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A PROXIMAL POINT DUAL NEWTON ALGORITHM FOR
SOLVING GROUP GRAPHICAL LASSO PROBLEMS\ast 

YANGJING ZHANG\dagger , NING ZHANG\ddagger , DEFENG SUN\S , AND KIM-CHUAN TOH\P 

Abstract. Undirected graphical models have been especially popular for learning the conditional
independence structure among a large number of variables where the observations are drawn inde-
pendently and identically from the same distribution. However, many modern statistical problems
would involve categorical data or time-varying data, which might follow different but related under-
lying distributions. In order to learn a collection of related graphical models simultaneously, various
joint graphical models inducing sparsity in graphs and similarity across graphs have been proposed.
In this paper, we aim to propose an implementable proximal point dual Newton algorithm (PPDNA)
for solving the group graphical Lasso model, which encourages a shared pattern of sparsity across
graphs. Though the group graphical Lasso regularizer is nonpolyhedral, the asymptotic superlinear
convergence of our proposed method PPDNA can be obtained by leveraging on the local Lipschitz
continuity of the Karush--Kuhn--Tucker solution mapping associated with the group graphical Lasso
model. A variety of numerical experiments on real data sets illustrates that the PPDNA for solving
the group graphical Lasso model can be highly efficient and robust.
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Lipschitz continuity
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1. Introduction. Let w(k) \in \BbbR nk\times p, k = 1, 2, . . . ,K, be K given data matrices.
For each k = 1, 2, . . . ,K, the rows of w(k) are observations drawn independently from
a Gaussian distribution with mean zero, and the empirical covariance matrix for w(k)

is given by S(k) = (1/nk)(w
(k))Tw(k). In this paper, we consider the following joint

graphical model:

(1.1) min
\Theta 

K\sum 
k=1

\Bigl( 
 - log det \Theta (k) + \langle S(k),\Theta (k)\rangle 

\Bigr) 
+ \scrP (\Theta ),

where \Theta =
\bigl( 
\Theta (1),\Theta (2), . . . ,\Theta (K)

\bigr) 
\in \BbbS p \times \BbbS p \times \cdot \cdot \cdot \times \BbbS p is the decision variable, and \scrP 

is a convex penalty term that can promote certain desired structure in the decision
variable \Theta . Throughout this paper, we assume that the solution set to problem (1.1)
is nonempty.
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2198 Y. ZHANG, N. ZHANG, D. SUN, AND K.-C. TOH

IfK = 1 and \scrP (\cdot ) = \lambda \| \cdot \| 1, problem (1.1) reduces to the well-known sparse Gauss-
ian graphical model which has been studied by various researchers (e.g., [1, 2, 10, 14,
27, 33, 36]). In many applications, a single Gaussian graphical model is typically
enough to capture the conditional independence structure of the random variables.
However, in some situations it is more reasonable to fit a collection of such models
jointly, due to the similarity or heterogeneity of the data involved. These models for
estimating multiple precision matrices jointly are referred to as joint graphical models
in [8]. A scenario where joint graphical models are more suitable than a single graph-
ical model is when the data comes from several distinct but closely related classes,
which share the same collection of variables but differ in terms of the dependency
structures. Their dependency graphs can have common edges across a portion of
all classes and unique edges restricted to only certain classes. In this case, fitting
separate graphical models for distinct classes does not exploit the similarity among
the dependency graphs. In contrast, joint estimation of these models could exploit
information across different but related classes. In addition to the data from differ-
ent classes, another scenario that would favor joint graphical models over a single
graphical model is when the data contains sequences of multivariate time-stamped
observations. Such data might correspond to a series of dependency graphs over time.
Next, we give two practical applications of joint graphical models, which will also be
used in our numerical experiments:

- The inference of words' relationships from webpages or newsgroups: the webpages
from the computer science departments of various universities are classified into
several classes: Student, Faculty, Course, Project, etc. The 20 newsgroups are
grouped into various topics.

- The inference of time-varying dependency structures of stocks: the dependency
structures among the Standard \& Poor's 500 component stocks might change
smoothly over time.

In summary, there are two major applications of the joint graphical models: (i) esti-
mating multiple precision matrices jointly for a collection of variables across distinct
classes; (ii) inferring the time-varying networks and finding the change-points.

For solving problem (1.1) with different forms of penalty terms, the alternating
direction method of multipliers (ADMM) has been extensively used; see, e.g., [8,
12, 13]. As we know, the ADMM could be a fast first order method for finding
approximate solutions of low or moderate accuracy. However, for attaining superlinear
convergence to compute highly accurate solutions, one has to incorporate at least
in part the second order information of the problem. Yang et al. [34] proposed a
proximal Newton-type method, where the subproblem in each iteration can be solved
by the nonmonotone spectral projected gradient method [19, 32], and an active set
identification scheme was applied to reduce the cost. Another notable contribution
is that a screening rule, which can be combined with any method to reduce the
computational cost, was proposed in [34]. However, the second order method in
[34] is not without drawbacks. Each of its subproblems is a complicated quadratic
approximation problem, which generally requires expensive computations. Besides,
the inexact proximal Newton-type method proposed in [34] has no guarantee of local
linear convergence. It is worth noting that, in a recent paper related to [34], Yue,
Zhou, and So [37] studied the local convergence rate of a family of inexact proximal
Newton-type methods for solving a class of nonsmooth convex composite optimization
problems based on an error bound condition. However, it is not clear to us whether the
convergence analysis in [37] can be directly applied to problem (1.1), as the Hessian
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PPDNA FOR SOLVING GROUP GRAPHICAL LASSO PROBLEMS 2199

Fig. 1. Illustration of \Theta and \Theta [ij]. One cube stands for one entry.

of the first function in the objective of the problem is not uniformly bounded on its
effective domain. More recently, Zhang et al. [38] applied a regularized proximal point
algorithm (rPPA) to solve a fused multiple graphical Lasso (FGL) model and heavily
exploited the underlying second order information through the semismooth Newton
method when solving the subproblems of the rPPA. Due to the polyhedral property
of the FGL regularizer, the rPPA for solving the FGL problem is proven to have an
arbitrary linear convergence rate in [38].

Our goal in this paper is to design and analyze an efficient second order informa-
tion based algorithm with economical implementations and a fast convergence rate for
solving problem (1.1) with the following nonpolyhedral regularizer, which was referred
to as the group graphical Lasso (GGL) regularizer in [8]:

(1.2) \scrP (\Theta ) = \lambda 1

K\sum 
k=1

\sum 
i \not =j

| \Theta (k)
ij | + \lambda 2

\sum 
i \not =j

\Bigl( K\sum 
k=1

| \Theta (k)
ij | 2

\Bigr) 1/2

,

where \lambda 1 and \lambda 2 are positive parameters. We refer to model (1.1) with the regularizer
(1.2) as the GGL model. In fact, the GGL regularizer acting on a collection of
matrices can be viewed as an extension of the sparse group Lasso regularizer [11, 28]
acting on a vector. The former can be regarded as the latter if the (i, j)th elements
across all K precision matrices are assigned into one group. For 1 \leq i, j \leq p, we

let \Theta [ij] := [\Theta 
(1)
ij ; . . . ; \Theta 

(K)
ij ] \in \BbbR K be the column vector obtained by taking out the

(i, j)th elements across all K matrices \Theta (k), k = 1, 2, . . . ,K. We can observe that

(1.3) \scrP (\Theta ) =
\sum 
i\not =j

\varphi (\Theta [ij]) with \varphi (x) = \lambda 1\| x\| 1 + \lambda 2\| x\| \forall x \in \BbbR K ,

where the function \varphi is actually a special sparse group Lasso regularizer. The first
term of the GGL regularizer promotes sparsity in the K estimated precision matrices
\Theta (k)'s. The zeros in these precision matrices tend to occur at the same indices due to
the second term of the GGL regularizer. In addition, Figure 1 illustrates the structure
of the decision variable \Theta and the vector belonging to one group \Theta [ij].

Inspired by the impressive numerical performance of the rPPA for solving the FGL
model [38], we will design a proximal point dual Newton algorithm (PPDNA) for solv-
ing the GGL model. Specifically, a proximal point algorithm (PPA) [24] is applied to
the primal formulation of the GGL model, and a superlinearly convergent semismooth
Newton method is designed to solve the dual formulations of the PPA subproblems.
Thanks to the fact that the GGL regularizer is an extension of the sparse group Lasso
regularizer, the generalized Jacobian of the proximal mapping of the GGL regularizer
can be characterized based on that of the sparse group Lasso regularizer, where the
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2200 Y. ZHANG, N. ZHANG, D. SUN, AND K.-C. TOH

explicit form was given in [39]. As a result, the former naturally inherits the struc-
tured sparsity (referred to as the second order sparsity) of the latter. Consequently,
multiplying a sparse Hessian matrix by a vector in the semismooth Newton method is
reasonably cheap, and one could expect that the superlinearly convergent semismooth
Newton method is numerically efficient for solving the PPA subproblems. In addition
to achieving low cost in computing the semismooth Newton directions by exploiting
the second order sparsity, we also establish the linear convergence guarantee of the
PPDNA.

Though the framework of the PPDNA for solving the GGL model is closely re-
lated to the rPPA for solving the FGL model [38] and the semismooth Newton based
augmented Lagrangian method (SSNAL) for solving the sparse group Lasso problems
[39], both the theoretical analysis and numerical implementation should be further
investigated owing to the following difficulties of the GGL model. First, unlike the
FGL regularizer, the GGL regularizer is a nonpolyhedral function, and consequently
the Lipschitz continuity of the Karush--Kuhn--Tucker (KKT) solution mapping associ-
ated with the GGL model is not as straightforward to establish as in [38]. We should
mention here that the Lipschitz continuity of the KKT solution mapping plays an im-
portant role in establishing the convergence rate of the PPDNA, just as in the case of
rPPA and SSNAL. Second, the subproblem of the PPDNA for solving the GGL model
differs from those of the SSNAL and rPPA, which are strongly convex. Therefore, the
stopping criteria previously used in SSNAL and rPPA are no longer applicable. The
main contributions of this paper can be summarized as follows.

