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Abstract. In 2010, M. Studený, R. Hemmecke, and S. Linder explored a new algebraic descrip-
tion of graphical models, called characteristic imsets. Compare with standard imsets, characteristic
imsets have several advantages: they are still unique vector representative of conditional indepen-
dence structures, they are 0-1 vectors, and they are more intuitive in terms of graphs than standard
imsets. After defining a characteristic imset polytope (cim-polytope) as the convex hull of all charac-
teristic imsets with a given set of nodes, they also showed that a model selection in graphical models,
which maximizes a quality criterion, can be converted into a linear programming problem over the
cim-polytope. However, in general, for a fixed set of nodes, the cim-polytope can have exponentially
many vertices over an exponentially high dimension. Therefore, in this paper, we focus on the family
of directed acyclic graphs (DAGs) whose nodes have a fixed order. This family includes diagnosis
models which can be described by Bipartite graphs with a set of m nodes and a set of n nodes for
any m,n ∈ Z+. In this paper, we first consider cim-polytopes for all diagnosis models and show
that these polytopes are direct products of simplices. Then we give a combinatorial description of all
edges and all facets of these polytopes. Finally, we generalize these results to the cim-polytopes for
all Bayesian networks with a fixed underlying ordering of nodes with or without fixed (or forbidden)
edges.

Key words. graphical model, characteristic imset polytope, diagnosis model, Bipartite graph,
directed acyclic graphs.
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1. Introduction. Bayesian networks (BNs), also known as belief networks, Bayes
networks, Bayes(ian) models or probabilistic directed acyclic graphical models, find
their applications to model knowledge in many areas, such as computational biol-
ogy and bioinformatics (gene regulatory networks, protein structure, gene expression
analysis [4] learning epistasis from GWAS data sets [5]) and medicine [15]. BNs are
a part of the family of probabilistic graphical models (GMs). These graphical struc-
tures represent knowledge about probabilistic structures for a statistical model. More
precisely, each node in the graph represents a random variable and an edge between
the nodes represents probabilistic dependencies among the random variables corre-
sponding to the nodes adjacent to the edge [7]. BNs correspond to GM structure
known as a directed acyclic graph (DAG) defined by the set of nodes (vertices) and
the set of directed edges.

In order to infer parameters from the observed data set, we first apply a model
selection criterion called quality criterion, which provides a way to construct highly
predictive BN models from data by choosing the graph which gives the given criteria,
such as Bayesian Information Criteria (BIC) [10] or Akaike Information Criteria (AIC)
[1], maximum (see [12] for more details on quality criterions). Intuitively a quality
criterion is a function, Q(G,D), which takes a DAG, G, and an observed data set, D,
to evaluate how good the DAG G to explain the observed data D. Note that different
DAGS, G1, G2 may have the same conditional independences (CIs). In that case we
say G1, G2 are Markov equivalent. When researchers wish to infer the CIs of the BN
structure from the observed data set one represents each set of Markov equivalent
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graphs by one graph called the essential graph the corresponding Markov equivalence
class of DAGs [2]. In this paper we focus on quality criterions Q(G,D), such that
Q(G1, D) = Q(G2, D) if and only if G1, G2 are Markov equivalent.

Since in general there are super exponentially many essential graphs with a fixed
set of nodes N , maximizing the quality criterion, Q(G,D), over all possible essential
graphs with N is known to be NP-hard. Studený developed an algebraic representa-
tion of each essential graph G called a standard imset, of G, which is an integral vector

representation of G in R2|N|−|N |−1. From the view of this setting a criterion function

Q(G,D) is a dot product of vectors in R2|N|−|N |−1. In 2010, M. Studený, J. Vom-
lel, and R. Hemmecke showed that maximizing the Q(G,D) over all essential graphs
can be formulated as a linear programming problem over the convex hull of standard
imsets for all possible essential graphs [14]. This gives us a systematic way to find
the best criterion with the optimality certificate rather than finding the best criterion
by the brute-force search. Then M. Studený, R. Hemmecke, and S. Linder explored
an alternative vector representative of the BN structure, called characteristic imsets.
Compare with standard imsets, characteristic imsets have several advantages: they
are still unique vector representative of conditional independence structures; they are
0-1 vectors; and they are more intuitive in terms of graphs than standard imsets [13].

In general, however, the dimension of the convex hull of the characteristic imsets
with the fixed set of nodes N , called a characteristic imset polytope (cim-polytope), is
exponentially large and there are double exponentially many vertices (cim-polytope)
as well as facets of the cim-polytope. Thus it is infeasible to optimize by software if
|N | > 6. In order to solve the LP problem for a larger |N |, we need to understand the
structure of the cim-polytope, such as combinatorial description of edges and facets of
the polytope so that we might be able to apply a simplex method to find an optimal
solution. However, in general, it is challenging because there are too many facets and
too many edges of the polytope. Therefore here we start with a particular family of
BN models, namely diagnosis models.

In medical studies, researchers are often interested in probabilistic models in order
for them to correctly diagnose a disease from a patient symptoms. The diagnoses
models, also known as the Quick Medical Reference (QMR) diagnostic model, is
introduced in [11] to diagnose a disease from a given set of symptoms of a patient.
Therefore, here we focus on diagnosis models (e.g., [9]). Under this model, a DAG
representing the model is a bipartite graph with two sets of nodes, one representing
m diseases and one representing n symptoms, and set of directed edges from nodes
representing diseases to nodes representing symptoms (see Figure 2.1 for an example).

In this paper, first, we are able to find an explicit combinatorial description of
all edges of the cim-polytopes for diagnosis models with fixed m and n, that is, if
G1, G2 are graphs representing two diagnosis models such that all symptoms have
the same parents in G1 and in G2 except one symptom, then the characteristic imsets
representing G1, G2 form an edge of the cim-polytope for diagnosis models. Then we
prove that these cim-polytopes are direct products of n many (2m − 1) dimensional
simplices, and an explicit description of all facets of them can be given based on this
structure. Finally we generalize these results for the cim-polytopes for BNs with a
fixed underlying ordering with or without fixed (or forbidden) edges.

This paper is organized as follows. In Section 2 we introduce notation, and we
state some definitions as well as propositions and their proofs. Section 3 shows the de-
scription of the cim-polytopes for diagnosis models and Section 4 shows the description
of the cim-polytopes for Bayesian networks with a fixed underlying ordering. Proofs



CIM POLYTOPES 3

of some of properties, lemmas, and theorems can be found at Section 5, Section 6,
and Section 7. We end with a discussion of our future work in Section 8.

2. Definitions and propositions for diagnosis models. In this section we
state some notation and remind readers some definitions.

Definition 2.1. A Diagnosis Model can be described by a Bipartite Graph
whose nodes N = {a1, . . . , am} ∪ {b1, . . . , bn} can be divided into disjoint sets A =
{a1, . . . , am} and B = {b1, . . . , bn}. Nodes in A can be interpreted as diseases and
nodes in B can be interpreted as symptoms. Every single edge can only be drawn from
a disease to a symptom. An example is given by Figure 2.1.
For fixed A and B, where |A| = m and |B| = n, we define notation: Gm,n = {All
possible directed bipartite graphs defined in Definition 2.1 based on A and B}.

Figure 2.1. An example of Bipartite Graph, m = 3, n = 6.

Recall that we have the definition of Characteristic Imset.

Definition 2.2. Let G be an acyclic directed graph over N . The characteristic
imset for G can be introduced as a zero-one vector cG with components cG(S) where
S ⊆ N , |S| ≥ 2 given by

cG(S) = 1⇐⇒ ∃ i ∈ S such that j ∈ paG(i) for ∀ j ∈ S\{i}
where j ∈ paG(i) means G includes the edge from j to i.

Proposition 2.1. Fix A = {a1, . . . , am} and B = {b1, . . . , bn}. Assume G ∈
Gm,n and |N | = m + n > 2. Then cG(T ) is possible to take value 1 if and only
if T has the form of ai1 . . . aikbj, where 1 ≤ k ≤ m, {i1, . . . , ik} ⊆ {1, . . . ,m} and
j ∈ {1, . . . , n}.

Proof. Notice that ∀T ⊆ N , |T | ≥ 2, we can write T in the form of:

(2.1)
T = ai1 . . . aikbj1 . . . bjl , where 0 ≤ k ≤ m, {i1, . . . , ik} ⊆ {1, . . . ,m},

0 ≤ l ≤ n, {j1, . . . , jl} ⊆ {1, . . . , n},
k + l ≥ 2.

We need to prove that l can neither be 0 nor greater than 1, i.e. l = 1.

(a) If l = 0. ∀ s, t ∈ {i1, . . . , ik}, by Definition 2.1, as → at is not in G. This
means as /∈ paG(at). Hence ∀ t ∈ {i1, . . . , ik}, T \{at} * paG(at). cG(T ) = 0.

(b) If l > 1. Similarly with above, by Definition 2.1, ∀ s′, t′ ∈ {j1, . . . , jl}, bs′ /∈
paG(bt′). Moreover, ∀ t ∈ {i1, . . . , ik} and t′ ∈ {j1, . . . , jl}, bt′ /∈ paG(at).
cG(T ) = 0.

