known that the Laplacian operator −∆ : H2(D;R) ∩ V ⊂ H → H has a compact inverse
and, thus, there exists a nondecreasing system of (repeated accordingly to their multiplicity) eigenvalues
{αi}i≥1 with its associated complete basis satisfying

0 < α1 ≤ α2 ≤ · · · ≤ αi →∞ with −∆ei = αiei.

For any d ≥ 1, we construct, by induction, a family of pairs (ON , EN ) such that H = ON ⊕ E⊥N for
Nσ = σ(N) := Nd.

We start with the one-dimensional case, i.e., d = 1. For this case D = (0, L1) with L1 > 0, and it has
already been shown in [23, Lems. 4.3 and 5.1] that L2(D;R) = ON ⊕ E⊥N , if we take Nσ = σ(N) := N ,
and for a fixed r ∈ (0, 1) define the following sets

EN = E [1]
N := span

{
e

[1]
i,N : i ∈ N

}
⊂ H1

0 ((0, L1);R)

ON = O[1]
N := span

{
1
O

[1]
i,N

: i ∈ N
}
⊂ L2((0, L1);R)

O
[1]
i,N := (c

[1]
i,N −

rL1

2N
, c

[1]
i,N +

rL1

2N
), c

[1]
i,N :=

(2i− 1)L1

2N
, i ∈ N,

where N := {1, 2, 3, . . . , N}. Further, for i ∈ N, 1
O

[1]
i,N

denote the indicator functions with supports

O
[1]
i,N and e

[1]
i,N are the first eigenfunctions of the Laplacian in L2((0, L1);R) under homogeneous Dirichlet

boundary conditions.

Now, we deal with higher-dimensional rectangular domains D =×d

n=1
(0, Ln). Following the results

in [15, sect. 4.8.1], it can be shown that the direct sum L2(D;R) = EN ⊕ O⊥N property (note that
EN ⊕O⊥N = ON ⊕ E⊥N ) holds also true for the choice Nσ = σ(N) := Nd and the following setting

EN := span

{
e×i,N (x) =

d×
n=1

e
[n]
in,S

(xn) : i := (i1, . . . , id) ∈ Nd

}
⊂ V

ON := span

{
1o×i,N

(x) =
d×

n=1

1
O

[n]
in,N

(xn) : i ∈ Nd

}
⊂ H

O
[n]
i,N = (c

[n]
i,N −

rLn
2N

, c
[n]
i,N +

rLn
2N

), c
[n]
i,N =

(2i− 1)Ln
2N

, i ∈ N,

O×i,N (x) =
d×

n=1

O
[n]
in,N

(xn), i ∈ Nd,

where e
[n]
i,N with i ∈ N are the first eigenfunctions of the Laplacian in L2((0, Ln);R), i := (i1, . . . , id) ∈ Nd,

and x = (x1, x2, . . . , xd) ∈×d

n=1
(0, Ln). Moreover, for this choice of the pair (ON , EN ), it can be proven,

with the same arguments as in [24, Section 5], that for every N ∈ N0 we have H = EN ⊕O⊥N , and

βN ≥ cβN2 with βN := inf
Q∈(V ∩O⊥N )\{0}

‖Q‖2V
‖Q‖2H

, (15)

where the constant cβ is independent of N and Q. Figure 1 illustrates the supports of actuators for the
case d = 2 and different choices of N .

We have the following characterization from [23, Lemma 3.8] for the adjoint of the oblique projection.
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N = 1 N = 2 N = 3

N = 4 N = 5 N = 6

Figure 1: The actuators supports for d = 2.

Lemma 3.1. Suppose that F and G are closed subspaces of H, for which H = F ⊕ G holds. Then for

the adjoint operator of PG
⊥

F ∈ L(H), we have (PG
⊥

F )∗ = PF
⊥

G .

In the next theorem, we investigate the stabilizability of the following control system
∂ty −∇ · (ν(ω)∇y) + a(t, x)y +∇ · (b(t)y) =

∑N
i=1 ui(t)1Oi (t, x) ∈ (t0,∞)×D,

y = 0 (t, x) ∈ (t0,∞)× ∂D,
y(t0) = y0(ω) x ∈ D,

(16)

for almost surly ω ∈ Ω.

Theorem 3.2 (Uniform stabilizability of (16)). For each µ > 0, there exists an integer N∗ ∈ N0 such
that for every N ≥ N∗ there exists a feedback control vector ū(y) = (ū1, . . . , ūN ) ∈ L2((t0,∞);UNP ) ∼=
L2
P(Ω;R)⊗ L2((t0,∞);RN ) for system (16) whose associated state satisfies

‖y(t)‖2HP
≤ e−µ(t−t0)‖y0‖2HP

for all t > 0, (17)

for any given (t0, y0) ∈ R≥0 ×HP.

Proof. We set as the feedback control law

N∑
i=1

ūi(t, ω)1Oi := −λP E
⊥
N

ON∆P
O⊥N
EN y(t, ω) for a.e. t > 0 a.s. ω ∈ Ω, (18)

with
ū(y) = (ū1(y), . . . , ūN (y))t := −λIP E

⊥
N

ON∆P
O⊥N
EN y(t, ω), (19)

where I : ON → RN stands for the canonical isomorphism, and the numbers λ > 0 and N ∈ N0 are
specified below. Inserting (18) in equation (16), multiplying with y, and integrating over D, we obtain
for almost every t > 0 and almost surely ω ∈ Ω that

d

2dt
‖y(t, ω)‖2H + (ν(t, ω)∇y(t, ω),∇y(t, ω))H + 〈a(t)y(t, ω), y(t, ω)〉V ′,V

− 〈y(t, ω), b(t) · ∇y(t, ω)〉V ′,V + λ〈P E
⊥
N

ON∆P
O⊥N
EN y(t, ω), y(t, ω)〉V,V ′ = 0

(20)

From now on, we omit ω for simplicity, i.e. y(t, ω) = y(t). From (20) and using A1, it follows that

d

dt
‖y(t)‖2H ≤ −2νmin(ω)‖y(t)‖2V + 2|〈a(t)y(t), y(t)〉V ′,V |

+ 2|(b(t)y(t),∇y(t))H |+ 2λ〈P E
⊥
N

ON∆P
O⊥N
EN y(t, ω), y(t, ω)〉V ′,V .