1. We prove the Lipschitz continuity of the KKT solution mapping associated with the
GGL model, by taking advantage of the strict convexity of the function  - log det(\cdot )
in its effective domain, the nonsingularity of its Jacobian, and Clarke's implicit
function theorem [5, 6]. Consequently, the linear convergence of the iterative se-
quence generated by the PPDNA can be established based on the classical results
in [24]. Moreover, by choosing the penalty parameter to be sufficiently large, the
PPDNA can be made to attain any desired linear convergence rate. More generally,
the Lipschitz continuity of the KKT solution mapping of the model still holds even
if the GGL regularizer is replaced by any other convex positively homogeneous
function.

2. We derive a surrogate generalized Jacobian of the proximal mapping of the GGL
regularizer. The second order sparsity in the surrogate generalized Jacobian is
analyzed in depth and fully exploited in the PPDNA. Therefore, the superlinearly
(or even quadratically) convergent semismooth Newton method can solve the PPA
subproblems very efficiently since the semismooth Newton directions can be com-
puted cheaply.

3. We introduce fairly easy-to-check stopping criteria (via the duality theory) for
computing inexact solutions of the PPA subproblems without sacrificing the global
or linear convergence of the PPDNA. In fact, the standard stopping criteria adopted
by Rockafellar [24] would involve the unknown optimal values of the subproblems,
which are not easy to check unless the objective function is strongly convex with
an explicitly given strong convexity parameter.

The remaining parts of the paper are organized as follows. Section 2 presents some
definitions and preliminary results, which include the proximal mapping of the GGL
regularizer, its generalized Jacobian, the proximal mapping of the log-determinant
function, and its derivative. We analyze in section 3 the Lipschitz continuity of the
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KKT solution mapping associated with the GGL model, which is the key property
for deriving the linear convergence rate of our proposed algorithm. In section 4,
we propose the PPDNA for solving the GGL model and investigate its convergence
properties. We report the numerical performance of the PPDNA on categorical text
data and time-varying stock prices data in section 5 and conclude the paper in section
6.

Notation. The following notation will be used in the rest of the paper.

\bullet \BbbS p+ (\BbbS p++) denotes the cone of positive semidefinite (definite) matrices in the space
of p \times p real symmetric matrices \BbbS p. For any A, B \in \BbbS p, we write A \succeq B if
A  - B \in \BbbS p+ and A \succ B if A  - B \in \BbbS p++. In particular, A \succeq 0 (A \succ 0) indicates
that A \in \BbbS p+ (A \in \BbbS p++).

\bullet We let \BbbZ (\BbbZ +, \BbbZ ++) be the Cartesian product of K copies of \BbbS p (\BbbS p+, \BbbS 
p
++).

\bullet For any matrix A, Aij denotes the (i, j)th element of A.

\bullet For any X := (X(1), . . . , X(K)) \in \BbbZ , X[ij] := [X
(1)
ij ; . . . ;X

(K)
ij ] \in \BbbR K denotes the

column vector obtained by taking out the (i, j)th elements across all K matrices
X(k), k = 1, 2, . . . ,K.

\bullet In denotes the n \times n identity matrix, and I denotes an identity matrix or map
when the dimension is clear from the context.

\bullet We use \lambda max(\scrA ) to denote the largest eigenvalue of a self-adjoint linear operator
\scrA .

\bullet For a given closed convex set \Omega and a vector x, we denote the Euclidean projection
of x onto \Omega by \Pi \Omega (x) := argminx\prime \in \Omega \{ \| x - x\prime \| \} .

\bullet We denote ceil(x) as the smallest integer greater than or equal to x \in \BbbR .

2. Preliminaries. In this section, we first recall the definition and some relevant
properties of the Moreau--Yosida regularization of a proper and closed convex function,
which will play an important role in the subsequent theoretical analysis and algorith-
mic design. Let \scrE be a finite dimensional real Hilbert space and g : \scrE \rightarrow \BbbR \cup \{ +\infty \} 
be a proper and closed convex function. The Moreau--Yosida regularization [21, 35]
of g is defined by

(2.1) \Psi g(u) := min
u\prime 

\biggl\{ 
g(u\prime ) +

1

2
\| u\prime  - u\| 2

\biggr\} 
\forall u \in \scrE ,

and the proximal mapping of g, the unique minimizer of (2.1), is given by

Proxg(u) := argmin
u\prime 

\biggl\{ 
g(u\prime ) +

1

2
\| u\prime  - u\| 2

\biggr\} 
\forall u \in \scrE .

One critical property of the Moreau--Yosida regularization is that \Psi g(\cdot ) is a continu-
ously differentiable convex function with the following gradient:

\nabla \Psi g(u) = u - Proxg(u) \forall u \in \scrE .

In addition, the proximal mapping satisfies the following Moreau identity [25, Theo-
rem 31.5]:

(2.2) Prox\sigma g(u) + \sigma Prox\sigma  - 1g\ast (u/\sigma ) = u \forall u \in \scrE , \sigma > 0,

where g\ast is the conjugate function of g (see, e.g., [25] for its definition).
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2.1. Proximal mapping of the GGL regularizer and its generalized Ja-
cobian. We investigate in this section the proximal mapping of the GGL regularizer
\scrP in (1.2) and its generalized Jacobian. Recall the function in (1.3):

\scrP (\Theta ) =
\sum 
i\not =j

\varphi (\Theta [ij]) with \varphi (x) = \lambda 1\| x\| 1 + \lambda 2\| x\| \forall x \in \BbbR K .

By definition, the proximal mapping of \scrP is given as follows: for any X \in \BbbZ ,

(2.3)

Prox\scrP (X) = argmin
\Theta \in \BbbZ 

\bigl\{ 
\scrP (\Theta ) + 1

2\| \Theta  - X\| 2
\bigr\} 

= argmin
\Theta \in \BbbZ 

\Bigl\{ \sum 
i\not =j

\bigl\{ 
\varphi (\Theta [ij]) +

1
2\| \Theta [ij]  - X[ij]\| 2

\bigr\} 
+ 1

2

\sum 
i\| \Theta [ii]  - X[ii]\| 2

\Bigr\} 
.

It is obvious that problem (2.3) is separable for each vector \Theta [ij] \in \BbbR K . Therefore, for
any i, j \in \{ 1, 2, . . . , p\} , the vector (Prox\scrP (X))[ij], consisting of all entries of Prox\scrP (X)
in the (i, j)th position, is given explicitly by

(2.4) (Prox\scrP (X))[ij] =

\Biggl\{ 
Prox\varphi (X[ij]) if i \not = j,

X[ii] if i = j.

By this equation, one can compute Prox\scrP via performing p(p - 1)/2 computations of
Prox\varphi , and this task can be done in parallel. Parts of the second order information of
the underlying problem are contained in the generalized Jacobian of Prox\scrP , which can
be characterized by the generalized Jacobian of Prox\varphi through using the relationship
(2.4) between Prox\scrP and Prox\varphi . Fortunately, the generalized Jacobian of Prox\varphi has
been carefully investigated in [39] and has an explicit expression.

Let the multifunction \widehat \partial Prox\varphi : \BbbR K \rightrightarrows \BbbS K be the generalized Jacobian of Prox\varphi .

Directly from the formula (10) in [39], the multifunction \widehat \partial Prox\varphi can be described as
follows: for any u \in \BbbR K ,

(2.5)
\widehat \partial Prox\varphi (u)
=

\bigl\{ 
(I  - \Sigma )\Lambda \in \BbbS K

\bigm| \bigm| v = Prox\lambda 1\| \cdot \| 1
(u), \Sigma \in \partial \Pi \BbbB \lambda 2

(v), \Lambda \in \partial Prox\lambda 1\| \cdot \| 1
(u)

\bigr\} 
,

where \BbbB \lambda 2
:= \{ v \in \BbbR K | \| v\| \leq \lambda 2\} , and \partial \Pi \BbbB \lambda 2

and \partial Prox\lambda 1\| \cdot \| 1
are the Clarke gener-

alized Jacobians (see [5, Definition 2.6.1] for the definition) of \Pi \BbbB \lambda 2
and Prox\lambda 1\| \cdot \| 1

,

respectively. Therefore, the surrogate generalized Jacobian \widehat \partial Prox\scrP (X) : \BbbZ \rightrightarrows \BbbZ of
Prox\scrP at any given X can be described as follows:\left\{         

\scrW \in \widehat \partial Prox\scrP (X) if and only if \exists M (ij) \in \widehat \partial Prox\varphi (X[ij]) \forall i < j,

such that (\scrW [Y ])[ij] =

\left\{     
M (ij)Y[ij] if i < j,

Y[ii] if i = j,

M (ji)Y[ij] if j < i,

i, j = 1, . . . , p, \forall Y \in \BbbZ .
(2.6)

The next proposition will explain why \widehat \partial Prox\scrP (X) in (2.6) can be treated as the
surrogate generalized Jacobian of Prox\scrP at X. Based on [39, Theorem 3.1], one can
easily prove the proposition. We omit the details here.

Proposition 2.1. Let \scrP be the GGL regularizer defined by (1.2) and X \in \BbbZ be

any given element. The surrogate generalized Jacobian \widehat \partial Prox\scrP (\cdot ) defined in (2.6)
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is nonempty compact valued and upper semicontinuous. Any element in the set\widehat \partial Prox\scrP (X) is a self-adjoint and positive semidefinite operator. Moreover, we have
that, for any Y \rightarrow X,

Prox\scrP (Y ) - Prox\scrP (X) - \scrW [Y  - X] = O(| | Y  - X| | 2) \forall \scrW \in \widehat \partial Prox\scrP (Y ).