Proposition 2.2. Notation is adopted from Proposition 2.1. Suppose T has the
form of ai1 . . . aikbj, where 1 ≤ k ≤ m, {i1, . . . , ik} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n},
then cG(T ) =

∏
s=i1,...,ik

cG(asbj).
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Proof. Again by Definition 2.1, ∀ s, t ∈ {i1, . . . , ik}, as /∈ paG(at). Therefore:

(2.2)
cG(T ) = 1 ⇐⇒ {ai1 . . . aik} ⊆ paG(bj)

⇐⇒ as ∈ paG(bj), ∀s = i1, . . . , ik
⇐⇒ cG(asbj) = 1, ∀s = i1, . . . , ik.

Recall that cG(T ) is binary. Thus cG(T ) =
∏
s=i1,...,ik

cG(asbj).
Remark 2.3. Proposition 2.2 implies that ∀G ∈ Gm,n, cG is determined by only

m · n coordinates, {cG(aibj) : i = 1, . . . ,m, j = 1, . . . , n}, i.e. the existence of directed
edges ai → bj, i = 1, . . . ,m and j = 1, . . . , n. Another way to see this property is
that ∀ G ∈ Gm,n, G can be determined by paG(bj), bj ∈ B. Thus if we consider a
permutation of coordinates in cG that corresponds to a permutation of T where T has
the form in Proposition 2.1, then these coordinates can be broken into n parts:

a1b1, . . . , amb1, . . . , a1 . . . amb1, a1b2, . . . , amb2, . . . , a1 . . . amb2
::::::::::::::::::::::::::

, . . . , a1bn, . . . , a1 . . . ambn,

where the s-th part of coordinations cG(T ), T ∈ {a1bs, . . . , ambs, a1a2bs, . . . , a1 . . . ambs}
only depend on paG(bs), and different parts are completely irrelevant in the sense that
paG(bs), bs ∈ B, can be decided separately.

Proposition 2.4. Fix m and n. The number of elements in Gm,n is 2mn.
Proof. This is trivial because of Remark 2.3 since there are mn possible edges

that can be assigned: ai → bj , where i = 1, . . . ,m and j = 1, . . . , n, and there are∑mn
k=0

(
mn
k

)
= 2mn many possible ways to assign the existence of these edges.

Proposition 2.5. Suppose G ∈ Gm,n. The number of non-zero coordinates in
cG is at most n · (2m − 1).

Proof. This result is straightforward from Proposition 2.1 by counting the number
of coordinates cG(T ), where T has the form shown in Proposition 2.1. Note that when
|T | > m+ 1, ∃ bj1 , bj2 ∈ {1, . . . , n} s.t. bj1 , bj2 ∈ T , i.e. cG(T ) = 0 by Proposition 2.1.
When 2 ≤ |T | ≤ m+ 1, the number of coordinates of form cG(ai1 . . . ai|T |−1

bj), where

{i1, . . . , i|T |−1} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n}, is
(

m
|T |−1

)
· n. Hence the number of

possible non-zero coordinates is:

m+1∑
|T |=2

(
m

|T | − 1

)
· n = n ·

m∑
k=1

(
m

k

)
= n · (2m − 1).

Definition 2.3. Recall several definitions in elementary geometry (see [17] for
more details on polyhedral geometry):

• a closed convex polyhedron (which will be indicated as polyhedron for short)
in Rq can be defined by a system of linear inequalities:

{x ∈ Rq : Ax ≤ b}
where A is a p× q matrix in Rp×q and b is a vector in Rp;

• a closed convex polytope (which will be indicated as polytope for short) is
defined as the convex hull of a finite set of points;

• if a polyhedron is bounded, then it is a polytope;
• for a polytope P, we define vert(P) as the set of vertices of P;
• A d-simplex is a d-dimensional polytope which has exactly d + 1 vertices. It

is notated as ∆d.
Let DAGs(N) be the set of all directed acyclic graphs over N , and consider a class
of graphs G ⊆ DAGs(N) that contains all graphs which we are interested in. We call
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the convex hull of {cG : G ∈ G}, PG = conv{cG : G ∈ G} the characteristic imset
polytope (cim-polytope) for G. Note that it is obvious that vert(PG) = {cG : G ∈ G}.

For fixed A and B in Definition 2.1, define Pm,n := PGm,n
. Proposition 2.5

implies that the dimension of Pm,n is at most n · (2m − 1). We will show that the
dimension of Pm,n is actually exactly n · (2m − 1).

3. The cim-polytopes for diagnosis models.

3.1. Combinatorial description of edges on Pm,n. Definition 3.1. Con-
sider a class of graphs G ⊆ DAGs(N). ∀G, H ∈ G, G and H are called neighbors if
cG and cH form an edge in PG, the cim-polytope for G.

Lemma 3.1. Fix m. Suppose G1, G2 ∈ Gm,1 are arbitrary two distinct graphs in
Gm,1. Then G1 and G2 are neighbors, i.e. cG1

and cG2
form an edge in Pm,1.

Proof. See Section 5.

Theorem 3.2. Fix m and n. Two graphs, G1, G2 ∈ Gm,n are neighbors if and
only if ∃ bi ∈ B such that paG1

(bi) 6= paG2
(bi) and paG1

(bj) = paG2
(bj), ∀ bj ∈ B

and bj 6= bi, i.e. all nodes but one have exactly the same parent sets in G1 and G2.

Proof. See Section 5.

3.2. Pm,n is a direct product of simplices. Theorem 3.3. Fix m and n.
For an arbitrary G ∈ Gm,n, G has n · (2m − 1) many neighbors.

Proof. See Section 5.

Remark 3.4. Theorem 3.3 implies that every vertex of Pm,1 has (2m−1) neigh-
bors. Since |vert(Pm,1)| = 2m (by Proposition 2.4), Pm,1 is a simplex with dimension
(2m − 1), i.e. Pm,1 = ∆2m−1.

Theorem 3.5. Pm,n is the direct product of n many ∆2m−1, i.e.

Pm,n = ∆2m−1 ×∆2m−1 × · · · ×∆2m−1︸ ︷︷ ︸
n many

.

And the ith simplex is Pm,1 with the same diseases A and only one symptom {bi}.
Proof. Fix m, we are going to prove the equality by induction on n.

• n = 1. See Remark 3.4;
• Fix q ∈ Z+. Suppose the equality holds for Pm,n, ∀ n < q, then we need to

prove that it also holds for Pm,q. Recall that for Gm,q, the symptoms are:
B = {b1, b2, . . . , bq}.
First, we need to prove: Pm,q ⊆ Pm,q−1 ×Pm,1.
Similarly with the proof of Theorem 3.2, ∀ G ∈ Gm,q, we define graphs:

– G′ ∈ Gm,(q−1) with symptoms Bm,(q−1) = B\{bq} such that paG′(bi) =
paG(bi), ∀ bi ∈ Bm,(q−1). This implies cG′ ∈ Pm,q−1;

– G′′ ∈ Gm,1 with symptom Bm,1 = {bq} such that paG′′(bq) = paG(bq).
This implies cG′′ ∈ Pm,1.

With a proper permutation of coordinates, we can write cG in the form of:
cG = (cG′ , cG′′).

Recall that vert(Pm,q) = {cG : G ∈ Gm,q}, so ∀x ∈ Pm,q, with the same
permutation of coordinates, we have:

(3.1) x =
∑

G∈Gm,q

αGcG = (
∑

G∈Gm,q

αGcG′ ,
∑

G∈Gm,q

αGcG′′)

where 0 ≤ αG ≤ 1, ∀G ∈ Gm,q and
∑

G∈Gm,q

αG = 1.
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Note that
∑

G∈Gm,q

αGcG′ ∈ Pm,q−1 and
∑

G∈Gm,q

αGcG′′ ∈ Pm,1, Equation (3.1)

implies x ∈ Pm,q−1 ×Pm,1. Hence:

Pm,q ⊆ Pm,q−1 ×Pm,1.

Second, we need to prove: Pm,q−1 ×Pm,1 ⊆ Pm,q.
Let Gm,q−1 has symptoms Bm,(q−1) = B\{bq} and Gm,1 has symptom Bm,1 =
{bq}. ∀ G′ ∈ Gm,(q−1) and G′′ ∈ Gm,1, we can define G ∈ Gm,q such that
paG(bi) = paG′(bi), ∀ bi ∈ Bm,(q−1), and paG(bq) = paG′′(bq). cG has the
form of cG = (cG′ , cG′′).
∀ x ∈ Pm,q−1 ×Pm,1, x can be written as:

x = (
∑

G′∈Gm,q−1

βG′cG′ ,
∑

G′′∈Gm,1

γG′′cG′′) =
∑

G′∈Gm,q−1

∑
G′′∈Gm,1

βG′γG′′(cG′ , cG′′)

=
∑

G′∈Gm,q−1

∑
G′′∈Gm,1

(βG′γG′′) cG ,

where 0 ≤ βG′ , γG′′ ≤ 1, ∀G′ ∈ Gm,q−1, ∀G′′ ∈ Gm,1, and
∑
G′∈Gm,q−1

βG′ = 1,∑
G′′∈Gm,1

γG′′ = 1. Note that∑
G′∈Gm,q−1

∑
G′′∈Gm,1

(βG′γG′′) =
∑

G′∈Gm,q−1

βG′(
∑

G′′∈Gm,1

γG′′) =
∑

G′∈Gm,q−1

βG′ = 1,

which leads to x ∈ Pm,q. Hence:

Pm,q−1 ×Pm,1 ⊆ Pm,q.