8



We use the following decomposition

y = θ + ϕ with θ := P
O⊥N
EN y and ϕ := P ENO⊥N

y,

which is justified due to the definition of the oblique projection. Further, since θ ∈ EN ⊂ V , then

∆θ ∈ V ′. Thus, the operator P
E⊥N
ON can be considered as its unique linear extension to V ′. That is

P
E⊥N
ON∆θ ∈ ON ⊂ H ⊂ V ′ and we have

〈P E
⊥
N

ON∆θ, w〉V ′,V = 〈∆θ, PO
⊥
N

EN w〉V ′,V for all w ∈ V,

which is well-defined due the fact that P
O⊥N
EN w ∈ EN ⊂ V . Thus, we can write

−〈P E
⊥
N

ON∆θ, y〉V ′,V = −〈∆θ, θ〉V ′,V = ‖θ‖2V . (21)

From (20) and (21), its follows by repeated use of Young’s inequality that

d

dt
‖y(t)‖2H
≤ −2νmin(ω)‖y(t)‖2V + 2|〈a(t)y(t), y(t)〉V ′,V |+ 2|(b(t)y(t),∇y(t))H | − 2λ‖θ(t)‖2V
≤ −2νmin(ω)‖y(t)‖2V + 2cN (a, b)‖y(t)‖H‖y(t)‖V − 2λ‖θ(t)‖2V

≤ −νmin(ω)‖θ(t) + ϕ(t)‖2V +
c2N 2(a, b)

νmin(ω)
‖θ(t) + ϕ(t)‖2H − 2λ‖θ(t)‖2V ,

≤ −νmin(ω)
(
‖θ(t)‖2V + ‖ϕ(t)‖2V

)
+ νmin(ω)

(
κ1‖θ(t)‖2V +

1

κ1
‖ϕ(t)‖2V

)
+
c2N 2(a, b)

νmin(ω)

(
‖θ(t)‖2H + ‖ϕ(t)‖2H

)
+
c2N 2(a, b)

νmin(ω)

(
κ2‖θ(t)‖2H +

1

κ2
‖ϕ(t)‖2H

)
− 2λ‖θ(t)‖2V ,

(22)

where c is a generic constant that depends only on D, and the numbers κ1 > 0 and κ2 > 0 can be chosen
arbitrary. Setting κ1 = κ2 = 2 in the above inequality, we obtain

d

dt
‖y(t)‖2H ≤ − (2λ− νmin(ω)) ‖θ(t)‖2V +

3c2N 2(a, b)

νmin(ω)
‖θ(t)‖2H

− νmin(ω)

2
‖ϕ(t)‖2V +

3c2N 2(a, b)

2νmin(ω)
‖ϕ(t)‖2H ≤ −Θθ(N,λ)‖θ(t)‖2H −Θϕ(N,λ)‖ϕ(t)‖2H ,

(23)

where the constants Θθ and Θϕ are defined by

Θθ(ω,N, λ) := (2λ− νmin(ω))α1 −
3c2N 2(a, b)

νmin(ω)
, (24)

Θϕ(ω,N, λ) :=
νmin(ω)

2
βN −

3c2N 2(a, b)

2νmin(ω)
, (25)

with βN given in (15) and α1 as the smallest eigenvalue of the Laplacian with homogeneous Dirichlet
boundary conditions.

Choosing N∗ and λ∗ such that

βN∗ ≥
2

ν

(
4µ+

3c2N 2(a, b)

2ν

)
and λ∗ ≥ 1

2α1

(
4µ+

3c2N 2(a, b)

ν

)
+
ν

2
. (26)

We can infer for every N ≥ N∗, λ ≥ λ∗ that Θθ(N,λ) ≥ 4µ and Θϕ(N,λ) ≥ 4µ. Therefore, together
with (23) we obtain

d

dt
‖y(t)‖2H ≤ −Θθ(N,λ)‖θ(t)‖2H −Θϕ(N,λ)‖ϕ(t)‖2H ≤ −4µ‖θ(t)‖2H − 4µ‖ϕ(t)‖2H
≤ −2µ

(
‖θ(t)‖2H + ‖ϕ(t)‖2H + 2(θ(t), ϕ(t))H

)
≤ −2µ‖θ(t) + ϕ(t)‖2H ≤ −2µ‖y(t)‖2H ,

(27)
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for a.e. t > t0 and ω ∈ Ω a.s.. Integrating (27) over interval (t0, t) we obtain that

‖y(t, ω)‖2H ≤ e−2µ(t−t0)‖y(t0, ω)‖2H = e−2µ(t−t0)‖y0(ω)‖2H ω ∈ Ω for a.s. . (28)

Finally, integrating (28) over Ω, we obtain

‖y(t)‖2HP
= E

[
|y(t)‖2H

]
≤ e−2µ(t−t0)E

[
‖y(t0)‖2H

]
= e−2µ(t−t0)‖y0‖2HP

.

This together with the fact that ū ∈ L2((t0,∞);UNP ) (see (19)) completes the proof.

Remark 3.1. Assume that b = 0 and a ∈ L∞((0,∞)×D;R). Then, by replacing the term cN (a, b)‖y(t)‖H‖y(t)‖V
with ‖a‖L∞((0,∞)×D;R)‖y(t)‖2H in the third line of (22) and following the same lines of computations as
above, (24) and (25) can be expressed as

Θθ(ω,N, λ) := 2 (λ− νmin(ω))α1 − 6‖a‖L∞((0,∞)×D;R),

Θϕ(ω,N, λ) := νmin(ω)βN − 3‖a‖L∞((0,∞)×D;R).