2.2. Properties of the log-determinant function. In this subsection, we
present some properties on the proximal mapping of the following log-determinant
function h and its derivative that are mainly adopted from the papers [31, 33]:

(2.7) h(X) :=

\Biggl\{ 
 - log det X if X \in \BbbS p++,

+\infty otherwise.

Let \beta > 0 be given. Define the following scalar functions:

\phi +\beta (x) := (
\sqrt{} 
x2 + 4\beta + x)/2, \phi  - \beta (x) := (

\sqrt{} 
x2 + 4\beta  - x)/2 \forall x \in \BbbR .

In addition, for any A \in \BbbS p with eigenvalue decomposition A = QDiag(d1, . . . , dp)Q
T ,

we define

\phi +\beta (A) := QDiag(\phi +\beta (d1), . . . , \phi 
+
\beta (dp))Q

T , \phi  - \beta (A) := QDiag(\phi  - \beta (d1), . . . , \phi 
 - 
\beta (dp))Q

T .

One can observe that \phi +\beta (A) and \phi  - \beta (A) are positive definite for any A \in \BbbS p. Using
the functions defined above, the following two propositions give the proximal mapping
of the log-determinant function h and its derivative.

Proposition 2.2 ([33, Proposition 2.3]). Let h be the log-determinant function
defined by (2.7) and \beta be a positive scalar. Then, for any A \in \BbbS p, it holds that

\phi +\beta (A) = Prox\beta h(A) = argmin
B\in \BbbS p++

\bigl\{ 
h(B) + 1

2\beta \| B  - A\| 2
\bigr\} 
,

\Psi \beta h(A) = min
B\in \BbbS p++

\bigl\{ 
\beta h(B) + 1

2\| B  - A\| 2
\bigr\} 
=  - \beta log det(\phi +\beta (A)) +

1
2\| \phi 

 - 
\beta (A)\| 2.

Proposition 2.3 ([31, Lemma 2.1 (b)]). Let \beta be a given positive scalar. The
function \phi +\beta : \BbbS p \rightarrow \BbbS p is continuously differentiable. For any A \in \BbbS p with eigenvalue

decomposition A = QDiag(d1, . . . , dp)Q
T , the derivative (\phi +\beta )

\prime (A)[B] at any B \in \BbbS p
is given by

(\phi +\beta )
\prime (A)[B] = Q(\Gamma \odot (QTBQ))QT ,

where \Gamma \in \BbbS p is defined by

\Gamma ij =
\phi +\beta (di) + \phi +\beta (dj)

(d2i + 4\beta )1/2 + (d2j + 4\beta )1/2
, i, j = 1, 2, . . . , p.

3. Lipschitz continuity of the KKT solution mapping. In this section,
we will prove that the KKT solution mapping associated with the GGL problem is
Lipschitz continuous. More generally, we emphasize that the Lipschitz continuity of
the KKT solution mapping still holds even if the GGL regularizer is replaced by any
other convex positively homogeneous function, since the key properties we need from
the regularizer \scrP are convexity and positive homogeneity.

D
ow

nl
oa

de
d 

04
/0

3/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2204 Y. ZHANG, N. ZHANG, D. SUN, AND K.-C. TOH

The analysis in this section is based on Clarke's implicit function theorem. For
notational convenience, we denote

(3.1) f(\Theta ) :=

K\sum 
k=1

h(\Theta (k)) + \langle S(k),\Theta (k)\rangle , \Theta \in \BbbZ .

Then the GGL problem (1.1) can be equivalently reformulated as follows:

(3.2) min
\Omega ,\Theta 

\{ f(\Omega ) + \scrP (\Theta ) | \Omega  - \Theta = 0\} .

The Lagrangian function associated with problem (3.2) is given by

\scrL (\Omega ,\Theta , X) := f(\Omega ) + \scrP (\Theta ) + \langle \Omega  - \Theta , X\rangle , (\Omega ,\Theta , X) \in \BbbZ \times \BbbZ \times \BbbZ ,

and the dual problem of (3.2) is easily shown to be

(3.3) max
X

K\sum 
k=1

\bigl( 
log det(X(k) + S(k)) + p

\bigr) 
 - \scrP \ast (X).

In addition, the KKT system associated with (3.2) and (3.3) is given by

(3.4) X + Proxf\ast (\Omega  - X) = 0,  - X + Prox\scrP \ast (\Theta +X) = 0, \Omega  - \Theta = 0.

Since the log-determinant function h is strictly convex and the solution set to problem
(1.1) is assumed to be nonempty, problem (3.2) has a unique solution. Furthermore,
by using [3, Proposition 4.75] one can easily show that the KKT system (3.4) also has
a unique solution, denoted by (\Omega ,\Theta , X).

For any given (U, V,W ) \in \BbbZ \times \BbbZ \times \BbbZ , we consider the following linearly perturbed
form of problem (3.2):

(3.5)
min
\Omega ,\Theta 

f(\Omega ) + \scrP (\Theta ) - \langle (U, V ), (\Omega ,\Theta )\rangle 

s.t. \Omega  - \Theta +W = 0.

As in Rockafellar [23], we define the following maximal monotone operator:

\scrT \scrL (\Omega ,\Theta , X)

:= \{ (U, V,W ) \in \BbbZ \times \BbbZ \times \BbbZ | (U, V, - W ) \in \partial \scrL (\Omega ,\Theta , X)\} , (\Omega ,\Theta , X) \in \BbbZ \times \BbbZ \times \BbbZ .

We also define the KKT solution mapping \scrS : \BbbZ \times \BbbZ \times \BbbZ \rightarrow \BbbZ \times \BbbZ \times \BbbZ as

(3.6) \scrS (U, V,W ) := \scrT  - 1
\scrL (U, V,W ) = the set of all KKT points for problem (3.5).

Define a mapping \scrH : (\BbbZ \times \BbbZ \times \BbbZ ) \times (\BbbZ \times \BbbZ \times \BbbZ ) \rightarrow \BbbZ \times \BbbZ \times \BbbZ as follows: for any
(U, V,W ) \in \BbbZ \times \BbbZ \times \BbbZ and (\Omega ,\Theta , X) \in \BbbZ \times \BbbZ \times \BbbZ ,

(3.7) \scrH ((U, V,W ), (\Omega ,\Theta , X)) =

\left(   X  - U + Proxf\ast (\Omega  - X + U)

 - X  - V + Prox\scrP \ast (\Theta +X + V )

\Omega  - \Theta +W

\right)   .

Then it is easy to see that if \scrS (U, V,W ) is nonempty, then it must be a singleton and
it satisfies \scrH ((U, V,W ),\scrS (U, V,W )) = 0.
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Lemma 3.1. Let Z \in \BbbZ and f be defined by (3.1). Then all \scrG f \in \partial Proxf (Z)
and \scrG f\ast \in \partial Proxf\ast (Z) are self-adjoint and positive definite with \lambda max(\scrG f ) < 1 and
\lambda max(\scrG f\ast ) < 1.

Proof. The proof can be derived from [31, Lemma 2.1].

Since the GGL regularizer \scrP defined by (1.2) is positively homogeneous, its conju-
gate function \scrP \ast is an indicator function of a closed convex set [26, Example 11.4(a)].
Therefore, Prox\scrP \ast is the projection onto a closed convex set. We know further from
[30, Theorem 2.3] that for any Y \in \BbbZ , any element in \partial Prox\scrP \ast (Y ) is a self-adjoint
operator whose eigenvalues are in the interval [0, 1]. Thus, by the proof of [30, The-
orem 2.5], we can obtain the following lemma, which will be used in Theorem 3.3 to
analyze the Lipschitz continuity of the KKT solution mapping \scrS defined by (3.6).

Lemma 3.2. Let Y \in \BbbZ and \scrB : \BbbZ \rightarrow \BbbZ be any self-adjoint positive definite
operator. Then, for any chosen \scrG \scrP \ast \in \partial Prox\scrP \ast (Y ), the linear operator I - \scrG \scrP \ast +\scrG \scrP \ast \scrB 
is nonsingular.

The next theorem will play an essential role in establishing the linear rate of
convergence of our proposed proximal point dual Newton algorithm (PPDNA) for
solving the GGL problems in section 4.3.

Theorem 3.3. Let \scrS : \BbbZ \times \BbbZ \times \BbbZ \rightarrow \BbbZ \times \BbbZ \times \BbbZ be the KKT solution mapping
defined by (3.6). Then the following hold:

(a) Any element in \partial (\Omega ,\Theta ,X)\scrH ((0, 0, 0), (\Omega ,\Theta , X)) is nonsingular. Here, we say \scrG \in 
\partial (\Omega ,\Theta ,X)\scrH ((0, 0, 0), (\Omega ,\Theta , X)) if for some linear operator \scrM , it holds that (\scrM ,\scrG ) \in 
\partial \scrH ((0, 0, 0), (\Omega ,\Theta , X)).

(b) The mapping \scrS is Lipschitz continuous near the origin; i.e., there exist a neigh-
borhood \scrN of the origin and a positive scalar \kappa such that \scrS (U, V,W ) \not = \emptyset for any
(U, V,W ) \in \scrN and

(3.8)
\| \scrS (U, V,W ) - \scrS (U \prime , V \prime ,W \prime )\| 
\leq \kappa \| (U, V,W ) - (U \prime , V \prime ,W \prime )\| \forall (U, V,W ), (U \prime , V \prime ,W \prime ) \in \scrN .

Proof. Since Prox\scrP is directionally differentiable, we know from the Moreau iden-
tity (2.2) that Prox\scrP \ast is also directionally differentiable. Therefore, it follows from the
chain rule presented in [29, Lemma 2.1] that for any \scrG \in \partial (\Omega ,\Theta ,X)\scrH ((0, 0, 0), (\Omega ,\Theta , X)),

there exist \scrG f\ast \in \partial Proxf\ast (\Omega  - X) and \scrG \scrP \ast \in \partial Prox\scrP \ast (\Theta +X) such that

\scrG (\Delta \Omega ,\Delta \Theta ,\Delta X) =

\left(   \Delta X + \scrG f\ast (\Delta \Omega  - \Delta X)

 - \Delta X + \scrG \scrP \ast (\Delta \Theta +\Delta X)

\Delta \Omega  - \Delta \Theta 

\right)   \forall (\Delta \Omega ,\Delta \Theta ,\Delta X) \in \BbbZ \times \BbbZ \times \BbbZ .