Therefore,

Pm,q = Pm,q−1×Pm,1 = ∆2m−1 × · · · ×∆2m−1︸ ︷︷ ︸
q-1 many

×∆2m−1 = ∆2m−1 × · · · ×∆2m−1︸ ︷︷ ︸
q many

.

Theorem 3.5 implies that Pm,n is a simple polytope with dimension n · (2m − 1).
In Section 6, we will give another proof which use linear algebra to show that Pm,n

is simple and obtain its dimension. (cim-polytope)

3.3. Expression of facets of Pm,n. Based on Theorem 3.5, we are going to
show the expression of facets of Pm,n using the following lemma:

Lemma 3.6. [17] Suppose P is the direct product of simplices ∆α1
, . . . ,∆αk

.
Then every facet of P has the form of ∆α1

× . . .×∆αi−1
× Fαi

×∆αi+1
× . . .×∆αk

,
where Fαi is a facet of ∆αi .

Remark 3.7. Lemma 3.6 implies that in order to study the facets of a direct
product of simplices, we can simply study the facets of each simplex. As by Theorem
3.5, Pm,n is a direct product of n many Pm,1, our problem is simplified as studying
the facets of Pm,1. Thus we assume B = {b1} in the following content of this section.

Assume A = {a1, . . . , am} and B = {b1}. By Proposition 2.5, the vertices of Pm,1

has at most 2m − 1 many non-zero coordinates. We define the indeterminates, i.e.
variables, {xs, s ⊆ A, s 6= ∅}, where one indeterminate xs for each coordinate cG(s∪
{b1}) in the characteristic imset cG, G ∈ Gm,1. Define the vector of indeterminates
x = {xs, s ⊆ A, s 6= ∅}. Suppose Amx ≤ bm is the system of inequalities that
defines Pm,1. We can define a 2m × 2m matrix: Dm = [bm| − Am]. Denote the
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elements in Dm by (dst)s⊆A,t⊆A so that we can rewrite the system of inequalities as:
ds∅ +

∑
t⊆A,t6=∅ dstxt ≥ 0, s ⊆ A. Then we have the expression of 2m facets of Pm,1

as following:

Fs = Pm,1 ∩ {x : ds∅ +
∑

t⊆A,t6=∅

dstxt = 0}, s ⊆ A,

where the elements dst, s, t ⊆ A can be obtained using Theorem 3.8.
Theorem 3.8. The elements in matrix Dm satisfies:
• dst 6= 0 if and only if s ⊆ t;
• if s ⊆ t, then dst = (−1)|t|−|s|.

This implies that Pm,1 has 2m facets:

Fs = Pm,1 ∩ {x : ds∅ +
∑

t⊆A,t 6=∅

dstxt = 0}, s ⊆ A.

What’s more, ∀ s ⊆ A, vert(Pm,1)\{cGs} ⊂ Fs, where paGs(b1) = s.
Proof. For convenience, let x∅ ≡ 1. ∀s ⊆ A, let ds· = (dst)t⊆A be the correspond-

ing row of Dm, and Gs be the graph in Gm,1 such that paGs
(b1) = s. Now we can

rewrite the system of inequalities as:∑
t⊆A

dstxt = ds·(1 x)T ≥ 0, for ∀ s ⊆ A.

We are going to prove that ∀s ⊆ A, we can find 2m−1 vertices on Fs that are linearly
independent, and this implies that Fs is a facet of Pm,1. In fact, we will prove that:
{cGs′ , s

′ ⊆ A, s′ 6= s} ⊂ Fs and cGs /∈ Fs, i.e. ds·(1 cGs′ )
T = 0, ∀ s′ ⊆ A, s′ 6= s and

ds·(1 cGs
)T > 0.

Notice that ∀t ⊆ A, cGs′ (t ∪ {b1}) 6= 0 if and only if t ⊆ pacG
s′

(b1) = s′, and dst 6= 0
if and only if s ⊆ t. So:

ds·(1 cGs′ )
T = ds∅ +

∑
t⊆A, t 6=∅

dstcGs′ (t ∪ {b1}) = ds∅ +
∑

s⊆t⊆s′, t 6=∅

dst =
∑

s⊆t⊆s′
dst.

Therefore, we have:
• if s = s′, then ds·(1 cGs′ )

T = dss = 1 > 0;

• if s ( s′, then ds·(1 cGs′ )
T =

∑
s⊆t⊆s′

(−1)|t|−|s| =
∑

t′⊆s′\s
(−1)|t

′| = 0;

• if s * s′, then ds·(1 cGs′ )
T = 0.

Example 3.9 (Facets of P2,1). Notation adopted from Theorem 3.8. Fix m = 2
and n = 1.

All characteristic imsets are given as a
matrix:


cG0

cG1

cG2

cG12

 =


T a1b1 a2b1 a1a2b1

0 0 0
1 0 0
0 1 0
1 1 1





8 JING XI AND RURIKO YOSHIDA

(a) G1 (b) G2 (c) G3

Figure 4.1. Three graphs to illustrate the underlying ordering of graphs

The matrix D2 = [b2| −A2]:

D2 =


s\t ∅ a1 a2 a1a2

∅ 1 −1 −1 1
a1 0 1 0 −1
a2 0 0 1 −1
a1a2 0 0 0 1



The system of inequalities that defines
P2,1:


s\t ∅ a1 a2 a1a2

∅ 1 −xa1
−xa2

+xa1a2
≥ 0

a1 xa1
−xa1a2

≥ 0
a2 xa2

−xa1a2
≥ 0

a1a2 xa1a2 ≥ 0


Vertices cG0

, cG1
and cG12

are in the facet Fa2
while cG2

is not.

4. The cim-polytopes for Bayesian networks. The results in Section 3 are
limited to diagnosis models. In this section, we will generalize the results to all
Bayesian networks with the same underlying order.

4.1. Underlying ordering of DAGs. For a set of random variables N =
{a1, . . . , an}, where now n is the total number of nodes in N . ∀G ∈ DAGs(N), there
exists an underlying ordering over N , [n]G = (a[1], . . . , a[n]), such that if a[i] → a[j]

in G, then i < j. We are are now interested in the class of graphs which share a
specific underlying ordering [n], i.e. G[n] = {G ∈ DAGs(N) : [n]G = [n]}, and its
cim-polytope P[n] = PG[n]

.
Example 4.1 (Underlying ordering of graphs). Let N = {a1, a2, a3}. Consider

an ordering over N , [n] = (a2, a1, a3), i.e. a[1] = a2, a[2] = a1 and a[3] = a3. Then
∀G ∈ G[n], the only type of directed edges allowed in G are a[i] → a[j], where i < j.
For instance, a2 → a1 is allowed while a1 → a2 is not. Thus graph G1 in Figure
4.1(a) and graph G2 in Figure 4.1(b) are both in G[n]. Graph G3 in Figure 4.1(c) is
not in G[n] since it has arrow a1 → a2, and the underlying ordering for G3, i.e. [n]G3

,
can either be (a1, a2, a3) or (a1, a3, a2).

Remark 4.2. For a specific ordering [n] and an arbitrary G ∈ G[n], we have the
following proposition that is similar with Proposition 2.2.

• ∀T ⊆ N , |T | = k ≥ 2, we can order the elements in T according to [n]
and write T in the form of a[i1]a[i2] . . . a[ik] where i1 < i2 < · · · < ik. Then
cG(T ) =

∏
s=i1,...,ik−1

cG(a[s]a[ik]). This property means that the whole cG

is determined by
(
n
2

)
coordinates, {cG(a[i]a[j]), i < j}, which can also be

interpreted as the existence of the directed edges a[i] → a[j], i < j.
Another way to see this property is that ∀ G ∈ G[n], G can be determined by paG(a[i]),
i = 2, . . . , n since paG(a[1]) = ∅. Similarly with Remark 2.3, we can consider a
permutation of coordinates in cG that corresponds to a permutation of T , then these
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coordinates can be broken into n− 1 parts:

(12), (13), (23), (123)
:::::::::::::

, (14), (24), (34), . . . , (1234), . . . , (1n), (2n), . . . , ((n− 1)n), . . . , (12 . . . n)

where (i1 . . . ik) stands for T = a[i1]a[i2] . . . a[ik], {i1, . . . , ik} ⊆ {1, . . . , n}. The k-th
part of the coordinations, {cG(T ): a[j] /∈ T , ∀j > k} only depend on paG(a[k]), and
different parts are completely irrelevant in the sense that paG(a[k]), a[k] ∈ N , can be
decided separately.

4.2. Structure, edges and facets of P[n]. Theorem 4.3. Suppose n ≥ 2.
P[n] is a direct product of a sequence of simplices:

P[n] = ∆21−1 ×∆22−1 × · · · ×∆2n−1−1︸ ︷︷ ︸
n-1 simplices

,

where the ith simplex ∆2i−1 is the same with the cim-polytope for diagnosis models,
Pi,1, with diseases A = {a[1], . . . , a[i]} and one symptom {a[i+1]}.