Hence, for any given rate µ > 0, the stabilizability result (17) holds for N∗ and λ∗ satisfying

βN∗ ≥
1

ν

(
4µ+ 3‖a‖L∞((0,∞)×D;R)

)
and λ∗ ≥ 1

α1

(
2µ+ 3‖a‖L∞((0,∞)×D;R)

)
+ ν. (29)

3.3 Stability of stochastic RHC

In this section, we investigate the stability of the receding horizon algorithm 1. Our theoretical results
are expressed in terms of the finite- and infinite-horizon value functions and are based on the stability
result given in the previous section.

We have the following stability result for the stochastic RHC urh obtained by Algorithm 1 with
U = UNP and the choices of `(t, y) = ‖y‖2V and `(t, y) = ‖y‖2H for almost every t ∈ (0,∞).

Theorem 3.3. Suppose that D ⊂ Rd with d ≥ 1 is a rectangle. Then for every choice of `(t, ·) = ‖ · ‖2V
or `(t, ·) = ‖ · ‖2H , there exits an N∗ = N∗(a, b, ν) ∈ N such the RHC computed by Algorithm 1 with
U := UNP is, for every N ≥ N∗ and set of actuators 1Oi with i = 1, . . . , N given in the previous section,
suboptimal and stabilizing. That is for every given δ > 0 there exist numbers T ∗ > δ, and α ∈ (0, 1),
such that for every fixed prediction horizon T ≥ T ∗, and every y0 ∈ HP the control urh ∈ L2((0,∞);UNP )
provided Algorithm 1 by satisfies the suboptimality inequality

αV∞(y0) ≤ αJ∞(urh; 0, y0) ≤ VT (0, y0) ≤ V∞(y0). (30)

Furthermore, we have
‖y(t)‖2HP

→ 0 as t→∞, (31)

for the choice of `(t, ·) = ‖ · ‖2H , and

‖y(t)‖2HP
≤ e−ζtce‖y0‖2HP

for t ≥ 0, (32)

for the choice of `(t, ·) = ‖ · ‖2V , where ζ and ce are independent of y0.

Proof. Algorithm 1 corresponds to the receding horizon framework introduced in [1] for time-varying
linear evolution equations adapted to the spaces VP ↪→ HP ↪→ V ′P. The stability of this framework is
based on the three key conditions which we will verify here. The rest of the proof follows with the same
arguments as given in [1, Theorem 2.6].

P1: For every positive number T , VT is globally decrescent with respect to the HP-norm. That is,
there exists a continuous, non-decreasing, and bounded function γ2 : R≥0 → R≥0 such that

VT (t̄0, ȳ0) ≤ γ2(T )‖ȳ0‖2HP
for all (t̄0, ȳ0) ∈ R≥0 ×HP. (33)
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It is sufficient to chose N∗ ∈ N as the smallest number for which

βN∗ >
3c2N 2(a, b)

ν2

holds. In this case, for almost surly ω ∈ Ω, we have

βN∗ >
3c2N 2(a, b)

ν2
min(ω)

, (34)

and we can use Theorem 3.2 to verify the stabilizability. Indeed, setting ū ∈ L2((0,∞);UNP ) as in (18)
for any N ≥ N∗ and λ ≥ λ∗ with

λ∗ :=
1

2α1

(
4µ+

3c2N 2(a, b)

ν

)
+
ν

2
, (35)

we obtain (17) for the rate

µ :=
ν

8

(
βN∗ −

3c2N 2(a, b)

ν2

)
.

Further, for this control we can write

ū(ȳ(t, ω)) = (ū1(ȳ(t, ω)), . . . , ūN (ȳ(t, ω)))T := −λIP E
⊥
N

ON∆P
O⊥N
EN ȳ(t, ω), (36)

where I : ON → RN denotes the canonical isomorphism. For the control ū and its associated state
ȳ = y(ū) it holds that

VT (t̄0, ȳ0) ≤ 1

2

∫ t̄0+T

t̄0

E [`(t, ȳ(t))] dt+
β

2

∫ t̄0+T

t̄0

E
[
|ū(t)|2`2

]
dt,

and, depending on the choice of `, we have the following cases:
First case `(t, ·) = ‖ · ‖2H : Using the fact that

‖P E
⊥
N

ON∆P
O⊥N
EN ‖L(H) ≤ cP and ‖I‖L(ON ,RN ) ≤ ĉ,

for positive constants cP and ĉ, we obtain with (36) that

VT (t̄0, ȳ0) ≤ 1

2

∫ t̄0+T

t̄0

(
‖ȳ(t)‖2HP

dt+ λβĉ2c2P ‖ȳ(t)‖2HP

)
dt

≤ 1 + λβĉ2c2P
2µ

(
1− e−µT

)
‖ȳ0‖2HP

=: γ2(T )‖ȳ0‖2HP
.

(37)

Second case `(t, ·) = ‖ · ‖2V : In this case, with standard energy estimates, we have for almost every
t ∈ (t̄0, t̄0 + T ) and almost surly ω ∈ Ω that

d

2dt
‖ȳ(t)‖2H + ν‖ȳ(t)‖2V ≤ cN (a, b)‖ȳ(t)‖H‖ȳ(t)‖V + ‖

N∑
i=1

ū(t, ω)1Oi‖H‖ȳ(t)‖H

≤ 1

2
c5‖ȳ(t)‖2H +

ν

2
‖ȳ(t)‖2V +

1

2
|ū(t)|2`2 ,

where c5 :=
(
c2

ν N
2(a, b) +N max1≤i≤N ‖1Oi‖2H

)
. Integrating over Ω and (t̄0, t̄0 +T ), together with (37),

we obtain ∫ t̄0+T

t̄0

‖ȳ(t)‖2VP
dt ≤ 1

ν

(
‖ȳ(t̄0)‖2HP

+ c5

∫ t̄0+T

t̄0

‖ȳ(t)‖2HP
dt+

∫ t̄0+T

t̄0

E
[
|ū(t)|2`2

]
dt

)

≤ 1

ν

(
1 +

c5 + λĉ2c2P
µ

(1− e−µT )

)
‖ȳ0‖2HP

.