Suppose that there exists (\Delta \Omega ,\Delta \Theta ,\Delta X) \in \BbbZ \times \BbbZ \times \BbbZ such that \scrG (\Delta \Omega ,\Delta \Theta ,\Delta X) = 0,
i.e.,

(3.9)

\left\{     
\Delta X + \scrG f\ast (\Delta \Omega  - \Delta X) = 0,

\Delta X  - \scrG \scrP \ast (\Delta \Theta +\Delta X) = 0,

\Delta \Omega  - \Delta \Theta = 0.

It follows from Lemma 3.1 that both \scrG f\ast and \scrB := \scrG  - 1
f\ast  - I are self-adjoint and positive

definite. This, together with (3.9), implies that

(3.10) \Delta \Omega =  - \scrB \Delta X and \scrC \Delta X = 0,
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where \scrC := I  - \scrG \scrP \ast + \scrG \scrP \ast \scrB . We know from Lemma 3.2 that \scrC is nonsingular. This,
together with (3.9) and (3.10), implies that

\Delta \Omega = 0, \Delta \Theta = 0, and \Delta X = 0.

Therefore, \scrG is nonsingular, and consequently the statement (a) holds.
The global Lipschitz continuities of the proximal mappings Proxf\ast and Prox\scrP \ast 

imply that the mapping \scrH defined by (3.7) is Lipschitz continuous. Therefore, the
proof of (b) can be obtained by (a), the fact that for any (U, V,W ) \in \BbbZ \times \BbbZ \times \BbbZ , the
set \scrS (U, V,W ) must be a singleton if it is nonempty, and Clarke's implicit function
theorem (see [5, page 256] or [6, Theorem 3.6]). The proof is completed.

4. Proximal point dual Newton algorithm. We aim to develop an imple-
mentable proximal point dual Newton algorithm (PPDNA) for solving the GGL prob-
lem (3.2). The PPDNA is essentially a proximal point algorithm (PPA) for solving
the primal form of the GGL model, and the PPA subproblems are solved via their
corresponding dual problems. The dual of each subproblem is to maximize a con-
cave function whose gradient is a semismooth function and thus can be solved by the
semismooth Newton method. We begin this section by introducing the PPA [24], i.e.,
given \Omega 0, \Theta 0 \in \BbbZ ++ and \sigma 0 > 0, the updating scheme is given by

(4.1)

\Biggl\{ 
(\Omega t+1,\Theta t+1) \approx Pt(\Omega t,\Theta t) := argmin

\Omega ,\Theta 
\Phi \sigma t

(\Omega ,\Theta ),

\sigma t+1 \uparrow \sigma \infty \leq \infty , t = 0, 1, . . . ,

where

(4.2) \Phi \sigma t
(\Omega ,\Theta ) := f(\Omega ) + \scrP (\Theta ) + 1

2\sigma t
\| (\Omega ,\Theta ) - (\Omega t,\Theta t)\| 2 + \delta \BbbF (\Omega ,\Theta )

with \delta \BbbF being the indicator function of the set \BbbF := \{ (\Omega ,\Theta ) \in \BbbZ \times \BbbZ | \Omega  - \Theta = 0\} , i.e.,
\delta \BbbF (\Omega ,\Theta ) = 0 if (\Omega ,\Theta ) \in \BbbF , and \delta \BbbF (\Omega ,\Theta ) = \infty if (\Omega ,\Theta ) /\in \BbbF .

We allow for inexactness in the updating scheme (4.1) and apply the standard
criteria proposed by Rockafellar [24] for controlling the inexactness: given nonnegative
summable sequences \{ \varepsilon t\} and \{ \gamma t\} such that \gamma t < 1 for all t \geq 0,

(A) \| (\Omega t+1,\Theta t+1) - Pt(\Omega t,\Theta t)\| \leq \varepsilon t,

(B) \| (\Omega t+1,\Theta t+1) - Pt(\Omega t,\Theta t)\| \leq \gamma t\| (\Omega t+1,\Theta t+1) - (\Omega t,\Theta t)\| .

Since the exact minimizer Pt(\Omega t,\Theta t) is typically unknown in each iteration, we should
introduce practically implementable stopping criteria in place of (A) and (B) in the
subsequent analysis.

4.1. Dual based semismooth Newton method for solving PPA subprob-
lems. In this section, we aim to design the aforementioned dual based semismooth
Newton method for solving the subproblems of the PPA framework (4.1):

(4.3)
min
\Omega ,\Theta 

f(\Omega ) + \scrP (\Theta ) + 1
2\sigma t

\| (\Omega ,\Theta ) - (\Omega t,\Theta t)\| 2

s.t. \Omega  - \Theta = 0.

The Lagrangian function associated with problem (4.3) is given by

\scrL t(\Omega ,\Theta , X) := f(\Omega ) + \scrP (\Theta ) + \langle \Omega  - \Theta , X\rangle 
+ 1

2\sigma t
\| \Omega  - \Omega t\| 2 + 1

2\sigma t
\| \Theta  - \Theta t\| 2, (\Omega ,\Theta , X) \in \BbbZ \times \BbbZ \times \BbbZ ,
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and the Lagrangian dual problem of (4.3) is

(4.4) max
X

\Bigl\{ 
\Upsilon t(X) := min

\Omega ,\Theta 
\scrL t(\Omega ,\Theta , X)

\Bigr\} 
.

Since we aim to solve problem (4.3) via its dual problem (4.4), a natural idea is to find
the explicit expression for the dual objective function \Upsilon t first. The explicit expression
for \Upsilon t can be obtained from the Moreau--Yosida regularization as follows:

\Upsilon t(X)

= min
\Omega 

\bigl\{ 
f(\Omega ) + \langle \Omega , X\rangle + 1

2\sigma t
\| \Omega  - \Omega t\| 2

\bigr\} 
+min

\Theta 

\bigl\{ 
\scrP (\Theta ) - \langle \Theta , X\rangle + 1

2\sigma t
\| \Theta  - \Theta t\| 2

\bigr\} 
=

K\sum 
k=1

\Bigl\{ 
1
\sigma t
\Psi \sigma th

\bigl( 
\Omega 

(k)
t  - \sigma t(S

(k) +X(k))
\bigr) 
 - 1

2\sigma t
\| \Omega (k)

t  - \sigma t(S
(k) +X(k))\| 2

\Bigr\} 

+

K\sum 
k=1

1
2\sigma t

\| \Omega (k)
t \| 2 + 1

\sigma t
\Psi \sigma t\scrP 

\bigl( 
\Theta t + \sigma tX

\bigr) 
 - 1

2\sigma t
\| \Theta t + \sigma tX\| 2 + 1

2\sigma t
\| \Theta t\| 2.

The last equality is achieved when \Omega (k) = \phi +\sigma t

\bigl( 
\Omega 

(k)
t  - \sigma t(S

(k) + X(k))
\bigr) 
for k =

1, 2, . . . ,K, and \Theta = Prox\sigma t\scrP (\Theta t + \sigma tX). One can find that \Upsilon t is continuously
differentiable and strongly concave, and the unique solution to problem (4.4) can be
obtained by solving the following nonsmooth system:

(4.5) \nabla \Upsilon t(X) = 0,

where

\nabla \Upsilon t(X) =
\bigl( 
\phi +\sigma t

(W
(1)
t (X)), . . . , \phi +\sigma t

(W
(K)
t (X))

\bigr) 
 - Prox\sigma t\scrP 

\bigl( 
Vt(X)

\bigr) 
with

W
(k)
t (X) := \Omega 

(k)
t  - \sigma t(S

(k) +X(k)), k = 1, . . . ,K, and Vt(X) := \Theta t + \sigma tX.

We can see that if X = argminX \Upsilon t(X), then one has that \Omega = \Theta with \Omega (k) =

\phi +\sigma t

\bigl( 
W

(k)
t (X)

\bigr) 
for k = 1, 2, . . . ,K, \Theta = Prox\sigma t\scrP (Vt(X)). Recall that \phi +\sigma t

(\cdot ) is differ-
entiable and its derivative is given by Proposition 2.3. Thus, the surrogate generalized
Jacobian \widehat \partial (\nabla \Upsilon t)(X): \BbbZ \rightrightarrows \BbbZ of \nabla \Upsilon t at any X can be defined as follows:\left\{       

\scrV \in \widehat \partial (\nabla \Upsilon t)(X) if and only if there exists \scrW \in \widehat \partial Prox\scrP (Vt(X)/\sigma t) such that

for any D \in \BbbZ ,

\scrV [D] =  - \sigma t
\Bigl( 
(\phi +\sigma t

)\prime (W
(1)
t (X))[D(1)], . . . , (\phi +\sigma t

)\prime (W
(K)
t (X))[D(K)]

\Bigr) 
 - \sigma t\scrW [D].

Based on the surrogate generalized Hessian \widehat \partial (\nabla \Upsilon t)(\cdot ) of \Upsilon t, one can apply the fol-
lowing dual based semismooth Newton method (Algorithm 4.1) for solving problem
(4.4) via solving the nonsmooth equation (4.5). To know more about the local and
global methods for nonsmooth equations, we refer the readers to [9, sections 7 and 8]
and references therein. The main computational cost of Algorithm 4.1 lies in Step 1
for finding the Newton direction. Therefore, we carefully analyze the second order
sparsity structure in the surrogate generalized Jacobian and fully exploit the structure
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Algorithm 4.1 (DN(\Omega t,\Theta t, \sigma t)) Dual based Semismooth Newton Method.