Proof. See Section 7.

Remark 4.4. Two immediate results from Theorem 4.3 are:

• the dimension of P[n] is 2n − (n+ 1), and it is a simple polytope;
• the facets of P[n] can be obtained by Lemma 3.6 and Theorem 3.8.

Remark 4.5. Note that the equality in Theorem 4.3 is actually P[n] = ∆20−1 ×
∆21−1 × ∆22−1 × · · · × ∆2n−1−1, where ∆20−1 is omitted as it has dimension 0 (a
point). Theorem 4.3 and its proof also imply that ∀x ∈ P[n], x ∈ vert(P[n]) if and
only if with the permutation of coordinates in Remark 4.2, x can be written in the form
of x = (v1, v2, . . . , vn−1), where vi is the vertex of ∆2i−1, i = 1, . . . , n − 1. Suppose
x = cG, G ∈ G[n], then vi = cGi , where Gi is in Gi,1 with diseases N[i] and symptom
a[i+1], i = 1, . . . , n− 1, and paGi

(a[i+1]) = paG(a[i+1]).

The following theorem will be stated in two forms which are equivalent by Theo-
rem 4.3 and Lemma 3.1.

Theorem 4.6. Fix an underlying ordering [n] over N .

• (From the view of graph theory.) Two graphs, G1, G2 ∈ G[n] are neigh-
bors in G[n] if and only if: ∃ a[i] ∈ N such that paG1

(a[i]) 6= paG2
(a[i]) and

paG1
(a[j]) = paG2

(a[j]), ∀ a[j] ∈ N and a[j] 6= a[i], i.e., all nodes but one have
exactly the same parent sets in both G1 and G2.

• (From the view of polyhedral geometry.) ∀ x ∈ P[n], x is on an edge of
P[n] if and only if with the permutation of coordinates showed in Remark 4.2
x can be written in the form of x = (v1, . . . , vi−1, ei, vi+1, . . . , vn−1), where
ei belongs to an edge on ∆2i−1, i ∈ {1, . . . , n − 1}, and vj ∈ vert(∆2j−1),
j ∈ {1, . . . , n− 1}\{i}.

Proof. See Section 7.

4.3. Graphes with forbidden (or fixed) edges. Fix an underlying ordering
of nodes [n] and consider G[n]. When a specific set of directed edges are forbidden
in G[n], we can define sets of nodes Ω = {Ω0

i , i = 2, . . . , n} ∪ {Ω1
i , i = 2, . . . , n}

such that Ω0
i ⊆ Ω1

i ⊆ {a[1], . . . , a[i−1]}, and the class of graphs we are interested in
becomes G[n],Ω = {G ∈ DAGs(N) : [n]G = [n], Ω0

i ⊆ paG(a[i]) ⊆ Ω1
i , i = 2, . . . , n},

i.e. edges {a[j] → a[i]: a[j] ∈ Ω0
i , i = 2, . . . , n} are fixed edges, and edges {a[j] → a[i]:

a[j] ∈ {a[1], . . . , a[i−1]}\Ω1
i , i = 2, . . . , n} are forbidden edges. The cim-polytope for

G[n],Ω is PG[n],Ω
. Using similar strategy, we are able to show that PG[n],Ω

is a direct
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product of a sequence of simplices:
Theorem 4.7.

PG[n],Ω
=Pa[2]

× . . .×Pa[n]

= ∆
2|Ω

1
2|−|Ω

0
2|−1
× · · · ×∆

2|Ω
1
2|−|Ω

0
2|−1︸ ︷︷ ︸

2|Ω
0
2| many

× . . .×∆
2|Ω

1
n|−|Ω

0
n|−1

× · · · ×∆
2|Ω

1
n|−|Ω

0
n|−1︸ ︷︷ ︸

2|Ω
0
n| many

,
(4.1)

where the i-th polytope Pa[i+1]
= ∆

2
|Ω1

i+1
|−|Ω0

i+1
|−1
× · · · ×∆

2
|Ω1

i+1
|−|Ω0

i+1
|−1︸ ︷︷ ︸

2
|Ω0

i+1
| many

is a (2|Ω
1
i+1|−

2|Ω
0
i+1|)-face of P|Ω1

i+1|,1 = ∆
2
|Ω1

i+1
|−1

, where P|Ω1
i+1|,1 is the cim-polytope for diagnosis

models with diseases A = Ω1
i+1 and one symptom a[i+1].

Proof. To prove Pa[i+1]
= ∆

2
|Ω1

i+1
|−|Ω0

i+1
|−1
× · · · ×∆

2
|Ω1

i+1
|−|Ω0

i+1
|−1︸ ︷︷ ︸

2
|Ω0

i+1
| many

, we permu-

tate the coordinates in the following way:

{T : T ⊆ Ω0
i+1 ∪ a[i+1]} ∪

⋃
Ωs⊆Ω0

i+1

{T ⊆ Ω1
i+1 ∪ a[i+1] : T ∩ Ω0

i+1 = Ωs},(4.2)

i.e. cG(T ), ∀G ∈ G[n],Ω, can be split into the following subvectors: (cG(T ), where
T ⊆ Ω0

i+1∪a[i+1]), (cG(T ), where T ⊆ Ω1
i+1∪a[i+1] and T ∩Ω0

i+1 = Ωs), ∀Ωs ⊆ Ω0
i+1.

Then use the strategy similar with the previous proofs, we can prove the following:
• cG(T ), T ⊆ Ω0

i+1 ∪ a[i+1], are all fixed;
• ∀Ωs ⊆ Ω0

i+1, the convex hull of {(cG(T ), where T ⊆ Ω1
i+1 ∪ a[i+1] and T ∩

Ω0
i+1 = Ωs): ∀G ∈ G[n],Ω} is ∆

2
|Ω1

i+1
|−|Ω0

i+1
|−1

(see Example 4.8);

• Pa[i+1]
= ∆

2
|Ω1

i+1
|−|Ω0

i+1
|−1
× · · · ×∆

2
|Ω1

i+1
|−|Ω0

i+1
|−1︸ ︷︷ ︸

2
|Ω0

i+1
| many

;

• Equation 4.1 holds.

Example 4.8. Consider a DAG G which has 7 nodes {a1, . . . , a7}. After fix an
underlying ordering, we can write these nodes as {a[1], . . . , a[7]}, where a[i] → a[j] in G
implies i < j. Suppose edges a[1] → a[6] and a[2] → a[6] are fixed and edge a[5] → a[6]

is forbidden. Then coordinates cG(T ) = 0 if a[5] ∈ T , and other coordinates cG(T )
where a[j] /∈ T , ∀j > 6, can be ordered as following (values with respect to different
DAGs are listed as a matrix):

T\{a[6]}


a[1] a[2] a[1]a[2] a[3] a[4] a[3]a[4] a[1]a[3] a[1]a[4] a[1]a[3]a[4] a[2]a[3] a[2]a[4] a[2]a[3]a[4] a[1]a[2]a[3] a[1]a[2]a[4] a[1]a[2]a[3]a[4]
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 0 1 0 0 1 0 0
1 1 1 0 1 0 0 1 0 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



where the 4 rows correspond to graphs Gi, i = 1, . . . , 4, such that paG1(a[6]) =
{a[1], a[2]}, paG1

(a[6]) = {a[1], a[2], a[3]}, paG1
(a[6]) = {a[1], a[2], a[4]} and paG1

(a[6]) =
{a[1], a[2], a[3], a[4]}.

It is obvious that the cim-polytope for diagnosis models, Pm,n, is a special case of
PG[n],Ω

: the underlying ordering of nodes is (a1, . . . , am, b1, . . . , bn) (the ordering is not
unique in the sense that the order of two diseases or two symptoms can exchange),
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Ω0
i = Ω1

i = ∅ for i = 1, . . . ,m, while Ω0
i = ∅ and Ω1

i = {a1, . . . , am} for i = m +
1, . . . ,m + n. Note that based on Equation (4.1), all edges of PG[n],Ω

can be found
similarly with Theorem 4.6, and the its facets can also be obtained by Lemma 3.6
and Theorem 3.8.

5. Proofs in Section 2.

5.1. Proof of Lemma 3.1. Proof. Let N = A∪B, where A = {a1, . . . , am} and
B = {b1}. We need to prove: ∃ a cost vector w, such that w · cG1 = w · cG2 > w · cG3 ,
∀ G3 ∈ Gm,1 distinct with G1 and G2.
By Remark 2.3, G1 and G2 are determined by paG1

(b1) and paG2
(b1), respectively.

We will discuss by two scenarios of paG1
(b1) and paG2

(b1): one is a subset of the
other, and neither one is a subset of the other.

(1) One is a subset of the other. WLOG, suppose paG1
(b1) ( paG2

(b1).
Define: A1 = paG1

(b1), A2 = paG2
(b1), A2\1 = paG2

(b1)\paG1
(b1), and

Acomp = (paG2
(b1))c (i.e. the complement set of paG2

(b1)). Note that:
A2\1 6= ∅, A1 and Acomp can be ∅; A1, A2\1 and Acomp is a partition of
N .
Consider a function w : P(N) 7→ R where w(T ) = 0 if |T | < 2. Then similar
with imsets, w can also be considered as a vector, and we assume that the
permutations of coordinates in w and in characteristic imsets coincide.