(38)

11



Finally, using (38), we have

VT (t̄0, ȳ0) ≤ 1

2

∫ t̄0+T

t̄0

(
‖ȳ(t)‖2VP

dt+ λβĉ2c2P ‖ȳ(t)‖2HP

)
dt

≤ 1

2ν

(
1 +

c5 + λ(1 + βν)ĉ2c2P
µ

(1− e−µT )

)
‖ȳ0‖2HP

=: γ2(T )‖ȳ0‖2HP
.

P2: For every (t̄0, ȳ0) ∈ R0×HP, every finite horizon optimal control problem of the form OPT (t̄0, ȳ0)
admits a solution:

The objective function JT (u; t̄0, y0) is strictly convex, coercive, and nonnegative. Hence it is weakly
lower semi-continuous and existence of a unique minimizer to OPT (t̄0, ȳ0) follows from the direct method
in the calculus of variations, see e.g., [12, Theorem 1.43].

Since P1 and P2 hold, we are in the position that we can apply [1, Theorem 6.2] and thus (30) holds.
It remains now to show that (31) and (32) are satisfied.

First, we deal with (32). This follows using the same arguments given in the second part of [1,
Theorem 6.2] together with Property P3 stating:

P3: For every T > 0, VT is uniformly positive with respect to the HP-norm. In other words, for
every T > 0 there exists a constant γ1(T ) > 0 such that we have

VT (t̄0, ȳ0) ≥ γ1(T )‖ȳ0‖2HP
for every (t̄0, ȳ0) ∈ R≥0 ×HP. (39)

We will next verify this property. For any arbitrary given (t̄0, ȳ0) ∈ R≥0×HP and control u ∈ L2((t̄0, t̄0 +
T );UNP ), we have by (12) that

‖ȳ0‖2HP
≤ c2(1 + T−1 +N (a, b))

∫ t̄0+T

t̄0

‖ȳ(t)‖2VP
dt+

∫ t̄0+T

t̄0

‖
N∑
i=1

ūi1Oi‖2V ′P dt.

Together with the estimate∫ t̄0+T

t̄0

‖
N∑
i=1

ūi1Oi‖2V ′P dt ≤ iHP,V ′P

∫ t̄0+T

t̄0

‖
N∑
i=1

ūi1Oi‖2HP
dt

≤ iHP,V ′P
N max

1≤i≤N
‖1Oi‖2H

∫ t̄0+T

t̄0

E
[
|ū(t)|2`2

]
dt,

we obtain (39) with γ1(T ) :=
(

max
{

2c2(1 + T−1 +N (a, b)), 2
β (iHP,V ′P

N max1≤i≤N ‖1Oi‖2H)
})−1

, where

iHP,V ′P
is the embedding constant from HP into V ′P. Therefore P3 holds and this completes the verification

of (32).
Next we prove that (31) holds. Using (30) and (33), we can write∫ ∞

0

‖yrh(t)‖2HP
dt ≤ 2γ2(T )

α
‖y0‖2HP

and

∫ ∞
0

E
[
|urh(t)|2`2

]
dt ≤ 2γ2(T )

αβ
‖y0‖2HP

. (40)

Further, with standard energy estimate we have for every t ≥ t0 that

‖yrh(t)‖2HP
+ ν

∫ t

0

‖yrh(t)‖2VP
dt ≤ ‖y0‖2HP

+

(
c2

ν
N 2(a, b) +N max

1≤i≤N
‖1Oi‖2H

)∫ ∞
0

‖yrh(t)‖2HP
dt

+

∫ ∞
0

E
[
|urh(t)|2`2

]
dt ≤ c6‖y0‖2HP

,

where c6 :=
(

1 + 2(1+βc5)γ2(T )
αβ

)
with c5 :=

(
c2

ν N
2(a, b) +N max1≤i≤N ‖1Oi‖2H

)
. Thus, we can conclude

that

‖yrh‖2L∞((0,∞);HP) ≤ c6‖y0‖2HP
and

∫ ∞
0

‖yrh(t)‖2VP
≤ c6

ν
‖y0‖2HP

. (41)

12



Further, we have for every t′′ ≥ t′ ≥ 0 that

‖yrh(t′′)‖2HP
− ‖yrh(t′)‖2HP

=

∫ t′′

t′

d

dt
‖yrh(t)‖2HP

dt,

= 2

∫ t′′

t′
E

[
〈yrh(t), ν∆yrh(t)− a(t)yrh(t)−∇ · (b(t)yrh(t)) +

N∑
i=1

(urh)i(t)1Oi〉V,V ′
]
dt,

≤ −2ν

∫ t′′

t′
‖yrh(t)‖2VP

dt

+ 2

∫ t′′

t′
E

[
〈−a(t)yrh(t)−∇ · (b(t)yrh(t)) +

N∑
i=1

(urh)i(t)1Oi , yrh(t)〉V,V ′
]
dt,

≤ 2N (a, b)

∫ t′′

t′
‖yrh(t)‖VP‖yrh(t)‖HPdt

+ 2(N max
1≤i≤N

‖1Oi‖2H)
1
2

∫ t′′

t′
‖urh(t)‖L2

P(Ω;RN )‖yrh(t)‖HPdt

≤ 2N (a, b)
( ∫ t′′

t′
‖yrh(t)‖2VP

dt
) 1

2
( ∫ t′′

t′
‖yrh(t)‖2HP

dt
) 1

2

+ 2(N max
1≤i≤N

‖1Oi‖2H)
1
2

( ∫ t′′

t′
E
[
|urh(t)|2`2

]
dt
) 1

2
( ∫ t′′

t′
‖yrh(t)‖2HP

dt
) 1

2 ≤ c7‖y0‖2HP
(t′′ − t′) 1

2 ,

(42)

where c7 := 2

(
N (a, b)ν

−1
2 c6 + (N max1≤i≤N ‖1Oi‖2H)

1
2 c

1
2
6

(
2γ2(T )
αβ

) 1
2

)
and (40) and (41) were used in

the last inequality.
The rest of proof follows the same lines as in the proof of [1, Theorem 6.4] based on (42) and (40).