Given \=\eta \in (0, 1), \tau \in (0, 1], and \mu \in (0, 1/2), \rho \in (0, 1). Input Xt,0 \in \BbbZ ++. Iterate
the following steps for j = 0, 1, . . . .
repeat

Step 1. (Newton direction) Choose a specific map \scrV j \in \widehat \partial (\nabla \Upsilon t)(Xt,j). Use the con-
jugate gradient (CG) method to find an approximate solution Dj to

\scrV j [D] =  - \nabla \Upsilon t(Xt,j)

such that \| \scrV j [Dj ] +\nabla \Upsilon t(Xt,j)\| \leq min(\=\eta , \| \nabla \Upsilon t(Xt,j)\| 1+\tau ).

Step 2. (Line search) Set \alpha j = \rho mj , where mj is the smallest nonnegative integer m
for which

\Upsilon t(Xt,j + \rho mDj) \geq \Upsilon t(Xt,j) + \mu \rho m\langle \nabla \Upsilon t(Xt,j), Dj\rangle ,

and set Xt,j+1 = Xt,j + \alpha jDj .

Step 3. (Primal-dual iterates) Compute the primal-dual iterates (\widetilde \Omega , \widetilde \Theta , \widetilde X):

\widetilde \Omega (k) = \phi +\sigma t

\bigl( 
\Omega 

(k)
t  - \sigma t(S

(k) + \widetilde X(k))
\bigr) 
, k = 1, . . . ,K,\widetilde \Theta = \widetilde \Omega , \widetilde X = Xt,j+1.

until (\widetilde \Omega , \widetilde \Theta , \widetilde X) satisfies some given stopping conditions.

return (\Omega t+1,\Theta t+1, Xt+1) = (\widetilde \Omega , \widetilde \Theta , \widetilde X).

to reduce the cost. Due to the computation of \phi +\sigma t
(\cdot ) in \Upsilon t and \nabla \Upsilon t, the jth iteration

of Algorithm 4.1 requires Kmj computations of eigenvalue decompositions.
The following proposition states that Algorithm 4.1 for solving the dual of the

PPA subproblem (4.4) is globally convergent and locally superlinearly or even quadrat-
ically convergent if the parameter \tau is chosen to be 1.

Proposition 4.1. Let \{ Xt,j\} j\geq 0 be the infinite sequence generated by Algorithm 4.1.
Then \{ Xt,j\} j\geq 0 converges to the unique optimal solution Xt of (4.4), and the con-
vergence rate is at least superlinear:

\| Xt,j+1  - Xt\| = \scrO (\| Xt,j  - Xt\| 1+\tau ), \tau \in (0, 1].

Proof. Since Prox\scrP is directionally differentiable, it follows from Proposition 2.1
that Prox\scrP is strongly semismooth with respect to the multifunction \widehat \partial Prox\scrP in (2.6)
(for its definition, see, e.g., [17, Definition 1]). Therefore, the conclusion follows from
the strong concavity of \Upsilon t(\cdot ), Proposition 2.3, and [17, Theorem 3].

4.2. Implementable stopping criteria for PPA subproblems. Due to the
lack of explicit forms of the exact solution Pt(\Omega t,\Theta t), the stopping conditions (A)
and (B) need to be replaced by some implementable conditions. Since \Phi \sigma t defined by
(4.2) is strongly convex with modulus 1/2\sigma t, one has the estimate

\Phi \sigma t
(\Omega t+1,\Theta t+1) - inf \Phi \sigma t

(\Omega ,\Theta ) \geq 1
2\sigma t

\| (\Omega t+1,\Theta t+1) - Pt(\Omega t,\Theta t)\| 2,

which implies that

\| (\Omega t+1,\Theta t+1) - Pt(\Omega t,\Theta t)\| \leq 
\sqrt{} 
2\sigma t(\Phi \sigma t

(\Omega t+1,\Theta t+1) - inf \Phi \sigma t
(\Omega ,\Theta )).
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The unknown value inf \Phi \sigma t
(\Omega ,\Theta ) can be replaced by any of its lower bounds converg-

ing to it. One choice is to consider the objective value of the dual problem (4.4). In
particular, one has that

inf \Phi \sigma t
(\Omega ,\Theta ) = max\Upsilon t(X) \geq \Upsilon t(Xt,j) \forall j = 0, 1, . . . ,

and hence
(4.6)

\| (\Omega t+1,\Theta t+1) - Pt(\Omega t,\Theta t)\| \leq 
\sqrt{} 
2\sigma t(\Phi \sigma t

(\Omega t+1,\Theta t+1) - \Upsilon t(Xt,j)), j = 0, 1, . . . .

Therefore, we can terminate Algorithm 4.1 if (\Omega t+1,\Theta t+1, Xt+1) satisfies the following
conditions: given nonnegative summable sequences \{ \varepsilon t\} and \{ \gamma t\} such that \gamma t < 1
for all t \geq 0,

\Phi \sigma t
(\Omega t+1,\Theta t+1) - \Upsilon t(Xt+1) \leq \varepsilon 2t/2\sigma t, (A\prime )

\Phi \sigma t
(\Omega t+1,\Theta t+1) - \Upsilon t(Xt+1) \leq (\gamma 2t /2\sigma t)\| (\Omega t+1,\Theta t+1) - (\Omega t,\Theta t)\| 2. (B\prime )

4.3. Linear rate convergence of PPDNA. Now, we are ready to formally
present the promised PPDNA for solving problem (3.2).

Algorithm 4.2 (PPDNA) Proximal Point Dual based Newton Algorithm.

Input \Omega 0, \Theta 0 \in \BbbZ ++ and \sigma 0 > 0. Iterate the following steps for t = 0, 1, . . . :
Step 1. Apply Algorithm 4.1 to obtain

(\Omega t+1,\Theta t+1, Xt+1) = DN(\Omega t,\Theta t, \sigma t)

under stopping criterion (A\prime ) or (B\prime ).

Step 2. Update \sigma t+1 \uparrow \sigma \infty \leq \infty .

Along the line of Rockafellar's works [23, 24], the local linear convergence rate of
the primal and dual iterative sequences generated by the PPA can be guaranteed by
the Lipschitz continuity of the KKT solution mapping near the origin under proper
stopping criteria of the PPA subproblems. However, the Lipschitz property of the
KKT solution mapping requires the uniqueness of the KKT point, and this property
is not straightforward to establish when the regularizer \scrP is not a piecewise linear-
quadratic function. As the property to ensure the linear convergence rate, especially
the uniqueness assumption, is too restrictive to hold, Luque [20] extended the results
and proved the local linear convergence of the PPA under the local upper Lipschitz
continuity (see, e.g., [22, p. 208] for the definition) of the KKT solution mapping
at the origin [7, p. 387]. The local upper Lipschitz continuity condition does not
make the assumption on the uniqueness of the solution. However, the local upper
Lipschitz continuity property may not hold when the KKT solution mapping is not
piecewise polyhedral. Fortunately, for our GGL model, the strict convexity of the
log-determinant function guarantees the uniqueness of the solution, and we prove in
Theorem 3.3 that the KKT solution mapping \scrS of the GGL model (defined by (3.6))
is Lipschitz continuous near the origin by taking advantage of the nice properties of
the log-determinant function and Clarke's implicit function theorem. Therefore, the
local linear convergence rate of the PPDNA can be obtained via the classical results
by Rockafellar. The convergence results of Algorithm 4.2 for solving problem (3.2)
are presented below.
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Theorem 4.2. Let \{ (\Omega t,\Theta t, Xt)\} t\geq 0 be an infinite sequence generated by Algo-
rithm 4.2 under stopping criterion (A\prime ). Then the sequence \{ (\Omega t,\Theta t)\} t\geq 0 converges
to the unique solution (\Omega ,\Theta ) of (3.2), and the sequence \{ Xt\} t\geq 0 converges to the
unique solution X of (3.3). Furthermore, if both criteria (A\prime ) and (B\prime ) are executed
in Algorithm 4.2, then there exists \=t \geq 0 such that for all t \geq \=t, one has that

\| (\Omega t+1,\Theta t+1, Xt+1) - (\Omega ,\Theta , X)\| \leq \varrho t\| (\Omega t,\Theta t, Xt) - (\Omega ,\Theta , X)\| ,

where the convergence rate is given by

1 > \varrho t := [\kappa (\kappa 2+\sigma 2
t )

 - 1/2+\gamma t]/(1 - \gamma t) \rightarrow \varrho \infty = \kappa (\kappa 2+\sigma 2
\infty ) - 1/2 (\varrho \infty = 0 if \sigma \infty = \infty )

and the parameter \kappa is from (3.8).

Proof. The global convergence of Algorithm 4.2 can be obtained from (4.6), [24,
Theorem 1], and the uniqueness of the KKT point. The linear rate of convergence can
be derived from (4.6), Theorem 3.3(b), and [24, Theorem 2]. The proof is completed.

4.4. Extensions of PPDNA. Although the theoretical analysis and the algo-
rithmic design presented in section 3 and section 4 focus on the GGL regularizer,
these results can also be applied to the joint graphical model (1.1) with a different
regularizer satisfying the following conditions:

(a) the regularizer is convex and positively homogenous (e.g., a norm function);

(b) the proximal mapping associated with the regularizer can be efficiently computed,
and its surrogate generalized Jacobian can be explicitly characterized.