– If |A2\1| > 1, we define w as:

w(T ) =


c for T = aibj , ai ∈ A1

−c for T = aibj , ai /∈ A1

|A2\1| · c for T = A2\1 ∪ {b1}
0 for T ⊂ N, |T | > 2, and T 6= A2\1 ∪ {b1}

where c is a positive number.
Then ∀ G3 ∈ Gm,1, we have:

w · cG3 = |A1 ∩ paG3(b1)| · c− |paG3(b1)\A1| · c+ |A2\1| · c · cG3(A2\1 ∪ {b1})
= |A1 ∩ paG3(b1)| · c− |paG3(b1) ∩A2\1| · c− |paG3(b1) ∩Acomp| · c

+|A2\1| · c · cG3(A2\1 ∪ {b1}).

In this equation:
∗ |A1 ∩ paG3

(b1)| · c ≤ |A1| · c, where “=” holds if and only if A1 ⊂
paG3

(b1);
∗ −|paG3

(b1) ∩A2\1| · c+ |A2\1| · c · cG3
(A2\1 ∪ {b1}) ≤ 0, where “=”

holds if and only if paG3
(b1) ∩A2\1 = ∅ or A2\1;

∗ −|paG3(b1)∩Acomp|·c ≤ 0, where “=” holds if and only if paG3(b1)∩
Acomp = ∅.

Therefore, w · cG3
≤ |A1| · c, where “=” holds if and only if G3 = G1 or

G2.
– If |A2\1| = 1, we let A2\1 = {aq}, and define w as:

w(T ) =


c for T = aibj , ai ∈ A1

−c for T = aibj , ai /∈ A2

0 for T = aqb1
0 for T ⊂ N, |T | > 2, and T 6= A2\1 ∪ {b1}

where c is a positive number.
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Then ∀ G3 ∈ Gm,1, we have:

w · cG3
= |A1 ∩ paG3

(b1)| · c− |paG3
(b1) ∩Acomp| · c.

Again, in this equation:
∗ |A1 ∩ paG3

(b1)| · c ≤ |A1| · c, where “=” holds if and only if A1 ⊂
paG3

(b1);
∗ −|paG3(b1)∩Acomp|·c ≤ 0, where “=” holds if and only if paG3(b1)∩
Acomp = ∅.

To satisfy the above two conditions, we must have paG3
(b1) = A1 or

(A1 ∪ aq). Therefore, again, we have: w · cG3
≤ |A1| · c, where “=” holds

if and only if G3 = G1 or G2.
(2) Neither one is a subset of the other.

Define: A1 = paG1(b1), A2 = paG2(b1), A1∩2 = paG1(b1) ∩ paG2(b1), A1\2 =
paG1

(b1)\paG2
(b1), A2\1 = paG2

(b1)\paG1
(b1), A1∪2 = paG1

(b1) ∪ paG2
(b1)

and Acomp = (A1∪2)c. Note that: A1\2, A2\1 6= ∅, A1∩2 and Acomp can be ∅;
A1∩2, A1\2, A2\1, and Acomp is a partition of N .
Consider a function w similar with part (1) that can also be considered as a
vector such that the permutations of coordinates in w and in characteristic
imsets coincide.

– If |A1\2| > 1 and |A2\1| > 1, we define w as:

w(T ) =



c for T = aibj , ai ∈ A1∩2
−c for T = aibj , ai /∈ A1∩2
−2c for T = A1\2 ∪A2\1 ∪ {b1}
(|A1\2|+ 1) · c for T = A1\2 ∪ {b1}
(|A2\1|+ 1) · c for T = A2\1 ∪ {b1}
0 for other T ⊂ N, |T | > 2

where c is a positive number.
Then ∀ G3 ∈ Gm,1, we have:

w · cG3 = |paG3(b1) ∩A1∩2| · c− |paG3(b1) ∩A1\2| · c
−|paG3(b1) ∩A2\1| · c− |paG3(b1) ∩Acomp| · c
+(|A1\2|+ 1) · c · cG3(A1\2 ∪ {b1}) + (|A2\1|+ 1) · c · cG3(A2\1 ∪ {b1})
−2c · cG3(A1\2 ∪A2\1 ∪ {b1})

= |paG3(b1) ∩A1∩2| · c
−|paG3(b1) ∩A1\2| · c+ (|A1\2|+ 1) · c · cG3(A1\2 ∪ {b1})
−|paG3(b1) ∩A2\1| · c+ (|A2\1|+ 1) · c · cG3(A2\1 ∪ {b1})
−2c · cG3(A1\2 ∪A2\1 ∪ {b1})
−|paG3(b1) ∩Acomp| · c

In this equation:
∗ |paG3

(b1) ∩ A1∩2| · c ≤ |A1∩2| · c, where “=” holds if and only if
A1∩2 ⊂ paG3(b1);

∗ −|paG3(b1)∩A1\2| · c+ (|A1\2|+ 1) · c · cG3(A1\2 ∪ {b1}) ≤ c, where
“=” holds if and only if A1\2 ⊂ paG3

(b1);
∗ −|paG3

(b1)∩A2\1| · c+ (|A2\1|+ 1) · c · cG3
(A2\1 ∪ {b1}) ≤ c, where

“=” holds if and only if A2\1 ⊂ paG3
(b1);

∗ −2c · cG3(A1\2 ∪ A2\1 ∪ {b1}) ≤ 0, where “=” holds if and only if
(A1\2 ∪A2\1) * paG3(b1);

∗ −|paG3
(b1)∩Acomp|·c ≤ 0, where “=” holds if and only if paG3

(b1)∩
Acomp = ∅.
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The above conditions cannot be satisfied simultaneously, but notice that:
∗ when paG3

(b1) = A1∩2, w ·cG3
= |A1∩2| ·c+0+0+0+0 = |A1∩2| ·c;

∗ when paG3
(b1) = A1, i.e. G3 = G1, w·cG3

= |A1∩2|·c+c+0+0+0 =
(|A1∩2|+ 1) · c;

∗ when paG3(b1) = A2, i.e. G3 = G2, w·cG3 = |A1∩2|·c+0+c+0+0 =
(|A1∩2|+ 1) · c;

∗ when paG3
(b1) = A1∪2, w ·cG3

= |A1∩2| ·c+c+c−2c+0 = |A1∩2| ·c.
Now it is obvious that w · cG3

≤ (|A1∩2|+ 1) · c, where “=” holds if and
only if G3 = G1 or G2.

– If only one of |A1\2| and |A2\1| is 1. Suppose |A1\2| = 1 and |A2\1| > 1.
We define w as:

w(T ) =


c for T = aibj , ai ∈ A1

−c for T = aibj , ai /∈ A1

−2c for T = A1\2 ∪A2\1 ∪ {b1}
(|A2\1|+ 1) · c for T = A2\1 ∪ {b1}
0 for other T ⊂ N, |T | > 2

where c is a positive number.
Then ∀ G3 ∈ Gm,1, we have:

w · cG3 = |paG3(b1) ∩A1∩2| · c+ |paG3(b1) ∩A1\2| · c
−|paG3(b1) ∩A2\1| · c− |paG3(b1) ∩Acomp| · c
+(|A2\1|+ 1) · c · cG3(A2\1 ∪ {b1})− 2c · cG3(A1\2 ∪A2\1 ∪ {b1})

= |paG3(b1) ∩A1∩2| · c
+|paG3(b1) ∩A1\2| · c
−|paG3(b1) ∩A2\1| · c+ (|A2\1|+ 1) · c · cG3(A2\1 ∪ {b1})
−2c · cG3(A1\2 ∪A2\1 ∪ {b1})
−|paG3(b1) ∩Acomp| · c.

In this equation:
∗ |paG3

(b1) ∩ A1∩2| · c ≤ |A1∩2| · c, where “=” holds if and only if
A1∩2 ⊂ paG3(b1);

∗ |paG3(b1) ∩ A1\2| · c ≤ c, where “=” holds if and only if A1\2 ⊂
paG3

(b1);
∗ −|paG3

(b1)∩A2\1| · c+ (|A2\1|+ 1) · c · cG3
(A2\1 ∪ {b1}) ≤ c, where

“=” holds if and only if A2\1 ⊂ paG3
(b1);

∗ −2c · cG3(A1\2 ∪ A2\1 ∪ {b1}) ≤ 0, where “=” holds if and only if
(A1\2 ∪A2\1) * paG3(b1);

∗ −|paG3
(b1)∩Acomp|·c ≤ 0, where “=” holds if and only if paG3

(b1)∩
Acomp = ∅.

The above conditions cannot be satisfied simultaneously, but it is similar
with the case of “|A1\2| > 1 and |A2\1| > 1” to show that w · cG3

≤
(|A1∩2|+ 1) · c, where “=” holds if and only if G3 = G1 or G2.