3.4 Failure Probability

In this section, we are concerned with the failure probability for the receding horizon framework. For a
given number of actuators N̄ , we compute an upper bound for the probability of the case, in which the
stabilizability of the stochastic RHC computed by Algorithm 1 with(U := UNP ) and the deterministic
variant of Algorithm 1 ([1, Algorithm 1.1]) with control U := RN are not guaranteed.

Concretely, let N̄ ∈ N0 be a given number of actuators. Recalling the proof of Theorem 3.3, it can
be seen that the condition P1 and, particularity, inequality (34) are essential. Therefore, P1 and the
stabilizability of the controlled system may fail if

ν2
min(ω)βN̄ ≤ 3c2N 2(a, b). (43)

In this case, for a given y0 ∈ H, the existence of a stabilizing deterministic control urh(ω) ∈ L2((0,∞);RN )
with respect to H-norm which is suboptimal in the sense of (30) for

min
u∈L2((0,∞);RN̄ )

Jω∞(u; 0, y0) :=
1

2

∫ ∞
0

`(t, y(t))dt+
β

2

∫ ∞
0

|u(t)|2`2dt, (44)

and also, for any given y0 ∈ HP the existence a stabilizing stochastic control urh ∈ L2((0,∞);U N̄P ) with
respect to HP-norm which is suboptimal for

min
u∈L2((0,∞);UN̄P )

J∞(u; 0, y0) =
1

2

∫ ∞
0

E [`(t, y(t))] dt+
β

2

∫ ∞
0

E
[
|u(t)|2`2

]
dt, (45)

are not guaranteed for either of the choices of `(t, y) = ‖y‖2V and `(t, y) = ‖y‖2H . Therefore, the failure
probability, for both of the above problem formulations, can be expressed by

P
[
ν2

min(ω)βN̄ ≤ 3c2N 2(a, b)
]

= P
[
νmin(ω) ≤ 3

1
2 cN (a, b)β

− 1
2

N̄

]
. (46)
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We consider now both Examples 3.1 and 3.2.
Example 3.1: Setting Γ(ω) :=

∑M
j=1|zj(ω)|‖ψj‖L∞(D), we have

P
[
νmin(ω) ≤ 3

1
2 cN (a, b)β

− 1
2

N̄

]
= P

[
exp(−Γ(ω)) ≤ 3

1
2 cN (a, b)β

− 1
2

N̄
− ν
]
. (47)

where 3
1
2 cN (a, b)β

− 1
2

N̄
− ν ≥ 0 since otherwise (43) is not valid. Using (15), (46), (47), and Markov’s

inequality, we get

P
[
νmin(ω) ≤ 3

1
2 cN (a, b)β

− 1
2

N̄

]
= P

[
−Γ(ω) ≤ log

(
3

1
2 cN (a, b)β

− 1
2

N̄
− ν
)]

= P

Γ(ω) ≥ log

 1

3
1
2 cN (a, b)β

− 1
2

N̄
− ν

 ≤ E
[
eΓ
]
e

log

(
3

1
2 cN (a,b)β

− 1
2

N̄
−ν

)

= E
[
eΓ
] (

3
1
2 cN (a, b)β

− 1
2

N̄
− ν
)
≤ E

[
eΓ
](( 3

cβ

) 1
2

cN (a, b)N̄−1 − ν

)
.

where E
[
eΓ
]

is bounded and without loss of generality, we assumed that β
1
2

N̄
(1 + ν) ≥ 3

1
2 cN (a, b). Here

we recall that βN →∞ as N →∞.
Example 3.2: Setting Γ(ω) :=

∑∞
j=1|zj(ω)|‖ψj‖L∞(D), we obtain

P
[
νmin(ω) ≤ 3

1
2 cN (a, b)β

− 1
2

N̄

]
= P

[
Γ(ω) ≥ ν∗ − 3

1
2 cN (a, b)β

− 1
2

N̄

]
, (48)

where, recalling that βN → ∞ as N → ∞, we assume that ν∗ − 3
1
2 cN (a, b)β

− 1
2

N̄
> 0. Using (15), (46),

(48), and Markov’s inequality, we obtain

P
[
νmin(ω) ≤ 3

1
2 cN (a, b)β

− 1
2

N̄

]
= P

[
Γ(ω) ≥ ν∗ − 3

1
2 cN (a, b)β

− 1
2

N̄

]
≤ E [Γ]

ν∗ − 3
1
2 cN (a, b)β

− 1
2

N̄

≤
∑
j≥1 E [|zj |] ‖ψj‖L∞(D)

ν∗ − ( 3
cβ

)
1
2 cN (a, b)N̄−1

.

4 Parabolic PDEs with log-normal diffusions

In this section, we study the case of log-normal diffusions defined by

ν(ω, x) = exp(g(ω, x)) (49)

with g a Gaussian random field with zero mean. This class of diffusions is used in many applications,
including those related to subsurface flow modeling and hydrology. More precisely, for each x ∈ D, g(x, ·)
is a Gaussian random variable, and thus 0 < ν(ω, x) < ∞ for each ω ∈ Ω. However, for any ε > 0 we
have P[ν(·, x) > ε−1] > 0, and thus its corresponding elliptic operator is not uniformly bounded from
above over all possible realizations of ω. We also have P[ν(·, x) < ε] > 0, so the corresponding elliptic
operator is not uniformly elliptic either.