For example, we can show that both the pairwise fused graphical Lasso regularizer [8,
equation (5)] and the sequential fused graphical Lasso regularizer [34, formula (2.2)]
satisfy the conditions (a) and (b). More specifically, let \lambda 1 and \lambda 2 be positive param-
eters. The pairwise fused graphical Lasso regularizer and sequential fused graphical
Lasso regularizer are given as follows:

(4.7) \scrP 1(\Theta ) = \lambda 1

K\sum 
k=1

\sum 
i \not =j

| \Theta (k)
ij | + \lambda 2

\sum 
k<k\prime 

\sum 
i \not =j

| \Theta (k)
ij  - \Theta 

(k\prime )
ij | =

\sum 
i \not =j

\varphi 1(\Theta [ij]),

where \varphi 1(x) = \lambda 1\| x\| 1 + \lambda 2
\sum 

k<k\prime | xk  - xk\prime | , x \in \BbbR K , and

(4.8) \scrP 2(\Theta ) = \lambda 1

K\sum 
k=1

\sum 
i \not =j

| \Theta (k)
ij | + \lambda 2

K\sum 
k=2

\sum 
i \not =j

| \Theta (k)
ij  - \Theta 

(k - 1)
ij | =

\sum 
i \not =j

\varphi 2(\Theta [ij]),

where \varphi 2(x) = \lambda 1\| x\| 1 + \lambda 2
\sum K

k=2 | xk  - xk - 1| , x \in \BbbR K .
By applying the same procedure as in section 2.1 for the GGL regularizer, we

can obtain the proximal mappings associated with \scrP i, i = 1, 2, and their surrogate
generalized Jacobians from that of the clustered Lasso regularizer [18] and the fused
lasso regularizer [17], respectively. Therefore, we can apply our PPDNA framework
for solving the joint graphical model with a different regularizer given by either (4.7)
or (4.8).

In addition to the direct extensions to the two regularizers above, the PPDNA
framework is also applicable to joint graphical models with other regularizers discussed
in [13]. More specifically, the regularizers in [13] have the following form:

\scrP (\Theta ) = \scrQ 1(\Theta ) +\scrQ 2(\Theta ),
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where \scrQ 1(\Theta ) := \lambda 1
\sum K

k=1

\sum 
i \not =j | \Theta 

(k)
ij | , \scrQ 2(\Theta ) := \lambda 2

\sum K
k=2 \psi (\Theta 

(k)  - \Theta (k - 1)). All the
choices of the penalty function \psi in [13, section 2.1] can ensure condition (a) except for
the Laplcacian penalty \psi (\cdot ) = \| \cdot \| 2. Therefore, except for the case of the Laplacian
penalty, the PPDNA framework can be directly applied once condition (b) holds.
For the exceptional case, we may slightly modify our framework. Specifically, each
iteration should be modified as follows: given \Omega 0, \Theta 0, \Lambda 0 \in \BbbZ ++ and \sigma 0 > 0, the
updating scheme is given by

(4.9)

\Biggl\{ 
(\Omega t+1,\Theta t+1,\Lambda t+1) \approx Pt(\Omega t,\Theta t,\Lambda t+1) := arg min

\Omega ,\Theta ,\Lambda 
\Phi \sigma t(\Omega ,\Theta ,\Lambda ),

\sigma t+1 \uparrow \sigma \infty \leq \infty , t = 0, 1, . . . ,

where

\Phi \sigma t(\Omega ,\Theta ,\Lambda ) := f(\Omega ) +\scrQ 1(\Theta ) +\scrQ 2(\Lambda ) +
1

2\sigma t
\| (\Omega ,\Theta ,\Lambda ) - (\Omega t,\Theta t,\Lambda t)\| 2 + \delta \BbbF (\Omega ,\Theta ,\Lambda ),

with \delta \BbbF being the indicator function of the set

\BbbF := \{ (\Omega ,\Theta ,\Lambda ) \in \BbbZ \times \BbbZ | \Omega  - \Theta = 0, \Lambda  - \Theta = 0\} .

Then the resulting modified PPDNA can be obtained by using arguments similar to
those in section 4. But we should mention that further investigation will be necessary
to overcome the underlying difficulty that the dual of the subproblems of (4.9) may
not necessarily be strongly convex. We leave this part as our future research topic.

5. Numerical results. In this section, we evaluate the performance of the
PPDNA in comparison with the ADMM and the proximal Newton-type method im-
plemented in the work [34], which is referred to as MGL.1 All the experiments are
performed in MATLAB (version 9.7) on a Windows workstation (24-core, Intel Xeon
E5-2680 @ 2.50GHz, 128 GB of RAM).

5.1. Implementation of ADMM. In this section, we briefly describe the
ADMM for solving the dual problem (3.3), which can be equivalently written as
follows:

(5.1) min
X,Z

\Biggl\{ 
K\sum 

k=1

h(Z(k)) + \scrP \ast (X)
\bigm| \bigm| Z  - X = S

\Biggr\} 
.

Given a parameter \sigma > 0, the augmented Lagrangian function associated with (5.1)
is defined by

\widehat \scrL \sigma (X,Z,\Theta ) =

K\sum 
k=1

h(Z(k)) + \scrP \ast (X) + \langle Z  - X  - S, \Theta \rangle + \sigma 

2
\| Z  - X  - S\| 2,

and the KKT optimality conditions are

\Theta  - Prox\scrP (\Theta +X) = 0, Z - X - S = 0, Z(k) - Proxh(Z
(k) - \Theta (k)) = 0, k = 1, . . . ,K.

The iterative scheme of the ADMM for problem (5.1) can be described as follows:
given \tau \in (0, (1 +

\surd 
5)/2) and an initial point (X0, Z0,\Theta 0) \in \BbbZ ++ \times \BbbZ ++ \times \BbbZ ++, the

1The solver is available at http://senyang.info/.
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tth iteration is given by

(5.2)

\left\{       
Xt+1 = argminX \widehat \scrL \sigma (X,Zt,\Theta t),

Zt+1 = argminZ \widehat \scrL \sigma (Xt+1, Z,\Theta t),

\Theta t+1 = \Theta t + \tau \sigma (Zt+1  - Xt+1  - S),

where Xt+1 can be updated by Xt+1 = (Zt + \sigma  - 1\Theta t  - S) - Prox\scrP (Zt + \sigma  - 1\Theta t  - S),

and Zt+1 = (Z
(1)
t+1, . . . , Z

(K)
t+1 ) can be updated by Z

(k)
t+1 = \phi +\sigma  - 1

\bigl( 
X

(k)
t  - 1

\sigma \Theta 
(k)
t + S(k)

\bigr) 
,

k = 1, . . . ,K.
In the practical implementation, we tuned the parameter \sigma according to the

progress of primal and dual feasibilities (see, e.g., [15, section 4.4]) and used a larger
step-length \tau of 1.618. These two techniques can empirically accelerate the conver-
gence speed. It is worth noting that the ADMM implemented by Yang et al. [34] used
a fixed penalty parameter \sigma and the step-length \tau = 1.

5.2. Settings of experiments. The experimental settings are the same as those
in [38, section 4]. We adopt the stopping criteria of PPDNA, ADMM, and MGL as
below. Let \epsilon > 0 be a given tolerance. It is set as 10 - 6 in the following experiments.

\bullet The PPDNA is terminated if \eta P \leq \epsilon , where

\eta P := max

\Biggl\{ 
\| \Theta  - Prox\scrP (\Theta +X)\| 

1 + \| \Theta \| 
,
\| \Theta  - \Omega \| 
1 + \| \Theta \| 

,
\| \Omega  - ProxKh (\Omega  - S  - X)\| 

1 + \| \Omega \| 

\Biggr\} 

with
ProxKh (\Theta ) := (Proxh(\Theta 

(1)), . . . ,Proxh(\Theta 
(K))) \in \BbbZ , \Theta \in \BbbZ .

\bullet The ADMM is terminated when \eta A \leq \epsilon or 20000 iterations are taken, where

\eta A := max

\Biggl\{ 
\| \Theta  - Prox\scrP (\Theta +X)\| 

1 + \| \Theta \| 
,
\| Z  - X  - S\| 

1 + \| S\| 
,
\| Z  - ProxKh (Z  - \Theta )\| 

1 + \| Z\| 

\Biggr\} 
.

\bullet The MGL is terminated when the relative difference of its objective value with
respect to the primal objective value obtained by the PPDNA is smaller than the
given tolerance \epsilon or the relative duality gap achieved by the PPDNA, i.e.,

\Delta M :=
pobjM  - pobjP

1 + | pobjM | + | pobjP | 
< max\{ \epsilon , relgapP \} ,

where pobjP , pobjM , and relgapP are the objective values obtained by the PPDNA,
the MGL, and the relative duality gap attained by the PPDNA.

It is worth mentioning that we adopt a warm-starting technique in the initial stage
of the PPDNA, instead of starting it from scratch. The warm-starting procedure
consists of first running the ADMM (with identity matrices as the starting point) for
a fixed number of iterations (3000 steps in our experiments) or up to a given tolerance
(100\epsilon in our experiments), and then using the resulting approximate solution as an
initial point to warm-start the PPDNA. This idea is greatly motivated by two facts:
(1) the ADMM can generate a solution of low to medium accuracy efficiently and
might become slow when higher accuracy is required; (2) our algorithm PPDNA has
been proven to be locally linearly convergent. Therefore, the warm-starting technique
can integrate the advantages of both ADMM and PPDNA.
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We set the initial parameter in the stopping criterion (A\prime ) to be \varepsilon 0 = 0.5 and
decrease it by a ratio \varsigma > 1, i.e., \varepsilon k+1 = \varepsilon k/\varsigma . Likewise, the parameter \gamma k in the stop-
ping criterion (B\prime ) is updated in the same fashion as that for \varepsilon k. For the parameters
in Algorithm 4.1, we simply set \=\eta = 0.1 and \tau \in [0.1, 0.2] according to [40]. For the
step on line search, we set \mu = 10 - 4 and \rho = 0.5.

5.3. Descriptions of data sets. In this part, we describe the data sets which
will be used later. Since these data sets have been discussed in [38], we briefly review
them for the ease of reading:

\bullet University webpages data set.2 The original data was collected from computer
science departments of various universities in 1997, manually classified into seven
different classes: Student, Faculty, Course, Project, Staff, Department, and Other.
The data we use, consisting of the first four classes, is preprocessed by stemming
techniques [4]. Two thirds of the pages were randomly chosen for training (Web-
train) and the remaining third for testing (Webtest).