– If |A1\2| = |A2\1| = 1, we define w as:

w(T ) =


c for T = aibj , ai ∈ A1∪2
−c for T = aibj , ai /∈ A1∪2
−2c for T = A1\2 ∪A2\1 ∪ {b1}
0 for other T ⊂ N, |T | > 2

where c is a positive number.
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Then ∀ G3 ∈ Gm,1, we have:

w · cG3
= |paG3

(b1) ∩A1∩2| · c
+|paG3

(b1) ∩A1\2| · c+ |paG3
(b1) ∩A2\1| · c

−2c · cG3
(A1\2 ∪A2\1 ∪ {b1})

−|paG3(b1) ∩Acomp| · c.

In this equation:
∗ |paG3

(b1) ∩ A1∩2| · c ≤ |A1∩2| · c, where “=” holds if and only if
A1∩2 ⊂ paG3

(b1);
∗ |paG3

(b1) ∩ A1\2| · c ≤ c, where “=” holds if and only if A1\2 ⊂
paG3

(b1);
∗ |paG3(b1) ∩ A2\1| · c ≤ c, where “=” holds if and only if A2\1 ⊂
paG3(b1);

∗ −2c · cG3
(A1\2 ∪ A2\1 ∪ {b1}) ≤ 0, where “=” holds if and only if

(A1\2 ∪A2\1) * paG3
(b1);

∗ −|paG3
(b1)∩Acomp|·c ≤ 0, where “=” holds if and only if paG3

(b1)∩
Acomp = ∅.

The above conditions cannot be satisfied simultaneously, but it is similar
with the case of “|A1\2| > 1 and |A2\1| > 1” to show that: w · cG3

≤
(|A1∩2|+ 1) · c, where “=” holds if and only if G3 = G1 or G2.

5.2. Proof of Theorem 3.2. Proof. We will prove “if” and “only if” separately.

(1) Prove “if” part.
SupposeG1, G2 ∈ Gm,n, and there exists bi ∈ B such that paG1

(bi) 6= paG2
(bi)

and paG1
(bj) = paG2

(bj), ∀ bj ∈ B, bj 6= bi. We need to prove G1 and G2 are
neighbors.
Consider an arbitrary graph G3 ∈ Gm,n. We need to prove: ∃ a cost vector w
such that w · cG1 = w · cG2 ≥ w · cG3 , where “=” holds if and only if G3 = G1

or G2.
Define the following graphs (a graphical example will be given in Remark
5.1):

– G′1, G′2, G′3 ∈ Gm,1 with symptom Bm,1 = {bi} such that paG′1(bi) =
paG1(bi), paG′2(bi) = paG2(bi) and paG′3(bi) = paG3(bi);

– G0, G′′3 ∈ Gm,(n−1) with symptomsBm,(n−1) = B\{bi} such that paG0(bj) =
paG1

(bj) = paG2
(bj) and paG′′3 (bj) = paG3

(bj), ∀ bj ∈ Bm,(n−1).
By Remark 2.3, with a proper permutation of coordinates, we can write the
characteristic imsets of G1, G2 and G3 in the form of:

cG1
= (cG′1 , cG0

)
cG2 = (cG′2 , cG0)
cG3

= (cG′3 , cG′′3 )

– By Lemma 3.1, G′1 and G′2 are neighbors, i.e. ∃ a cost vector w1 such
that w1 · cG′1 = w1 · cG′2 ≥ w1 · cG′3 , ∀ G′3 ∈ Gm,1, where “=” holds if and
only if G′3 = G′1 or G′2.

– Since cG0
∈ vert(PGm,(n−1),c), ∃ a cost vector w2 such that w2 · cG0

≥
w2 · cG′′3 , ∀ G′′3 ∈ Gm,(n−1), where “=” holds if and only if G′′3 = G0.
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Let w = (w1 w2). We have:

w · cG1
= w1 · cG′1 + w2 · cG0

= w1 · cG′2 + w2 · cG0
= w · cG2

≥ w1 · cG′3 + w2 · cG′′3 = w · cG3
,

where “=” holds if and only if i) G′3 = G′1 or G′2, and ii) G′′3 = G0, i.e.
G3 = G1 or G2.

(2) Prove “only if” part.
Suppose G1, G2 ∈ Gm,n are neighbors. i.e. ∃ a cost vector w such that
w · cG1

= w · cG2
> w · cG, ∀ G ∈ Gm,n, G 6= G1, G2. We are going to prove

this part by contradiction.
Suppose ∃ bi, bj ∈ B distinct, paG1

(bi) 6= paG2
(bi) and paG1

(bj) 6= paG2
(bj).

Define the following graphs (a graphical example will be given in Remark
5.1):

– G′1, G′2 ∈ Gm,1 with symptom Bm,1 = {bi} such that paG′1(bi) = paG1
(bi)

and paG′2(bi) = paG2
(bi);

– G′′1 , G′′2 ∈ Gm,1 with symptom Bm,1 = {bj} such that paG′′1 (bj) =
paG1

(bj) and paG′′2 (bj) = paG2
(bj);

– G′′′1 , G′′′2 ∈ Gm,(n−2) with symptoms Bm,(n−2) = B\{bi, bj} such that
paG′′′1

(bk) = paG1(bk) and paG′′′2
(bk) = paG2(bk), ∀ bk ∈ Bm,(n−2);

– G3 ∈ Gm,n is all the same with G1 but paG3(bi) = paG2(bi);
– G4 ∈ Gm,n is all the same with G1 but paG4

(bj) = paG2
(bj);

– G5 ∈ Gm,n is all the same withG2 but paG5
(bi) = paG1

(bi) and paG5
(bj) =

paG1
(bj), notice that G5 might be same with G1.

Similarly with part (1), with a proper permutation of coordinates, we can
write the characteristic imsets of G1, G2, G3, G4 and G5 in the following
form:

cG1
= (cG′1 , cG′′1 , cG′′′1

)
cG2 = (cG′2 , cG′′2 , cG′′′2

)
cG3

= (cG′2 , cG′′1 , cG′′′1
)

cG4 = (cG′1 , cG′′2 , cG′′′1
)

cG5
= (cG′1 , cG′′1 , cG′′′2

)

With the same permutation of coordinates, w can be written as w = (w1 w2 w3).
Thus we have:

– G3 6= G1 or G2, which implies:

w · cG1
= w1 · cG′1 + w2 · cG′′1 + w3 · cG′′′1

> w · cG3 = w1 · cG′2 + w2 · cG′′1 + w3 · cG′′′1

=⇒ w1 · cG′1 > w1 · cG′2 ;

– G4 6= G1 or G2, which implies:

w · cG1
= w1 · cG′1 + w2 · cG′′1 + w3 · cG′′′1

> w · cG4 = w1 · cG′1 + w2 · cG′′2 + w3 · cG′′′1

=⇒ w2 · cG′′1 > w2 · cG′′2 .

There is a contradiction:

w · cG2
= w1 · cG′2 + w2 · cG′′2 + w3 · cG′′′2

< w1 · cG′1 + w2 · cG′′1 + w3 · cG′′′2
= w · cG5

=⇒ w · cG2
< w · cG5

.
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Therefore G1 and G2 cannot be neighbors.

Remark 5.1. Two graphical examples will be given for a more intuitive view of
the proof of Theorem 3.2.

• Part (1), the proof of “if” statement. In Figure 5.1, m = 4, n = 3 and
bi = b1.

Figure 5.1. An example for the proof of Theorem 3.2, part (1)

• Part (2), the proof of “only if” statement. In Figure 5.2, m = 4, n = 3,
bi = b1 and bj = b2.

5.3. Proof of Theorem 3.3. Proof. By Theorem 3.2, ∀H ∈ Gm,n, G and H
are neighbors if and only if: ∃ bk ∈ B such that paG(bk) 6= paH(bk) and paG(bj) =
paH(bj), ∀ bj ∈ B and bj 6= bk.

Now fix bi ∈ B. Define graphs:

• G′, H ′ ∈ Gm,1 with symptom Bm,1 = {bi} such that paG′(bi) = paG(bi) and
paH′(bi) = paH(bi);

• G′′, H ′′ ∈ Gm,(n−1) with symptoms Bm,(n−1) = B\{bi} such that paG′′(bj) =
paG(bj) and paH′′(bj) = paH(bj), ∀ bj ∈ Bm,(n−1).

Since G and H are neighbors and G′ 6= H ′ will lead to G′′ = H ′′, and by Proposition
2.4 there are 2m graphs in Gm,1, there are 2m − 1 different choices of H ′s, and each
corresponds to a different neighbor of G.

We can use the same strategy for every bi ∈ B, i.e. we can find 2m − 1 neighbors
from each fixed bi ∈ B. It is easy to see that these neighbors are all distinct: if H1,
H2 are all the same with G but paG(bi) 6= paH1

(bi) and paG(bj) 6= paH2
(bj), where

bi, bj ∈ B are distinct, then this implies paH2
(bi) = paG(bi) 6= paH1

(bi), i.e. H1 and
H2 are different. Therefore the total number of neighbors for G is: n · (2m − 1).
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Figure 5.2. An example for the proof of Theorem 3.2, part (2)

6. Prove Pm,n is simple using linear algebra. Recall that in Section 3,
we first proved that Pm,1 is a simplex ∆2m−1, and then we proved that Pm,n is a
direct product of n many ∆2m−1, which implies that Pm,n is a simple polytope with
dimension n · (2m − 1). Now we are going to show another flow to prove that Pm,n is
simple.