Assumption 4.1. Throughout this section, we impose the following conditions:

A1: There are random variables νmin, and νmax, such that

0 < νmin(ω) ≤ ν(ω, x) ≤ νmax(ω) <∞ for a.e. x ∈ D and a.s. ω ∈ Ω, (50)

where νmax(ω), 1
νmin(ω) ∈ L

p
P(Ω;R) for p ∈ [1,∞).
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A2: We also assume for a and b that

a ∈ L∞((0,∞)×D;R) and b = 0. (51)

As an example for the diffusion constant with the log-normal distribution satisfying Assumption 4.1,
we refer to [10, 13, 26].

Example 4.1. We set g(ω, x) :=
∑∞
j=1 zj(ω)ψj(x) in (49), where the functions ψj ∈ L∞(D;R) for

j = 1, 2, . . . are such that
∑∞
j=1 ‖ψj(x)‖L∞(D;R) is finite and the random variables zj are i.i.d, standard

normal random variables, that is, zj ∼ N (0, 1) in R. For describing the resulting random field we set
F :=

⊗∞
j=1 B(R), where B(R) is the Borel σ-algebra in R. In this case, the probability measure can be

expressed as the Gaussian product probability, that is, P :=
⊗∞

j=1N (0, 1). For the well-posedness of

ν in (49), we restrict z to be in the set Ω := {z ∈ RN :
∑∞
j=1 |zj |‖ψj‖L∞(D) < ∞}. In this case, Ω is

F-measurable, and P(Ω) = 1 holds. Further, for every ω ∈ Ω, the following quantities are well-defined

νmax(ω) = exp(

∞∑
j=1

|zj(ω)|‖ψj‖L∞(D)), νmin(ω) = exp(−
∞∑
j=1

|zj(ω)|‖ψj‖L∞(D)), (52)

and satisfy A1 in Assumptions 4.1. See [4, 26] for more details.

4.1 Well-posedness of state equation

For the log-normally distributed diffusion, the existence is more delicate. In fact, due to lack of integra-
bility, we can not use the weak formulation (10) directly. In this case, first, we show that the solution
y(ω) ∈ W (0, T ) exists for ω ∈ Ω a.s., then we justify the measurability and integrability of the mapping
y : Ω→ W (0, T ) with ω 7→ y(ω). The latter relies on controlling the integrability of all constants in the
estimates.

Theorem 4.1. Suppose that Assumption 4.1 holds. Then for every given (t0, T, y0, f) ∈ R2
>0 × H ×

L2((t0, t0 + T );H) equation (9) admits a unique solution y ∈ WP(t0, t0 + T ) satisfying the following
estimates

‖y‖2C([t0,t0+T ];HP) + ‖y‖2WP(t0,t0+T ) ≤ c3
(
‖y0‖2H + ‖f‖2L2((t0,t0+T );H)

)
, (53)

with c3 depending on (T, a, b,D,Ω). Moreover, we have the following observability inequality

‖y0‖2H ≤ c4‖y‖2L2((t0,t0+T );VP) + ‖f‖2L2((t0,t0+T );H), (54)

with c4 depending only on (T, a, b,D,Ω).

Proof. The proof is mainly inspired by the arguments given in [10] for the well-posedness of the elliptic
PDEs with log-normal diffusion. It follows the following steps: First, for each ω ∈ Ω a.s., we consider
the unique solution y(ω) ∈ W (0, T ) and derive the estimates for the resulting family of solutions. Next,
we show that y(ω) is measurable with respect to ω. Finally, we show the integrability of this solution.
Throughout, c is a generic constant that is independent of ω.

Using standard arguments for deterministic parabolic PDEs, it can be shown that for ω ∈ Ω a.s.,
(CS) admits a unique weak solution y(ω) with

d

2dt
‖y(ω, t)‖2H + νmin(ω)‖y(ω, t)‖2V ≤ ‖a‖L∞((0,∞)×D;R)‖y(ω, t)‖2H + (f(t), y(ω, t))H

≤
(
1 + 2‖a‖L∞((0,∞)×D;R)

)
2

‖y(ω, t)‖2H +
1

2
‖f(t)‖2H .

(55)

Using Gronwall’s inequality we obtain for every t ∈ [t0, t0 + T ] that

‖y(ω, t)‖2H + 2νmin(ω)‖y(ω)‖2L2((t0,t);V )

≤ c exp(T (1 + 2‖a‖L∞((0,∞)×D;R)))
(
‖y0‖2H + ‖f‖2L2((t0,t0+T );H)

)
.
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Therefore, we can infer that

‖y(ω)‖2L2((t0,t0+T );V ) ≤
c

νmin(ω)

(
‖y0‖2H + ‖f‖2L2((t0,t0+T );H)

)
. (56)

Similarly, we can write

‖∂ty(ω)‖2L2((t0,t0+T );V ′) ≤ c
(
ν2

max(ω) + ‖a‖2L∞((0,∞)×D;R)

)
‖y(ω)‖2L2((t0,t0+T );V ) + c‖f‖2L2((t0,t0+T );H)

≤ c(1 + ν2
max(ω))

νmin(ω)

(
‖y0‖2H + ‖f‖2L2((t0,t0+T );H)

)
and thus, together with (56) we have

‖y(ω)‖2W (0,T ) ≤ cc(ω)
(
‖y0‖2H + ‖f‖2L2(t0,t0+T ;H)

)
, (57)

where cc(ω) :=
c(1+ν2

max(ω))
νmin(ω) .