\bullet 20 newsgroups data set.3 This data set has 20 topics of newsgroup documents,
and some of the topics are closely related to each other, while others are highly
unrelated. Four subgroups are named as NGcomp, NGrec, NGsci, and NGtalk
accordingly and will be used in our experiments.

\bullet SPX500 component stocks.4 This data set contains the daily returns of Standard
\& Poor's 500 (SPX500) constituents from 2004 to 2014. We also test on extracted
data from 2004 to 2006.

5.4. Performance of PPDNA. In this part, we first give an elementary re-
port of the effectiveness of the GGL model on synthetic nearest-neighbor networks
generated by the mechanism in [16]. Second, we illustrate numerically the local linear
convergence of the PPDNA for solving two representative instances, in correspon-
dence with Theorem 4.2, which shows theoretically the local linear convergence of the
PPDNA.

5.4.1. Synthetic data: Nearest-neighbor networks. In this example, we
choose p = 500 and K = 3. The synthetic precision matrices, denoted as \Sigma (k), k =
1, . . . ,K, are generated as follows. We first generate p points on a unit square ran-
domly, calculate their pairwise distances, and identify 5 nearest neighbors of each
point. The nearest-neighbor network is then obtained by linking any two points that
are 5 nearest neighbors of each other, and we denote the number of its edges as N .
Subsequently, we obtain each \Sigma (k), k = 1, 2, 3, by adding extra edges to the common
nearest-neighbor network. For each k, a pair of symmetric zero elements is randomly
selected from the nearest-neighbor network and replaced with a value uniformly drawn
from the interval [ - 1, - 0.5]\cup [0.5, 1]. \Sigma (k) is obtained after this procedure is repeated
ceil(N/4) times. We find in our simulation that the true number of edges in the three
networks is 3690. Given the precision matrices, we draw 10000 samples from each
Gaussian distribution \scrN p(0, (\Sigma 

(k)) - 1) to compute the sample covariance matrices.
Next we specify the tuning parameters \lambda 1 and \lambda 2. Following [8], we reparameterize \lambda 1
and \lambda 2 in order to separate the regularization for ``sparsity"" and for ``similarity"" since
both parameters contribute to sparsity: \lambda 1 drives individual network edges to zero,
whereas \lambda 2 drives network edges to zero across all K network estimates at the same

2http://ana.cachopo.org/datasets-for-single-label-text-categorization
3http://qwone.com/\sim jason/20Newsgroups/
4http://www.yahoo.com
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time. We reparameterize them in terms of w1 = \lambda 1+
1\surd 
2
\lambda 2, w2 = 1\surd 

2
\lambda 2/(\lambda 1+

1\surd 
2
\lambda 2),

which were found in [8] to reflect the levels of sparsity and similarity regularization
and were called the sparsity and similarity control parameters, respectively. In order
to show the diversity of sparsity in our experiments, we change w1 with w2 fixed.
Figure 2 characterizes the relative abilities of the GGL model to recover the network
structures and to detect change-points.

(a) (b) (c)

Fig. 2. Performances of the GGL model on nearest-neighbor networks (p = 500, K = 3).
(a) The number of true positive edges versus the number of false positive edges. (b) The sum of
squared errors in edge values versus the total number of edges selected. (c) The number of true
positive differential edges versus the number of false positive differential edges.

Figure 2a displays the number of true positive (TP) edges selected against the
number of false positive (FP) edges. We say that an edge (i, j) is selected in the

estimate \Theta 
(k)

if \Theta 
(k)

ij \not = 0, and the edge is true if \Sigma 
(k)
ij \not = 0 and false if \Sigma 

(k)
ij = 0. We

can see that the model with w2 = 0.2 can recover almost all of the TP edges without
FP edges. This suggests that the GGL model is effective for recovering the edges in the
nearest-neighbor networks. Figure 2b illustrates the sum of squared errors between

estimated edge values and true edge values, i.e.,
\sum K

k=1

\sum 
i<j

\bigl( 
\Theta 

(k)

ij  - \Sigma 
(k)
ij

\bigr) 2
. When

the number of the total edges selected increases (i.e., the sparsity control parameter
w1 decreases), the error decreases and finally reaches a fairly low value. Figure 2c
plots the number of TP differential edges against FP differential. An edge that differs
between networks is called a differential edge and thus corresponds to a change-point.
Numerically, we say that the (i, j) edge is estimated to be differential between the

kth and the (k + 1)th networks if | \Theta (k)

ij  - \Theta 
(k+1)

ij | > 10 - 6, and we say that it is truly

differential if | \Sigma (k)
ij  - \Sigma 

(k+1)
ij | > 10 - 6. The number of differential edges is computed

for all successive pairs of networks. One can observe in Figure 2c that the results
obtained with w2 = 0.2 have approximately 3000 TP differential edges and almost
no false ones. This suggests that the GGL model can be a suitable model to use in
change-point detection of nearest-neighbor networks.

5.4.2. Linear rate convergence. The purpose of this section is to demon-
strate numerically the local linear convergence of the PPDNA. Specifically, we con-
duct experiments on two representative instances: (a) categorical data: Webtrain
with (p,K) = (300, 4), (\lambda 1, \lambda 2) = (5e-3, 5e-4); (b) time-varying data: SPX500 with
(p,K) = (200, 11), (\lambda 1, \lambda 2) = (5e-4, 5e-5). Due to the lack of exact optimal solutions
of these instances, we run the PPDNA until the accuracy of 10 - 10 is achieved and
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regard the resulting approximate solution as the true solution (\Omega ,\Theta , X). We denote

dt :=
\| \Omega t  - \Omega \| + \| \Theta t  - \Theta \| + \| Xt  - X\| 

\| \Omega \| + \| \Theta \| + \| X\| 
, t = 0, 1, . . . .

In Figure 3, we plot log10 dt against the iteration count t under two different choices of
the penalty parameter \sigma t: \sigma t is fixed or increased by a ratio. When \sigma t is fixed, the solid
blue line in the figure indicates that the convergence rate is almost constant. When
\sigma t+1 = 1.3\sigma t, i.e., the penalty parameter is gradually increasing, the dash-dotted red
line shows that the convergence rate is increasingly fast. The observation is consistent
with Theorem 4.2, which demonstrates numerically the local linear convergence rate
of the PPDNA. We should emphasize that the impressive linear convergence rate
depicted in the solid blue curve in Figure 3(a) is attained with \sigma t fixed at a large value
of 108, whereas the slower initial convergence shown in the dash-dotted red curve is
due to slowly increasing the parameter \sigma t from a small initial value of 2 \times 104. The
same remark is also applicable to Figure 3(b). (Color available online.)

The dependence of the linear rate of convergence on \sigma t also sheds light on the
choice of \sigma t in our implementation. Basically we adaptively update \sigma t to strike a
good balance in the trade-off between the convergence rate of the PPDNA and the
difficulty in computing the Newton directions (via the CG method) in the semismooth
Newton method (Step 1 of Algorithm 4.1). As the condition number of the Newton
linear system in Step 1 of Algorithm 4.1 is proportional to \sigma t, the CG method will
converge more slowly for a larger \sigma t. Thus in our experiments, we start from a small
\sigma 0, e.g., \sigma 0 = 1, and gradually increase \sigma t by some factor \zeta > 1, i.e., \sigma t+1 = \zeta \sigma t.

5 10 15 20 25 30 35 40 45
iterations: t

-7

-6

-5

-4

-3

-2

-1

0

lo
g 10

(d
t)

 Webtrain300

<
t
=108

<
t+1

=1.3<
t

(a)

5 10 15 20 25 30 35
iterations: t

-7

-6

-5

-4

-3

-2

-1

0

lo
g 10

(d
t)

 SPX500

<
t
=5#108

<
t+1

=1.3<
t

(b)

Fig. 3. The relative distances of the iterates generated by the PPDNA to the optimal solution.
(a) Webtrain with (p,K) = (300, 4), (\lambda 1, \lambda 2) = (5e-3, 5e-4). (b) SPX500 with (p,K) = (200, 11),
(\lambda 1, \lambda 2) = (5e-4, 5e-5).

5.5. Comparison with ADMM and MGL. In this section, we compare our
algorithm PPDNA for solving the GGL model with the ADMM described in (5.2)
and the MGL implemented in [34]. For the tuning parameters \lambda 1 and \lambda 2, we select
three pairs for each instance that produce reasonable sparsity. In the following tables,
``P"" stands for PPDNA; ``A"" stands for ADMM; ``M"" stands for MGL. In the column
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under ``Iteration,"" we report the number of iterations taken by various algorithms. In
particular, for the PPDNA, we report the number of the PPA iterations taken and the
number (within the parentheses) of semismooth Newton linear systems solved. Let
``nnz"" denote the number of nonzero entries in the solution \Theta obtained by the PPDNA
using the following estimation: nnz := min\{ k | 

\sum k
i=1 | \^xi| \geq 0.999\| \^x\| 1\} , where \^x \in 

\BbbR p2K is the vector obtained by sorting all elements of \Theta by magnitude in a descending
order. In the tables, ``density"" denotes the quantity nnz/(p2K). The time is displayed
in the format of ``hours:minutes:seconds,"" and the fastest method is highlighted in
bold. The error reported for the PPDNA in the tables is the relative KKT residual
\eta P . That of the ADMM is \eta A; while the error for the MGL is \Delta M .

Table 1 shows the comparison of three methods PPDNA, ADMM, and MGL on
the university webpages data sets. The PPDNA successfully solved all instances in
Table 1 within about one minute. For a large majority of tested instances, the PPDNA
is faster than the ADMM and the MGL. It suggests that the PPDNA is robust and
efficient for solving the GGL model applied to the university webpages data.