First, we will use linear algebra to show that Pm,n has dimension n · (2m − 1).
We adopt the notation from Section 3. Given N , by Proposition 2.1 and Proposition
2.5, we can define Sm,n as the support of {cG : G ∈ Gm,n}, i.e.:

Sm,n = {T : ∃ G ∈ Gm,n such that cG(T ) = 1} ⊂ P(N),

where P(N) is the power set of N .
Theorem 6.1. Fix m and n. The dimension of Pm,n is exactly n · (2m − 1).
Proof. Similar with imsets, we can consider the standard basis eT, T ⊂ N , as

functions eT : P(N) 7→ Z such that ∀ T0 ⊂ N , eT(T0) = 1 if T0 = T , and 0 otherwise.
Each eT can also be considered as a vector with coordinates T0 ⊂ N .

It is obvious that: 1 ) {cG, G ∈ Gm,n} ⊂ R2m+n−(m+n+1); 2 ) {eT, T ∈ Sm,n}
is a basis of Rn·(2m−1) that is embedded in R2m+n−(m+n+1) (Proposition 2.5); and 3
){cG, G ∈ Gm,n} can be written as a linear combination of {eT, T ∈ Sm,n}. We are
going to prove that {eT, T ∈ Sm,n} can be expressed as a linear combination of {cG,
G ∈ Gm,n}. Notice that {eT, T ∈ Sm,n} is equivalent with {eT, T ⊂ N and T has the
form of ai1 . . . aikbj , where 1 ≤ k ≤ m, {i1, . . . , ik} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n}}
(Proposition 2.1), we can prove the statement by induction on |T |.
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• When |T | = 2 (i.e. k = 1), i.e. T = aibj , where ai ∈ A and bj ∈ B, we know
cG = eT, where G ∈ Gm,n has only one edge ai → bj .

• Suppose ∀ T , T has the form in Proposition 2.1 and |T | ≤ k, eT can be written
as a linear combination of {cG, G ∈ Gm,n}. Now consider Tk = ai1 . . . aikbj ,
where {i1, . . . , ik} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n}.
Let G ∈ Gm,n have k edges: ail → bj , l = 1 . . . k. Then:

eTk
= cG −

∑
Ta⊂{ai1 ,...,aik},0<|Ta|<k

eTa∪{bj}.

Since ∀ Ta ⊂ {ai1 , . . . , aik}, 0 < |Ta| < k (i.e. Ta ( {ai1 , . . . , aik}), |Ta ∪
bj | ≤ k, eTa∪bj

can be expressed as a linear combination of {cG, G ∈ Gm,n}.
Therefore, eTk

can be written as a linear combination of {cG, G ∈ Gm,n}.

A special case of n = 1 in Theorem 6.1 and Proposition 2.4 claims that Pm,1 has
2m vertices and dimension 2m − 1. This directly lead to Corollary 6.2.

Corollary 6.2. Fix m, Pm,1 is a simplex with dimension 2m − 1, i.e. Pm,1 =
∆2m−1.

Lemma 3.1 is an immediate result of Corollary 6.2, while Theorem 3.3 and The-
orem 3.5 can be obtained based on Lemma 3.1 and Corollary 6.2 using the same
proofs in Section 3. It is worth mentioning that Theorem 6.1 and Theorem 3.3 imply
that Pm,n is a simple polytope with dimension n · (2m − 1) because the number of
neighbors for each vertex equals to the dimension of the polytope. In 2000, V. Kaibel
and M. Wolff proved that a zero-one polytope is simple if and only if it equals to a
direct product of zero-one simplices [6]. Recall that cim-polytopes are zero-one poly-
topes, we are able to conclude that Pm,n is a direct product of zero-one simplices [6].
Our progress is that we proved a even strong result in Theorem 3.5 with an intuitive
graphical interpretation of each simplex in the direct product.

7. Proofs in Section 4.

7.1. Proof of Theorem 4.3. Proof. We are going to prove the equality by
induction on n. Since n ≥ 2, we start the induction from n = 2.

• n = 2. It is obvious since there are only two vertices in P[n]: (1) and (0). So
P[n] is a line segment which is a simplex of dimension 1, i.e. P[n] = ∆1.

• Fix q ∈ Z+. Suppose the equality holds for P[n], ∀ n < q, and we need to
prove that it also holds for P[q]. Define notation N[k] = {a[1], . . . , a[k]} for
k = 1, . . . , q.
First, we want to prove: P[q] ⊆ P[q−1] ×∆2q−1−1.
∀ G ∈ G[q], we can define graphs:

– G′ is the induced subgraph of G for N[q−1], which implies cG′ ∈ P[q−1];
– G′′ is a graph over N such that the only edges in G′′ are a[i] → a[q],

where a[i] ∈ paG(a[q]). Consider a diagnosis model where N[q−1] is the
set of diseases and a[q] is the symptom, then we can see that cG′′ ∈
Pq−1,1 = ∆2q−1−1.

Now, with a proper permutation of coordinates (see Remark 4.2), we can
write cG in the form of:

cG = (cG′ cG′′).

Since vert(P[q]) = {cG : G ∈ G[q]}, ∀ x ∈ P[q], with the same permutation of
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coordinates, we have:

(7.1) x =
∑
G∈G[q]

αGcG = (
∑
G∈G[q]

αGcG′ ,
∑
G∈G[q]

αGcG′′),

where 0 ≤ αG ≤ 1, ∀ G ∈ G[q] and
∑

G∈G[q]

αG = 1.

Notice that
∑

G∈G[q]

αGcG′ ∈ P[q−1] and
∑

G∈G[q]

αGcG′′ ∈ ∆2q−1−1, Equation

(7.1) implies x ∈ P[q−1] ×∆2q−1−1. Hence:

P[q] ⊆ P[q−1] ×∆2q−1−1.

Second, we want to prove: P[q−1] ×∆2q−1−1 ⊆ P[q].
Let G[q−1] has nodes N[q−1], and Gq−1,1 has diseases N[q−1] and symptom a[q].
∀ G′ ∈ G[q−1] and G′′ ∈ Gq−1,1, we can define G ∈ G[q] by extending G′ as
following: add a node a[q] and edges (a[i], a[q]), ∀a[i] ∈ paG′′(a[q]), to G′. We
can write cG in the form of cG = (cG′ cG′′).
∀x ∈ P[q−1] ×∆2q−1−1, x can be written as:

x = (
∑

G′∈G[q−1]

βG′cG′ ,
∑

G′′∈Gq−1,1

γG′′cG′′) =
∑

G′∈G[q−1]

∑
G′′∈Gq−1,1

βG′γG′′(cG′ , cG′′)

=
∑

G′∈G[q−1]

∑
G′′∈Gq−1,1

(βG′γG′′) cG ,

where 0 ≤ βG′ , γG′′ ≤ 1, ∀G′ ∈ G[q−1], ∀G′′ ∈ Gq−1,1, and
∑
G′∈G[q−1]

βG′ = 1,∑
G′′∈Gq−1,1

γG′′ = 1.
Notice that∑
G′∈G[q−1]

∑
G′′∈Gq−1,1

(βG′γG′′) =
∑

G′∈G[q−1]

βG′(
∑

G′′∈Gq−1,1

γG′′) =
∑

G′∈G[q−1]

βG′ = 1.

This leads to x ∈ P[q]. Hence:

P[q−1] ×∆2q−1−1 = P[q−1] ×Pq,1 ⊆ P[q].

By induction on n, we finish the proof by:
P[q] = P[q−1] ×Pq−1,1 = (∆21−1 × · · · ×∆2q−2−1)×∆2q−1−1 =

∆21−1 × · · · ×∆2q−1−1.

7.2. Proof of Theorem 4.6. Proof. The proof from the view of graph theory
will be very similar with the proof of Theorem 3.2, so we are going to give a proof
from the view of polyhedral geometry, i.e. prove that: “∃ vertices of v1, v2 ∈ P[n]

such that x = βv1 + (1 − β)v2 where 0 ≤ β ≤ 1, and v1, v2 form an edge in P[n]”
if and only if “x can be written in the form of x = (v1, . . . , vi−1, ei, vi+1, . . . , vn−1),
i ∈ {1, . . . , n− 1}”.

We will prove “if” and “only if” separately.
(1) Prove “if” part.

Suppose x has the form x = (v1, . . . , vi−1, ei, vi+1, . . . , vn−1).
Since ei belongs to an edge on ∆2i−1, we can find two vertices v1

i , v2
i ∈ ∆2i−1

which form this edge, and this implies ei = βv1
i + (1 − βv2

i ), 0 ≤ β ≤ 1.
Suppose the cost vector for this edge is wei , then for any v3

i ∈ vert(∆2i−1),
wei v

3
i ≤ wei v1

i = wei v
2
i , where “=” holds if and only if v3

i = v1
i or v3

i = v2
i .
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We can also find wvj which is a cost vector for vertex vj in ∆2j−1, j ∈
{1, . . . , n − 1}\{i}. Still, we have: ∀v3

j ∈ vert(∆2j−1), wvj v
3
j ≤ wvj vj , where

“=” holds if and only if v3
j = vj .