Next, we show the measurability of the solution operator. To do this, we show that y is a.s. the
limit of a sequence of measurable functions. One can adapt the proof given in [10, Theorem 3.4]. Hence,
we just sketch its main idea here. We first define, for every n ∈ N, the sequence Ωn ⊂ Ω for which the
diffusion coefficient is uniformly bounded

Ωn := {ω ∈ Ω : νmax(ω) < n and νmin(ω) >
1

n
} ⊂ Ω. (58)

Then {Ωn}n is increasing with Ω = ∪n∈NΩn. Further, invoking Theorem 3.1, it follows that (CS) has
the unique solution yn ∈ L2

P|Ωn
(Ω;W (t0, t0 + T )) where P|Ωn stands for the restriction of P to Ωn. This

solution can be extended by zero to the solution defined on the whole of Ω, which we denote again by
yn. By definition, yn is measurable. Further, due to the fact that Ω = ∪n∈NΩn, that yn solves (CS) for
ω ∈ Ωn a.s., and by uniqueness of the solution, the function y is the a.s. limit of measurable functions
{yn}n, and thus it is also measurable.

Now, we are in a position where we can show the integrability of the solution. Using A1 in Assumption
4.1, we integrate over Ω both of sides of (57), and conclude that

‖y‖2Lp(Ω;W (0,T )) ≤ c̃(p)
(
‖y0‖2H + ‖f‖2L2((t0,t0+T );H)

)
,

for every p ∈ [1,∞), and a constant c̃(p) > 0 depending on p, using that cc(ω) is p-integrable. In
particular, due to (3), inequality (53) holds for p = 2 with a constant c3 := c̃(2) > 0.

We next verify the observability estimate (54). Multiplying (9) by T+t0−t
T y(t), integrating over

(t0, t0 + T ), and using Young’s inequality, we obtain for ω ∈ Ω a.s.

‖y0‖2H =
1

T

∫ t0+T

t0

‖y(ω, t)‖2H dt

+ 2

∫ t0+T

t0

t0 + T − t
T

(
νmax(ω)‖y(ω, t)‖2V + 〈a(t)y(ω, t), y(ω, t)〉V ′,V − 〈f(t), y(ω, t)〉V ′,V

)
dt

≤ c
(
T−1 + νmax(ω) + 1 + ‖a‖L∞((0,∞)×D;R)

) ∫ t0+T

t0

‖y(ω, t)‖2V dt+

∫ t0+T

t0

‖f(t)‖2H dt,

(59)

where c > 0 depends only on D. Setting co(ω) := c
(
T−1 + νmax(ω) + 1 + ‖a‖L∞((0,∞)×D;R)

)
, dividing

(59) by co(ω), and integrating over Ω, we obtain (54) and the proof is complete.
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4.2 Stability of deterministic RHC

According to Theorem 4.1, the well-posedness of the state in WP(0, T ) for the log-normal diffusion, is
justified only for deterministic initial and forcing functions. Due to the lack of integrability (see (57)),
it is not clear how it can be extended for the random fields as initial and forcing functions. Therefore,
first, at any time instances ti of the receding horizon framework, we turn the random fields yrh(tj , ·, ·) to

a deterministic initial function ȳ0(·) =
(
E
[
yrh(tj , ·)2

]) 1
2 by computing average of the squared function

with respect to ω. Then we plug this deterministic initial function into the online open-loop problem.
In this regard, we have modified and changed Algorithm 1 to develop Algorithm 2. Further, we need to
restrict ourselves here to a deterministic control and, thus, for every ȳ0 ∈ H we consider the following
performance index

JT (u; t̄0, ȳ0) :=
1

2

∫ t̄0+T

t̄0

E
[
‖y(t)‖2V

]
dt+

β

2

∫ t̄0+T

t̄0

|u(t)|2`2dt. (60)

In the next theorem, we investigate the stability of the control obtained by Algorithm 2 for U := RN and
`(t, y) := ‖y‖2V .

Algorithm 2 Robust RHC(δ, T ) for the log-normal diffusion

Require: The sampling time δ, the prediction horizon T ≥ δ, and the initial state y0
Ensure: The stability of the RHC urh.

We proceed through the steps of Algorithm 1 except that Steps 1, 4, and 5 are replaced by:

1. Compute E
[
y20(x)

]
for x ∈ D and set (t̄0, ȳ0) :=

(
0,
(
E
[
y20
]) 1

2

)
and yrh(0) = y0;

4. Compute E
[
yrh(t̄0 + δ, x)2

]
of the state for any x ∈ D at time t̄0 + δ;

5. Update: (t̄0, ȳ0)←
(
t̄0 + δ,

(
E
[
yrh(t̄0 + δ)2

]) 1
2

)
;

Theorem 4.2. Suppose that Assumption 4.1 holds and

νmin(ω) + ess inf{a(t, x) : (t, x) ∈ (0,∞)×D} > 0, for ω ∈ Ω a.s.. (61)

Then, for N ≥ 1 with the set of actuators {1Oi}Ni=1 given in Section 3.2 , Algorithm 2 for `(t, ·) := ‖ · ‖2V
is suboptimal and stabilizing. That is, for every given δ > 0, there exist numbers T ∗ > δ, and α ∈ (0, 1),
such that for every fixed prediction horizon T ≥ T ∗, and every y0 ∈ HP, the RHC urh ∈ L2((0,∞);RN )
satisfies the suboptimality inequality (30) and exponential stability result (32).

Proof. The proof is similar to the one of Theorem 3.1 and is based on the arguments given in [1, Theorem
2.6]. To be more precise, we need again to verify the properties P1-P3 given in the proof of Theorem 3.1
with respect to the H-norm in place of the HP-norm. After verifying P1-P3, according to the construction
(see Steps 1, 4, and 5) of Algorithm 2, it can be easily shown that (33) and (39) hold at every time
instance ti = iδ for yrh(ti) with respect to the HP-norm, that is, VT (ti, yrh(ti)) ≤ γ2(T )‖yrh(ti)‖2HP

and
VT (ti, yrh(ti)) ≥ γ1(T )‖yrh(ti)‖2HP

hold for every i = 0, 1, 2, . . . . The rest of the proof can be completed
along the routine of the proof of [1, Theorem 2.6]. Therefore, we will confine ourselves here to the
justification of properties P1-P3.