Table 2 presents the comparison of PPDNA, ADMM, and MGL on the 20 news-
groups data sets. One can see clearly that the PPDNA outperforms the ADMM and
the MGL for most instances in Table 2. It demonstrates that the PPDNA can be
efficient for solving the GGL model. For some difficult instances, e.g., NGcomp train
(\lambda 1, \lambda 2) = (5e-4, 5e-5), our PPDNA took less than one minute, while the MGL took
more than one hour. Again, the results show that our PPDNA is robust for solving
the GGL model. The superior performance of our PPDNA can primarily be attrib-
uted to our ability to extract and exploit the sparsity structure (in \widehat \partial Prox\scrP ) within
the semismooth Newton method to solve the PPA subproblems very efficiently.

Table 3 gives the results on the Standard \& Poor's 500 component stock price
data set SPX500. The table shows that the PPDNA is faster than both the ADMM
and the MGL for all instances. In addition, we find that both the PPDNA and the
ADMM succeeded in solving all instances, while the MGL failed to solve one of them
within three hours. This might imply that the MGL is not robust for solving the
GGL model when applied to the stock price data sets. The numerical results show
convincingly that our algorithm PPDNA can solve the GGL problem highly efficiently
and robustly.
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Table 1
Performances of PPDNA, ADMM, and MGL on university webpages' data.

Problem (\lambda 1, \lambda 2) Density Iteration Time Error

(p,K) P A M P A M P A M

(1e-02,1e-03) 0.016 16(24) 501 4 02 04 10 3.2e-07 9.9e-07 2.9e-07
Webtest (5e-03,5e-04) 0.048 16(25) 501 6 02 04 13 3.2e-07 9.9e-07 2.6e-07
(100,4) (1e-03,1e-04) 0.225 14(22) 529 32 02 04 56 2.4e-07 9.9e-07 1.0e-06

(1e-02,1e-03) 0.008 14(24) 850 5 08 25 37 7.9e-07 1.0e-06 6.7e-08
Webtest (5e-03,5e-04) 0.026 14(27) 679 7 10 19 50 7.9e-07 9.8e-07 4.1e-07
(200,4) (1e-03,1e-04) 0.163 13(23) 503 77 07 11 05:57 2.7e-07 9.9e-07 1.6e-06

(5e-03,5e-04) 0.016 14(29) 744 8 28 33 02:39 5.6e-07 9.9e-07 5.3e-08
Webtest (1e-03,1e-04) 0.125 16(32) 487 205 45 22 21:51 5.9e-07 9.9e-07 1.8e-06
(300,4) (5e-04,5e-05) 0.256 14(35) 668 1128 55 30 01:37:51 3.9e-07 9.9e-07 2.1e-06

(1e-02,1e-03) 0.012 20(34) 1601 3 03 11 08 1.2e-07 1.0e-06 6.0e-06
Webtrain (5e-03,5e-04) 0.033 20(34) 1601 5 03 12 04 1.2e-07 1.0e-06 7.4e-07
(100,4) (1e-03,1e-04) 0.165 20(34) 1601 22 04 13 43 1.2e-07 1.0e-06 7.8e-06

(5e-03,5e-04) 0.016 20(39) 1325 7 13 27 01:18 1.3e-07 1.0e-06 1.3e-06
Webtrain (1e-03,1e-04) 0.108 20(37) 1397 31 11 31 02:49 9.9e-08 1.0e-06 5.0e-06
(200,4) (5e-04,5e-05) 0.219 20(39) 1397 88 16 32 05:00 1.1e-07 1.0e-06 5.3e-06

(5e-03,5e-04) 0.011 20(62) 1826 10 01:04 01:37 08:35 2.4e-07 9.7e-07 2.7e-06
Webtrain (1e-03,1e-04) 0.080 19(33) 1196 45 21 52 09:55 3.4e-07 1.0e-06 6.0e-06
(300,4) (5e-04,5e-05) 0.177 19(36) 1196 134 36 52 13:00 3.7e-07 1.0e-06 6.0e-06

Table 2
Performances of PPDNA, ADMM, and MGL on 20 newsgroups' data.

Problem (\lambda 1, \lambda 2) Density Iteration Time Error

(p,K) P A M P A M P A M

NGcomp (5e-03,5e-04) 0.021 15(22) 509 31 16 26 37:08 6.5e-08 9.9e-07 1.1e-06
test (1e-03,1e-04) 0.099 16(26) 625 510 32 34 01:20:37 7.9e-07 1.0e-06 2.0e-06
(300,5) (5e-04,5e-05) 0.210 14(24) 494 1481 40 27 03:00:00 7.2e-07 1.0e-06 6.1e-06

NGrec (5e-03,5e-04) 0.004 21(38) 1331 5 15 49 04:04 8.0e-08 1.0e-06 4.9e-07
test (1e-03,1e-04) 0.063 21(39) 1331 13 20 58 04:28 8.2e-08 1.0e-06 1.9e-06
(300,4) (5e-04,5e-05) 0.143 20(37) 1331 36 20 58 07:49 3.7e-07 1.0e-06 3.7e-06

NGsci (5e-03,5e-04) 0.006 17(26) 542 6 14 21 05:25 3.8e-07 1.0e-06 2.1e-06
test (1e-03,1e-04) 0.075 17(27) 553 21 19 24 11:17 3.9e-07 9.8e-07 2.1e-06
(300,4) (5e-04,5e-05) 0.167 17(31) 550 87 25 24 17:13 5.0e-07 9.9e-07 2.6e-06

NGtalk (5e-03,5e-04) 0.026 15(25) 482 16 24 26 26:08 9.2e-08 9.6e-07 4.1e-07
test (1e-03,1e-04) 0.115 12(23) 278 81 20 13 13:39 1.2e-07 9.9e-07 1.1e-06
(300,3) (5e-04,5e-05) 0.240 11(22) 286 337 25 13 40:28 9.4e-08 9.7e-07 2.2e-06

NGcomp (5e-03,5e-04) 0.016 16(31) 1150 13 33 57 14:58 1.2e-07 1.0e-06 5.6e-08
train (1e-03,1e-04) 0.080 15(31) 1153 172 35 01:04 40:11 4.6e-07 1.0e-06 1.9e-06
(300,5) (5e-04,5e-05) 0.153 15(30) 1216 574 33 01:07 01:12:51 4.4e-07 1.0e-06 1.8e-06

NGrec (5e-03,5e-04) 0.005 19(35) 1519 5 22 52 02:36 1.4e-07 1.0e-06 3.9e-07
train (1e-03,1e-04) 0.068 18(37) 1500 16 31 01:06 09:45 2.6e-07 1.0e-06 4.8e-06
(300,4) (5e-04,5e-05) 0.124 18(35) 1542 48 28 01:07 09:02 2.9e-07 1.0e-06 5.4e-06

NGsci (5e-03,5e-04) 0.011 17(30) 1387 10 21 54 10:00 1.7e-07 1.0e-06 3.5e-08
train (1e-03,1e-04) 0.086 16(32) 1389 40 32 01:01 08:57 5.1e-07 1.0e-06 2.6e-06
(300,4) (5e-04,5e-05) 0.152 16(32) 965 206 37 42 18:10 4.1e-07 9.9e-07 2.9e-06

NGtalk (5e-03,5e-04) 0.026 18(32) 2445 13 26 01:41 13:24 2.6e-07 1.0e-06 1.9e-06
train (1e-03,1e-04) 0.103 17(32) 2448 52 19 01:46 13:26 1.4e-07 1.0e-06 4.4e-06
(300,3) (5e-04,5e-05) 0.204 17(38) 2385 213 28 01:45 19:43 7.2e-08 1.0e-06 4.9e-06
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Table 3
Performances of PPDNA, ADMM, and MGL on stock price data.

Problem (\lambda 1, \lambda 2) Density Iteration Time Error

(p,K) P A M P A M P A M

(1e-04,1e-05) 0.039 22(33) 3644 6 04 22 28 1.1e-07 1.0e-06 9.8e-07
SPX500 (5e-05,5e-06) 0.138 22(35) 3646 8 05 23 25 1.5e-07 1.0e-06 8.4e-06
(100,3) (2e-05,2e-06) 0.238 23(43) 2056 18 08 13 08 4.4e-07 1.0e-06 2.5e-05

(1e-04,1e-05) 0.025 24(31) 1409 8 12 23 01:20 8.8e-08 1.0e-06 9.4e-06
SPX500 (5e-05,5e-06) 0.084 21(28) 1239 17 14 20 04:23 9.4e-08 1.0e-06 9.0e-06
(200,3) (2e-05,2e-06) 0.150 20(38) 1363 32 18 23 03:28 1.4e-07 9.9e-07 2.0e-05

(5e-04,5e-05) 0.030 22(29) 3701 11 12 01:01 02:20 4.3e-08 1.0e-06 5.4e-06
SPX500 (1e-04,1e-05) 0.127 22(30) 3722 105 18 01:21 02:34 9.3e-08 1.0e-06 7.6e-06
(100,11) (5e-05,5e-06) 0.206 22(30) 2925 393 21 01:06 09:12 7.8e-07 1.0e-06 7.8e-06

(5e-04,5e-05) 0.018 19(24) 1096 28 31 53 36:07 8.4e-07 1.0e-06 4.1e-06
SPX500 (1e-04,1e-05) 0.082 19(24) 1125 481 49 01:08 01:27:17 7.9e-07 1.0e-06 5.1e-06
(200,11) (5e-05,5e-06) 0.140 19(27) 1101 1258 01:05 01:08 03:00:00 6.1e-07 1.0e-06 1.7e-05

6. Concluding remarks. In this paper, we have taken advantage of the
ideas proposed in [17, 39] and implemented a proximal point dual Newton algo-
rithm (PPDNA) to the primal formulation of the group graphical Lasso problems.
From a theoretical standpoint, we have shown that the PPDNA is globally conver-
gent and the sequence of primal and dual iterates is Q-linearly convergent, although
the group graphical Lasso regularizer is nonpolyhedral. The robustness and superior
numerical efficiency of the PPDNA are convincingly demonstrated in various numer-
ical experiments. Therefore, we can firmly conclude that the PPDNA is not only a
fast method with nice theoretical guarantees but also a numerically efficient method
for solving the group graphical Lasso problems with multiple precision matrices.
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