Now let v1 = (v1, . . . , vi−1, v
1
i , vi+1, . . . , vn−1), v2 = (v1, . . . , vi−1, v

2
i , vi+1, . . . , vn−1)

and w = (wv1 , . . . , w
v
i−1, w

e
i , w

v
i+1, . . . , w

v
n−1). Obviously x = βv1 + (1− β)v2,

where 0 ≤ β ≤ 1. In addition, ∀v3 = (v3
1 , . . . , v

3
n−1) ∈ vert(P[n]), we have:

wv3 = wei v
3
i +

n−1∑
j=1, j 6=i

wvj v
3
j ≤ wei v

1
i +

n−1∑
j=1, j 6=i

wvj vj = wv1

= wei v
2
i +

n−1∑
j=1, j 6=i

wvj vj = wv2,

where “=” holds if and only if v3 = v1 or v3 = v2, i.e. v1 and v2 form an
edge on P[n].

(2) Prove “only if” part.
Suppose ∃ v1 = (v1

1 , . . . v
1
n−1), v2 = (v2

1 , . . . v
2
n−1) ∈ vert(P[n]) such that

x = βv1 + (1 − β)v2 where 0 ≤ β ≤ 1, and v1, v2 form an edge in P[n]. If
we can prove that ∃ i ∈ {1, . . . , n− 1} such that v1

i 6= v2
i and v1

j = v2
j , ∀ j ∈

{1, . . . , n− 1}\{i}, then x has the form x = (v1, . . . , vi−1, ei, vi+1, . . . , vn−1),
where ei is on the edge of ∆2i−1 formed by v1

i and v2
i . We are going to prove

this statement by contradiction.
Suppose ∃ i, j ∈ {1, . . . , n−1} distinct such that v1

i 6= v2
i and v1

j 6= v2
j , but v1

and v2 still form an edge on P[n]. Let w = (w1, . . . , wn−1) be the cost vector
for this edge, i.e. ∀v3 = (v3

1 , . . . v
3
n−1) ∈ vert(P[n]), wv

3 ≤ wv1 = wv2 where
“=” holds if and only if v3 = v1 or v3 = v2.

– If we set v3 as following: v3
i = v2

i , v3
k = v1

k, ∀ k ∈ {1, . . . , n − 1}\{i}.
Obviously v3 6= v1 and v3 6= v2. Thus:

wv3 = wiv
2
i +

n−1∑
k=1, k 6=i

wkv
1
k < wv1 =

n−1∑
k=1

wkv
1
k = wiv

1
i +

n−1∑
k=1, k 6=i

wkv
1
k

=⇒ wiv
2
i < wiv

1
i .

– If we set v3 as following: v3
j = v2

j , v3
k = v1

k, ∀ k ∈ {1, . . . , n − 1}\{j}.
Obviously v3 6= v1 and v3 6= v2. Thus:

wv3 = wjv
2
j +

n−1∑
k=1, k 6=j

wkv
1
k < wv1 =

n−1∑
k=1

wkv
1
k = wjv

1
j +

n−1∑
k=1, k 6=j

wkv
1
k

=⇒ wjv
2
j < wjv

1
j .

Now we set v3 as following: v3
i = v1

i , v3
j = v1

j , v3
k = v2

k, ∀ k ∈ {1, . . . , n −
1}\{i, j}. Then we have:

wv3 = wiv
1
i+wjv

1
j+

n−1∑
k=1, k 6=i,j

wkv
2
k > wiv

2
i+wjv

2
j+

n−1∑
k=1, k 6=i,j

wkv
2
k =

n−1∑
k=1

wkv
2
k = wv2,

i.e. wv3 > wv2, which is a contradiction with our assumption.

8. Discussion.
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8.1. Connection to K2 algorithm. If we consider a criterion Q which is a
regular criterion, then it was proved that Q can be written as Q(G,D) = s(D) −
〈rD, cG〉, where the entropy s(D) and the data vector rD only depends on the data
D and cG is the characteristic imset of G [12, 8]. Once the cim-polytope can be
written as a direct product of a sequences of simplices, we are able to find the optimal
BN structure by maximizing a target function in each simplex: given data D ∈
DATA(N, d),

max
G∈G[n],Ω

Q(G,D) =⇒ min
x∈PG[n],Ω,c

rTDx =

n∑
i=2

min
xi∈∆

2|Ωi|−1

rTD,ixi,(8.1)

where xi contains the coordinates {T ⊆ Ωi∪{a[i]} : |T | ≥ 2, a[i] ∈ T , a[j] /∈ T , ∀j > i}
in x, and the coordinates of rTD,i matches the coordinates of xi. This implies that we
can find the optimal parent sets of a[i], i = 2, . . . , n, sequentially until we obtain the
whole BN structure, which will be exactly the optimal BN structure in G[n],Ω.

Equation (8.1) gives a polyhedral geometric insight of the K2 algorithm [3], which
is a well-known heuristic method in learning Bayesian networks. Recall that in K2 al-
gorithm, an ordering on the nodes is also fixed and parent sets of a[i], i = 2, . . . , n, are
also determined sequentially. However, in order to find the optimal BN, Equation (8.1)
claims that we need to find Gi ∈ G|Ωi|,1 such that rTD,icGi

= minxi∈∆
2|Ωi|−1

rTD,ixi,

while the K2 algorithm obtain each parent set paG(a[i]) by adding nodes to ∅ step-
wisely (or removing nodes from {a[1], . . . , a[i−1]} stepwisely), which cannot guarantee
that the resulting parent sets are optimal (see Example 8.1 for a counter-example).

Example 8.1. Consider G3,1. The characteristic imsets of all possible graphs in
G3,1 is listed as a matrix:



cG0

cG1

cG2

cG3

cG12

cG23

cG13

cG123


=



T a1b1 a2b1 a3b1 a1a2b1 a1a3b1 a2a3b1 a1a2a3b1

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 1 1 1 1


We are going to give counter-examples that the resulting BN of the K2 algorithm is
not the optimal solution.

• Forward selection, i.e. each parent set paG([i]) is obtained by adding nodes
to ∅ stepwisely. Suppose rTD = (−1,−2,−1,−3,−10,−4, 20) which satisfies
rTDcG13

= −12 < rTDcG, ∀G ∈ G3,1, G 6= G13, i.e. the optimal graph is
G13. In K2 algorithm, we start from paG(b1) = ∅. Next, a2 is added to
paG(b1) because rTDcG2

= −2 < rTDcG1
= rTDcG3

= −1. Then a3 is added to
paG(b1) because rTDcG23 = −7 < rTDcG12 = −6. Procedure ends here because
rTDcG23 = −7 < rTDcG123 = −1. The graph chosen by K2 algorithm, G23, is
not the optimal graph.
• Backward selection, i.e. each parent set paG(a[i]) is obtained by removing

nodes from {a[1], . . . , a[i−1]} stepwisely. Suppose rTD = (−3,−1,−1, 3, 3, 0, 10)
which satisfies rTDcG1

= −3 < rTDcG, ∀G ∈ G3,1, G 6= G1, i.e. the optimal
graph is G1. In K2 algorithm, we start from paG(b1) = {a1, a2, a3}. Next,
a1 is removed from paG(b1) because rTDcG23 = −2 < rTDcG12

= rTDcG13
= −1.

Procedure ends here because rTDcG23
= −2 < rTDcG2

= rTDcG3
= −1. The

graph chosen by K2 algorithm, G23, is not the optimal graph.
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8.2. Open problems. Further work and open problems are still left in this
topic. As we mentioned before, the main purpose of studying the structure of cim-
polytopes is reducing the time complexity of learning Bayesian networks by suggesting
polyhedral geometry techniques. But the reality is that even we have simplified our
problem of learning BNs to LP problems over each simplex (see Equation (8.1)) in
the direct produce showed in Theorem 4.3 and Equation (4.1), and have described all
edges and facets of these simplices (see Section 3), if the number of nodes is large, the
procedure of searching the optimal solutions in each simplex may still be very time-
consuming. In this sense, simulations and analysis on real datasets are necessary to
compare the solution and time complexity of our method with other existing classifiers
[16]. On the other hand, we also need to study on the misspecification (i.e. the
underlying ordering of nodes is misspecified) and data sensitivity problems of our
method via simulations.

Another way to reduce the time complexity is considering setting up a maximum
number of parents to control the model complexity, especially when the number of
nodes is too large. In this case, since the underlying ordering is fixed, the cim-polytope
is still a direct product of simplices. Thus all edges of the cim-polytope can be found
similarly with Theorem 4.6, but the expression of facets for each simplex is not clear.

Notice that all conclusion and discussion in this paper until now are all based on
a fixed underlying ordering of nodes. However, in practice, it is often hard to decide
such an ordering. One way to compromise is that we can fix the ordering of some
of the nodes, and consider every permutation of the rest nodes. For instance, when
we use SNP data to examine phenotypes, we are more interested in how genes affect
phenotypes and how phenotypes affect each other. Thus we can consider DAGs where
all edges between SNPs and edges from phenotypes to SNPs are forbidden, i.e. we
only need to consider the permutation of phenotypes.

This paper focuses on the case that all random variables in N are finite random
variables. It is still an open problem that how to generalize our method to the case
that some or all of the random variables in N are continuous random variables.
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