To verify P1, we set ū := 0 in (CS) and define ν̂(ω) := νmin(ω) + ess inf{a(t, x) : (t, x) ∈ (0,∞)×D}.
Then using the standard energy estimates, we obtain for any (t̄0, T ) ∈ R2

≥0 and ȳ0 ∈ H that

d

2dt
‖ȳ(ω, t)‖2H + ν̂(ω)‖ȳ(ω, t)‖2H ≤ 0 for almost every t ≥ t̄0,
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Thus, we have for ω ∈ Ω a.s. that

‖ȳ(ω, t)‖2H ≤ e−2ν̂(ω)(t−t̄0)‖ȳ0‖2H . (62)

Integrating over (t̄0, t̄0 + T ), we obtain

‖ȳ(ω)‖2L2((t̄0,t̄0+T );H) ≤
(

1− e−2ν̂(ω)T

2ν̂(ω)

)
‖ȳ0‖2H ≤

1

2ν̂(ω)
‖ȳ0‖2H .

Thus, similarly to (55), we can write

‖ȳ(ω)‖2L2((t̄0,t̄0+T );V ) ≤
1

2νmin(ω)
‖ȳ0‖2H +

‖a‖L∞((0,∞)×D;R)

νmin(ω)
‖ȳ(ω)‖2L2((t̄0,t̄0+T );H)

≤
(

1

2νmin(ω)
+
‖a‖L∞((0,∞)×D;R)

2ν̂(ω)νmin(ω)

)
‖ȳ0‖2H .

Integrating over ω ∈ Ω, we obtain

‖ȳ‖2L2((t̄0,t̄0+T );VP)) = ‖ȳ‖2L2
P(Ω;L2((t̄0,t̄0+T );V )) ≤ cs‖ȳ0‖2H , (63)

where the integrability of 1
νmin(ω) and 1

ν̂(ω)νmin(ω) is justified due to (61) and A1 in Assumption 4.1. Setting

ū := 0 in (60) and using (63), we arrive at

VT (t̄0, ȳ0) ≤ 1

2

∫ t̄0+T

t̄0

E
[
‖ȳ(t)‖2V

]
dt+

β

2

∫ t̄0+T

t̄0

|ū(t)|2`2dt ≤
cs
2
‖ȳ0‖2H ,

for a positive constant cs > 0. P2 and P3 follow with similar arguments as in the proof of Theorem 3.1
using the inequalities (53) and (54), respectively.

Remark 4.1. Condition (61) might be considered restrictive from the stabilizability point of view. How-
ever, while the uncontrolled system is stable, the exponential stability is not clear due to the lack of inte-
grability (see (62)), since ν̂ is not uniformly bounded away from 0. Further, since νmin(ω) can be really
small and arbitrarily close to zero for some realization of ω ∈ Ω, the stability can be quite slow. However,
using Algorithm 2 we are able to stabilize the system exponentially independent of all the perturbations
of the dynamics caused by all possible realizations of the random variable ν.

4.3 Failure probability

Similarly to Section 3.4, under Assumption 4.1, we derive an upper bound for the probability, where the
stabilizability of receding horizon framework for both problems (44) and (45) is not guaranteed. Due to
(29) in Remark 3.1, the stabilizability may fail if

νmin(ω)βN̄ ≤ 3‖a‖L∞((0,∞)×D;R),

holds. Thus, setting Γ(ω) :=
∑∞
j=1|zj(ω)|‖ψj‖L∞(D), we can write for the diffusion defined in Example

4.1 that

P
[
νmin(ω)βN̄ ≤ 3‖a‖L∞((0,∞)×D;R)

]
= P

[
νmin(ω) ≤ 3‖a‖L∞((0,∞)×D;R)β

−1
N̄

]
= P

[
−Γ(ω) ≤ log

(
3‖a‖L∞((0,∞)×D;R)β

−1
N̄

)]
= P

[
Γ(ω) ≥ log

(
βN̄

3‖a‖L∞((0,∞)×D;R)

)]
.

Further, for every κ0 > 0, we can write

P
[
Γ(ω) ≥ log

(
βN̄

3‖a‖L∞((0,∞)×D;R)

)]
≤ E

[
eκ0Γ2

]
e
−κ0 log

(
βN̄

3‖a‖L∞((0,∞)×D;R)

)2

. (64)
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where we have used the Markov inequality in the last step and we have assumed that βN̄ ≥ 3‖a‖L∞((0,∞)×D;R).
Note that due to Fernique’s theorem [8, Theorem 2.7], there exists κ0 > 0 such that the expectation of
the double exponential in the left-hand side of (64) is bounded. Then, we can conclude that

e
−κ0 log

(
βN̄

3‖a‖L∞((0,∞)×D;R)

)2

= O(β−p
N̄

(3‖a‖L∞((0,∞)×D;R))
p) (65)

for every p ∈ [1,∞). This follows from the observation that for every κ > 0 and p, x ∈ [1,∞) we can
write

eκ log(x)2

≥ Cpxp ⇔ κ log(x)2 ≥ log(Cp) + p log(x) ⇔ κ log(x)2 − p log(x) ≥ log(Cp)

for a constant Cp > 0 depending only on p. Further, the function f(y) = κy2 − py is lower bounded by
−p/(4κ), that is, miny∈R κy

2 − py = −p2/(4κ). Then, it follows that for every p, x ∈ [1,∞), we have

eκ log(x)2 ≥ e−
p2

4κ xp. Hence, the existence of Cp is justified by setting Cp := e−
p2

4κ . Finally, using (15) and
(65), we conclude that

P
[
νmin(ω)βN̄ ≤ 3‖a‖L∞((0,∞)×D;R)

]
= O(N̄−2p(c−1

β 3‖a‖L∞((0,∞)×D;R))
p)

for every p ∈ [1,∞).
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